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Abstract

In 2002 ([7]) the new genre of digital signature scheme TTS (Tame Transformation Signatures) is
introduced along with a sample scheme TTS/2. TTS is from the family of multivariate cryptographic
schemes to which the NESSIE primitive SFLASH also belongs. It is a realization of T. Moh’s theory
([37]) for digital signatures, based on Tame Transformations or Tame Maps. Properties of multivariate
cryptosystems are determined mainly by their central maps. TTS uses Tame Maps as their central portion
for even greater speed thanC∗-related schemes (using monomials in a large field for the central portion),
previously usually acknowledged as fastest.

We show a small flaw in TTS/2 and present an improved TTS implementation which we call TTS/4.
We will examine in some detail how well TTS/4 performs, how it stands up to previously known attacks,
and why it represents an advance over TTS/2. Based on this topical assessment, we consider TTS in
general and TTS/4 in particular to be competitive or superior in several aspects to other schemes, partly
because the theoretical roots of TTS induce many good traits. One specific area in which TTS/4 should
excel is in low-cost smartcards. It seems that the genre has great potential for practical deployment and
deserves further attention by the cryptological community.
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Note from the authors

This is an slightly further edited version of a paper presented and published in the proceedings of ICISC ’03
under the same name, which had been cut down due to space constraints. This is a “full version” in that some
previously excised materials are reinstated. This document used to have an appendix that is an executive
summary of the article“Tame Transformation Signatures with Topsy-Turvy Hashes”from the IWAP 2002
conference ([7]), but it has been deleted because the material is slightly outdated.

1 Introduction

Trapdoor mappings are central to Public-Key Cryptography. As such, cryptographers have studied trapdoor
permutations and maps since the dawn of public key cryptography ([15]). A handful of the many schemes
attempted reached practical deployment. However,the critical trapdoor maps are often very slow, and that is
frequently due to the sheer size of the algebraic structure.Typical are the modular exponentiation in RSA or
the discrete logarithms in ElGamal/DSA/ECC.

Multivariate public-key cryptosystems were born partly to circumvent this limitation. Great names like
Shamir ([43]) and Diffie ([20]) abound among the pioneers, but the first scheme to show promise and grab
everyone’s attention wasC∗ by Imai and Matsumoto ([35]).



Unfortunately a few years laterC∗ was broken by Patarin ([44]) who in turn introduced many of his own
innovations, some (HFE/C∗− families) of which are still extant. The variations on this theme seem endless.

TTS (Tame Transformation Signatures) digital signature schemes belong to this extended family. We
propose TTS/4, an improvement variant of TTS and discuss some design, performance, and security issues
associated with the TTS genre. Multivariates mainly differ in their central maps, orkernels, that determine
the trapdoors and hence their security. We aim to show that the Tame Transformation, abiregular map1 first
introduced by T. Moh to cryptography, is a viable kernel for trapdoor permutations with appreciable gains
versus other schemes, and one that warrants further investigation.

Sec. 2 is a succint summary of TTS with theory and example. Like other multivariate schemes, TTS can
be flexible in terms of hash length and is easily adaptable to256-bit or longer hashes if needed, but TTS/4 is
designed to work with current160-bit hashes like SHA-1. We will quantify how well TTS/4 does by various
metrics of speed and key size in Sec. 3. It compares well with some better-known alternatives. We see that
TTS/4 is especially fast in signing and should be suitable for use on a smartcard as seen in a point-by-point
comparison with the SFLASHv2 scheme recommended by NESSIE2 for the same purpose ([2, 42]).

What remains (Sec. 4 and Sec. 5) of this paper is an extensive discussion of possible attacks against TTS/4.
Avoiding the pitfalls that ensnared other schemes should be central to design decisions taken in present and
future schemes, hence the multitude of techniques presented serves as an illustrative backdrop to TTS/4.

2 Tame Transformation and TTS

While clock speeds went up according to Moore’s law, unfortunately so did the complexity skyrocket and
key lengths exponentiate. In a quarter-century, no alternative to the venerable RSA ever showed enough of
a speed gain to become the heir apparent. Indeed, multivariate public-key cryptography arose out of this
need for faster algorithms. Partly as due to the search for good multivariate PKC’s, cryptographers also
applied their considerable talents to seeking faster alternatives inbirational permutations ([20, 50]) over two
decades. Birational impliesbeing polynomial or rational, with a polynomial or rational inverse. Regrettably,
an explicit low-degree inverse that brings swiftness in execution often has the undesirable side effect of
engendering vulnerabilities ([8, 9, 20]). What appears to be needed is a map with a high-degree yet easily
(quickly) obtained inverse.

T. Moh first tookTame Transformationsinto the landscape of Cryptography from their native habitat
of Algebraic Geometry ([37]). A Tame Transformation over a fieldK (hereafterGF(28) unless otherwise
specified), is either affine or given by a set of polynomial relationsφ : x(∈ Kn) 7→ y(∈ Km):

y1 = x1;
y2 = x2 + q2(x1);
y3 = x3 + q3(x1, x2);

...
...

...

yn = xn + qn(x1, x2, . . . , xn−1);
yn+1 = qn+1(x1, x2, . . . , xn);

...
...

...

ym = qm(x1, x2, . . . , xn);

Whenn = m, the tame transformation is bijective and also called atame automorphism. Of course, the
indices of the variablesxi andyj can be permuted, it is not required that the variables appear in the order
shown above. Basic properties of a tame transformation are:

1a bijective map that is polynomial both ways.
2New European Schemes for Signatures, Integrity, and Encryption, project homepage atwww.cryptonessie.org .
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• it is injective and we can compute the preimagex = φ−1(y) as easily asy = φ(x); but

• it is difficult to write x explicitly as a function ofy:

x1 = y1;
x2 = y2 − q2(x1) = y2 − q2(y1);
x3 = y3 − q3(x1, x2) = y3 − q3(y1, y2 − q2(y1));

...
...

...

xn = yn − qn(x1, x2, . . . , xn−1) = yn − qn(y1, y2 − q2(y1), . . . , yn−1 − qn−1(· · · )).

As we solve for eachxi serially, the degree of the polynomials expressingxi in yj escalate quickly —
exponentially, even if mostqk’s are merely quadratic.

In the rest of this paperwe loosely term a maptame-likeor just tamewhen it is either a tame transfor-
mation, or if it retains, at least where it matters, the property of havingat least onepreimage with easy serial
computation through substitution or the solution of only linear equations but not an explicit inverse of low
degree.So a tame-like map can be neither injective nor surjective.

In general the verification map of any TTS scheme isV : GF(28)n → GF(28)m wheren > m and use
only a single tame map. In contrast TTM, the family of public-key encryption scheme that is companion to
TTS, uses two tame maps. We give some background and an illustrative example first.

