

Tame Transformation Signatures

Jiun-Ming Chen
�

Bo-Yin Yang
�

�
Purdue University, W. Lafayette, Indiana, USA. <jmchen@math.purdue.edu>

�
Tamkang University, Tamsui, Taiwan. <by@moscito.org>

Submitted June 15, 2002,
revised for IWAP proceedings September 20, 2002,

exerpted for IACR e-print archive November 7, 2003

Note from the authors

This paper was presented at IWAP (International Workshop of Asia-Pacific Public-Key-Infrastructure)
’02; after heavy editing it appeared in its proceedings. An excerpted version is hereby submitted
to e-print archives for easy reference.

Abstract

We introduce the new
�����
	���

-based digital signature scheme TTS (Tame Transformation Sig-
natures). TTS is a consequence of the public-key cryptosystem TTM (Tame Transformation
Method) and shares many of its superior properties, resulting in low signature delays, fast veri-
fication and high complexity. The commercial applications of TTS is protected under the patent
of TTM. TTS can be used with any hash function (such as MD5 or SHA-1). We describe the
principles and implementation of TTS and analyze their properties – both in absolute and com-
paratively to alternative schemes.

KEY WORDS
Finite Field, Tame Transformation, Digital Signature, TTM, TTS

1 Introduction

Secure authorization and authentication of information have been important and imminent prob-
lems in this age of the Internet. Identity fraud and sometimes outright theft runs rampant and
many solutions have been proposed to rein in these beasts. Most involve some form of dig-
ital signatures and hash functions, hence faster and more secure hashes and digital signature
schemes will be of great service in many ways.

In the course of this article, we will use the principles behind TTM (Tame Transformation
Method, [14]) to derive a new digital signature scheme TTS (Tame Transformation Signatures).
TTM and TTS both work on a finite field and have very similar designs. Due to their common
ancestry, they share many properties including high complexity (security), ease of implementa-
tion and good execution speed. The following is a summary of the remaining sections:

Sec. 2 A brief recap of how Tame Transformations are used to construct the current TTM cryp-
tosystem and the basic properties of TTM.

Sec. 3 Describing the basic ideas behind TTS (Tame Transformation Signatures).

Secs. 4 A practical TTS implementation.

Secs. 5–8 Qualitatitve and relative analysis of TTS.

2 Tame Transformations to TTM

A Tame Transformation ����� ������	 �
�� ������	
is usually given as a set of relations (where

each ��� is a polynomial, and the subscripts can be permuted):

����� �����
����� ���! � � � � � �
��"�� ��"! � " � � �$# ��� �

...
...

...
� � � � � �%� � � �$# ��� #%&�&%&'# � �)(� �

...
...

...
� 	 � � 	 � 	 � �*� # � � #%&�&%&'# � 	 (� &

Tame Transformations had been first researched in algebraic geometry, but its use was first pro-
posed by T. Moh for public-key cryptography infrastructure ([14]). They possess the desirable
property that

1. A preimage � � � (� �+ can be computed very quickly by solving for each component
serially, but:

2. an explicit polynomial form for � (� will be very hard to write out in full, being of very
high degree with many, many terms:

� � � � � �
���,� ���.- � � � � � �
��",� ��".- � " � � �$# �/� �

� ��".- � " � � �$# ���0- � � � � � �
�213� ��14- � 1 � �*� # � � # � "

� ��14- � 1 � ��� # � � - � � � ��� #
� " - � " � ��� # � � - � � � ��� �

...
...

...
� 	 � � 	 - � 	 � � �$# ��� #�&%&�&%# � 	 (� �

� � 	 - � 	 � � �5# �6�0- � � � � � &�&%& � 	 (� - � 	 (� ��7%7�7 &

When TTM was first proposed it had an LTL (linear-tame-linear) form, with
� � ��� �
	 ��

, �98 �;:=<>: 80� � � (where : denotes composition, i.e. substitution). 84� and 8 � are affine
(linear) and < is tame and homogeneous quadratics for each � � , and an expansion rate of ? during
encryption. This is susceptible to attacks by P. Montgomery and A. Sathaye (both unpublished)
due to the fact that the first coordinate in the tame portion is fixed (as is practically the second
coordinate, since � � is essentially constricted to �
� � �).

