A More Secure and Efficacious
TTS Signature Scheme

Jiun-Ming Chen Bo-Yin Yang
National Taiwan University, and Tamkang University,
Chinese Data Security, Inc., Taipei Tamsui, Taiwan
jmchen@math.ntu.edu.tw by@moscito.org

November 7, 2003

Abstract

In 2002 ([7]) the new genre of digital signature scheme TTS (Tame Transformation Signa-
tures) is introduced along with a sample scheme TTS/2. TTS is from the family of multivariate
cryptographic schemes to which the NESSIE primitive SFLASH also belongs. It is a realization
of T. Moh’s theory ([37]) for digital signatures, based on Tame Transformations or Tame Maps.
Properties of multivariate cryptosystems are determined mainly by their central maps. TTS
uses Tame Maps as their central portion for even greater speed than C*-related schemes (using
monomials in a large field for the central portion), previously usually acknowledged as fastest.

We show a small flaw in TTS/2 and present an improved TTS implementation which we call
TTS/4. We will examine in some detail how well TTS/4 performs, how it stands up to previously
known attacks, and why it represents an advance over TTS/2. Based on this topical assessment,
we consider TTS in general and TTS/4 in particular to be competitive or superior in several
aspects to other schemes, partly because the theoretical roots of TTS induce many good traits.
One specific area in which TTS/4 should excel is in low-cost smartcards. It seems that the genre
has great potential for practical deployment and deserves further attention by the cryptological
community.

Key Words: multivariate, public-key, digital signature, finite field, tame transformation.

Note from the authors

This is an unabridged, slightly further edited version of a manuscript by the same name, which had
been cut down due to space constraints after being accepted for presentation in CSISC ’03. This is
a “full version” in that some previously excised materials are reinstated.

1 Introduction

Trapdoor mappings are central to Public-Key Cryptography. As such, cryptographers have studied
trapdoor permutations and maps since the dawn of public key cryptography ([15]). A handful of
the many schemes attempted reached practical deployment. However, the critical trapdoor maps are
often very slow, and that is frequently due to the sheer size of the algebraic structure. Typical are
the modular exponentiation in RSA or the discrete logarithms in ElGamal/DSA/ECC.
Multivariate public-key cryptosystems were born partly to circumvent this limitation. Great
names like Shamir ([43]) and Diffie ([20]) abound among the pioneers, but the first scheme to show
promise and grab everyone’s attention was C* by Imai and Matsumoto ([28, 35]). Unfortunately a

few years later C* was broken by Patarin ([44]) who in turn introduced many of his own innovations,
some (HFE/C*~ families) of which are still extant. The variations on this theme seem endless.

TTS (Tame Transformation Signatures) digital signature schemes belong to this extended family.
We propose TTS/4, an improvement variant of TTS and discuss some design, performance, and
security issues associated with the TTS genre. Multivariates mainly differ in their central maps,
or kernels, that determine the trapdoors and hence their security. We aim to show that the Tame
Transformation, a biregular map' first introduced by T. Moh to cryptography, is a viable kernel for
trapdoor permutations with appreciable gains versus other schemes, and one that warrants further
investigation.

Sec. 2 is a succint summary of TTS with theory and example. Like other multivariate schemes,
TTS can be flexible in terms of hash length and is easily adaptable to 256-bit or longer hashes if
needed, but TTS/4 is designed to work with current 160-bit hashes like SHA-1. We will quantify
how well TTS/4 does by various metrics of speed and key size in Sec. 3. It compares well with
some better-known alternatives. We see that TTS/4 is especially fast in signing and should be very
suitable for use on a smartcard as seen in a point-by-point comparison with the SFLASH"? scheme
recommended by NESSIE? for the same purpose ([2, 42]).

Most of what remains (Sec. 4 and Sec. 5) of this paper is an extensive discussion of possible
attacks against TTS/4. Avoiding the pitfalls that ensnared other schemes should be central to
design decisions taken in present and future schemes, hence the multiplitude of techniques presented
serves as an illustrative backdrop to TTS/4.

2 Tame Transformation and TTS

While clock speeds went up according to Moore’s law, unfortunately so did the complexity skyrocket
and key lengths exponentiate. In a quarter-century, no alternative to the venerable RSA ever showed
enough of a speed gain to become the heir apparent. Indeed, multivariate public-key cryptography
arose out of this need for faster algorithms. Partly as due to the search for good multivariate PKC’s,
cryptographers also applied their considerable talents to seeking faster alternatives in birational
permutations ([20, 50]) over two decades. Birational implies being polynomial or rational, with a
polynomial or rational inverse. Regrettably, an explicit low-degree inverse that brings swiftness
in execution often has the undesirable side effect of engendering vulnerabilities ([8, 9, 20]). What
appears to be needed is a map with a high-degree yet easily (quickly) obtained inverse.

T. Moh first took Tame Transformations into the landscape of Cryptography from their native
habitat of Algebraic Geometry ([37]). A Tame Transformation over a field K (hereafter GF(2%) unless
otherwise specified), is either affine or given by a set of polynomial relations ¢ : x(€ K™) — y(€ K™):

Yy = Ty

Y2 = T2+ q(z1);

ys = a3+ q3(w1,22);

Yn = $n+Qn(xlax27--- 7xn—1);
Yn+1 = Qn—i-l(xl:x%--- 7xn—1>§

Ym = qm(Il,IQ,--. ,.Tn>,

La bijective map that is polynomial both ways.
?New European Schemes for Signatures, Integrity, and Encryption, project homepage at www.cryptonessie.org.

When n = m, the tame transformation is bijective and also called a tame automorphism. Of course,
the indices of the variables z; and y; can be permuted, it is not required that the variables appear
in the order shown above. Basic properties of a tame transformation are:

e it is injective and we can compute the preimage x = ¢~ 1(y) as easily as y = ¢(x); but

e it is difficult to write x explicitly as a function of y:

1 = Y13

x2 = Y2 — q@(x1) =vy2 — @(y1);

xr3 = y3—Q3($1, 1‘2) =y3—q3(y1, y2—Q2(y1));

Ty = Yn—qu(T1, T2, Tno1) = Yn — (Y192 — @2(Y1), -+ s Yn—1 — Gn—1(--+)).

As we solve for each z; serially, the degree of the polynomials expressing x; in y; escalate
quickly — exponentially, even if most g;’s are merely quadratic.

In the rest of this paper we loosely term a map tame-like or just tame when it is either a tame
transformation, or if it retains, at least where it matters, the property of having at least one preimage
with easy serial computation through substitution or the solution of only linear equations but not an
explicit inverse of low degree. So a tame-like map can be neither injective nor surjective.

In general the verification map of any TTS scheme is V : GF(2%)" — GF(2%)™ where n > m
and use only a single tame map. In contrast TTM, the family of public-key encryption scheme that
is companion to TTS, uses two tame maps. We give some background and an illustrative example
first.

2.1 History of Tame Transformations

The inverse of a tame automorphism is also a tame automorphism. Tame transformations have a long
and distinguished history in algebraic geometry. Thousands of papers on these subjects have been
published studying automorphism groups for affine spaces and embedding theory in mathematics.

Let K be a field. Denote Auto(K™) the automorphism group of the affine space K™. The tame
automorphism group, Tame(K™), is the subgroup of Auto(K™) generated by all tame automorphisms.
For n = 2, the beautiful theory of van der Kulk in 1953 ([32]) states that Auto(K?) = Tame(K?),
i.e., any automorphism of K? can be written as a canonical product of tame automorphisms.

There is a veritable chasm between our knowledge of Auto(K?) and Auto(K™) for n > 3. Can
we generalize van der Kulk theory to higher-dimensional cases? So far there is no answer, either
affirmative or negative. Even worse, we do not have a factorization theorem for Tame(K™) for n > 3.
That is, if n > 3, every element 7 in Tame(K™) can be factored as m = ¢, o ... 0 ¢1 by definition,
but there is no known way to find one factorization let alone a canonical one.

In [40], Nagata constructed an automorphism for n = 3:

y1 = 1
yo = w2+ xi(Ti73+ x%)
ys = x3— x2(T123+ :Jc%) — 1 (2123 + x%)z

and raised the question whether it is in Tame(K?). Note that if we have a factorization theorem for
the elements in Tame(K?), one may simply assume that the above automorphism is in Tame(K?)
and factor it. If one succeeds, it is naturally in Tame(K?), otherwise not. We can not answer

Nagata’s question after some forty years, simply because we do not know how to factor elements in
Tame(K?).

For embedding theory ([1], [36], [40]), the simplest case, i.e., the (algebraic) embedding of affine
line to affine plane of characteristic zero, had been an open problem for forty years when it was
solved in [1] using difficult and long arguments. The result is that any embedding mapping is a
composition of a trivial mapping of the affine line to z-axis and an element of Tame(K"), or we
should say that any embedding mapping is a tame transformation. It is unknown how to generalize
the above argument to either higher-dimensional cases (i.e., affine lines to affine spaces or affine
planes to affine spaces, etc.) of characteristic zero, or even affine lines to affine planes of positive
characteristics. There are some conjectures and discussions about the latter cases in [36].

2.2 A Toy Example
We use a verification map V = ¢3 0 ¢ 0 ¢1 : GF(2)® — GF(2)3 composed thusly:

®3 ®2 01
To wo
20 Y2 Y2 = T2+ ai1roxi T w1
z1{ = M3 |y3| +c3 Y3 = T3+ asr1T2 z9| =My w2 | +c1
22 Y4 Ya = T4+ a3T2T3 3 w3
T4 w4

Normally, in GF(2%), we choose arbitrarily the nonzero parameters a;. Here each a; has to be 1. We
can pick any cq, and the invertible matrices M; and Mg, but we will compute a c3 so that all the
constant terms vanish. Suppose

1 10 0 11

1 11010 1 11
C1 = 0 5 M1: 1 0 1 0 0 5 M3— 1 0 1

1 11111 110

0 01010

We compose them to get c3 = (0,1,0) and the following z = V(w). Note that w? = w; in GF(2).

Zp = wo+ w1+ wa + w3+ wowy + Wows + W1wWs3 + WiwW4 + Wawy + WawWy;
21 = W2+ w4+ wows + wiwa + wiws + wWiwWy + wowsz + W4 + W3W4;
Z2 = wo+ w2 + wows + wows + Wowy + Wiwr + W1wW3 + Wi1wWy + Wow3 + wWawy.

These quadratic polynomials form our verification function or public key. The private key would be
the a;’s, c1, c3, and the inverses M1_1 and Mgl. Suppose a mini-hash value z = (1,1,0) is given, we
will compute a set of w = (wpg, w1, we, ws, wy) that satisfies these equations. We can compute the
signature S(z) = ¢7 ' (¢5 ' (3" (z))) by solving three sequential sets of solutions:

1. y = M3*(z — ¢c3) = (1,1,1) is straightforward®.