2.1 History of Tame Transformations

The inverse of a tame automorphism is also a tame automorphism. Tame transformations have a long and
distinguished history in algebraic geometry. Thousands of papers on these subjects have been published
studyingautomorphism groupsfor affine spaces andembedding theoryin mathematics.

Let K be a field. DenoteAuto(Kn) theautomorphism groupof the affine spaceKn. Thetame automor-
phism group, Tame(Kn), is the subgroup ofAuto(Kn) generated by all tame automorphisms. Forn = 2, the
beautiful theory of van der Kulk in 1953 ([32]) states thatAuto(K2) = Tame(K2), i.e., any automorphism
of K2 can be written as a canonical product of tame automorphisms.

There is a veritable chasm between our knowledge ofAuto(K2) andAuto(Kn) for n ≥ 3. Can we
generalize van der Kulk theory to higher-dimensional cases? So far there is no answer, either affirmative or
negative. Even worse, we do not have a factorization theorem forTame(Kn) for n ≥ 3. That is, ifn ≥ 3,
every elementπ in Tame(Kn) can be factored asπ = φm ◦ . . . ◦ φ1 by definition, but there is no known way
to find one factorization let alone a canonical one.

In [40], Nagata constructed an automorphism forn = 3:

y1 = x1

y2 = x2 + x1(x1x3 + x2
2)

y3 = x3 − x2(x1x3 + x2
2)− x1(x1x3 + x2

2)
2

and raised the question whether it is inTame(K3). Note that if we have a factorization theorem for the
elements inTame(K3), one may simply assume that the above automorphism is inTame(K3) and factor it.
If one succeeds, it is naturally inTame(K3), otherwise not. We can not answer Nagata’s question after some
forty years, simply because we do not know how to factor elements inTame(K3).

For embedding theory ([1], [36], [40]), the simplest case, i.e., the (algebraic) embedding of affine line to
affine plane of characteristic zero, had been an open problem for forty years when it was solved in [1] using
difficult and long arguments. The result is that any embedding mapping is a composition of a trivial mapping
of the affine line tox-axis and an element ofTame(Kn), or we should say that any embedding mapping is a
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tame transformation. It is unknown how to generalize the above argument to either higher-dimensional cases
(i.e., affine lines to affine spaces or affine planes to affine spaces, etc.) of characteristic zero, or even affine
lines to affine planes of positive characteristics. There are some conjectures and discussions about the latter
cases in [36]. We will leave it at that, and return to the subject of TTS.

2.2 A Toy Example of TTS

We use a verification mapV = φ3 ◦ φ2 ◦ φ1 : GF(2)5 → GF(2)3 composed thusly:

φ3 φ2 φ1

z0

z1

z2

 = M3

y2

y3

y4

+ c3

y2 = x2 + a2x0x1

y3 = x3 + a3x1x2

y4 = x4 + a4x2x3


x0

x1

x2

x3

x4

 = M1


w0

w1

w2

w3

w4

+ c1

Normally, inGF(28), we choose arbitrarily the nonzero parametersai. Here eachai has to be1. We can pick
anyc1, and the invertible matricesM1 andM3, but we will compute ac3 so that all the constant terms vanish.
Suppose

c1 =


1
1
0
1
0

 ; M1 =


1 0 0 1 1
1 1 0 1 0
1 0 1 0 0
1 1 1 1 1
0 1 0 1 0

 ; M3 =

 1 1 1
1 0 1
1 1 0

 .

We compose them to getc3 = (0, 1, 0) and the followingz = V (w). Note thatw2
i = wi in GF(2).

z0 = w0 + w1 + w2 + w3 + w0w1 + w0w2 + w1w3 + w1w4 + w2w4 + w3w4;
z1 = w2 + w4 + w0w3 + w1w2 + w1w3 + w1w4 + w2w3 + w2w4 + w3w4;
z2 = w0 + w2 + w0w2 + w0w3 + w0w4 + w1w2 + w1w3 + w1w4 + w2w3 + w3w4.

These quadratic polynomials form our verification function or public key. The private key would be the
ai’s, c1, c3, and the inversesM−1

1 andM−1
3 . Suppose a mini-hash valuez = (1, 1, 0) is given, we will

compute a set ofw = (w0, w1, w2, w3, w4) that satisfies these equations. We can compute the signature
S(z) = φ−1

1 (φ−1
2 (φ−1

3 (z))) by solving three sequential sets of solutions:

1. y = M−1
3 (z− c3) = (1, 1, 1) is straightforward3.

2. The solution forx is clearly not unique, but assigning values tox0 andx1 will force the rest and there
are four possible values forx: (0, 0, 1, 1, 0), (0, 1, 1, 0, 1), (1, 0, 1, 1, 0), (1, 1, 0, 1, 1).

3. As w = M−1
1 (x − c1), we can compute all fourw values, which turns out to be(1, 1, 0, 1, 1),

(1, 0, 0, 1, 1), (1, 0, 0, 0, 1), (1, 1, 1, 0, 1). Each could be the signature attached to the message. The
recipient can verify that the signature and the hash value indeed satisfyz = V (w).

In this toy example a brute-force search takes no time. However, assuming thatV does not easily decompose
into its original components, and that solving forw is hard with real-life sized parameters then we have a
secure signature that cannot easily be forged. We can see also that our trapdoor provides for a very fast
signing procedure, taking not much more time than two matrix multiplications.

3Of course, all the minus signs in this section could just have been pluses because of characteristic 2.
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2.3 A Generic Form for TTS

Let K be a field. The verification mapV = φ3 ◦ φ2 ◦ φ1 : Kn → Km is the public key, whereφ1 :
w 7→ x = M1w + c1 andφ3 : y 7→ z = M3y + c3 are invertible affine maps inKn andKm respectively.
φ2 : Kn → Km is a tame map, called the kernel, and contains a lot of parameters.S = φ−1

1 ◦φ−1
2 ◦φ−1

3 , where
φ−1

2 takesany preimage ofφ2 and does not have to be deterministic, is the signing map. The information
content of (φ−1

1 , φ−1
2 , φ−1

3 ) is the private key.
As pointed out in [37], using a bijective affine-tame-affine public map is inadvisable because the initial

equationsy1 = x1 andy2 = x2 + ax2
1 represent intrinsic vulnerabilities. TTM must resort to using another

tame map because a public encryption map must retain all information content. In fact, T. Moh’s prototype
signature scheme ([37]) also used two tame maps, but TTS was designed with a more lightweight single
tame-map approach, concentrating on being a good signature scheme.