To ameliorate this flaw, current implementations of TTM ([14]) use an LTTL (linear-tame-
tame-linear) form1 � � 1 : � " : � � : � � � � . The components � � and � 1 are affine (linear), but
� � is from

� 	
to
��@

with A�BDC . It is really a Tame Transformation in
��@

applied after the
canonical embedding

� 	 �E��@
(i.e. pad � 	�F �5#�&%&%&�# � @ with zero’s). Again all displacements

�%� are homogeneous and quadratic. The major deviation concerns � " �0�
�G
, which is a

specially constructed Tame Transformation
�H@4�E��@

with this form (where ?IBKJIBLC):
����� �*�M ON�� � � � # � " #%&�&%&�# � @ �
� � � � � ON � � � " # ��1 #%&�&%&�# � @ �

... � ...
1In principle, the TTM encryption map can be PRQTS�S�SUQVP with one or more Q ; more Q ’s can be added as security

dictates; in practice this is seldom necessary.

2

��� � ��� N�� � ��� F �$#�&%&�&%# � @ �
��� F � � ��� F � �

... � ...
� @ � � @ �

such that the degrees of the polynomials N�� ’s are suitably large2 but the composition � ".: � � ���	 � � @
are quadratic in each component of the image. Thus, � � � 1 : � "/: � �/: � � looks like

a generic quadratic with C degree-2 equations of A variables each, and is given in the composite
form as the public key. To get this desirable form, we need C to be substantially larger than
A . Trade-offs must be made between encryption time (�

� A*C , or proportional to the square
of encryption block-size and the expansion rate) and safety. E.g. a current implementations of
TTM uses A � 	��

and C �
	�� , multiples of 4 being easier on the programmer (on current
computer architectures). The private key is the collection of all information built into each of
the �/� modified in such a way to maximize decryption speed.

Improved as above, TTM is secure and speedy to the point where it can be used on its
own and not in conjunction with a symmetric cipher. In more traditional PKI, a public key
cryptosystem is only used to exchange the session key, and such is the case for the well-known
SSH (Secure Shell) and PGP (Pretty Good Privacy) protocols. In its current form, TTM remains
a “strong cryptosystem” under all known attacks (see Sec. 8 and [15]-[18] for more details).

In retrospect, one might marvel at some of the similarities in the design of AES(Rijndael)
and TTM/TTS. Both work on

��� �
	���
and include both linear and non-linear operations. The

linear operations have a diffusive effect, quickly mixing all components and masking underlying
algebraic relations; but the non-linear operations are necessary to disrupt the structure of linear
mappings (otherwise the result of a mapping will be determined by the result on a basis of the
space). AES uses the action of taking a multiplicative inverse as the non-linear operation and in
TTM/TTS we use quadratic polynomial substitutions.

Further information on TTM can be found at http://www.usdsi.com. We stress that
computations pertaining to Tame Transformations (as well as other tame-like mappings) can be
greatly accelerated using SIMD (Single Instruction Multiple Data) operations, available (say)
via Motorola’s AltiVec technology. See [13] for one such implementation for TTM.

3 Basic Idea behind TTS

To sign a message digitally, one takes its digest (hash) value according to some agreed hash
function (in the well-known PGP protocol, this is SHA-1), then run that hash value through a
signature function (for PGP, this is RSA-1024 or -2048). The result is the digital signature. Dur-
ing authentication, the recipient substitutes the signature into a “verification trap-door function”
and compares the result with the message digest (using the same hash function). If they are the
same, the message is presumed “clean”.

