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Abstract. The SecurID hash function is used for authenticating users
to a corporate computer infrastructure. We analyze an alleged imple-
mentation of this hash function. The block cipher at the heart of the
function can be broken in few milliseconds on a PC with 70 adaptively
chosen plaintexts. We further show how to use this attack on the full
hash to extract information on the secret key stored in the token if the
attacker is given several months of the token output. However in this pa-
per we do not address a broader issue of practical security of the fielded
SecurID installations.
Keywords: Alleged SecurID Hash Function, Differential Cryptanalysis,
Internal Collision, Vanishing Differential.

1 Introduction

The SecurID authentication infrastructure was developed by SDTI (now RSA
Security). A SecurID token is a hand-held hardware device issued to authorized
users of a company. Every minute (or every 30 seconds), the device generates a
new pseudo-random token code. By combining this code with his PIN, the user
can gain access to the computer infrastructure of his company. Software-based
tokens also exist, which can be used on a PC, a mobile phone or a PDA.

More than 12 million employees in more than 8000 companies worldwide
use SecurID tokens. Institutions that use SecurID include the White House, the
U.S. Senate, NSA, CIA, The U.S. Department of Defense, and a majority of the
Fortune 100 companies.

The core of the authenticator is the proprietary SecurID hash function, de-
veloped by John Brainard in 1985. This function takes as an input the 64-bit
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secret key, unique to one single authenticator, and the current time (expressed
in seconds since 1986). It generates an output by computing a pseudo-random
function on these two input values.

SDTI/RSA has never made this function public. However, according to V. McLel-
lan [2], the author of the SecurID FAQ, SDTI/RSA has always stated that the
secrecy of the SecurID hash function is not critical to its security. The hash
function has undergone cryptanalysis by academics and customers under a non-
disclosure agreement, and has been added to the NIST “evaluated products”-list,
which implies that it is approved for U.S. government use and recommended as
cryptographically sound to industry.

The source code for an alleged SecurID token emulator was posted on the
Internet in December 2000 [4]. This code was obtained by reverse engineering,
and the correctness of this code was confirmed in some reactions on this post.
From now on, this implementation will be called the “Alleged SecurID Hash
Function” (ASHF). Although the source code of the ASHF has been available
for more than two years, no article discussing this function has appeared in
the cryptographic literature, except for a brief note [3]. This may be explained
by a huge number of subrounds (256) and by the fact that the function looses
information and thus standard techniques for analysis of block-ciphers may not
be applicable.

In this paper, we will analyse the ASHF and show that the block-cipher at the
core of this hash function is very weak. In particular this function is non-bijective
and allows for an easy construction of vanishing differentials (i.e. collisions)
which leak information on the secret key. The most powerful attacks that we show
are differential [1] adaptive chosen plaintext attacks which result in a complete
secret key recovery in just a few milliseconds on a PC (See Table 1 for a summary
of attacks). However, it might be hard for a real-life attacker to mount the most
effective of these attacks due to their adaptive chosen-plaintext nature, due to
the special time-duplication format and due to initial key-dependent permutation
which is applied to the input of the hash function. Still, vanishing differentials
do occur for 10% of all tokens given only two months of token output and for
35% of all keys given a year of token output. Each vanishing differential leaks up
to 19 bits of key-information. In this paper we show how to partially extract this
information. We conjecture that given only a few vanishing differentials, full key
recovery would take less that 245 steps. These attacks motivate a replacement
of ASHF by a more conventional hash function, for example one based on the
AES.

In Sect. 2, we give a detailed description of the ASHF. In Sect. 3, we show
some results on the block cipher-like structure, the heart of the ASHF. In Sect. 4,
we show how to use these observations for the cryptanalysis of the whole cipher.
Sect. 5 presents the conclusions.



3

Table 1. The attacks presented in this paper.

Function Type of Attack Data Compl. Time Result Sect.
attacked (#texts∗∗) Compl.

Block-cipher Adaptively chosen 70 210 full key recovery 3.3
(256 subrounds) plaintext

Full ASHF Adaptively chosen 217 217 few key bits 4.1
plaintext

Full ASHF Chosen + Adaptively 224 + 213 224 full key recovery 4.1
chosen plaintext

Full ASHF+ Known plaintext? 216 − 218 218 partial key recovery, 4.2
time duplication for 10 − 35% of the keys

Full ASHF+ Known plaintext∗ + 218 218 Possible 4.2
time duplication Network monitoring network intrusion

? A full output of the 60-second token for 2-12 months.
∗ A full output of the 60-second token for one year.
∗∗ Here data complexity is measured in full hash outputs which would correspond to
two consequitive outputs of the token.