In TTS, the signing mapS may add extra information that we need not preserve through the verification
processV . Hence, some initial dimensions can and will be collapsed by the kernelφ2:

φ2 = [ projection collapsing initial(n−m) coordinates] ◦ [ tame transformation or tame-like map].

Otherwise stated, we discard the firstn − m coordinates after a tame transformation. Geometrically, given
a message digest, we hide an (n −m)-dimensionalalgebraic varietyin Kn consisting of all possible digital
signatures. The probability of guessing a point on the variety correctly is≈ |K|−m, e.g., ≈ 2−160 as
K = GF(28) andm = 20 in our proposal. Suppose the kernel takes this form:

φ2 : x = (x0, x1, . . . , xn−1) 7→ y = (yn−m, . . . , yn−1),
yk = xk + fk(x0, . . . , xk−1), for k = n−m, . . . , n− 1,

wherefk’s are quadratic polynomials, thenφ−1
2 can be computed thus when signing:

xk = random variablerk in K, for k = 0, . . . , n−m− 1,

xk = yk − fk(x0, . . . , xk−1), for k = n−m, . . . , n− 1.

For security reasons, the tame-like maps used in current TTS deviate slightly from the form above, while
retaining the basic propertes of beingflexible in hash sizes(becausen andm can be adjusted easily) and
beingserially and quickly solvable in eachxk. Note thatthe polynomialsfk can contain many arbitrary
parameterswhich will be randomly chosen and incorporated into the private keys.

2.4 The Old: TTS/2, a Previously Proposed Variant

Hereafter we fixK = GF(28). The signing map isS = φ−1
1 ◦ φ−1

2 ◦ φ−1
3 : K20 → K28, whereφ1 :

w 7→ x = M1w + c1 andφ3 : y 7→ z = M3y + c3 are invertible affine inK28 andK20 respectively, and
φ2 : x = (x0, x1, . . . , x27) 7→ y = (y8, y9, . . . , y27) is given below:

y8 = x8 + a8 x0 x7 + b8 x1 x6 + c8 x2 x5 + d8 x3 x4;
...

...
...

yk = xk + ak xk−8 xk−1 + bk xk−7 xk−2 + ck xk−6 xk−3 + dk xk−5 xk−4;
...

...
...

y27 = x27 + a27 x19 x26 + b27 x20 x25 + c27 x21 x24 + d27 x22 x23.

To generate a key pair: Randomly choosec1 ∈ K28, nonzero parametersai, bi, ci, di ∈ K for 8 ≤ i ≤
27, invertible4 M1 ∈ K28×28 andM3 ∈ K20×20. Find M−1

1 andM−1
3 . Computec3 so that constant

terms ofV = φ3 ◦ φ2 ◦ φ1 vanish.The20× 28× (28 + 3)/2 = 8680 coefficients ofV are the public
key;φ−1

1 , φ−1
3 and parameters(ai, bi, ci, di) form the private key (1312 bytes).

4usually by LU decomposition, which yields only
(
256n2−n · 255n

)
of

∏n−1
j=0 (256n − 256j) nonsingular matrices.
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To sign a messageM : Compute the message digestz = H(M); computey = (y8, y9, . . . , y27) = M−1
3 (z−

c3); pick x0, . . . , x7 randomly, then solve sequentially for each of thexi for i = 8 . . . 27; the signature
is w = M−1

1 (x− c1).

To verify a signed message(M,w): CompareV (w) = φ3 ◦ φ2 ◦ φ1(w) against the hashz = H(M).

This variant was proposed in [7]. We shall propose some changes below and explain why.

2.5 The New: TTS/4, an Efficient and More Secure TTS

We use the following newφ2 : x = (x0, x1, . . . , x27) 7→ y = (y8, y9, . . . , y27) given by:

y8 = x8 + a8 x0 x7 + b8 x1 x4 + c8 x2 x6 + d8 x3 x5;
...

...
...

yk = xk + ak xk−8 xk−1 + bk xk−7 xk−4 + ck xk−6 xk−2 + dk xk−5 xk−3;
...

...
...

y23 = x23 + a23 x15 x22 + b23 x16 x19 + c23 x17 x21 + d23 x18 x20;
y24 = x24 + a24 x16 x23 + b24 x17 x20 + c24 x18 x22 + d24 x4 x24;
y25 = x25 + a25 x17 x24 + b25 x18 x21 + c25 x4 x23 + d25 x5 x25;
y26 = x26 + a26 x18 x25 + b26 x4 x22 + c26 x5 x24 + d26 x6 x26;
y27 = x27 + a27 x4 x26 + b27 x5 x23 + c27 x6 x25 + d27 x7 x27.

Some particular design features (items 2, 4, and 5 are TTS security enhancements we made to [7]):

1. If we write yk = xk + xT Fkx, there is no canonical (symmetric) form forFi since charK = 2, but
the matrixFk + F T

k is unique. HereFk + F T
k has rank 8 for everyk because noxi appear twice in a

quadratic term of the same equation.

2. The last four equations deviate from the general form in that where variablesx19, x20, x21, x22 would
be expected, the variablesx4, x5, x6, x7 are substituted so thatat least one index in each quadratic
term will be between4 and18 inclusive.We will explain why in Secs. 4.2.2 and 4.3.

3. The rules are set up such that all eighty quadratic termsxixj are distinct.

4. The formula ofyk is different from the initial proposed form (TTS/2 of the previous section) in [7].
The indices in a quadratic term differ by 2, 3, 4, or 7 instead of 1, 3, 5, or 7. Principally, this is to avoid
a separation of thexi into even and odd indexed parts (see Sec. 5.2).

5. The last four equations has its correspondingxi in a quadratic term. However,the entire collection of
relations is still a tame-like map.The reason is

(1 + dkxk−20)xk = yk + (function in(x0, . . . , xk−1)) for k = 24 · · · 27.

Sincex4, x5, x6, andx7 are random numbers independent of the message digest, we pick them so that
1 + d24x4, 1 + d25x5, 1 + d26x6, and1 + d27x7 are all non-zero5 which ensures thatx24 · · ·x27 are
easily solvable. See Secs. 2.6 and 5.1 for the reason for this change in design.

To generate a key pair and to verify a signed message(M,w): Unchanged from the above section.

To sign a messageM : Compute digestz = H(M); computey = (y8, y9, . . . , y27) = M−1
3 (z − c3); pick

x0, . . . , x7 randomly such thatxk 6= d−1
k+20 for k = 4 · · · 7 (see item 5 above), then sequentially solve

for xi (for i = 8 . . . 27); the signature isw = M−1
1 (x− c1), release(M,w).