T. Moh’s seminal paper [14] sketched how to derive digital signature schemes using the
same principles behind TTM (i.e. Tame Automorphisms) known to yield strong cryptosystems
with good properties, but our article is the first time that the details have been fleshed out and
Tame Transformation proposed as the centerpiece of digital signature infrastructure without any
mathematical cloud.

In a public-key cryptosystem one releases an injective function (the encryption map) whose
trap-door inverse (the decryption map) is hard to find. In a digital signature scheme, the veri-
fication map released is an inverse to a hard-to-find injective trap-door (the signing map). Just
fine for a symmetric cryptosystem like RSA, but the LTTL-form TTM encryption mapping is
no longer a bijection (not surjective!) and cannot be used directly for digital signatures.

In TTS, we follow the theory in [14] and switch back to a LTL format for the mapping. The
general idea is as follows: the message or hash value is padded out in a certain way before a
tame transformation is applied. Again before and after the tame transformation there is an affine
mapping portion.

2 ������ ���������� ����� , the other ��� ’s are a handful of cubics.

3

Message Hash
Function

Signature
Function Signaturedigest

(a) Signing a message (with private key)

Message

Signature

Hash
Function

Verification
Function

Compare

value
check

digest

(b) Verifying a signature (with public key)

Figure 1: Digital Signature and Authentication

Padding is a necessary evil because a simple LTL scheme will be relatively unsafe. In the
current version we pad. Via padding we maintain the kernel as a homogeneous quadratic with
the same nice properties as Tame Transformations.

4 Current TTS: TTS/2

TTS is really a genre of related schemes, but “TTS” below will principally refer to the illustrative
variant, which may be denoted “TTS/2” for future reference.

This implementation utilizes 8 random elements from
� � ��� �
	 ��

and the signature will
be 8 bytes longer than the hash value. 64 bits from a sufficiently random bitstream is needed;
without dedicated hardware, the best source is Operating System level entropy collection based
on I/O latency, as in the pseudodevice files /dev/random or /dev/urandom in various free
Unices. TTS is slightly unusual in that the same message may not result in the same signature.
In practice this is not a problem.

4.1 Signing a Message

Without loss of generality, take

to represent a 20-byte (160 bits) hash value. We obtain the
signature � � � (

�� : � (
�� : � (

�" �+
, an 28-byte string, with the following component maps:

� � � � � � � � � � # �
��� � � ����R�
� � � � � � � � ��� # �
� Tame-Transform of

� � �
� " � � � � � � ��� # �
��� " � ��	� &

The Tame Transform portion � � is given by:
�
� � ���=� Uniform Random Variable in

� �
...

...
...

�	��� ��;� Uniform Random Variable in
� �

� � � � � �� � � � ��� �� � ���'��! �� � � � ��! �� � � " �21��
�	��� ��! ����'���'� � ����%� � ��! ����%� " ��! ����%�21 ��6�

...
...

...
���3� ���4 ����$��� (� ��� (� ���� ��� (� ��� (�� ����5��� (� ��� ("� ����5��� (� ��� (1�#

...
...

...
� � ��� � � �! �� � �'�*����� � �� �� � �'� ��� � � �0 �� � �%� � � � � 1� �� � �%� � � � � " �

4

where
 � � � � # � �$#%&�&%&�# ��� � ;��� � � (note subscripts), and � � � ��� # � ��#%&�&%&%# ��� � ;� � (

�� �) �
� � �

will be constructed during the signing process by solving the above equations. The signing
portion or private key is given by the information in each part of the composite � (

�� : � (
�� : � (

�" ,
and during the process each step is evaluated separately. As shown below (see Sec. 7), it’s
possible to take certain shortcuts in the signing process.

4.2 Verifying a Message

The verification mapping or public key is given by the composite of � " : � � : � � . This also
evaluates to a generic set of quadratic relations

� � � � ��� � � �� �� � #�� � � #�&%&�&
	 ? &

The matrices
� � and the vectors � � therein are then recorded as the public key. We should

mention again that normally there would be a constant term for each � � except that we adjust �6"
above to zero out them all. Key sizes can be found in Table 1.