2. The solution for x is clearly not unique, but assigning values to zg and z1 will force the rest
and there are four possible values for x: (0,0,1,1,0), (0,1,1,0,1), (1,0,1,1,0), (1,1,0,1,1).

30f course, all the minus signs in this section could just have been pluses because of characteristic 2.

3. As w = M7 !(x — ¢1), we can compute all four w values, which turns out to be (1,1,0,1,1),
(1,0,0,1,1), (1,0,0,0,1), (1,1,1,0,1). Each could be the signature attached to the message.
The recipient can verify that the signature and the hash value indeed satisfy z = V(w).

In this toy example a brute-force search takes no time. However, assuming that V' does not easily
decompose into its original components, and that solving for w is hard with real-life sized parameters
then we have a secure signature that cannot easily be forged. We can see also that our trapdoor
provides for a very fast signing procedure, taking not much more time than two matrix multiplica-
tions.

2.3 A Generic Form for TTS

Let K be a field. The verification map V = ¢3 0 ¢o 0 ¢1 : K™ — K™ is the public key, where
¢1:wi—x =Mw+c; and ¢3 : y — z = Msy + c3 are invertible affine maps in K™ and K™
respectively. ¢o : K™ — K™ is a tame map, called the kernel, and contains a lot of parameters.
S = gbfl ° ¢y Lo gbgl, where ¢y ! takes any preimage of ¢» and does not have to be deterministic, is
the signing map. The information content of (¢7", ¢35, ¢3') is the private key.

As pointed out in [37], using a bijective affine-tame-affine public map is inadvisable because the
initial equations y; = 1 and y2 = x2 + ax% represent intrinsic vulnerabilities. TTM must resort to
using another tame map because a public encryption map must retain all information content. In
fact, T. Moh’s prototype signature scheme ([37]) also used two tame maps, but TTS was designed
with a more lightweight single tame-map approach, concentrating on being a good signature scheme.

In TTS, the signing map S may add extra information that we need not preserve through the
verification process V. Hence, some initial dimensions can and will be collapsed by the kernel ¢o:

¢2 = | projection collapsing initial (n —m) coordinates | o [tame transformation or tame-like map |.

Otherwise stated, we discard the first n —m coordinates after a tame transformation. Geometrically,
given a message digest, we hide an (n — m)-dimensional algebraic variety in K™ consisting of all
possible digital signatures. The probability of guessing a point on the variety correctly is ~ |K|™™,
e.g., ~2 190 a5 K = GF(2®) and m = 20 in our proposal. Suppose the kernel takes this form:

P2 1 X = (x()a O PRI xnfl) =y = (ynfma"') ynfl)a
ye = zk + fr(zoy ... ,2k—1), fork=n—m, ..., n—1,

where f.’s are quadratic polynomials, then ¢5 ! can be computed thus when signing:

zr = random variable r; in K, for k=0,... ,n—m —1,

zr = yp— fe(zos... ,x4—1), fork=n—m,... , n—1
For security reasons, the tame-like maps used in current TTS deviate slightly from the form above,
while retaining the basic propertes of being flexible in hash sizes (because n and m can be adjusted

easily) and being serially and quickly solvable in each xy. Note that the polynomials fi, can contain
many arbitrary parameters which will be randomly chosen and incorporated into the private keys.

2.4 The Old: TTS/2, a Previously Proposed Variant

Hereafter we fix K = GF(2%). The signing map is S = ¢1_1 o ¢2_1 o gzﬁgl : K2 — K28 where
1 : Wi X =Mw4c, and ¢3 : y — z = Mgy + c3 are invertible affine in K% and K?%°

respectively, and ¢o : x = (z9, 1,... , T27) — ¥ = (ys, Y9, ... , Y27) is given below:

ys = X8 + agxoxy + bgw1xg + cgxo s + dg T3 T4
Yp = T + apTp_gTp—1 + bp Tp—7 Tp—2 + Ck Tp—g Tp—3 + di Tp—5 Tp—_4;
Yor = a7 + Q27 T19 Tog + bor o0 Tos + co7 T2t Tog + da7 T2 Ta3.

To generate a key pair: Randomly choose ¢; € K28, nonzero parameters a;, b;, ¢;, d; € K for
8 < i < 27, invertible* My € K228 and M3 € K29%2°, Find M7' and M3'. Compute c3 so
that constant terms of V' = ¢3 0 ¢9 0 ¢p1 vanish. The 20 x 28 x (28 + 3)/2 = 8680 coefficients
of V' are the public key; (bl_l, ¢§1 and parameters (a;, b, ¢;, d;) form the private key (1312

bytes).
To sign a message M: Compute the message digest z = H(M); compute y = (ys, Yg, ... , Y27) =
Mgl(z—C3); pick zg, ... , x7 randomly, then solve sequentially for each of the z; for i = 8...27;

the signature is w = M (x — c1).

To verify a signed message (M, w): Compare V(w) = ¢3 0 ¢ o ¢1(w) against the hash z =

This variant was proposed in [7]. We shall propose some changes below and explain why.

2.5 The New: TTS/4, an Efficient and More Secure TTS

We use the following new ¢9 : x = (xg, z1,..., T27) —y = (Ys, Yo, --. , Y27) given by:
ys = w8 + agwox7 + bgw1 T4 + C8T2T6 + dg T3 T5;
Y = Tk + G Th—g Th—1 + bk Tp—7 Tp—a + Ckp Theo Th—2 + di Th—5 Th—3;
Y23 = T3 + Q23 T15 T2 + boz T1g T19 + C23 T17 T21 + do3 T18 T20;
You = T4 + Q24 T16 T23 + bos T17 T20 + C24 T18 T2 + dog T4 T24;
Yo5 = To5 + Q25 T17 To4 + bos 18 To1 + C25 T4 T2z + dos s T2s;
Y26 = To6 + Q26 T18 Tos + bog T4 o2 + 26 T5 Tou + dog Te T26;
Yor = To7 + ao7 T4 Toe + boy x5 T23 + Co7 e T25 + dor T7 T27.

Some particular design features (items 2, 4, and 5 are TTS security enhancements we made to
[7]):
1. If we write yp = xp + x! Fix, there is no canonical (symmetric) form for F; since char K = 2,

but the matrix Fy, + F,;‘F is unique. Here F} + F];‘F has rank 8 for every k because no z; appear
twice in a quadratic term of the same equation.

2. The last four equations deviate from the general form in that where variables x19, x29, T21, Z22
would be expected, the variables x4, x5, xg, x7 are substituted so that at least one index in
each quadratic term will be between 4 and 18 inclusive. We will explain why in Secs. 4.2.2, and
4.3.

4usually by LU decomposition, which yields only (256"27” - 255") of H;.LZ_OI (256™ — 2567) nonsingular matrices.

6

3. The rules are set up such that all eighty quadratic terms z;z; are distinct.

4. The formula of yy, is different from the initial proposed form (TTS/2 of the previous section)
in [7]. The indices in a quadratic term differ by 2, 3, 4, or 7 instead of 1, 3, 5, or 7. Principally,
this is to avoid a separation of the x; into even and odd indexed parts (see Sec. 5.2).

5. The last four equations has its corresponding z; in a quadratic term. However, the entire
collection of relations is still a tame-like map. The reason is

(1 + dgzg—20)xr = yi + (function in (xq,..., x5 1)) for k=24-..27.

Since x4, T5, g, and x7 are random numbers independent of the message digest, we pick them
so that 1 + dosza, 1 + dosxs, 1 + dogzg, and 1 + doyzr are all non-zero® which ensures that
To4 - - - Toy are easily solvable. See Sec. 2.6 and 5.1 for the reason for this change in design.

To generate a key pair and to verify a signed message (M, w): Unchanged from the above

section.
To sign a message M: Compute digest z = H(M); compute y = (ys, yg, ... , y27) = Mgl(z—C3);
pick xg,..., x7 randomly such that x; # d;}_QO for kK = 4---7 (see item 5 above), then

sequentially solve for z; (for i = 8...27); the signature is w = M7 (x — ¢1), release (M, w).

2.6 Raison d’etre: Avoiding a Common Kernel

In [8, 9] Coppersmith et al exploited a sequence of decreasing kernels in one of Shamir’s Birational
Permutation schemes, which meant that kernels of all quadratics in the public key must share a
common intersection (see Sec. 5.1). The T'TS/2 of [7] has a mild vulnerability of a similar type.

Proposition 1 Kernels of symmetric matrices corresponding to each of the twenty quadratic poly-
nomials of a TTS/2 public key intersect in a one-dimensional subspace which will yield xo7 to the
attacker. Kernels for the quadratics in TTS//j intersect only in the origin.

Proof. Take the symmetric matrix corresponding to ys = xg+ agxox7 + bgx1 26+ cgTo x5 +dgr3Ty.
We see that no matter how the quadratic
part of ys is written as (x?Qx), the matrix
(Q + Q™) will be as shown to the right, and
that its kernel is x9g = 21 = --- = 27 = 0.
Indeed, it is easy to see that if a quadratic
has the form z,xp + xe.xq + - -+ with all the
indices a, b, ¢, d,... distinct from each other,
{x: 0=z, =2p = 2, = g = ---} will
be the kernel of the corresponding symmetric
matrix, hence {x : zj_g = -+ = z5_1 = 0} as
will be the kernel of the quadratic part of y
written in x.

o O
& o
Q
Qo

o O O O
o O O
o)

[

o O O oo
QL
[e]

020><8

OO OO oo
QU
o]

SO oo o oo
o
[

SE3

o O

o O O

o O O O

o O O OO

O OO O oo
O OO OO oo

08 %20 020 x20

We will take Qp and Qk to be the matrices relating the quadratic portions of each zp to w and x
respectively. Since zi’s are full-rank linear combinations of the y;’s, we know that ﬁjl.io ker(Qr +

Q{) = span([0,..., 0, 1]7) because in the intersection subspace each of the z; = 0 except for xo7,
which does not appear in any quadratic term of the TTS/2 kernel. But we also know the quadratic
portion of z, to be simultaneously x?Q;x and wQ,w, hence we have Qp = M{QxM;, and the

5Tn a sense, T 20 is a variable constant and 1 + dixr_20 the variable constant coefficient of xy for k = 24---27.

kernels are related by ker(Qy + Q%) = Ml_l(ker(Qk + Q%)) Thus, we have ﬁjl-io ker(Qr + Q{) =
span (Ml_l[O, e, 0, 1}T), so we have the last column of M1_1 up to some factor.
With TTS/4, by a similar reasoning we find the ker Qk’s to intersect in only the zero vector.]

It might be argued that one column does not completely shatter TTS/2, and indeed it does not seem
to be so easy to eliminate any other variable, but we should still avoid such a problem if possible.