5In a sense,xk−20 is avariable constantand1 + dkxk−20 thevariable constant coefficientof xk for k = 24 · · · 27.
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2.6 Raison d’etre: Avoiding a Common Kernel

In [8, 9] Coppersmithet alexploited a sequence of decreasing kernels in one of Shamir’s Birational Permuta-
tion schemes, which meant that kernels of all quadratics in the public key must share a common intersection
(see Sec. 5.1). The TTS/2 of [7] has a mild vulnerability of a similar type.

Proposition 1 Kernels of symmetric matrices corresponding to each of the twenty quadratic polynomials of
a TTS/2 public key intersect in a one-dimensional subspace which will yieldx27 to the attacker. Kernels for
the quadratics in TTS/4 intersect only in the origin.

Proof. Take the symmetric matrix corresponding toy8 = x8 + a8 x0 x7 + b8 x1 x6 + c8 x2 x5 + d8 x3 x4.

We see that no matter how the quadratic part ofy8

is written as(xT Qx), the matrix(Q+QT ) will be
as shown to the right, and that its kernel isx0 =
x1 = · · · = x7 = 0. Indeed, it is easy to see that if
a quadratic has the formxaxb+xcxd+· · · with all
the indicesa, b, c, d, . . . distinct from each other,
{x : 0 = xa = xb = xc = xd = · · · } will be
the kernel of the corresponding symmetric matrix,
hence{x : xk−8 = · · · = xk−1 = 0} will be the
kernel of the quadratic part ofyk written inx.



0 0 0 0 0 0 0 a8

020×8

0 0 0 0 0 0 b8 0
0 0 0 0 0 c8 0 0
0 0 0 0 d8 0 0 0
0 0 0 d8 0 0 0 0
0 0 c8 0 0 0 0 0
0 b8 0 0 0 0 0 0
a8 0 0 0 0 0 0 0

08×20 020×20


We will take Qk andQ̂k to be the matrices relating the quadratic portions of eachzk to w andx respec-
tively. Sincezk’s are full-rank linear combinations of theyk’s, we know that∩19

j=0 ker(Q̂k + Q̂T
k ) =

span([0, . . . , 0, 1]T ) because in the intersection subspace each of thexi = 0 except forx27, which does
not appear in any quadratic term of the TTS/2 kernel. But we also know the quadratic portion ofzk to
be simultaneouslyxT Q̂kx andwQkw, hence we haveQk = MT

1 Q̂kM1, and the kernels are related by
ker(Qk + QT

k ) = M−1
1 (ker(Q̂k + Q̂T

k )). Thus, we have∩19
j=0 ker(Qk + QT

k ) = span
(
M−1

1 [0, . . . , 0, 1]T
)
,

so we have the last column ofM−1
1 up to some factor.

With TTS/4, by a similar reasoning we find theker Q̂k’s to intersect in only the zero vector. �

It might be argued that one column does not completely shatter TTS/2, and indeed it does not seem to be so
easy to eliminate any other variable, but we should still avoid such a problem if possible.

Note: TTS/4 is not the only way out of the above problem. Indeed, a much more straightforward tweak is to
use the same central (kernel) mapφ2 as in TTS/2,except that the last term in the last equation is changed to
d27x0x27. We call the TTS variant with such a central map TTS/2′.

However, there are other reasons for the modifications in TTS/4. On the technical side, (see item 2 in
Sec. 2.5) is that we want to enable a partitioning of the twenty-eight variablesxi into sets of fifteen and thirteen
such that any crossterm has at least one of its factors from the former, while avoiding a rough division of the
variables according to the parity of the index (see item 4 in the preceding section). The corresponding security
concerns are addressed in Secs. 4.2 and 5.2 respectively. There is also a non-technical reason, which is that
we find a structure like TTS/4 easier to generalize should such need arise. Against the attacks enumerated in
Sec. 4, TTS/2′ as given above appears to be as resistant as TTS/4, a tribute to the countless variations possible
in multivariate cryptography.

3 Performance Evaluation

These days one usually turns to a better compiler, a better computer, or special-purpose hardware like Mo-
torola’sAltiVec(see [34]) for more performance. However, a better algorithm never hurts.
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We tabulate in Table 1 the better of timings from the vendor-submitted and NESSIE’s own binaries for all
5 second round NESSIE digital signature candidates6, normalized to a Pentium III at 500MHz from Table 37
in [42]. We also timed TTS/4 (written in reasonably portable C) on a PIII/500.

Scheme Signature Pub. Key Priv. Key Keys Setup Signing Verifying
RSA-PSS 1024 bits 128 B 320 B 2.7 sec 84 ms 2.0 ms
ECDSA 326 bits 48 B 24 B 1.6 ms 1.9 ms 5.1 ms
ESIGN 1152 bits 145 B 96 B 0.21 sec 1.2 ms 0.74 ms

QUARTZ 128 bits 71.0 kB 3.9 kB 3.1 sec 11 sec 0.24 ms
SFLASHv2 259 bits 15.4 kB 2.4 kB 1.5 sec 2.8 ms 0.39 ms

TTS/2 224 bits 8.6 kB 1.3 kB 5.3 ms 35 µs 0.13 ms
TTS/4 224 bits 8.6 kB 1.3 kB 5.3 ms 36 µs 0.13 ms

Table 1: TTS and NESSIE round 2 candidates signature schemes on a 500MHz Pentium III

Since our programs were mainly proof-of-concept with clarity and ease of maintenance as the goal, we
did not optimize to the hilt and compiled with the oldgcc-2.96 . With the newergcc3 or Intel’s icc ,
better programming and aggressive optimizations, we estimate that TTS/4 can be at least1.5× to 2× faster.
Still, TTS7 performed credibly against the NESSIE candidates, and we note that:

• Multivariate schemes are fundamentally identical during verification — just substituting into polyno-
mials. Here, TTS is faster than its multivariate relatives SFLASHv2 ([49]) and QUARTZ ([48]) due
to its smaller dimensions. Of course, it can also be somewhat inconvenient if the dimensions are not
divisible by 4, as in the FLASH family’sK26 → K37.

Signing is determined by the kernel (middle quadratic portion) action. QUARTZ is slow since it has
to solve high-order equations. A FLASH-like scheme is faster. Any TTS variant runs especially fast
because inverting a tame-like map is simple and straightforward.

• Comparison with RSA-PSS, ECDSA or ESIGN is a different kettle of fish altogether. Multivariate
schemes8 is a lot faster than the more traditional contenders.

Here, we have the modular exponentiation in RSA, a well-understood problem painstakingly opti-
mized by over a quarter-century of computer science. Yet SFLASHv2 is faster and TTS/4 even more
pronouncedly so. Clearly, there are intrinsic advantages to multivariate PKC. Due to concerns of secu-
rity (see [41]), NESSIE recommends RSA-1536 with higher exponents as opposed to RSA-1024 and
e = 3, which surely would further cut down the speed by at least 50% or more without special hard-
ware. This decision can be considered at least somewhat vindicated with news of recent advances (e.g.
[51]) on factoring large numbers.