2 Description of the Alleged SecurID Hash Function

The alleged SecurID hash function (ASHF) outputs a 6 to 8-digit word every
minute (or 30 seconds). All complexity estimates further in this paper, if not
specified otherwise, will correspond to 60-second token described in [4] though we
expect that our results apply to 30-second tokens with twice better complexities.
The design of ASHF is shown in Fig. 1. The secret information contained in
ASHF is a 64-bit secret key. This key is stored securely and remains the same
during the lifetime of the authenticator. Every 30 or 60 seconds, the time is read
from the clock. This time is then manipulated by the expansion function (which
is not key-dependent), to yield a 64-bit time.

This 64-bit time is the input to the key-dependent transformation. This trans-
formation consists of an initial key-dependent permutation, four rounds of a
block cipher-like function, and a final permutation. After every round the key is
changed by XORing the key with the output of that round, hence providing a
simple key scheduling algorithm. Finally the 64 bits (i.e., 16 hexadecimal char-
acters) are transformed into 16 digits by the conversion routine. The different
building blocks of the hash function will now be discussed in more detail.

In the following, we will denote a 64-bit word by b, consisting of bytes
B0, B1, . . . B7 and of bits b0b1 . . . b63. B0 is the Most Significant Byte (MSB)
of the word, b0 is the most significant bit (msb).

2.1 The Expansion Function

We consider the case where the token code changes every 60 seconds. The time
is read from the clock into a 32-bit number, and converted first into the number
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Fig. 1. Overview of the ASHF hash function

of minutes since January 1, 1986, 0.00 GMT. Then this number is shifted to
the left one position and the two least significant bits are set to zero. We now
have a 32-bit number B0B1B2B3. This is converted into the 64-bit number by
repeating the three least significant bytes several times. The final time t is then
of the form B1B2B3B3B1B2B3B3. As the two least significant bits of B3 are
always zero, this also applies to some bits of t. The time t will only repeat after
223 minutes (about 16 years), which is clearly longer than the lifetime of the
token.

One can notice that the time only changes every two minutes, due to the fact
that the last two bits are set to zero during the conversion. In order to get a
different one-time password every minute, the ASHF will at the end take the 8
(or 6) least significant digits at even minutes, and the 8 (or 6) next digits at odd
minutes. This may have been done to economize on computing power, but on
the other hand this also means that the hash function outputs more information.
From an information-theoretic point of view, the ASHF gives 53 bits (40 bits) of
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information if the attacker can obtain two consecutive 8 digit (6 digit) outputs.
This is quite high considering the 64-bit secret key.

2.2 The Key-Dependent Initial and Final Permutation

The key-dependent bit permutation is applied before the core rounds of the
hash function and after them. It takes a 64-bit value u and a key k as input and
outputs a permutation of u, called y. All operations are to be thought of modulo
64. The key is divided into 16 tuples of four bits k0k1 . . .k15. First a pointer pa

jumps to bit uK0
, and a pointer pb is set equal to this. Then the four bits strictly

before upb
will be the output bits y60y61y62y63.

For the subsequent bits, the pointer pb is decremented by four, the bits from
upb

till upb+K1−1 are overwritten by upa
till upa+K1−1. Both pointers are incre-

mented with k1, and the four bits before upb
again yield the next four output

bits y56y57y58y59. This process is repeated until the 16 4-tuples of the key are
used up and the whole output word y is determined.

This permutation is not strong: given one input-output pair (u, y), one gets
a lot of information on the key. An algorithm has been written that searches
all remaining keys given one pair (u, y). On average, 212 keys remain, which is
a significant reduction. Given two input-output pairs, the average number of
remaining keys is 17.

2.3 The Key-Dependent Round

One round takes as input the 64-bit key k and a 64-bit value b0. It outputs a 64-
bit value b64, and the key k is transformed to k = k⊕b64. This ensures that every
round (and also the final permutation) gets a different key. The round consists
of 64 subrounds, in each of these one bit of the key is used. The superscript i

denotes the word after the i-th round. Subround i (i = 1 . . . 64) transforms bi−1

into bi and works as follows (see Fig. 2):

1. Check if the key bit ki−1 equals bi−1
0 .

– if the answer is yes:

{

Bi
0 = ((((Bi−1

0 ≫ 1) − 1) ≫ 1) − 1) ⊕ Bi−1
4

Bi
j = Bi−1

j for j = 1, 2, 3, 4, 5, 6, 7
(1)

where ≫ i denotes a cyclic shift to the right by i positions and ⊕ denotes
an exclusive or. This function will be called R.