TTS
equations 16 20 24
variables 24 28 32

message (bits) 128 160 192
signature (bits) 192 224 256

linear terms 24 28 32
quad. terms 300 406 528
terms per eq. 324 434 560

public key #par 5184 8680 13440

linear-1 #coeff 600 812 1056
TAME #coeff 64 80 96
linear-3 #coeff 272 420 600

private key #par 936 1312 1752

Table 1: Basic data for TTS/2 (the current TTS)

5 Flexibility

TTS can be easily adapted to any size of hash value. For example, in TTS, a hash of ?�� 	 bits
or 24 bytes can be accommodated by a

� " � � � � 1
Tame Transformation with a

	���
-bit (32

bytes) signature. If necessary, “trampolines” (data created to be programs) corresponding to
other hash sizes can be created on the fly in response to the user’s needs.

TTS can be adapted for higher level of security by adding more square-free quadratic terms.
This will not affect the speed of verification, just increase the size of the private key and slightly
slow the signing speed.

6 A Comparative Study

TTS like current implementations of TTM work with the affine spaces over the finite field��� �
	 ��
. We venture our humble opinion that small working sizes associated with finite fields

can be easier implemented effectively than alternatives with very large working sizes, such as
the astronomically big groups used by RSA, ECC, ElGamal and their relatives. AES (see [1]
and [7]), favorite symmetric cryptosystem du jour based on the Rijndael block cipher, is also
based on computations over the very same finite field

��� �
	 ��
.
����� 	 �

is a natural choice for
being convenient computationwise and allowing compatible subfields of

��� � 	 1
and

�����
	 �
(thus making for easier practical implementation with reasonably-sized keys).

5

6.1 Comparison to traditional PKI

Most extant PKI (Public Key Infrastructure) are based on RSA. RSA signatures are much larger
(usu. 1024 or 2048 bits, much larger than in finite-field-based schemes). Signing a message
under RSA is also significantly slower than under TTS, as is generating a key pair. All in all,
there are distinctive advantages to use TTS rather than RSA. The superiority is more pronounced
against (say) the even slower DSA/DSS (based on discrete logarithms). The length of keys is
a common bugbear of multivariate quadratic cryptography. In Sec. 7 we see how this
problem can be mostly alleviated in practice.

6.2 Brief Comparison against other multivariate Schemes

TTS belongs to the multivariate quadratic finite-field-based family of signature schemes as do
two of the five NESSIE ([19]) digital signature scheme candidates, QUARTZ ([4]) and SFLASH

([5]). In any scheme of this type, to verify a message means substitutions into a set of quadratic
polynomials much like encrypting a message in any such Public Key Cryptosystem, and hence
they all use comparable time and resources. Indeed both QUARTZ and SFLASH performs simi-
larly here.

However, signing a message is really like decrypting a message under an analogous cryp-
tosystem, and here we see substantial performance differences (Table 2). TTS is structured so
that signing is also substitutions, hence it is easy to code and quick to run. SFLASH (based on��� (() is more troublesome in this aspect. The signing procedure for QUARTZ, equivalent to the
decrypting process of HFE from which it is derived, is based on solving equations in a largish
finite field, and as such is hard to code for and snail-paced in comparison. One can see from
Table 2 that TTS shines against (at least) these rival schemes for digital signatures.

QUARTZ SFLASH TTS/2
Signature (bits) 128 259 224
Public key (kB) 71 15.4 8.6
Private key (kB) 3 2.4 1.3
Generate keys (s) ��� ��� ���
	��

�

Signing speed (s) ���	 ��� �����
	���� ���	����
Verifying speed (s) ���	 ��� � ���	 ��� ���	 ���

Table 2: Comparison of signature schemes (Pentium III/500, non-optimized gcc code).