Note: TTS/4 is not the only way out of the above problem. Indeed, a much more straightforward
tweak is to use the same central (kernel) map ¢9 as in TTS/2, except that the last term in the last
equation is changed to dorxoxor. We call the TTS variant with such a central map TTS/2'.

However, there are other reasons for the modifications in TTS/4. On the technical side, (see
item 2 in Sec. 2.5) is that we want to enable a partitioning of the twenty-eight variables x; into
sets of fifteen and thirteen such that any crossterm has at least one of its factors from the former,
while avoiding a rough division of the variables according to the parity of the index (see item 4
in the preceding section). The corresponding security concerns are addressed in Secs. 4.2 and 5.2
respectively. There is also a non-technical reason, which is that we find a structure like TTS/4
easier to generalize should such need arise. Against the attacks enumerated in Sec. 4, TTS/2" as
given above appears to be as resistant as TTS/4, a tribute to the countless variations possible in
multivariate cryptography.

3 Performance Evaluation

These days one usually turns to a better compiler, a better computer, or special-purpose hardware
like Motorola’s AltiVec (see [34]) for more performance. However, a better algorithm never hurts.

We tabulate in Table 1 the better of timings from the vendor-submitted and NESSIE’s own
binaries for all 5 second round NESSIE digital signature candidates®, normalized to a Pentium III
at 500MHz from Table 37 in [42]. We also timed TTS/4 (written in reasonably portable C) on a
PII1/500.

Scheme Signature | Pub. Key | Priv. Key | Keys Setup | Signing | Verifying
RSA-PSS 1024 bits 128 B 320 B 2.7sec | 84 ms 2.0 ms
ECDSA 326 bits 48 B 24 B 1.6 ms | 1.9 ms 5.1 ms
ESIGN 1152 bits 145 B 96 B 0.21sec| 1.2ms | 0.74 ms
QUARTZ 128 bits 71.0 kB 3.9 kB 3.1 sec 11 sec | 0.24 ms
SFLASHY? || 259 bits | 15.4 kB 2.4 kB 1.5sec | 28 ms | 0.39 ms
TTS/2 224 bits 8.6 kB 1.3 kB 5.3 ms 35 us | 0.13 ms
TTS/4 224 bits 8.6 kB 1.3 kB 5.3 ms 36 us | 0.13 ms

Table 1: TTS and NESSIE round 2 candidates signature schemes on a 500MHz Pentium 111

Since our programs were mainly proof-of-concept with clarity and ease of maintenance as the
goal, we did not optimize to the hilt and compiled with the old gcc-2.96. With the newer gcc3
or Intel’s icc, better programming and aggressive optimizations, we estimate that TTS/4 can be
at least 1.5x to 2x faster. Still, TTS” performed credibly against the NESSIE candidates, and we
note that:

e Multivariate schemes are fundamentally identical during verification — just substituting into
polynomials. Here, TTS is faster than its multivariate relatives SFLASH"? and QUARTZ due

SNESSIE eventually recommended RSA-PSS, ECDSA and SFLASH?2,
"TTS/2 and TTS/4 has almost identical times. The TTS/4 programs happen to need four extra lookups.

to its smaller dimensions. Of course, it can also be somewhat inconvenient if the dimensions
are not divisible by 4, as in the FLASH family’s K26 — K37,

Signing is determined by the kernel (middle quadratic portion) action. QUARTYZ is slow since
it has to solve high-order equations. A FLASH-like scheme is faster. Any TTS variant runs
especially fast because inverting a tame-like map is simple and straightforward.

e Comparison with RSA-PSS, ECDSA or ESIGN is a different kettle of fish altogether. Multi-
variate schemes® is a lot faster than the more traditional contenders.

Here, we have the modular exponentiation in RSA, a well-understood problem painstakingly
optimized by over a quarter-century of computer science. Yet SFLASH"? is faster and TTS/4
even more pronouncedly so. Clearly, there are intrinsic advantages to multivariate PKC. Due
to concerns of security (see [41]), NESSIE recommends RSA-1536 with higher exponents as
opposed to RSA-1024 and e = 3, which surely would further cut down the speed by at least
50% or more without special hardware. This decision can be considered at least somewhat
vindicated with news of recent advances (e.g. [51]) on factoring large numbers.

e While TTS/4 (and in general TTS) does very well speedwise, unfortunately (although pre-
dictably) it is not the best in every category. All variants of T'TS suffer from that common
bugbear of multivariate cryptography: large keys. ECDSA is the undisputed king in small key
sizes, although it uses discrete logarithms and is also slower than the multivariates.

Thankfully, now smart cards can have on-card storage upward of 32kB. The TTS public keys,
while not so trim, is smaller than that of its more robust French cousins and tolerable at 8.6kB.
It was mentioned by the authors of SFLASH ([49]) that another choice is to have the private
key on card and be able to spit out the public key when needed; the same holds true for TTS/4.

A note about future extensibility. Eventually the world will move to 256-bit hashes, and a rough
estimate is that an analog to TTS/4 will use about 2.5 times as many CPU cycles; in contrast, a
RSA-based scheme gets to use longer hashes for free; ECDSA will be hurt grievously when forced
up to a longer hash; SFLASH will probably scale slightly worse than a TTS-based scheme. All told,
we expect T'TS type schemes to be speed-competitive 1-2 generations of hashes down the road.

4 Cryptanalysis by General Algebraic Attacks

Solving generic quadratic equation systems is NP-hard ([21]), so barring an inherent flaw in TTS,
there should be no sub-exponential time algorithms. But we should still take note of essentially
brute-force solutions because some practical-sized systems may be solved that way, and in reasonable
time.

Other ideas, some ingenious, are used to cryptanalyze other multivariate schemes. We examine
all ideas known to us but each seems to fail against TTS/4 without substantial modification.

First we deal with the more general approaches, designed to be applicable against all multi-
variate signature schemes, and describe in order the state of the art methods of both brute force
searches (Sec. 4.1) and the more circumspect techniques of linearization (Sec. 4.2) and Grobner
bases (Sec. 4.3), and how each functions against TTS/4. Then we complements the above content
by discussing attacks applicable to particular multivariate signature schemes.

8With the exception of the slow signing action of QUARTZ.

4.1 Search Methods

At PKC 2002, Courtois et al laid a bold claim to “most advanced search methods” against “under-
determined systems of quadratic equations” ([12]), which essentially meant multivariate quadratic
signature schemes. Certainly the ideas deserve further attention if only because no more meritorious
attack has been advanced since then. We summarize and test each given method in [12] against the
current TTS/4. In each method, the aim is to solve m quadratic equations in (w;);—1.. ., over GF(q).

Algorithm A The general idea is as follows: Pick 2k equations and divide the variables into groups

of k and n — k. Separate the quadratic equations into crossterms involving variables of both
groups and quadratics dependent in each group of variables only, i.e. without loss of generality:

k n
Zi = gi(wl,... , wk) +Z wj - (Z ﬂijgw5> +hi(wk+1,... s wn).

j=1 (=k+1
We impose 2k? linear relations Zg:kﬂ Bijewe = ;; on the variables wgyq,..., w,. If n >
2k(k+1) and m > 2k, then we can find k = (n—k)—2k? > k independent variables w1, . .. , Wy,
such that h;(wkt1, ..., wy) = hi(w1, ..., w;). The equations become
k
gi(wl, ey wk) + Z YijW; = Zi — h;(ﬂ)l, ce E)E).
j=1

By evaluating the left side for all possible ¢" combinations and storing the results, then evalu-
ating the right side for all ¢* combinations, i.e. using a birthday attack and trading space for
time, this can be solved in &~ 2¢*kk? time instead of ¢*T*kk?. The extra factor is of course the
number of multiplications needed to evaluate 2k polynomials in &k variables.

k

The upshot is the search will take ~ ¢~ " as long as it was originally. [12] gives the complexity

as Oy =~ ¢" % where k = min(m/2, { n/2— \/n/QJ). Counting operations per search unit, it
really should be ~ mn2¢"*. For TTS/4 with (g,n,m) = (28,28,20), k = 3, and Oy ~ 2151,

Algorithm B The general thrust is that k& variables are eliminated before embarking on a brute-
force search: Treat all quadratic terms w; w; with 7,7 < k as variables and eliminated first,
leaving a linear system of equations in w; ...wy to be solved in terms of the other variables.
To give an illustrative example, in the case of TTS/4, there are 28 variables and 20 equations,
and we can use 15 of the equations as a linear system to solve for the 15 quadratic terms
w%, wow1, . .. , wywy, w, and eliminate them from the remaining 5. Now we run a brute-force
search on the variables ws, ..., way, substituting each set of values into the five equations
left above and solve the resulting system for wg, wy, ws, ws, wy before making the consistency
check. Not only have we saved the number of variables we have to guess by k(= 5), instead of
doing mn? finite field multiplications (lookups) per guess we now only have ~ k(m —k)?+k3/3.

[12] gives the complexity as Cp ~ K - ¢™ %, where k = L\/Qm +2— 3/2J. The coefficient
K = max(Cq,C3) where C5 is the number of operations needed to solve a system of k linear
equations (k3/3 multiplications) and Cj is given as ~ (k (m —k)?). It appears that the authors
of [12] were slightly careless in their presentation, because the requirement for k, the larger
the better, is really m — k(k + 1)/2 > k so for m = 20 as for TTS/4, instead of k = 4 and
g™k = 2128 we should have ¢™ % = 2120, They also probably should have written Cy + C5
instead of max(Cy, C3). Anyway, Cp ~ 2130,

10

Algorithm C The general approach of this attack is to reduce into XL/FXL, but it is inapplicable
to TTS/4 just as it was to TTS/2 ([7]), because it requires n > 2m ([12]).

The discussion of this section in fact carries over with no modifications to TTS/2 and TTS/2’.

4.2 Linearization-Type Attacks

Kipnis and Shamir first introduced ([31]) relinearization, refining the linearization techniques usually
used to solve systems of high-order polynomial equations by using relationships between monomi-
als. The simplest variant, “degree-4 relinearization”, is based on the simple fact that (ab)(cd) =
(ac)(bd) = (ad)(bc), in any field. Relinearization ameliorates somewhat the problem of too many
extraneous solutions and is used against HFE. There are more complex higher-degree improvements,
but the relinearization technique can be considered superseded by XL below (Sec. 4.2.1), because
XL (or FXL) is expected to work in whenever relinearization does ([13]).

4.2.1 XL and FXL

XL (and its variant FXL) can be viewed as refinements of relinearization ([13]), although both nor-
mally work with more equations than variables. The procedure at degree-D on quadratic equations

(L) is:

1. Generate all products of arbitrary monomials of degree D — 2 or less with each [;; linearize by
considering every monomial as an independent variable.

2. Performing Gaussian elimination on the set of equations, ordering the set of variable such that
monomials in a given variable (say the first variable wg) will always be the last to go.