– if the answer is no:






Bi
0 = Bi−1

4

Bi
4 = 100 − Bi−1

0 mod 256

Bi
j = Bi−1

j for j = 1, 2, 3, 5, 6, 7
(2)

This function will be called S.
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Fig. 2. Sub-round i defined by the operations R and S.

2. Cyclically shift all bits one position to the left:

bi = bi
≪ 1 . (3)

After these 64 iterations, the output b64 of the round is found, and the key is
changed according to k = k ⊕ b64.

2.4 The Key-Dependent Conversion to Decimal

After the initial permutation, the 4 rounds and the final permutation, the 16
nibbles of the data are converted into 16 decimal symbols. These will be used to
form the two next 8 (or 6)-digit codes.

This is done in a very straightforward way: the nibbles 0x, 1x, . . . 9x are simply
transformed into the digits 0, 1, . . . 9. Ax, Cx and Ex are transformed into 0, 2, 4, 6
or 8, depending on the key; and Bx, Dx and Fx are transformed into 1, 3, 5, 7 or
9, also depending on the key.

3 Cryptanalysis of the Key-Dependent Rounds

The four key-dependent rounds are the major factor for mixing the secret key
and the current time. The ASHF could have used any block cipher here (for
example DES), but a dedicated design has been used instead. The designers had
the advantage that the rounds do not have to be reversible, as the cipher is only
used to encrypt. In this section we will show some weaknesses of this dedicated
design.
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3.1 Avalanche of 1-Bit Differences

It is instructive to look at how a differential propagates through the rounds. As
has been explained in Sect. 2.3, in every subround one bit of the key is mixed in
by first performing one R or S-operation and then shifting the word one position
to the left.

A standard differential trail, for an input difference in b63, is shown in Table 2
in Appendix C. As long as the difference does not enter B0 or B4, there is no
avalanche at all: the difference is just shifted one position to the left after each
subround. But once the difference enters into B0 and B4, avalanche occurs quite
rapidly. This is due to two factors: S and R are nonlinear (though very close to
linear) and mainly due to a choice between the two operations S or R, conditional
on the most significant bit b0 of the text.

Another complication is that, unlike in regular block ciphers, the round out-
put is XORed into the subkey of the following round. This leads to difference
propagation into the subkeys which makes the mixing even more complex. Be-
cause of the many subrounds (256), it seems that avalanche will be more than
sufficient to resist differential cryptanalysis.

3.2 Differential Characteristics

We now search for interesting differential characteristics. Two texts are en-
crypted and the differential trail is inspected. A difference in the lsb of B7 will
be denoted by 1x, in the second bit of B7 by 2x, etc. . . Three scenarios can occur
in a subround:

– If the difference is not in B0 or B4, it will undergo a linear operation: the
difference will always propagate by shifting one position to the left: 1x will
become 2x, 2x will become 4x, etc.

– If the difference is in B0 and/or B4, and the difference in the msb of B0 equals
the difference in the key, both texts will undergo the same operation (R or
S). These operations are not completely linear, but a difference can only
go to a few specific differences. A table has been built that shows for every
differential the differentials it can propagate to together with the probability.

– If the difference is in B0 and/or B4, and the difference in the msb of B0 does
not equal the difference in the key, one text will undergo the R operation
and the other text will undergo the S operation. This results in a uniform
distribution for the output differences: each difference has probability 2−16.

Our approach has been to use an input differential in the least significant
bits of B3 and B7. This differential will then propagate “for free” for about
24 subrounds. Then it will enter B0 and B4. We will pay a price in the second
scenario (provided the msb of the differential in B0 is not 1) for a few subrounds,
after which we want the differential to leave B0 and B4 and jump to B7 or B3.
Then it can again propagate for free for 24 rounds, and so on.

That way we want to have a difference in only 1 bit after 64 subrounds. This
is the only difference which will propagate into the key, and so we can hope to
push the differentials through more rounds.
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The best differential for one round that we have found has an input difference
of 2x in B3 and 5x in B7, and gives an output difference of 1x in B6 with
probability 2−15.