• While TTS/4 (and in general TTS) does very well speedwise, unfortunately (although predictably) it is
not the best in every category. All variants of TTS suffer from that common bugbear of multivariate
cryptography: large keys. ECDSA is the undisputed king in small key sizes, although it uses discrete
logarithms and is also slower than the multivariates.

Thankfully, now smart cards can have on-card storage upward of32kB. The TTS public keys, while not
so trim, is smaller than that of its more robust French cousins and tolerable at 8.6kB. It was mentioned
by the authors of SFLASH ([49]) that another choice is to have the private key on card and be able to
spit out the public key when needed; the same holds true for TTS/4.

6NESSIE eventually recommended RSA-PSS, ECDSA and SFLASHv2.
7TTS/2 and TTS/4 have almost identical times. The TTS/4 programs happen to need four extra lookups.
8With the exception of the slow signing action of QUARTZ.
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A note about future extensibility. Eventually the world will move to256-bit hashes, and a rough estimate
is that an analog to TTS/4 will use about 2.5 times as many CPU cycles; in contrast, a RSA-based scheme
gets to use longer hashes for free; ECDSA will be hurt grievously when forced up to a longer hash; SFLASH
will probably scale slightly worse than a TTS-based scheme. All told, we expect TTS type schemes to be
speed-competitive 1-2 generations of hashes down the road.

4 Cryptanalysis by General Algebraic Attacks

Solving generic quadratic equation systems is NP-hard ([21]), so barring an inherent flaw in TTS, there should
be no sub-exponential time algorithms. But we should still take note of essentially brute-force solutions
because some practical-sized systems may be solved that way, and in reasonable time.

Other ideas, some ingenious, are used to cryptanalyze other multivariate schemes. We examine all ideas
known to us but each seems to fail against TTS/4 without substantial modification.

First we deal with the more general approaches, designed to be applicable againstall multivariate signa-
ture schemes, and describe in order the state of the art methods of both brute force searches (Sec. 4.1) and
the more circumspect techniques of linearization (Sec. 4.2) and Gröbner bases (Sec. 4.3), and how each func-
tions against TTS/4. Then we complements the above content by discussing attacks applicable to particular
multivariate signature schemes.

4.1 Search Methods

At PKC 2002, Courtoiset al laid a bold claim to “most advanced search methods” against “underdetermined
systems of quadratic equations” ([12]), which essentially meant multivariate quadratic signature schemes.
Certainly the ideas deserve further attention if only because no more meritorious attack has been advanced
since then. We summarize and test each given method in [12] against the current TTS/4. In each method, the
aim is to solvem quadratic equations in(wi)i=1...n over GF(q).

Algorithm A The general idea is as follows: Pick2k equations and divide the variables into groups ofk
andn − k. Separate the quadratic equations into crossterms involving variables of both groups and
quadratics dependent in each group of variables only, i.e. without loss of generality:

zi = gi(w1, . . . , wk) +
k∑

j=1

wj ·

(
n∑

`=k+1

βij`w`

)
+ hi(wk+1, . . . , wn).

We impose2k2 linear relations
∑n

`=k+1 βij`w` = γij on the variableswk+1, . . . , wn. If n ≥ 2k(k+1)
andm ≥ 2k, then we can find̄k = (n − k) − 2k2 ≥ k independent variables̄w1, . . . , w̄k̄ such that
hi(wk+1, . . . , wn) = h′i(w̄1, . . . , w̄k̄). The equations become

gi(w1, . . . , wk) +
k∑

j=1

γijwj = zi − h′i(w̄1, . . . , w̄k̄).

By evaluating the left side for all possibleqk combinations and storing the results, then evaluating the
right side for allqk̄ combinations, i.e. using a birthday attack and trading space for time, this can be
solved in≈ 2qk̄kk̄2 time instead ofqk+k̄kk̄2. The extra factor is of course the number of multiplications
needed to evaluate2k polynomials ink̄ variables.

The upshot is the search will take≈ q−k as long as it was originally. [12] gives the complexity as

CA ≈ qm−k wherek = min(m/2,

⌊√
n/2−

√
n/2

⌋
). Counting operations per search unit, it really

should be≈ mn2qm−k. For TTS/4 with(q, n,m) = (28, 28, 20), k = 3, andCA ≈ 2151.
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Algorithm B The general thrust is thatk variables are eliminated before embarking on a brute-force search:
Treat all quadratic termswi wj with i, j ≤ k as variables and eliminated first, leaving a linear system
of equations inw1 . . . wk to be solved in terms of the other variables. To give an illustrative example,
in the case of TTS/4, there are 28 variables and 20 equations, and we can use 15 of the equations as a
linear system to solve for the 15 quadratic termsw2

0, w0w1, . . . , w3w4, w2
4, and eliminate them from

the remaining 5. Now we run a brute-force search on the variablesw5, . . . , w27, substituting each
set of values into the five equations left above and solve the resulting system forw0, w1, w2, w3, w4

before making the consistency check. Not only have we saved the number of variables we have to
guess byk(= 5), instead of doingmn2 finite field multiplications (lookups) per guess we now only
have≈ k(m− k)2 + k3/3.

[12] gives the complexity asCB ≈ K · qm−k, wherek =
⌊√

2m + 2− 3/2
⌋
. The coefficientK =

max(C2, C3) whereC3 is the number of operations needed to solve a system ofk linear equations
(k3/3 multiplications) andC2 is given as≈ (k (m − k)2). It appears that the authors of [12] were
slightly careless in their presentation, because the requirement fork, the larger the better, is really
m− k(k + 1)/2 ≥ k so form = 20 as for TTS/4, instead ofk = 4 andqm−k = 2128 we should have
qm−k = 2120. They also probably should have writtenC2 + C3 instead ofmax(C2, C3). Anyway,
CB ≈ 2130.

Algorithm C The general approach of this attack is to reduce into XL/FXL, but it is inapplicable to TTS/4
just as it was to TTS/2 ([7]), because it requiresn ≥ 2m ([12]).

The discussion of this section in fact carries over with no modifications to TTS/2 and TTS/2′.

4.2 Linearization-Type Attacks

Kipnis and Shamir first introduced ([31])relinearization, refining the linearization techniques often used to
solve systems of high-order polynomial equations by using relationships between monomials. The simplest
variant, “degree-4 relinearization”, recursively substitutes the linear relations found by linearization into the
obvious relations(ab)(cd) = (ac)(bd) = (ad)(bc). Relinearization ameliorates somewhat the problem of too
many extraneous solutions and is used against HFE. There are more complex higher-degree improvements,
but the relinearization technique can be considered superseded by XL below (Sec. 4.2.1), because XL (or
FXL) is expected to work in whenever relinearization does ([13]).