As mentioned in Sec. 2, the underlying algebraic structure is why TTS signs and gener-
ates keys faster than SFLASH or QUARTZ. Certainly the use of

��� �
	 �
in SFLASH (instead

of
�����
	 ��

) precludes exploiting the existence of intermediate field extensions. Embarassingly,
QUARTZ can fail to sign a message (very low probability), and the culprit is again the underlying
structure. Variable parameters and non-homogeneity in the central non-affine map as TTM/TTS
have (as opposed to SFLASH, with a fixed, quadratic, central portion) is a plus, because SFLASH

can thus be subjected to the kind of attack tailored by Steinwandt et al ([23]-[25]).

7 Key Size Reduction

As can be seen from Sec. 6, TTS keys (while still shorter than SFLASH keys) are longer than
RSA keys. This is not significant for modern general-purpose hardware, but can definitely be
a problem for embedded applications. Since an embedded cryptosystem application, such as
a smart card, principally restricts the size of private keys, we will show how to make keys
(mostly private keys) significantly smaller by restricting the mappings involved. The following
applies just fine to TTM and most multivariate quadratic finite-field-based schemes. While
complexity of cracking TTS would also decrease, but analysis (Sec. 8) shows that it is still a
“strong cryptosystem” and beyond the reach of crackers in the foreseeable future.

6

7.1 Public Keys

We fix a 4-bit subfield
��� � GF

� 	 1
that is compatible (has a compatible multiplication table)

with our
��� �
	 ��

, and use elements from
���

for all the quadratic terms in the Tame Transforma-
tion and all matrix elements in the affine mappings. This effectively halves the public key size
and can nearly double the execution speed with suitable programming exercises.

7.2 Private Keys

While public TTS keys are just coefficients for quadratic polynomials, a private TTS key is the
sum of its three parts, and there are more tricks available:

1. Using a compatible
� � � GF

�
	 1
cuts the corresponding private key size.

2. Using 1-bit entries for the linear-part square matrices. For TTS with 20-byte hashes and
28-byte signature, we would instead of

	 � � 	�� �
bytes in the private keys have 1/8 times

that many bytes for a total of ? 	�� .

This trick lets the programmer avoid costly table lookups and use a variety of SIMD
techniques to do several operations in parallel. In some cases it is not even required that
the CPU has SIMD instructions!

3. In the linear maps, instead of generic invertible matrices use products of a number of
component matrices in some given form such that both the number of parameters and the
number of operations needed in the linear transformation is linear in the dimension as
opposed to being proportion to the square of the dimension.

Preliminary tests show these techniques can result in a net increase of the signing speed by a
factor of 4–7. It will take further case-by-case study to determine the ones that do not result in
significant decrease of cryptanalyzing complexity.

8 Brief Cryptanalysis

Solving quadratic systems is an NP-complete problem ([8], [12]), so no attack can do more
damage than brute force unless there is an inherent flaw in TTS. Given the kinship between
TTM and TTS, most attacks against TTM may be surmised to apply to TTS, but there are
signatures-specific attacks, too.

8.1 Recap of TTM attacks

Some notable attempts against TTM are as follows:

1. Jacques Patarin in [20] and later [21] gave and used algorithms for solving IP (Iso-
morphism of Polynomials) Problem: given sets of two quadratic relations (mappings
� � ���9
� � � 	

with ��� ��� � � ��� #%&�&%&�# � � #�� � ? 7�7%7 A .) � and � , find affine
(linear) mappings 80� and 8 � such that � � 80� : � : 8 � . (Reduction to) IP is ineffective
against TTM because (see [17]) Patarin’s algorithm requires explicit knowledge of � and
� , but all current production-quality Tame Transformation based methods include many
user-determined terms in the kernel mappings.

2. A. Kipnis and A. Shamir invented the relinearization improvement to the usual lineariza-
tion approach solving sets of high-order equations, based on the simple fact that

� � � � ��� � � ��� � ��� � � ��� � ��� #

in any field. This attack is considered superseded ([6]) by the next one.