It is possible that better differentials exist. One could try to push the char-
acteristic through more rounds, but because of the difference in the keys other
paths will have to be searched. For now, it is unclear whether a path through
the four rounds can be found with probability larger than 2−64, but it may well
be feasible. In any case, this approach is far less efficient than the approach we
will discuss in the following section.

3.3 Vanishing Differentials

Because of the specific application in which the ASHF is used, the rounds do
not have to be bijections. A consequence of this non-bijective nature is that
it is possible to choose an input differential to a round, such that the output
differential is zero, i.e., an internal collision. An input differential that causes an
internal collision will be called a vanishing differential1.

This can be derived as follows. Suppose that we have two words at the input
of the i-th subround, bi−1 and b′i−1. A first condition is that:

bi−1
0 6= b′i−1

0 . (4)

Then one word, assume bi−1, will undergo the R operation, and the other word
b′i−1 will undergo the S operation. We impose a second condition, namely:

Bi−1
j = B′i−1

j for j = 1, 2, 3, 5, 6, 7. (5)

We now want to find an input differential in B0 and B4 that vanishes. This is
easily achieved by simply setting bi equal to b′i after S or R:

{

Bi
0 = B′i

0 ⇒ B′i−1
4 = ((((Bi−1

0 ≫ 1) − 1) ≫ 1) − 1) ⊕ Bi−1
4

Bi
4 = B′i

4 ⇒ B′i−1
0 = 100 − Bi−1

0 ,
(6)

As both R and S are bijections, there will be 216 such tuples (Bi−1
0 , Bi−1

4 , B′i−1
0 ,

B′i−1
4 ). The extra condition that the msb of Bi−1

0 and B′i−1
0 have to be different

will filter out half of these, still leaving 215 such pairs.
This observation leads to a very easy attack on the full block cipher. We

choose two plaintexts b0 and b′0 that satisfy the above conditions. We encrypt
these with the block cipher (the 4 rounds), and look at the difference between
the outputs. Two scenarios are possible:

– b0 undergoes the R operation and b′0 undergoes the S operation in the first
subround: this means that b1 will be equal to b′1. As the difference is equal

1 Notice that the ASHF scheme can be viewed both as a block cipher with partially
non-bijective round function or as a MAC where current time is authenticated with
the secret key. The fact that internal collisions in MACs may lead to forgery or
key-recovery attacks was noted and exploited against popular MACs in [6–8].
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to zero, this will of course propagate to the end and we will observe this at
the output. This also implies that k0 = b0

0, because that is the condition for
b0 to undergo the R operation.

– b0 undergoes the S operation and b′0 undergoes the R operation in the
first subround: this means that b1 will be different from b′1. This difference
will propagate further (with very high probability), and we will observe a
nonzero output difference. This also implies that k0 = b′00 , because that is
the condition for b′0 to undergo the R operation.

To summarize, this gives us a very easy way to find the first bit of the secret
key with two chosen plaintexts: choose b0 and b′0 according to (4), (5) and (6)
and encrypt these. If outputs will be equal, then k0 = b0

0. If not, then k0 = b′00 !

This approach can be easily extended to find the second, third, . . . bit of the
secret key by working iteratively. Suppose we have determined the first i−1 bits
of the key. Then we can easily find a pair (b0, b′0), that will be transformed by
the already known key bits of the first i − 1 subrounds into a pair (bi−1, b′i−1)
that satisfies (4), (5) and (6). The search for an adequate pair is performed
offline, and once we have found a good pair offline it will always give a vanishing
differential on the real cipher. The procedure we do is to encrypt a random text
with the key bits we have deduced so far, then we choose the corresponding
second text there for a vanishing differential, and for this text we then try to
find a preimage. Correct preimages can be found with high probabilities (75%
for the 1st bit, 1.3% for 64th bit), hence few text pairs need to be tried before
an adequate pair is found. Now we can deduce ki in the same way we deduced
k0 above.

This algorithm has been implemented in C on a Pentium. Finding the whole
secret key requires at most 128 adaptively chosen plaintexts. This number will
in practice mostly be reduced, because we can often reuse texts from previous
subrounds in the new rounds. Simulation shows that on average only 70 adap-
tively chosen plaintexts are needed. Finding the 64-bit secret key for the whole
block cipher, with the search for the appropriate plaintexts included, requires
only a few milliseconds. Of course, it is possible to perform a trade-off by only
searching the first i key bits. The remaining 64 − i key bits can then be found
by doing a reduced exhaustive search.