3. Solve for wg a la Berlekamp; repeat if any independent variable remains.

The FXL variant takes every possible guess at a number of variables then uses XL on the
remainder. Normally, we want the number of equations to be at least one and usually 2 more than
the number of variables. Simulations supposedly point to XL/FXL being effective on on randomly
selected quadratics — which also points to its undoing, as we shall see below. It was claimed by N.
Courtois ([10, 11]) that XL variants can break HFE, although he was unable to parlay his simulations
into an actual solution of the HFE-80 challenge before it was solved by Faugere in April of 2002 (see
Sec. 4.3).

4.2.2 Hilbert-Serre Theory, Solution Sets at Infinity and Why XL/FXL Fails

Linearization type attacks such as XL and relinearization have a fatal weakness. They are only
effective under certain circumstances, one where in a sense the set of equations is generic. In more
mathematical terms, the solution set at oo must be at most zero-dimensional. This came from a
venerable theory of Hilbert and Serre ([38]). Of course, a cryptographer will by definition be using
non-generic quadratics the infinity solution set thereof he or she can ensure to be positive-dimensional.
Let V = ¢3 0 ¢5 0 ¢1 be a verification map of some TTS variant. Given a message digest z,
forging a digital signature is equivalent to finding a solution to the system of equations z = V(w).
We homogenize z = V(w) in the projective space and let Hy, be its solution set at infinity. 1t so
happens that dim H, is an important parameter for multivariate schemes because it relates directly
to security under XL/FXL and Grobner bases attacks. We claim that dim Hy, > 12 for TTS/4.
Since both ¢ and ¢3 are affine and invertible, we need to consider how ¢o behaves at oo only.
We can ignore linear terms in ¢2, because to every non-highest-degree term is multiplied a positive
power of an extra variable x,, during homogenization, and “at co” means precisely x, = 0. Since

11

all quadratic terms in ¢ vanish when we set x4 = --- = x18 = 0, there are at least the 13 free
variables xq,... ,*3,T19,... ,To7 in this solution set, hence dim H,, > 13 — 1 = 12. The claim is
proved.

If the attacker successfully guess at 8 variables, the number of variables n will reduce to 20 and
dim H, to 4. Of course, this is not guaranteed to work! Take the example in Sec. 2.2, for all w in the
solution set, wyg = wy = 1. These are the inessential variables, and a randomly guessed assignment
or restrictions on such a variable would most likely leading to a contradiction.

Part of Heisuke Hironaka’s Fields Medal work was an algorithm to determine the essential vari-
ables thereof ([27]) over characteristic zero fields. Unfortunately we are working with characteristic
two fields, so Hironaka’s methods (using many partial derivatives) fail in this case. Absent an oracle,
the attacker now must guess which variables to fix, adding considerably to the running time.

Assuming that 8 variables are guessed correctly. Now dim Hy, = 4. Over GF(2), XL/FXL can
always work by including w? = w; for every i ([14]). Here, for each extra dimension in H., = 4, the
attacker needs to augment the set of equations by a number of quadratics equivalent to a Frobenius
relation wi256 = w; for an essential variable w; — maybe w; = p%, p1 = p%, eee PG = p%, p7 = w?. In
fact the XL/FXL attacker would need to add 32 extraneous equations and 28 more variables.

[13] claims a running time of Agtn®V™ for XL/FXL, where A is the time needed to evaluate
a set of polynomials, or about mn? /2 multiplications; p is the number of variables in which must
be assigned by exhaustive search (“F” is for to fix); and ¢ “the order of the Gaussian reduction
algorithm”, which was claimed to be log, 7 ~ 2.8. We have n = 48, m = 52 now, and at least 208
complexity (times A, the amount of effort to evaluate one set of polynomials). In practice it should
be a lot more.

Giving the best of all worlds to the attacker, he guess again at 4 correct variables, and succeeds
in reducing dim Ho, to zero. Even with that much luck, n = 16. Since A ~ mn?/2, we have
A-(256)%.(16)28%V16 ~ 288 Thus TTS/4 need not, worry about XL/FXL (and hence relinearization).
Note: This section carries over to TTS/2 and TTS/2" with the indices divided even and odd.

4.3 Grobner Bases

Grobner Bases is a well-known way of solving polynomial equations. The classic algorithm for
computing Grobner bases, Buchberger’s algorithm, involves ordering all monomials (usually lex-
icographically) and take some appropriate algebraic combinations of the equations to eliminate
the top monomial serially, until only one variable remains and then solve for that variable (a la
Berlekamp). This method has been extended into more powerful variants by J. Faugére, called Fy4
and Fs ([17, 18]). F5/2, an adaptation of F5, was used to break an HFE challenge in April 2002
(19)):

The linearization methods of Sec. 4.2.1 can be considered simplified versions of Grobner bases,
and the latter are also affected by the underdeterminedness of the system. The attacker must guess
at enough variables to make the program run faster. So there is the problem as is described in
Sec. 4.2.2.

Similar to XL/FXL, Grobner bases method is also affected by dim H,. But there is a difference:
Since dependencies are located and collated at runtime, Grobner bases method does not become
non-functional if there is a non-zero dim H.,. Luckily for us, it does add immensely to its time
complexity.

Computing the Grobner basis of a system of m polynomial equations of maximal degree d in n
variables has time complexity m3d°™") ([5]); when the solution set is of dimension < 0, this bound
can be cut down to d°") ([6]). There is one significant theoretical exception ([33], theorem 3): if
(and essentially only if) dim Hy, < 0, we can find a Grébner basis of degree < (d—1)n+2 and hence
finish in time O(d™). As a practical matter, with a suitable algorithm the exponent can be made

12

smaller by a factor L(q), where L(2) = 11.11 and L(3) = 6.455, but decreases quickly to 1 for larger
values of ¢q. So over small base fields — and this was the case for the HFE challenge 1 mentioned
above we can also finish computing a Grébner basis in a lot less time ([3]).

We can sum up the above thus: computing a Grobner basis takes time at least square-exponential
in n when dim H,, > 0. So for large base fields such as GF(2%), current Grébner-based methods
cannot be used to cryptanalyze well-designed multivariate schemes, e.g., the current TTS, effectively.

5 Cryptanalysis by Other Attacks

As contrasted with “general” attacks of the previous seciton that can function against any scheme
with only the public key known, we herein discuss attacks designed for specific schemes.

5.1 The Coppersmith Attack vs Shamir’s Birational Permutations Schemes

Shamir proposed a family of birational permutation signature schemes in [50], but soon afterwards
Coppersmith et al found a successful attack ([8]). One specific case” attacked by Coppersmith et
al, “sequentially linearized birational permutations”, has y1 = x1, and yx = lg(z1,... , Tp—1)xK +
qi(x1, ..., xp_1) for k = 2---n with £’s linear and ¢’s homogeneously quadratic. Take two invertible
Zn square matrices (N = pp’ with p, p’ prime), and transform x to w, (y2,... ,yn) to z. The private
key is the £’s, the ¢'s, and the two invertible matrices; the user lets z be the message digest and
finds (yo,...,yn), assigns a random x1, solves sequentially for the rest of x, then finds the signature
w. The public key is the quadratic forms giving z in w.

Sketch of attack: take the symmetric matrices M; of y; considered as quadratic forms of x.
These have a decreasing sequence of kernels in x-space (ditto their images in w-space) that we will
try to find. Take A; such that the characteristic polynomial for z; = z; — \;z, has a double root.
Run recursively on the Z;, which all have at least the kernel of M,, 1. We will have found a set of
quadratic forms that are essentially equal to the original ones and enables us to forge signatures.

One can only admire the ingenuity of Coppersmith, Stern, and Vaudenay in looking for common
kernel spaces. Theobald took pains to issue a similar warning ([52]) that “varying ranks of quadratic
forms” may cause security concerns. Thankfully a TTS designer can arrange for a kernel without
an onion-like sequence of decreasing kernels. Still, we consider TTS/4 to be partly inspired by their
work.

5.2 Separation of Oil and Vinegar

In a simplified illustrative example of Patarin’s Oil and Vinegar signature scheme, the private key
is an invertible matrix A € K?"%2" gver a finite field K and n matrices F; e K X2 with zeroes
in all of the upper left quarter n x n entries. The signer releases as the public key the matrices
G; = ATFjA. To sign, take the message digest to be (m1,..., my) € K™. Assign random variables
to the last n components (“vinegar”) of y, and solve the equations yTij = mj; for the first n
components (“oil”) of y € K?". Since each F has its upper left quarter zero, the equations are
linear in the oil variables, and x = A~ly is the signature, verifiable via XTij = m;.

Here each F; maps the subspace with yp11 = Ypt2 = -+ = y2, = 0 (“0il” subspace) to the
subspace (“vinegar”) y; = --- = y, = 0. The cryptanalysis by Kipnis and Shamir builds on the
corollary that each F]71Fi maps the “oil” subspace to itself, and each G;lGi shares an eigenspace
(the image of the oil subspace under A) for suitable (i,7). This eigenspace can be determined,
enabling forged signatures. See ([30]) for details on how K-S attacked Patarin’s original, more
complete scheme.

9We invert Shamir’s notations to be parallel to ours.

13

“Unbalanced” Oil and Vinegar ([29]) is an attempt to use more vinegar variables to circumvent
this weakness, but must tread a fine line: Too few vinegar variables, and there is still a successful
reduction; too many, and brute force attacks of [12] (see Sec. 4.1) work. No such concerns exist in
TTS/4. In TTS/2 we can see a separation of the variables into even and odd portions, and in TTS/4
we can also apportion the variables into x4, x5,..., T13 and xg, ..., x3, T19,..., To7. But there
are fundamental differences from the situation in [29, 30]:

1. In TTS, the vinegar (freely assigned) variables are xq, ..., z7. Suppose an attacker finds the
common eigenspaces for the TTS/2. Where in OV or UOV he would have decomposed the
signature space into dependent “Oil” and independent “Vinegar” components, here he finds
himself with two identical and mutually codependent Creamy Italian portions of 4 vinegar to
10 oil (the z; with even and odd indices respectively). The same successful determination for
TTS/4 will result in dependent Vinaigrette (xq, ..., z3 plus z19,..., z27) and independent
Ranch (x4, xg,. .. , x18) portions, neither of which seems particularly useful to him.

2. According to the analysis in [29], with more dependent “0il” variables than independent “vine-
gar” variables the attack of [30] carries over without modification'’, but not with more vinegar
than oil. The latter is the case for TTS/4 with more variables in Ranch than in Vinaigrette.