4.2.1 XL and FXL

XL (and its variant FXL) can be viewed as refinements of relinearization ([13]), although both normally work
with more equations than variables. The procedure at degree-D on quadratic equations(lj) is:

1. Generate all products of arbitrary monomials of degreeD− 2 or less with eachlj ; linearize by consid-
ering every monomial as an independent variable.

2. Performing Gaussian elimination on the set of equations, ordering the set of variable such that mono-
mials in a given variable (say the first variablew0) will always be the last to go.

3. Solve forw0 a la Berlekamp; repeat if any independent variable remains.

The FXL variant takes every possible guess at a number of variables then uses XL on the remainder.
Normally, we want the number of equations to be at least one and usually 2 more than the number of variables.
Simulations supposedly point to XL/FXL being effective on randomly selected quadratics — which also
points to its undoing, as we shall see below. It was claimed that XL variants can break HFE, although the first
actual solution of a non-trivial HFE problem was the April 2002 cryptanalysis to the HFE Challenge 1 (80
variables inGF(2)) by Faug̀ere (see Sec. 4.3), using advanced Gröbner Bases techniques.

10



4.2.2 Hilbert-Serre Theory, Solution Sets at Infinity and Why XL/FXL Fails

Linearization type attacks such as XL and relinearization have a fatal weakness. They are only effective under
certain circumstances, one where in a sense the set of equations is generic. In more mathematical terms,the
solution set at∞ must be at most zero-dimensional.This came from a venerable theory of Hilbert and Serre
([38]). Of course, a cryptographer will by definition be using non-generic quadraticsthe infinity solution set
thereof he or she can ensure to be positive-dimensional.

Let V = φ3 ◦ φ2 ◦ φ1 be a verification map of some TTS variant. Given a message digestz, forging a
digital signature is equivalent to finding a solution to the system of equationsz = V (w). We homogenize
z = V (w) in the projective spaceand letH∞ be itssolution set at infinity. It so happens thatdim H∞ is
an important parameter for multivariate schemes because it relates directly to security under XL/FXL and
Gröbner bases attacks. We claim thatdim H∞ ≥ 12 for TTS/4.

Since bothφ1 andφ3 are affine and invertible, we need to consider howφ2 behaves at∞ only. We can
ignore linear terms inφ2, because to every non-highest-degree term is multiplied a positive power of an extra
variablex∞ during homogenization, and “at∞” means preciselyx∞ = 0. Since all quadratic terms inφ2

vanish when we setx4 = · · · = x18 = 0, there are at least the 13 free variablesx0, . . . , x3, x19, . . . , x27 in
this solution set, hencedim H∞ ≥ 13− 1 = 12. The claim is proved.

If the attacker successfully guess at 8 variables, the number of variablesn will reduce to20 anddim H∞
to 4. Of course, this is not guaranteed to work! Take the example in Sec. 2.2, for allw in the solution set,
w0 = w4 = 1. These are theinessentialvariables, and a randomly guessed assignment or restrictions on such
a variable would likely lead to a contradiction.

Part of Heisuke Hironaka’s Fields Medal work was an algorithm to determine the essential variables
thereof ([27]) over characteristic zero fields. Unfortunately we are working with characteristic two fields, so
Hironaka’s methods (using many partial derivatives) fail in this case. Absent an oracle,the attacker now must
guess which variables to fix,adding considerably to the running time.

Assuming that 8 variablesare guessed correctly. Nowdim H∞ = 4. OverGF(2), XL/FXL can always
work by includingw2

i = wi for everyi ([14]). Here, for each extra dimension inH∞ = 4, the attacker needs
to augment the set of equations by a number of quadratics equivalent to a Fröbenius relationw256

i = wi for
an essential variablewi — maybewi = p2

1, p1 = p2
2, . . . , p6 = p2

7, p7 = w2
i . In fact the XL/FXL attacker

would need to add32 extraneous equations and 28 more variables.
[13] claims a running time ofAqµnc

√
n for XL/FXL, where A is the time needed to evaluate a set of

polynomials, or aboutmn2/2 multiplications;µ is the number of variables in which must be assigned by
exhaustive search (“F” is for to fix); andc “the order of the Gaussian reduction algorithm”, which was
claimed to belog2 7 ≈ 2.8. We haven = 48, m = 52 now, and at least2108 complexity (timesA, the
amount of effort to evaluate one set of polynomials). In practice it should be a lot more.

Giving the best of all worlds to the attacker, he guesses again at 4 correct variables, and succeeds in
reducingdim H∞ to zero. Even with that much luck,n = 16. SinceA ≈ mn2/2, we haveA · (256)4 ·
(16)2.8×

√
16 ≈ 288. Thus TTS/4 need not worry about XL/FXL (and hence relinearization).

Note: This section carries over to TTS/2 and TTS/2′ with the indices divided even and odd.

4.3 Gröbner Bases

Gröbner Bases is a well-known way of solving polynomial equations. The classic algorithm for computing
Gröbner bases, Buchberger’s algorithm, involves ordering all monomials (usually lexicographically) and takes
some appropriate algebraic combinations of the equations to eliminate the top monomial serially, until only
one variable remains and then solve for that variable (a la Berlekamp). This method has been extended into
more powerful variants by J. Faugére, calledF4 andF5 ([17, 18]). F5/2, an adaptation ofF5, was used to
break an HFE challenge in April 2002 ([19]).

The linearization methods of Sec. 4.2.1 can be considered simplified versions of Gröbner bases, and the
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latter are also affected by the underdeterminedness of the system. The attacker must guess at enough variables
to make the program run faster. So there is the problem as is described in Sec. 4.2.2.

Similar to XL/FXL, Gröbner bases method is also affected bydim H∞. But there is a difference: Since
dependencies are located and collated at runtime, Gröbner bases method does not become non-functional if
there is a non-zerodim H∞. Luckily for us, it does add immensely to its time complexity.

Computing the Gr̈obner basis of a system ofm polynomial equations of maximal degreed in n variables
has time complexitym3dO(n3) ([5]); when the solution set is of dimension≤ 0, this bound can be cut down
to dO(n2) ([6]). There is one significant theoretical exception ([33], theorem 3):if (and essentially only if)
dim H∞ ≤ 0, we can find a Gr̈obner basis of degree≤ (d − 1)n + 2 and hence finish in timeO(dn).
As a practical matter, with a suitable algorithm the exponent can be made smaller by a factorL(q), where
L(2) + 11.11 andL(3) + 6.455, but decreases quickly to 1 for larger values ofq. So oversmallbase fields
— and this was the case for the HFE challenge 1 mentioned above — we can also finish computing a Gröbner
basis in a lot less time ([3]).