4 Extending the Attack with Vanishing Differentials to

the Whole ASHF

So far, we have shown how to break the four key-dependent rounds of the ASHF.
In this paragraph, we will first try to extend the attack of Sect. 3.3 to the full
ASHF, which consists of a weak initial key-dependent permutation, the four
key-dependent rounds, a weak final key-dependent permutation and the key-
dependent conversion to decimal. Then we will mount the attack when taking
the symmetrical time format into account.
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4.1 The Attack on the Full ASHF

The attack with vanishing differentials of Sect. 3.3 is not defeated by the final
permutation. Even a perfect key-dependent permutation would not help. The
only thing an attacker needs to know is whether the outputs are equal, and
this is not changed by the permutation. The lossy conversion to decimal also
doesn’t defeat the attack. There still are 53 bits (40 bits) of information, so
the probability that two equal outputs are caused by chance (and thus are not
caused by a vanishing differential) remains negligibly small.

However, the initial key-dependent permutation causes a problem. It pre-
vents the attacker from choosing the inputs to the block cipher rounds. Another
approach is needed to extract information from the occurrence of vanishing dif-
ferentials.

The attack starts by searching a vanishing differential by randomly choosing
2 inputs that differ in 1 bit, say in bit i. Approximately 217 pairs need to be
tested before such a pair can be found. Information on the initial permutation
(and thus on the secret key) can then be learned by flipping a bit j in the pair
and checking whether a vanishing differential is still observed. If this is so, this
is an indication that bit j is further away from B0 and B4 than bit i.

An algorithm has been implemented that searches for a vanishing pair with
one bit difference in all bits i, and then flips a bit for all bits j. This requires
224 chosen and 213 adaptively chosen plaintexts. A 64 · 64 matrix is obtained
that carries a lot of information on the initial permutation. Every element of
the matrix establishes an order relationship, every row i shows which bits j can
be flipped for an input differential in bit i, and every column shows how often
flipping bit i will preserve the vanishing differential. This information can be
used to extract the secret key. The first nibble of the key determines which bits
go to positions b60, . . . b63. By inspecting the matrix, one can see that this should
be the four successive bits between bit 60 and bit 11 that have the lowest row
weight and the highest column weight.

Once we have determined the first nibble, we can work recursively to deter-
mine the following nibbles of the secret key. The matrix will not always give a
unique solution, so then it will be necessary to try all likely scenarios. Simulation
indicates that the uncertainty seems to be lower than the work required to find
the vanishing differentials.

The data complexity of this attack may be further reduced by using fewer
vanishing differentials, but thereby introducing more uncertainty.

4.2 The Attack on the Full ASHF with the Time Format

The attack is further complicated by the symmetrical time format. A one-bit
difference in the 32-bit time is expanded into a 2-bit difference (if the one-
bit difference is in the second or third byte of the 32-bit time) or into a 4-bit
difference (if the one-bit difference is in least significant byte of the 32-bit time).

A 4-bit difference caused by a one-bit difference in the 32-bit time will yield a
vanishing differential with negligible probability, because the initial permutation
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will seldom put the differences in an ordered way that permits a vanishing differ-
ential to occur. A 2-bit difference, however, will lead to a vanishing differential
for a subset of keys. Taking a random key, and two 64-bit time values that differ
in two bits (for instance in t0 and t32, or in t15 and t47), an attacker observes
two equal outputs for one given 2-bit difference with probability 2−19. This can
be used to distinguish the SecurID stream from a random stream, as two equal
outputs would normally only be detected with probability 2−53 (2−26.5 if only
one 8-digit tokencode is observed).

In the following, we assume that an attacker can observe the output of the
60-second token during two months, i.e., 217.4 8-digit (or 6 digit) hashes. This
attack could simulate a “curious user” who wants to know the secret key of his
own card, or a malicious internal user who has access to the SecurID cards before
they are deployed. The attacker could put his token(s) in front of a PC camera
equipped with OCR software, automating the process of reading the numbers
from the card. The attacker then would try to detect vanishing differentials in
the sampled data. In a simulation of this experiment repeated for 1000 different
keys, about 10% of the keys, had one or more vanishing differentials. Among
these 10% the average number of vanishing differentials was 3, but the variance
between different keys was high. If one extends the observation period from two
months to one year then 35% of keys will have at least one vanishing differential.
The attacker can use this information in several ways.