3. In [6] we see that experiments have been performed by N. Courtois., A. Klimov, A.
Shamir, and J. Patarin with new methods “XL” and “FXL”. One might be justified in

7

concluding that someone had (some version of) TTM in his sights. However, it is illus-
trated in [16] that such attempts are futile according to the theory established by Hilbert
and Serre, because for XL to have any efficacy the solution set at � must be either
empty or

�
-dimensional. For TTS/2, each quadratic term has one � � with even � and

one with odd � , so the solution set at infinity has at least dimension thirteen – we can let�*�4� � " � 7%7%7 �K� � � � �
and make all quadratics vanish.

4. In [4] L. Goubin and N. Courtois asserted that the MinRank attack is effective against
TTM. Unfortunately the paper was so full of inaccuracies as pointed out in [18], that it is
hard to see how the attack can actually operate.

In each polynomial of the kernel Tame Transformation for any TTS scheme is four distinct
square-free quadratic terms, none of which ever being replicated in another polynomial. Any
linear combinations will not result in elimination of any terms. 4 square-free terms are consid-
ered plenty by current authorities; should there be new attacks that can exploit the smallness of
number of terms in each polynomial, a few new terms can be added without substantial penalty.

We conclude that an analog of an attack on TTM (see [14] for details) on TTS will not do
much better than a brute force search and all reasonable implementations of TTS has an effective
complexity well above

	�� �
.

8.2 Signature-specific attacks

One kind of attacks is tailored for a given scheme. The aforementioned IP type of attack depends
specifically on the central non-affine mapping having a simple, fixed form; the attack on SFLASH

by Steinwandt et al ([23]-[25]) depends on the central quadratic portion being homogeneous.
These kind of attacks are not applicable to TTS.

There may also be effective attack on generic schemes. Three attacks ([3]) are designed
against “underdefined” system with number of variables A ���

. We evaluate each proposed
attack on the currently testing TTS with � � 	��

, A � 	 � and
� � 	 �

using formulas in [3]).

A The complexity is � � � � (� �� 	 � " �
where the constant � is �
	�� � �� 	 #���� A 	 -�� A 	�� ,

equal to 	 in this instance.

B The complexity is
� 7 � � (� . Here ������ 	 � 	 - ? & �� �

and � � (� � 	 � � �
.
� � ����� � � � # � " where

� " is the time
needed to solve a system of 4 equations (36 multiplications) and

� � is given as � � � � � -� � � 	 � �
, making for a complexity of

	 � "��
.

C Not applicable to TTS since it requires A � 	 �
.

We conclude that TTS appears to be reasonably safe, even in its most basic form.

References

[1] http://csrc.nist.gov/encryption/aes the AES homepage

[2] C.-Y. Chou, D.-J. Guan and J.-M. Chen, A Systematic Construction of a � �"! -module in
TTM, Communications in Algebra, 30 (2002), 551-562.

[3] N. Courtois, L. Goubin, W. Meier, and J.-D. Tacier, Solving Underdefined Systems of
Quadratic Equations, pp. 211–227 in Public Key Cryptography – PKC 2002, LNCS V.
2274, Springer-Verlag, 2002.

[4] N. Courtois, L. Goubin, and J. Patarin, Quartz, 128-bit long digital signatures. in Cryp-
tographers’ Track RSA Conference 2001, LNCS V. 2020, Springer-Verlag, 2001.

8

[5] N. Courtois, L. Goubin, and J. Patarin, FLASH, a fast multivariate signature algorithm.
in Cryptographers’ Track RSA Conference 2001, LNCS V. 2020, Springer-Verlag, 2001;
updated version of [4] and [5] can be found at
http://www.cosic.esat.kuleuven.ac.be/nessie/tweaks.html

[6] N. Courtois., A. Klimov, J. Patarin and A. Shamir. Efficient Algorithms for Solving Overde-
fined Systems of Multivariate Polynomial Equations pp. 392–407 in EUROCRYPT 2000,
LNCS V. 1807, Springer-Verlag, 2000.