5.3 Attacks against SFLASH and other C* Derivatives
Several attacks are specific to the C*/C*~ family which includes SFLASH"2.

e Patarin originally broke ([44]) Imai-Matsumoto’s C* by finding (by brute force) bilinear rela-
tions of the form w'D; z+w’c; + blz+a; = 0. Ding and Schmidt ([16]) adapted this against
variants of the TTM encryption scheme whose central maps are not constructed well enough.
We believe this atack to be inapplicable to TT'S-like methods with sufficiently many crossterms
in every equation. Clearly any relation between w and z will correspond to one between x and
y. and thus we can locate all such bilinear relations by the method of undetermined coefficients
on enough sets of y = ¢2(x) via a straightforward Gaussian elimination. In a long simulation,
nothing like Zi,jZk Fijk w4 25 2 + EiZj Eij zi zj + Zi,j Dij w; 2j + Zz c; w; + Zz bizi+a=0
revealed itself in TTS/4 (and TTS/2'), which is in line with theory.

e Patarin et al claimed that one type of attack is “the best known” against C*~ variants, which is
Patarin’s adaptation of C* around his own attack ([47]). To forge signatures under this attack
also requires finding bilinear relations between w and z. Since none such exists in TTS/4, this
attack is inoperative and probably cannot be patched into service.

e The FLASH family of public-key digital signature schemes ([49]) are instances of C*~. The
original SFLASH scheme used a subfield of GF(2) for all coefficients in its private and public
keys. Gilbert and Minier found ([25]) this a vulnerability and broke the original SFLASH
successfully, but their attack affects neither the current SFLASH? nor TTS/4.

e Geiselmann et al observed (23, 24]) that the middle portion of any FLASH (and indeed any
C*) variant is homogeneous of degree two, and showed how to find the constant parts of both
affine mappings cheaply. To be quite precise, if the public map is V : w — z, a set quadratic
polynomials without constant parts, then [24] showed in detail how to find wq and zy such that
V':iw—z=V(w+wg)+ 2z is homogeneous of degree 2. However, it does not entirely break
SFLASH"2, because C* with linear (no constant) instead of affine maps is still unbroken. It is
also inapplicable to a Tame Transformation type method since a tame map has linear terms.

10We find that hard to put into practice since the G;’s taken as square matrices are not invertible.

14

5.4 The MinRank Attack

The MinRank attack ([26]) is a type of “intelligent brute-force approach” to find the final affine part
of a multivariate cryptosystem’s public map. The claimed complexity of the method is O(q[%]Tm3)
where m,n, g, r are the length of the cipher or signature block, digest or plaintext block, the size of
the base field, and the necessary minimum rank for the attack to be effective. The idea is that the
quadratic part of each equation in the kernel can be represented as a matrix. This kernel has a rank
that should be invariant under change of coordinates, and the probability that any given vector is
in the kernel of any matrix is easily computed from its rank. The steps are (cf. [26]):

1. Using the same notations as in Sec. 2.3, we guess at a random k-tuple (w1, ..., wy) of vectors
in K" (= GF(q)"), where k = [].

2. Take an arbitrary linear combination of the homogeneous quadratic portions of the public keys
with undetermined coefficients, that is @ = >/ | o; H;, with H; the symmetric matrix relating
z; to w. Try to solve for a; with Pw; = --- = Pwj; = 0 via Gaussian elimination. The
equations will be almost uniquely solvable when @ represents the quadratic part of y;, “the
equation that has the smallest rank”.

3. Assume the matrix corresponding to y; has a rank of r, then its kernel (the inverse image
Yy 1(0)) has dimension n — 7, hence when we guess at (w1,..., wy) randomly, they have a
probability of at least ¢~*" to be all in YT 1(0). This P is the quadratic portion of y; and the
coefficients A; the row of Mgl. According to [26] the scheme should unravel entirely after that
one could find M3, and then My with a little more analysis of the kernel spaces.

If MinRank is a viable attack against a signature scheme it should be very useful, since k£ = 1.
However, discounting some careless mistakes ([39]) made by the authors of [26], we note that:

1. The parameter r is not always 2 as claimed. Current TTS has r = 8.

2. The above assumes that y; has the smallest rank r; other ¢; and even many linear combinations
of the y; (hence the H;) can share the same minimum rank r. In TTS/4, y; + ayi+1, ¥i + Qyite
all have rank 8 when « # 0.

3. In a well-designed scheme, there is no onion-like effect where finding an unknown row of Mgl
gives you everything, an attacker must find then place every y; correctly (see above). Assume
that the attacker has an oracle to ascertain when one of the y; has been found. Since a given y;
will fail to surface in the expected number of trials with probability around 1/e, the expected
number of lookups needed is multiplied by a factor of [z d((1 —e™*)*) =~ 3.6.

Even if the details above are taken care of, it is easy to add another cross-term to each equation if
needed, say use TTS/2' with n = 30, m = 20, making r = 10. This raises the complexity by a factor
of 216 and easily sidesteps this attack.

5.5 Attacks on 2R schemes

The recent “2-round schemes” proposed by Patarin drew lots of fire ([4, 53, 54]), but the general
structure of 2R schemes were so different from TTS that it is improbable for any of the suggested
attacks to function against TTS/4 without substantial modification.

For reference, the Ye-Dai-Lam attack of [53, 54] relies on the two central schemes in a 2R scheme
being of D* type, which uses a finite field of an odd modulus smaller than 256. The cryptanalysis
depends on this point which is a quirk that T'T'S does not share.

15

The Biham attack ([4]) is more ingenious but depends on the properties of the S-Box structures.
One of those properties is that there must be clashes (collisions) during the initial round. This is
not true for TTS-like systems.

5.6 Patarin’s IP Approach

IP (Isomorphism of Polynomials) and the related MP (Morphism of Polynomials, see [47]) means to
find two affine maps s, ¢ such that f = so g ot, for given polynomial maps f,g. This is used both
to attack other problems and to create public-key cryptosystems. If all the parameters in the tame
portion of a T'TS variant were to be fixed, then its security will depend on the difficulty of the IP
problem.

Patarin originally considered both the problem of finding both mappings s and ¢ as above, and
just one mapping s satisfying f = s o g. The latter, which Patarin called “IP with one secret” was
said to be fast enough for practical use but turned out to be vulnerable to a “column-wise” attack
by Geiselmann et al ([22]). In [46] Patarin et al imply that most generally effective way to search for
solutions to the two-secret IP/MP problem is the “combined power attack”, essentially a birthday
attack, with a complexity of O(n®¢™/?) for a constant a > 2.

TTS/4 (and any other Tame Transformation based PKC) should not have to fear from an IP-
based attack. The central portion of Tame Transformation based methods contain lots of parameters
(in the private key). This approach therefore will be hard to patch to be working against any TTS
variant. Even should such a patch be possible, for TTS/4 with n = 28 and ¢ = 2% the complexity
should be > 2129, We conclude that IP is not effective against TTS/4 or other similar TTS instances.

6 Conclusions

Multivariate Public-Key Cryptography is clearly a burgeoning research area rich in surprises and new
discovery. For example, we saw that trivial changes to the structure in the previous T'TS formulations
can make an attacker’s life harder and the scheme more secure, and made adjustments accordingly.
We do not doubt that there shall be further attacks against multivariate schemes, attacks against the
TTS genre and even specific attacks tailored against TTS/4, but we are confident that the myriad
variations possible in the structure of tame and tame-like maps means that TTS will adapt and
survive in the wilderness as a family of secure and fast signature schemes. In summary:

The just-proposed TTS/4 seems efficacious and impervious to known attacks. Tame
Transformations, literally the centerpiece of TTS, seem to have many good properties
required of a low-degree birational permutation without its drawbacks. A principal ad-
vantage is that the central quadratic portion of the scheme — a tame-like map — is
easily mutable, variable with many parameters, nonhomogeneous, and very fast.

We feel justified in stating that the T'TS family merits further attention.

Acknowledgements

The authors are indebted to an anonymous referee whose incisive comments provided the necessary
insight to correct an oversight that would have been very costly indeed.

The authors would like to thank Professor T. Moh of Purdue University and Professor R. Stanley
of MIT and their respective departments for their encouragement, assistance, and hospitality toward
their former students during a recent trip in which most of this manuscript was written.

16

References

1]
2]

3]

[15]
[16]

[17]

S. Abhyankar and T. Moh, Embeddings of the Line in the Plane, J. Reine Angew. Math., 276 (1975),
pp. 148-166.

M. Akkar, N. Courtois, R. Duteuil, and L. Goubin, A Fast and Secure Implementation of SFLASH, PKC
2003, LNCS V. 2567, pp. 267-278.

M. Bardet, J.-C. Faugére, and B. Salvy, Complexity of Grébner Basis Computations for Regular Overde-
termined Systems, Preprint and private communication.

E. Biham, Cryptanalysis of Patarin’s 2-Round Public Key System with S Bozes (2R), EUROCRYPT 2000,
LNCS V. 1807, pp. 408-416.

L. Caniglia, A. Galligo, and J. Heintz, Some New Effectivity Bounds in Computational Geometry,
AAECC-6, 1988, LNCS V. 357, pp. 131-151.

L. Caniglia, A. Galligo, and J. Heintz, Equations for the Projective Closure and Effective Nullstellensatz,
Discrete Applied Mathematics, 33 (1991), pp. 11-23.

J.-M. Chen and B.-Y. Yang, Tame Transformation Signatures with Topsy-Turvy Hashes, proc. IWAP
'02, Taipei, a summary available at the IACR e-Print acrhive at http://eprint.iacr.org/2003/160.

D. Coppersmith, J. Stern, and S. Vaudenay, Attacks on the Birational Permutation Signature Schemes,
CRYPTO’93, LNCS V. 773, pp. 435-443.

D. Coppersmith, J. Stern, and S. Vaudenay, The Security of the Birational Permutation Signature
Schemes, Journal of Cryptology, 10(3), 1997, pp. 207 221.

N. Courtois, The Security of Hidden Field Equations (HFE), CT-RSA 2001, LNCs V. 2020, pp. 266 281.

N. Courtois, M. Daum, and P. Felke, On the Security of HFE, HFFEv-, and Quartz, PKC 2003, LNCS V.
2567, pp. 337-350.

N. Courtois, L. Goubin, W. Meier, and J. Tacier, Solving Underdefined Systems of Multivariate Quadratic
Equations, PKC 2002, LNCS V. 2274, pp. 211-227.

N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient Algorithms for Solving Overdefined Systems
of Multivariate Polynomial Equations, EUROCRYPT 2000, LNCS V. 1807, pp. 392—407.

N. Courtois and J. Patarin, About the XL Algorithm over GF(2), CT-RSA 2003, LNCS V. 2612, pp. 141—
157.

W. Diffie and M. Hellman, New Directions in Cryptography, IEEE Trans. Info. Theory, vol. IT-22, no. 6,
pp. 644-654.

J. Ding, D. Schmidt, A Defect Of The Implementation Schemes Of The TTM Cryptosystem, available at
http://eprint.iacr.org/2003/086

J.-C. Faugére, A New Efficient Algorithm for Computing Grobner Bases (F4), Journal of Pure and
Applied Algebra, 139 (1999), pp. 61-88.