We can sum up the above thus: computing a Gröbner basis takes time at least square-exponential inn
whendim H∞ > 0. So for large base fields such asGF(28), current Gr̈obner-based methods cannot be used
to cryptanalyze well-designed multivariate schemes, e.g., the current TTS, effectively.

5 Cryptanalysis by Other Attacks

As contrasted with “general” attacks of the previous seciton that can function against any scheme with only
the public key known, we herein discuss attacks designed for specific schemes.

5.1 The Coppersmith Attack vs Shamir’s Birational Permutations Schemes

Shamir proposed a family of birational permutation signature schemes in [50], but soon afterwards Cop-
persmithet al found a successful attack ([8]). One specific case9 attacked by Coppersmithet al, “sequen-
tially linearized birational permutations”, hasy1 = x1, andyk = `k(x1, . . . , xk−1)xk + qk(x1, . . . , xk−1)
for k = 2 · · ·n with `’s linear andq’s homogeneously quadratic. Take two invertibleZN square matrices
(N = pp′ with p, p′ prime), and transformx to w, (y2, . . . , yn) to z. The private key is thè’s, theq′s, and
the two invertible matrices; the user letsz be the message digest and finds(y2, . . . , yn), assigns a randomx1,
solves sequentially for the rest ofx, then finds the signaturew. The public key is the quadratic forms giving
z in w.

Sketch of attack: take the symmetric matricesMj of yj considered as quadratic forms ofx. These have
a decreasing sequence of kernels inx-space (ditto their images inw-space) that we will try to find. Takeλi

such that the characteristic polynomial forz̄i = zi−λizn has a double root. Run recursively on thez̄i, which
all have at least the kernel ofMn−1. We will have found a set of quadratic forms that are essentially equal to
the original ones and enables us to forge signatures.

One can only admire the ingenuity of Coppersmith, Stern, and Vaudenay in looking for common kernel
spaces. Theobald took pains to issue a similar warning ([52]) that “varying ranks of quadratic forms” may
cause security concerns. Thankfully a TTS designer can arrange for a kernel without an onion-like sequence
of decreasing kernels. Still, we consider TTS/4 to be partly inspired by their work.

5.2 Separation of Oil and Vinegar

In a simplified illustrative example of Patarin’sOil and Vinegarsignature scheme, the private key is an
invertible matrixA ∈ K2n×2n over a finite fieldK andn matricesFj ∈ K2n×2n with zeroes in all of the
upper left quartern×n entries. The signer releases as the public key the matricesGj ≡ AT FjA. To sign, take

9We invert Shamir’s notations to be parallel to ours.
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the message digest to be(m1, . . . , mn) ∈ Kn. Assign random variables to the lastn components (“vinegar”)
of y, and solve the equationsyT Fjy = mj for the firstn components (“oil”) ofy ∈ K2n. Since eachFj

has its upper left quarter zero, the equations are linear in the oil variables, andx ≡ A−1y is the signature,
verifiable viaxT Gjx = mj .

Here eachFj maps the subspace withyn+1 = yn+2 = · · · = y2n = 0 (“oil” subspace) to the subspace
(“vinegar”) y1 = · · · = yn = 0. The cryptanalysis by Kipnis and Shamir builds on the corollary that each
F−1

j Fi maps the “oil” subspace to itself, and eachG−1
j Gi shares an eigenspace (the image of the oil subspace

underA) for suitable(i, j). This eigenspace can be determined, enabling forged signatures. See ([30]) for
details on how K-S attacked Patarin’s original, more complete scheme.

“Unbalanced” Oil and Vinegar ([29]) is an attempt to use more vinegar variables to circumvent this
weakness, but must tread a fine line: Too few vinegar variables, and there is still a successful reduction; too
many, and brute force attacks of [12] (see Sec. 4.1) work. No such concerns exist in TTS/4. In TTS/2 we can
see a separation of the variables into even and odd portions, and in TTS/4 we can also apportion the variables
into x4, x5, . . . , x18 andx0,. . . , x3, x19, . . . , x27. But there are fundamental differences from the situation
in [29, 30]:

1. In TTS, the vinegar (freely assigned) variables arex0, . . . ,x7. Suppose an attacker finds the common
eigenspaces for the TTS/2. Where in OV or UOV he would have decomposed the signature space
into dependent “Oil” and independent “Vinegar” components, here he finds himself with two identical
and mutually codependent Creamy Italian portions of 4 vinegar to 10 oil (thexi with even and odd
indices respectively). The same successful determination for TTS/4 will result in dependent Vinaigrette
(x0,. . . , x3 plus x19, . . . , x27) and independent Ranch (x4, x6, . . . , x18) portions, neither of which
seems particularly useful to him.

2. According to the analysis in [29], with more dependent “oil” variables than independent “vinegar”
variables the attack of [30] carries over without modification10, but not with more vinegar than oil. The
latter is the case for TTS/4 with more variables in Ranch than in Vinaigrette.

5.3 Attacks against SFLASH and otherC∗ Derivatives

Several attacks are specific to theC∗/C∗− family which includes SFLASHv2.

• Patarin originally broke ([44]) Imai-Matsumoto’sC∗ by finding (by brute force) bilinear relations of
the formwT Di z + wTci + bT

i z + ai = 0. Ding and Schmidt ([16]) adapted this against variants
of the TTM encryption scheme whose central maps are not constructed well enough. We believe this
attack to be inapplicable to TTS-like methods with sufficiently many crossterms in every equation.
Clearly any relation betweenw andz will correspond to one betweenx andy, and thus we can locate
all such bilinear relations by the method of undetermined coefficients on enough sets ofy = φ2(x)
via a straightforward Gaussian elimination. In a long simulation, nothing like

∑
i,j≥k Fijk wi zj zk +∑

i≥j Eij zi zj +
∑

i,j Dij wi zj +
∑

i ci wi +
∑

i bi zi + a = 0 revealed itself in TTS/4 (and TTS/2′),
which is in line with theory.

• Patarinet alclaimed that one type of attack is “the best known” againstC∗− variants, which is Patarin’s
adaptation ofC∗ around his own attack ([47]). To forge signatures under this attack also requires
finding bilinear relations betweenw andz. Since none such exists in TTS/4, this attack is inoperative
and probably cannot be patched into service.