[7] Joan Daemen and Vincent Rijmen, The Design of Rijndael, AES - The Advanced Encryp-
tion Standard. Springer-Verlag, 2002.

[8] Michael Garey and David Johnson, Computers and Intractability, a guide to the theory of
NP-completeness. Freeman, 1979.

[9] L. Goubin and N. Courtois, Cryptanalysis of the TTM Cryptosystem. pp. 44–57 in ASI-
ACRYPT 2000, LNCS V. 1976, Springer-Verlag, 2000.

[10] A. Kipnis, J. Patarin, and L. Goubin, Unbalanced Oil and Vinegar Signature Schemes, pp.
206-222 in EUROCRYPT’99, LNCS V. 1592, Springer-Verlag, 1999.

[11] A. Kipnis and A. Shamir, Crypanalysis of the HFE public key cryptosystem, pp. 19–30 in
CRYPTO 1999, LNCS V. 1666, Springer-Verlag, 1999.

[12] K. Manders and L. Adleman, NP-complete decision problems for quadratic polynomials,
pp. 23–29 in Conference record of the eighth annual ACM Symposium on Theory of Com-
puting: papers presented at the Symposium, Hershey, Pennsylvania, May 3–5, 1976, ACM
Press, 1976.

[13] B. Lucier, Cryptography, Finite Fields, and AltiVec, preprint at
http://www.altivec.org/articles/.

[14] T. Moh, A Public Key System with Signature and Master Key Functions. Communications
in Algebra, 27 (1999) 2207–2222.

[15] T. Moh, Relinearization and TTM, Preprint 1999.

[16] T. Moh, On The Method of XL and Its Inefficiency Against TTM in Cryptology ePrint
Archive (2001/47).

[17] T. Moh, A Cryptanalysis of TTM in Multivariate Cryptography, International Press, 2003.

[18] T. Moh and J.-M. Chen, On the Goubin-Courtois Attack on TTM in Cryptology ePrint
Archive (2001/72). Moh’s papers also available at http://www.usdsi.com, the
homepage of U.S. Digitial Security, Inc. and http://www.chnds.com.tw (Chinese
Digital Security, Inc.).

[19] http://www.cosic.esat.kuleuven.ac.be/nessie/, the NESSIE (New Eu-
ropean Schemes for Signatures, Integrity, and Encryption) selection project homepage.

[20] Jacques Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of Asymmetric Algorithms, pp. 33–48 in EUROCRYPT 1996, LNCS V.
1070, Springer-Verlag, 1996.

[21] J. Patarin, L. Goubin and N. Courtois, Improved Algorithms for Isomorphisms of Polyno-
mials, pp. 184–200 in EUROCRYPT 1998, LNCS V. 1403, Springer-Verlag, 1998.

[22] W. Stallings, Crytography and Network Security: Principles and Practice, 2nd ed. Prentice
Hall, 1998.

[23] R. Steinwandt, W. Geiselmann, and Th. Beth, Revealing the Affine Parts of SFLASH �
�

SFLASH �
�
, and FLASH, to appear in VII Reunion Espanola sobre Criptologia y Seguridad

de la Informacion, VII RECSI Proceedings.

9

[24] R. Steinwandt, W. Geiselmann, and Th. Beth, Attacking the Affine Parts of SFLASH, pp.
355-359, in Cryptography and Coding, 8th IMA International Conference Proceedings, B.
Honary, ed., LNCS V. 2260, Springer-Verlag, 2001.

[25] R. Steinwandt, W. Geiselmann, and Th. Beth, A Theoretical DPA-Based Cryptanalysis
of the NESSIE Candidates FLASH and SFLASH, pp. 280-293 in Information Security, 4th
International Conference, ISC 2001 Proceedings, G. I. Davida, Y. Frankel, eds., LNCS V.
2200, Springer-Verlag, 2001. The last two papers are also presented at the 2nd NESSIE
workshop.

10