J.-C. Faugére, A New Efficient Algorithm for Computing Gribner Bases without Reduction to Zero (F5),
Proceedings of ISSAC, ACM Press, 2002.

J.-C. Faugére and A. Joux, Algebraic Cryptanalysis of Hidden Field Equations (HFE) Cryptosystems
Using Grobner Bases, CRYPTO 2003, LNCS V. 2729, pp. 44-60.

H. Fell and W. Diffie, Analysis of a Public Key Approach Based on Polynomial Substitution, CRYPTO’85,
LNCS V. 218, pp. 340 349.

M. Garey and D. Johnson, Computers and Intractability, A Guide to the Theory of NP-completeness,
1979, p. 251.

W. Geiselmann, W. Meier, and R. Steinwandt, An Attack on the Isomorphisms of Polynomials Problem
with One Secret, available at http://eprint.iacr.org/2002/143

17

[23]

[24]

W. Geiselmann, R. Steinwandt, and T. Beth, Attacking the Affine Parts of SFLASH, 8th International
IMA Conference on Cryptography and Coding, LNCS V. 2260, pp. 355 359.

W. Geiselmann, R. Steinwandt, and T. Beth, Revealing 441 Key Bits of SFLASHY?, Third NESSIE
Workshop, 2002.

H. Gilbert and M. Minier, Cryptanalysis of SFLASH, EUROCRYPT 2002, LNCS V. 2332, pp. 288—298.

L. Goubin and N. Courtois, Cryptanalysis of the TTM Cryptosystem, ASIACRYPT 2000, LNCS V. 1976,
pp. 44-57.

H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Parts
I and II, Annals of Mathematics, 79 (1964), pp. 109-203, 205-326.

H. Imai and T. Matsumoto, Algebraic Methods for Constructing Asymmetric Cryptosystems, AAECC-3,
LNCS V. 229, pp. 108-119.

A. Kipnis, J. Patarin, and L. Goubin, Unbalanced Oil and Vinegar Signature Schemes, CRYPTO’99, LNCS
v. 1592, pp. 206-222.

A. Kipnis and A. Shamir, Cryptanalysis of the Oil and Vinegar Signature Scheme, CRYPTO’98, LNCS V.
1462, pp. 257-266.

A. Kipnis and A. Shamir, Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization,
CRYPTO’99, LNCS V. 1666, pp. 19-30.

W. van der Kulk, On Polynomial Rings in Two Variables, Nieuw Arch. Wiskunde, vol. 3, 1(1953), pp. 33—
41.

D. Lazard, Grébner Bases, Gaussian Elimination and Resolution of Systems of Algebraic Equations,

EUROCAL ’83, LNCS V. 162, pp. 146-156.

B. Lucier, Cryptography, Finite Fields, and AltiVec, http://www.simdtech.
org/apps/group_public/download.php/22/Cryptography.pdf

T. Matsumoto and H. Imai, Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and
Message-FEncryption, EUROCRYPT’88, LNCS V. 330, pp. 419-453.

T. Moh, On the Classification Problem of Embedded Lines in Characterristic p, Algebraic Geometry and
Commutative Algebra in honor of M. Nagata, vol. I, pp. 267-280, Kinokuniya, Kyoto, Japan.

T. Moh, A Public Key System with Signature and Master Key Functions, Communications in Algebra,
27 (1999), pp. 2207-2222.

T. Moh, On The Method of XL and Its Inefficiency Against TTM, available at
http://eprint.iacr.org/2001/047

T. Moh and J.-M. Chen, On the Goubin-Courtois Attack on TTM, available at
http://eprint.iacr.org/2001/072

M. Nagata, On Automorphism Group of K[X, Y], Lectures in Mathematics, vol. 5, Kinokuniya, Tokyo,
Japan, 1972.

NESSIE Security Report, V2.0, available at http://www.cryptonessie.org

Performance of Optimized Implementations of the NESSIE Primitives, V2.0, available at
http://www.cryptonessie.org

H. Ong, C. Schnorr, and A. Shamir, A Fast Signature Scheme Based on Quadratic Fquations, Proc. 16th
ACM Symp. Theo. of Computations, 1984, pp. 208-216.

J. Patarin, Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt’88, CRYPTO’95,
LNCS V. 963, pp. 248-261.

J. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families
of Asymmetric Algorithms, EUROCRYPT’96, LNCS V. 1070, pp. 33 48.

18

[46]
[47]
[48]
[49]

[50]

[54]

J. Patarin, L. Goubin, and N. Courtois, Improved Algorithms for Isomorphism of Polynomials, EURO-
CRYPT’98, LNCS V. 1403, pp. 184 200.

J. Patarin, L. Goubin, and N. Courtois, C* , and HM: Variations Around Two Schemes of T. Matsumoto
and H. Imai, ASIACRYPT’98, LNCS V. 1514, pp. 35—49.

J. Patarin, N. Courtois, and L. Goubin, QUARTZ, 128-Bit Long Digital Signatures, CT-RSA 2001, LNCS
V. 2020, pp. 282-297. Updated version available at http://www.cryptonessie.org

J. Patarin, N. Courtois, and L. Goubin, FLASH, a Fast Multivariate Signature Algorithm, CT-RSA 2001,
LNCS V. 2020, pp. 298-307. Updated version available at http://www.cryptonessie.org

A. Shamir, Efficient Signature Schemes Based on Birational Permutations, CRYPTO’93, LNCS V. 773,
pp. 1-12.

A. Shamir and E. Tromer, Factoring Large Numbers with the TWIRL Device, CRYPTO 2003, LNCS V.
2729, pp. 1-26.

T. Theobald, How to Break Shamir’s Asymmetric Basis, CRYPTO’95, LNCS V. 963, pp. 136-147.

D. Ye, Z. Dai, and K. Lam, Decomposing Attacks on Asymmetric Cryptography Based on Mapping
Compositions, Journal of Cryptology, 14(2), 2001, pp. 137-150.

D. Ye, K. Lam, and Z. Dai, Cryptanalysis of “2R” Schemes, CRYPT0’99, LNCS V. 1666, pp. 315-325.

19

Tame Transformation Signatures
Jiun-Ming Chent Bo-Yin Yang?

! Purdue University, W. Lafayette, Indiana, USA. <j nthen@rat h. pur due. edu>
2 Tamkang University, Tamsui, Taiwan. <by @rosci t 0. or g>

Submitted June 15, 2002,

revised for IWAP proceedings September 20, 2002,
exerpted for IACR e-print archive November 7, 2003

Note from the authors

This paper was presented at IWAP (International Workshop of Asia-Pacific Public-Key-Infrastructure)
’02; after heavy editing it appeared in its proceedings. An excerpted version is hereby submitted
to e-print archives for easy reference.

Abstract

We introduce the new GF(28)-based digital signature scheme TTS (Tame Transformation Sig-
natures). TTS is a consequence of the public-key cryptosystem TTM (Tame Transformation
Method) and shares many of its superior properties, resulting in low signature delays, fast veri-
fication and high complexity. The commercial applications of TTS is protected under the patent
of TTM. TTS can be used with any hash function (such as MD5 or SHA-1). We describe the
principles and implementation of TTS and analyze their properties — both in absolute and com-
paratively to alternative schemes.

KEY WORDS
Finite Field, Tame Transformation, Digital Signature, TTM, TTS

1 Introduction

Secure authorization and authentication of information have been important and imminent prob-
lems in this age of the Internet. Identity fraud and sometimes outright theft runs rampant and
many solutions have been proposed to rein in these beasts. Most involve some form of dig-
ital signatures and hash functions, hence faster and more secure hashes and digital signature
schemes will be of great service in many ways.

In the course of this article, we will use the principles behind TTM (Tame Transformation
Method, [14]) to derive a new digital signature scheme TTS (Tame Transformation Signatures).
TTM and TTS both work on a finite field and have very similar designs. Due to their common
ancestry, they share many properties including high complexity (security), ease of implementa-
tion and good execution speed. The following is a summary of the remaining sections:

Sec. 2 A brief recap of how Tame Transformations are used to construct the current TTM cryp-
tosystem and the basic properties of TTM.

Sec. 3 Describing the basic ideas behind TTS (Tame Transformation Signatures).
Secs. 4 A practical TTS implementation.

Secs. 5-8 Qualitatitve and relative analysis of TTS.

2 Tame Transformationsto TTM

A Tame Transformation ¢ : x(€ K™) — y(€ K™) is usually given as a set of relations (where
each g; is a polynomial, and the subscripts can be permuted):

B = T1;

Y2 = X2 +CI2($1);

ys = 3+ q3(21,22);

vi = Z;i+qi(T1,T2,...,Ti1);
Yn = Tn+an(®1,22,...,Tn-1)-

Tame Transformations had been first researched in algebraic geometry, but its use was first pro-
posed by T. Moh for public-key cryptography infrastructure ([14]). They possess the desirable
property that

1. A preimage x = ¢~ !(y) can be computed very quickly by solving for each component
serially, but:

2. an explicit polynomial form for ¢~ will be very hard to write out in full, being of very
high degree with many, many terms:

1 = Yi;
T2 = Y2 — q2(71);
r3 = y3—q3(21, 2);

= y3—q3(y1, ¥2 — 2 (y1));
Tty = ys—qu(21, T2, T3)

= Y1 —qa(y1, Y2 — @2(¥1),

ys — @3(y1, y2 — a2(y1)));

Tn = Yn —qn(T1, T2y .o, Tp_1);

= Yn—an(W1,y2 — @2(W1) - - Yn-1 — an-1(---)).

When TTM was first proposed it had an LTL (linear-tame-linear) form, with K = GF(28%),
y = Ly o T o Ly(x) (where o denotes composition, i.e. substitution). L; and Ls are affine
(linear) and 7" is tame and homogeneous quadratics for each ¢;, and an expansion rate of 1 during
encryption. This is susceptible to attacks by P. Montgomery and A. Sathaye (both unpublished)
due to the fact that the first coordinate in the tame portion is fixed (as is practically the second
coordinate, since g- is essentially constricted to = — z2).

To ameliorate this flaw, current implementations of TTM ([14]) use an LTTL (linear-tame-
tame-linear) form! y = ¢4 o ¢3 0 ¢ 0 1 (x). The components ¢; and ¢, are affine (linear), but
@2 isfrom K™ to K™ withn < r. Itis really a Tame Transformation in K™ applied after the
canonical embedding K™ — K" (i.e. pad 2y,41, - - ., , With zero’s). Again all displacements
g; are homogeneous and quadratic. The major deviation concerns ¢3 : x +— y, which is a
specially constructed Tame Transformation K™ — K" with this form (where 1 < s < r):

n = I +p1($2,.713,...,.’17r);

Y2 = To+po(T3,T4,...,2,);

LIn principle, the TTM encryption map can be LT - - - T'L with one or more T'; more T"s can be added as security
dictates; in practice thisis seldom necessary.