• The FLASH family of public-key digital signature schemes ([49]) are instances ofC∗−. The original
SFLASH scheme used a subfield ofGF(2) for all coefficients in its private and public keys. Gilbert and

10We find that hard to put into practice since theGj ’s taken as square matrices are not invertible.
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Minier found ([25]) this a vulnerability and broke the original SFLASH successfully, but their attack
affects neither the current SFLASHv2 nor TTS/4.

• Geiselmannet alobserved ([23, 24]) that the middle portion of any FLASH (and indeed anyC∗) variant
is homogeneous of degree two,and showed how to find the constant parts of both affine mappings
cheaply. To be quite precise, if the public map isV : w 7→ z, a set quadratic polynomials without
constant parts, then [24] showed in detail how to findw0 andz0 such thatV ′ : w 7→ z = V (w +
w0) + z0 is homogeneous of degree 2. However, it does not entirely break SFLASHv2, becauseC∗

with linear (no constant) instead of affine maps is still unbroken. It is also inapplicable to a Tame
Transformation type method since a tame map has linear terms.

5.4 The MinRank Attack

The MinRank attack ([26]) is a type of “intelligent brute-force approach” to find the final affine part of
a multivariate cryptosystem’s public map. The claimed complexity of the method isO(qd

m
n
erm3) where

m,n, q, r are the length of the cipher or signature block, digest or plaintext block, the size of the base field,
and the necessary minimum rank for the attack to be effective. The idea is that the quadratic part of each
equation in the kernel can be represented as a matrix. This kernel has a rank that should be invariant under
change of coordinates, and the probability that any given vector is in the kernel of any matrix is easily
computed from its rank. The steps are (cf. [26]):

1. Using the same notations as in Sec. 2.3, we guess at a randomk-tuple (w1, . . . , wk) of vectors in
Kn(= GF(q)n), wherek = dm

n e.

2. Take an arbitrary linear combination of the homogeneous quadratic portions of the public keys with
undetermined coefficients, that isQ =

∑m
i=1 αiHi, with Hi the symmetric matrix relatingzi to w. Try

to solve forαi with Pw1 = · · · = Pwk = 0 via Gaussian elimination. The equations will be almost
uniquely solvable whenQ represents the quadratic part ofy1, “the equation that has the smallest rank”.

3. Assume the matrix corresponding toy1 has a rank ofr, then its kernel (the inverse imagey−1
1 (0)) has

dimensionn − r, hence when we guess at(w1, . . . , wk) randomly, they have a probability of at least
q−kr to be all iny−1

1 (0). ThisP is the quadratic portion ofy1 and the coefficientsλi the row ofM−1
3 .

According to [26] the scheme should unravel entirely after that one could findM3, and thenM1 with a
little more analysis of the kernel spaces.

If MinRank is a viable attack against a signature scheme it should be very useful, sincek = 1. However,
discounting some careless mistakes ([39]) made by the authors of [26], we note that:

1. The parameterr is not always2 as claimed. Current TTS hasr = 8.

2. The above assumes thaty1 has the smallest rankr; otheryi and even many linear combinations of the
yi (hence theHi) can share the same minimum rankr. In TTS/4,yi + αyi+1, yi + αyi+2 all have rank
8 whenα 6= 0.

3. In a well-designed scheme, there is no onion-like effect where finding an unknown row ofM−1
3 gives

you everything, an attacker mustfind then placeeveryyi correctly (see above). Assume that the attacker
has an oracle to ascertain when one of theyi has been found. Since a givenyi will fail to surface in
the expected number of trials with probability around1/e, the expected number of lookups needed is
multiplied by a factor of

∫∞
0 x d((1− e−x)20) ≈ 3.6.

Even if the details above are taken care of, it is easy to add another cross-term to each equation if needed, say
use TTS/2′ with n = 30, m = 20, makingr = 10. This raises the complexity by a factor of216 and easily
sidesteps this attack.

14



5.5 Attacks on 2R schemes

The recent “2-round schemes” proposed by Patarin drew lots of fire ([4, 53, 54]), but the general structure
of 2R schemes were so different from TTS that it is improbable for any of the suggested attacks to function
against TTS/4 without substantial modification.

For reference, the Ye-Dai-Lam attack of [53, 54] relies on the two central schemes in a 2R scheme being
of D∗ type, which uses a finite field of an odd modulus smaller than 256. The cryptanalysis depends on this
point which is a quirk that TTS does not share.

The Biham attack ([4]) is more ingenious but depends on the properties of the S-Box structures. One of
those properties is that there must be clashes (collisions) during the initial round. This is not true for TTS-like
systems.

5.6 Patarin’s IP Approach

IP (Isomorphism of Polynomials, [45]) and the related MP (Morphism of Polynomials, see [47]) means to
find two affine mapss, t such thatf = s ◦ g ◦ t, for given polynomial mapsf, g. This is used both to attack
other problems and to create public-key cryptosystems. If all the parameters in the tame portion of a TTS
variant were to be fixed, then its security will depend on the difficulty of the IP problem.

Patarin originally considered both the problem of finding both mappingss andt as above, and just one
mappings satisfyingf = s ◦ g. The latter, which Patarin called “IP with one secret” was said to be fast
enough for practical use but turned out to be vulnerable to a “column-wise” attack by Geiselmannet al ([22]).
In [46] Patarinet al imply that most generally effective way to search for solutions to the two-secret IP/MP
problem is the “combined power attack”, essentially a birthday attack, with a complexity ofO(nαqn/2) for a
constantα > 2.

TTS/4 (and any other Tame Transformation based PKC) should not have to fear from an IP-based attack.
The central portion of Tame Transformation based methods contain lots of parameters (in the private key).
This approach therefore will be hard to patch to be working against any TTS variant. Even should such a
patch be possible, for TTS/4 withn = 28 andq = 28 the complexity should be> 2120. We conclude that IP
is not effective against TTS/4 or other similar TTS instances.

6 Conclusions

Multivariate Public-Key Cryptography is clearly a burgeoning research area rich in surprises and new discov-
ery. For example, we saw that trivial changes to the structure in the previous TTS formulations can make an
attacker’s life harder and the scheme more secure, and made adjustments accordingly. We do not doubt that
there shall be further attacks against multivariate schemes, attacks against the TTS genre and even specific
attacks tailored against TTS/4, but we are confident that the myriad variations possible in the structure of
tame and tame-like maps means that TTS will adapt and survive in the wilderness as a family of secure and
fast signature schemes. In summary:

The just-proposed TTS/4 seems efficacious and impervious to known attacks. Tame Transfor-
mations, literally the centerpiece of TTS, seem to have many good properties required of a low-
degree birational permutation without its drawbacks. A principal advantage is that the central
quadratic portion of the scheme — a tame-like map — is easily mutable, variable with many
parameters, nonhomogeneous, and very fast.

We feel justified in stating that the TTS family merits further attention.
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