Ys = s +p5($5+1a ce amT‘);

Ys+1 = Ts41;

Yr = Ty

such that the degrees of the polynomials p;’s are suitably large? but the composition ¢3 o ¢s :
K™ — K" are quadratic in each component of the image. Thus, ¢ = ¢4 o ¢3 0 5 0 ¢1 lo0oks like
a generic quadratic with r degree-2 equations of n variables each, and is given in the composite
form as the public key. To get this desirable form, we need r to be substantially larger than
n. Trade-offs must be made between encryption time (o< (nr), or proportional to the square
of encryption block-size and the expansion rate) and safety. E.g. a current implementations of
TTM uses n = 20 and r = 48, multiples of 4 being easier on the programmer (on current
computer architectures). The private key is the collection of all information built into each of
the ¢; madified in such a way to maximize decryption speed.

Improved as above, TTM is secure and speedy to the point where it can be used on its
own and not in conjunction with a symmetric cipher. In more traditional PKI, a public key
cryptosystem is only used to exchange the session key, and such is the case for the well-known
SSH (Secure Shell) and PGP (Pretty Good Privacy) protocols. In its current form, TTM remains
a “strong cryptosystem” under all known attacks (see Sec. 8 and [15]-[18] for more details).

In retrospect, one might marvel at some of the similarities in the design of AES(Rijndael)
and TTM/TTS. Both work on GF(2%) and include both linear and non-linear operations. The
linear operations have a diffusive effect, quickly mixing all components and masking underlying
algebraic relations; but the non-linear operations are necessary to disrupt the structure of linear
mappings (otherwise the result of a mapping will be determined by the result on a basis of the
space). AES uses the action of taking a multiplicative inverse as the non-linear operation and in
TTM/TTS we use quadratic polynomial substitutions.

Further information on TTM can be found at ht t p: / / www. usdsi . com We stress that
computations pertaining to Tame Transformations (as well as other tame-like mappings) can be
greatly accelerated using SIMD (Single Instruction Multiple Data) operations, available (say)
via Motorola’s AltiVec technology. See [13] for one such implementation for TTM.

3 Basicldeabehind TTS

To sign a message digitally, one takes its digest (hash) value according to some agreed hash
function (in the well-known PGP protocol, this is SHA-1), then run that hash value through a
signature function (for PGP, this is RSA-1024 or -2048). The result is the digital signature. Dur-
ing authentication, the recipient substitutes the signature into a “verification trap-door function”
and compares the result with the message digest (using the same hash function). If they are the
same, the message is presumed “clean”.

T. Moh’s seminal paper [14] sketched how to derive digital signature schemes using the
same principles behind TTM (i.e. Tame Automorphisms) known to yield strong cryptosystems
with good properties, but our article is the first time that the details have been fleshed out and
Tame Transformation proposed as the centerpiece of digital signature infrastructure without any
mathematical cloud.

In a public-key cryptosystem one releases an injective function (the encryption map) whose
trap-door inverse (the decryption map) is hard to find. In a digital signature scheme, the veri-
fication map released is an inverse to a hard-to-find injective trap-door (the signing map). Just
fine for a symmetric cryptosystem like RSA, but the LTTL-form TTM encryption mapping is
no longer a bijection (not surjective!) and cannot be used directly for digital signatures.

In TTS, we follow the theory in [14] and switch back to a LTL format for the mapping. The
general idea is as follows: the message or hash value is padded out in a certain way before a
tame transformation is applied. Again before and after the tame transformation there is an affine
mapping portion.

2degp1 = deg pa = 6, the other p;’'sareahandful of cubics.

o Hash Y\, /g Signature

(8) Signing amessage (with private key)

=) (=
- Compare
/
value
/
Function

(b) Verifying asignature (with public key)

Figure 1: Digital Signature and Authentication

Padding is a necessary evil because a simple LTL scheme will be relatively unsafe. In the
current version we pad. Via padding we maintain the kernel as a homogeneous quadratic with
the same nice properties as Tame Transformations.

4 Current TTS TTS?2

TTS is really a genre of related schemes, but “TTS” below will principally refer to the illustrative
variant, which may be denoted “TTS/2” for future reference.

This implementation utilizes 8 random elements from K = GF(28) and the signature will
be 8 bytes longer than the hash value. 64 bits from a sufficiently random bitstream is needed;
without dedicated hardware, the best source is Operating System level entropy collection based
on I/O latency, as in the pseudodevice files / dev/ r andomor/ dev/ ur andomin various free
Unices. TTS is slightly unusual in that the same message may not result in the same signature.
In practice this is not a problem.

4.1 Signing a Message

Without loss of generality, take y to represent a 20-byte (160 bits) hash value. We obtain the
signature x = ¢ ' o ¢; ' o ¢3 ' (y), an 28-byte string, with the following component maps:

1 : K28—>K28, X — Mix + cq;
$2: K2 - K?°, x s Tame-Transform of (x);
¢3: KZS—)K20, x = Msx + c3.

The Tame Transform portion ¢, is given by:

Yo = o = Uniform Random Variable in K;

y7 = x7 = Uniform Random Variable in K;

Ys = g+ agToTr + byT1Tg + CgTaTs + dgT3Ty;

Yo = X9+ agT1Tg + boToT7 + CoT3Te + doXaTs;

Yb = Tk + QpTr_8Th—1 + OpTh—7Th—2 + CRTh—6Tk—3 + dpTh—5Tk—4,
Yor = Zar + A27T19%26 + b2arZ20Tos + C27T21 %24 + darTa2%23;

where y = (ys, o, - .., y27) € K20 (note subscripts), and x = (zo,21,...,227) € ¢5 ' (y) C
K28 will be constructed during the signing process by solving the above equations. The signing
portion or private key is given by the information in each part of the composite ¢; ' o ¢, ' o qﬁgl,
and during the process each step is evaluated separately. As shown below (see Sec. 7), it’s
possible to take certain shortcuts in the signing process.

4.2 \Verifying a Message

The verification mapping or public key is given by the composite of ¢3 o ¢ o ¢1. This also
evaluates to a generic set of quadratic relations

yi=x'A; x+blx, i=8,...31

The matrices A; and the vectors b; therein are then recorded as the public key. We should
mention again that normally there would be a constant term for each y; except that we adjust c3
above to zero out them all. Key sizes can be found in Table 1.

TTS
equations 16 20 24
variables 24 28 32

message (bits) 128 160 192
signature (bits) 192 | 224 | 256
linear terms 24 28 32
quad. terms 300 | 406 | 528
terms per eq. 324 | 434 560
public key #par || 5184 | 8680 | 13440
linear-1 #coeff 600 | 812 | 1056
TAME #coeff 64 80 9%
linear-3 #coeff 272 | 420 | 600
private key #par || 936 | 1312 | 1752

Table 1; Basic data for TTS/2 (the current TTS)

5 Flexibility

TTS can be easily adapted to any size of hash value. For example, in TTS, a hash of 192 bits
or 24 bytes can be accommodated by a K32 — K?2* Tame Transformation with a 256-bit (32
bytes) signature. If necessary, “trampolines” (data created to be programs) corresponding to
other hash sizes can be created on the fly in response to the user’s needs.

TTS can be adapted for higher level of security by adding more square-free quadratic terms.
This will not affect the speed of verification, just increase the size of the private key and slightly
slow the signing speed.

6 A Comparative Study

TTS like current implementations of TTM work with the affine spaces over the finite field
GF(28). We venture our humble opinion that small working sizes associated with finite fields
can be easier implemented effectively than alternatives with very large working sizes, such as
the astronomically big groups used by RSA, ECC, ElGamal and their relatives. AES (see [1]
and [7]), favorite symmetric cryptosystem du jour based on the Rijndael block cipher, is also
based on computations over the very same finite field GF(2%). GF(2®) is a natural choice for
being convenient computationwise and allowing compatible subfields of GF(24) and GF(22)
(thus making for easier practical implementation with reasonably-sized keys).

6.1 Comparison to traditional PKI

Most extant PKI (Public Key Infrastructure) are based on RSA. RSA signatures are much larger
(usu. 1024 or 2048 bits, much larger than in finite-field-based schemes). Signing a message
under RSA is also significantly slower than under TTS, as is generating a key pair. All in all,
there are distinctive advantages to use TTS rather than RSA. The superiority is more pronounced
against (say) the even slower DSA/DSS (based on discrete logarithms). The length of keys is
a common bugbear of multivariate quadratic cryptography. In Sec. 7 we see how this
problem can be mostly alleviated in practice.

6.2 Brief Comparison against other multivariate Schemes

TTS belongs to the multivariate quadratic finite-field-based family of signhature schemes as do
two of the five NESSIE ([19]) digital signature scheme candidates, QUARTZ ([4]) and SFLASH
([5D). In any scheme of this type, to verify a message means substitutions into a set of quadratic
polynomials much like encrypting a message in any such Public Key Cryptosystem, and hence
they all use comparable time and resources. Indeed both QUARTZ and SFLASH performs simi-
larly here.

However, signing a message is really like decrypting a message under an analogous cryp-
tosystem, and here we see substantial performance differences (Table 2). TTS is structured so
that signing is also substitutions, hence it is easy to code and quick to run. sFLASH (based on
C*~~) is more troublesome in this aspect. The signing procedure for QUARTZ, equivalent to the
decrypting process of HFE from which it is derived, is based on solving equations in a largish
finite field, and as such is hard to code for and snail-paced in comparison. One can see from
Table 2 that TTS shines against (at least) these rival schemes for digital signatures.

QUARTZ SFLASH TTS/2

Signature (bits) 128 259 224
Public key (kB) 71 15.4 8.6
Private key (kB) 3 24 13
Generate keys () ~4 ~1|~1077
Signing speed () ~10 [27x10% | =107 ¢
Verifying speed (s) || ~ 1072 8§x107" | »107°

Table 2: Comparison of signature schemes (Pentium 111/500, non-optimized gcc code).

As mentioned in Sec. 2, the underlying algebraic structure is why TTS signs and gener-
ates keys faster than SFLASH or QUARTZ. Certainly the use of GF(27) in SFLASH (instead
of GF(2#)) precludes exploiting the existence of intermediate field extensions. Embarassingly,
QUARTZ can fail to sign a message (very low probability), and the culprit is again the underlying
structure. Variable parameters and non-homogeneity in the central non-affine map as TTM/TTS
have (as opposed to SFLASH, with a fixed, quadratic, central portion) is a plus, because SFLASH
can thus be subjected to the kind of attack tailored by Steinwandt et al ([23]-[25]).

7 Key Size Reduction

As can be seen from Sec. 6, TTS keys (while still shorter than SFLASH keys) are longer than
RSA keys. This is not significant for modern general-purpose hardware, but can definitely be
a problem for embedded applications. Since an embedded cryptosystem application, such as
a smart card, principally restricts the size of private keys, we will show how to make keys
(mostly private keys) significantly smaller by restricting the mappings involved. The following
applies just fine to TTM and most multivariate quadratic finite-field-based schemes. While
complexity of cracking TTS would also decrease, but analysis (Sec. 8) shows that it is still a
“strong cryptosystem” and beyond the reach of crackers in the foreseeable future.

7.1 Public Keys

We fix a 4-bit subfield K’ = GF(2*) that is compatible (has a compatible multiplication table)
with our GF(2%), and use elements from K for all the quadratic terms in the Tame Transforma-
tion and all matrix elements in the affine mappings. This effectively halves the public key size
and can nearly double the execution speed with suitable programming exercises.

7.2 Private Keys

While public TTS keys are just coefficients for quadratic polynomials, a private TTS key is the
sum of its three parts, and there are more tricks available:

1. Using a compatible K’ = GF(2*) cuts the corresponding private key size.

2. Using 1-bit entries for the linear-part square matrices. For TTS with 20-byte hashes and
28-byte signature, we would instead of 282 + 202 bytes in the private keys have 1/8 times
that many bytes for a total of 148.

This trick lets the programmer avoid costly table lookups and use a variety of SIMD
techniques to do several operations in parallel. In some cases it is not even required that
the CPU has SIMD instructions!

3. In the linear maps, instead of generic invertible matrices use products of a number of
component matrices in some given form such that both the number of parameters and the
number of operations needed in the linear transformation is linear in the dimension as
opposed to being proportion to the square of the dimension.

Preliminary tests show these techniques can result in a net increase of the signing speed by a
factor of 4-7. It will take further case-by-case study to determine the ones that do not result in
significant decrease of cryptanalyzing complexity.

8 Brief Cryptanalysis

Solving quadratic systems is an NP-complete problem ([8], [12]), so no attack can do more
damage than brute force unless there is an inherent flaw in TTS. Given the kinship between
TTM and TTS, most attacks against TTM may be surmised to apply to TTS, but there are
signatures-specific attacks, too.

8.1 Recap of TTM attacks
Some notable attempts against TTM are as follows:

1. Jacques Patarin in [20] and later [21] gave and used algorithms for solving IP (Iso-
morphism of Polynomials) Problem: given sets of two quadratic relations (mappings
x € K™ —»ye K"withy; = fj(z1,...,2m),j = 1---n.) Pand Q, find affine
(linear) mappings L; and L, such that Q = L; o P o Ls. (Reduction to) IP is ineffective
against TTM because (see [17]) Patarin’s algorithm requires explicit knowledge of P and
Q, but all current production-quality Tame Transformation based methods include many
user-determined terms in the kernel mappings.

2. A. Kipnis and A. Shamir invented the relinearization improvementto the usual lineariza-
tion approach solving sets of high-order equations, based on the simple fact that

(ab)(cd) = (ac)(bd) = (ad)(be),
in any field. This attack is considered superseded ([6]) by the next one.

3. In [6] we see that experiments have been performed by N. Courtois., A. Klimov, A.
Shamir, and J. Patarin with new methods “XL” and “FXL”. One might be justified in

concluding that someone had (some version of) TTM in his sights. However, it is illus-
trated in [16] that such attempts are futile according to the theory established by Hilbert
and Serre, because for XL to have any efficacy the solution set at oo must be either
empty or O-dimensional. For TTS/2, each quadratic term has one z; with even ¢ and
one with odd ¢, so the solution set at infinity has at least dimension thirteen — we can let
T, = x3 = --- = x97 = 0 and make all quadratics vanish.

4. In [4] L. Goubin and N. Courtois asserted that the MinRank attack is effective against
TTM. Unfortunately the paper was so full of inaccuracies as pointed out in [18], that it is
hard to see how the attack can actually operate.

In each polynomial of the kernel Tame Transformation for any TTS scheme is four distinct
square-free quadratic terms, none of which ever being replicated in another polynomial. Any
linear combinations will not result in elimination of any terms. 4 square-free terms are consid-
ered plenty by current authorities; should there be new attacks that can exploit the smallness of
number of terms in each polynomial, a few new terms can be added without substantial penalty.

We conclude that an analog of an attack on TTM (see [14] for details) on TTS will not do
much better than a brute force search and all reasonable implementations of TTS has an effective
complexity well above 289,

8.2 Signature-specific attacks

One kind of attacks is tailored for a given scheme. The aforementioned IP type of attack depends
specifically on the central non-affine mapping having a simple, fixed form; the attack on SFLASH
by Steinwandt et al ([23]-[25]) depends on the central quadratic portion being homogeneous.
These kind of attacks are not applicable to TTS.

There may also be effective attack on generic schemes. Three attacks ([3]) are designed
against “underdefined” system with number of variables n > m. We evaluate each proposed
attack on the currently testing TTS with ¢ = 28, n = 28 and m = 20 using formulas in [3]).

A The complexity is O(g™*) ~ 2136 where the constant k is min(m/2, { n/2 — ,/n/QJ),
equal to 3 in this instance.

B The complexity is K - ¢™~*. Here k =
|v2m+2—1.5] = 5and ¢m~% = 2128, K = max(C,,C3) where Cj is the time
needed to solve a system of 4 equations (36 multiplications) and C is given as O(k (m —
k)?) ~ 2'° making for a complexity of 2130,

C Not applicable to TTS since it requires n. > 2m.

We conclude that TTS appears to be reasonably safe, even in its most basic form.

References

[1] http://csrc. nist.gov/encryption/ aes the AES homepage

[2] C.-Y. Chou, D.-J. Guan and J.-M. Chen, A Systematic Construction of a (),x-module in
TTM, Communications in Algebra, 30 (2002), 551-562.

[3] N. Courtois, L. Goubin, W. Meier, and J.-D. Tacier, Solving Underdefined Systems of
Quadratic Equations, pp. 211-227 in Public Key Cryptography — PKC 2002, LNCS V.
2274, Springer-Verlag, 2002.

[4] N. Courtois, L. Goubin, and J. Patarin, Quartz, 128-bit long digital signatures. in Cryp-
tographers’ Track RSA Conference 2001, LNCS V. 2020, Springer-Verlag, 2001.

[5] N. Courtois, L. Goubin, and J. Patarin, FLASH, a fast multivariate signature algorithm.
in Cryptographers’ Track RSA Conference 2001, LNCS V. 2020, Springer-Verlag, 2001;
updated version of [4] and [5] can be found at
http://ww. cosi c. esat. kul euven. ac. be/ nessi e/ t weaks. ht m

[6] N.Courtois., A. Klimov, J. Patarin and A. Shamir. Efficient Algorithms for Solving Overde-
fined Systems of Multivariate Polynomial Equations pp. 392-407 in EUROCRY PT 2000,
LNCS V. 1807, Springer-Verlag, 2000.

[7] Joan Daemen and Vincent Rijmen, The Design of Rijndael, AES - The Advanced Encryp-
tion Standard. Springer-Verlag, 2002.

[8] Michael Garey and David Johnson, Computers and Intractability, a guide to the theory of
NP-completeness. Freeman, 1979.

[9] L. Goubin and N. Courtois, Cryptanalysis of the TTM Cryptosystem. pp. 44-57 in AslI-
ACRYPT 2000, LNCS V. 1976, Springer-Verlag, 2000.

[10] A. Kipnis, J. Patarin, and L. Goubin, Unbalanced Qil and Vinegar Signature Schemes, pp.
206-222 in EUROCRYPT’99, LNCS V. 1592, Springer-Verlag, 1999.

[11] A. Kipnis and A. Shamir, Crypanalysis of the HFE public key cryptosystem, pp. 19-30 in
CRYPTO 1999, LNCS V. 1666, Springer-Verlag, 1999.

[12] K. Manders and L. Adleman, NP-complete decision problems for quadratic polynomials,
pp. 23-29 in Conference record of the eighth annual ACM Symposium on Theory of Com-
puting: papers presented at the Symposium, Hershey, Pennsylvania, May 3-5, 1976, ACM
Press, 1976.

[13] B. Lucier, Cryptography, Finite Fields, and AltiVec, preprint at
http://ww. al tivec.org/articles/.

[14] T. Moh, A Public Key System with Signature and Master Key Functions. Communications
in Algebra, 27 (1999) 2207-2222.

[15] T. Moh, Relinearization and TTM, Preprint 1999.

[16] T. Moh, On The Method of XL and Its Inefficiency Against TTM in Cryptology ePrint
Archive (2001/47).

[17] T. Moh, A Cryptanalysis of TTM in Multivariate Cryptography, International Press, 2003.

[18] T. Moh and J.-M. Chen, On the Goubin-Courtois Attack on TTM in Cryptology ePrint
Archive (2001/72). Moh’s papers also available at htt p: //www. usdsi . com the
homepage of U.S. Digitial Security, Inc. and ht t p: / / www. chnds. com t w(Chinese
Digital Security, Inc.).

[19] htt p://ww. cosi c. esat . kul euven. ac. be/ nessi e/, the NESSIE (New Eu-
ropean Schemes for Signatures, Integrity, and Encryption) selection project homepage.

[20] Jacques Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of Asymmetric Algorithms, pp. 33-48 in EUROCRYPT 1996, LNCS V.
1070, Springer-Verlag, 1996.

[21] J. Patarin, L. Goubin and N. Courtois, Improved Algorithms for Isomorphisms of Polyno-
mials, pp. 184-200 in EUROCRYPT 1998, LNCS V. 1403, Springer-Verlag, 1998.

[22] W. Stallings, Crytography and Network Security: Principles and Practice, 2nd ed. Prentice
Hall, 1998.

[23] R. Steinwandt, W. Geiselmann, and Th. Beth, Revealing the Affine Parts of SFLASHY!
SFLASHY2, and FLASH, to appear in VIl Reunion Espanola sobre Criptologia y Seguridad
de la Informacion, VIl RECSI Proceedings.

[24] R. Steinwandt, W. Geiselmann, and Th. Beth, Attacking the Affine Parts of SFLASH, pp.
355-359, in Cryptography and Coding, 8th IMA International Conference Proceedings, B.
Honary, ed., LNCS V. 2260, Springer-Verlag, 2001.

[25] R. Steinwandt, W. Geiselmann, and Th. Beth, A Theoretical DPA-Based Cryptanalysis
of the NESSIE Candidates FLASH and SFLASH, pp. 280-293 in Information Security, 4th
International Conference, ISC 2001 Proceedings, G. |. Davida, Y. Frankel, eds., LNCS V.
2200, Springer-Verlag, 2001. The last two papers are also presented at the 2nd NESSIE

workshop.

10