Partial key recovery. From these vanishing differentials, an attacker can de-
duce information on the initial key-dependent permutation, and thus on the
secret key. This information is learned in two ways. First of all, the vanishing
differentials can be grouped according to the input differential that causes them.
An input differential can only cause a vanishing differential if the initial per-
mutation puts the differences at adequate positions: the differences should enter
B0 and/or B4 within an interval of a few subrounds, so that they can vanish
simultaneously. This can give information about the sum of some key bits.

Furthermore, within the group of plaintext pairs with the same input dif-
ferential, it is observed that some pairs are very similar. We then inspect the
difference between these input pairs. It can be seen that flipping some bits in the
input pair yields another input pair that also causes a vanishing differential (this
would assume adaptive chosen plaintext capability). This boils down to saying
that these bits do not interfere in the occurrence of the vanishing differential.
Very often, the conclusion can be drawn that these bits are permuted to a po-
sition further away from B0 and B4 than the bits of the input differential (i.e.,
they will only enter B0 and B4 after the vanishing differential has occurred).
Using this approach, it is possible to extract bits of information on the secret
key for about 10–35% of the tokens (depending on the observation period). We
conjecture that given a few vanishing differentials it is possible to perform a
key-recovery attack on the full ASHF within 245 analysis steps. See Appendix B
for an example of several vanishing differentials.
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Network intrusion. An attacker can also use the one year output without
trying to recover the secret key of the token. In this attack scenario it is assumed
that the attacker can monitor the traffic on the network in the following year.
When an attacker monitors a token at the (even) time t, he will compare this
with the value of the token 219 minutes (about 1 year) earlier. If both values
are equal, this implies that a vanishing differential is occurring. This vanishing
differential will also hold at the next (odd) time t + 1. The attacker can thus
predict at time t the value of the token at time t + 1 by looking it up in his
database, and can use this value to log into the system.

Simulation shows that 4% of the keys 2 will have such vanishing differentials
within a year, and that these keys will have 6 occurrences of vanishing differen-
tials on average. Higher percentages of such weak keys are possible if we assume
the attacker is monitoring several years.

The total probability of success of an attacker depends on the number of cards
from which he could collect the output during one year, and on the number of
logins of the users in the next year. It is clear that the attack will not be very
practical, since the success probability for a single user with 1000 login attempts
per year will be 2−19 ·1000 ·6 ·0.04/2 ≈ 2−12. This is however, much higher than
what would be expected from the password length (i.e., 2−26.5 and 2−20 for 8-
and 6-digit tokens respectively). Note that this attack does not produce failed
login attempts and requires only passive monitoring.

5 Conclusion

In this paper, we have performed a cryptanalysis of the Alleged SecurID Hash
Function (ASHF). It has been shown that the core of this hash, the four key-
dependent block cipher rounds, is very weak and can be broken in a few millisec-
onds with an adaptively chosen plaintext attack, using vanishing differentials.
This weakness can still be detected in the full ASHF (with and without the
required time format), which leaks information on the key in a number of sce-
narios. The ASHF does not deliver the security that one would expect from a
present-day cryptographic algorithm. See Table 1 for an overview of the attacks
presented in this paper.

We thus would recommend to replace the ASHF-based tokens by tokens
implementing another algorithm that has undergone extensive open review and
which has 128-bit internal secret. The AES seems to be a good candidate for
such a replacement and indeed, from February 2003 RSA has started phasing in
AES-based tokens [5].
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A A Linear Property

An interesting property of the S and R function is that the msb of B4, b32, will
be biased after applying S or R. Moreover, this bias is dependent on the value of
the key bit. This can be seen as follows: suppose that after i − 1 subrounds, B0

and B4 are random. Without taking the rotation to the left into account, these
are the possible cases:

– ki−1 = 0:
• bi−1

0 = 0: The word will undergo the R operation. B4 remains unchanged
through the R operation, and the probabilities are p(bi

32 = 0) = 1/2 and
p(bi

32 = 1) = 1/2.
• bi−1

0 = 1: The word will undergo the S operation. Bi−1
0 is uniformly

distributed within the interval [128, 255], thus Bi
4 is uniformly dis-

tributed within the interval [101, 228]. Hence p(bi
32 = 0) = 101/128

and p(bi
32 = 1) = 27/128.

– ki−1 = 1:
• bi−1

0 = 1: The word will undergo the R operation. B4 remains unchanged
through the R operation, and the probabilities are p(bi

32 = 0) = 1/2 and
p(bi

32 = 1) = 1/2.
• bi−1

0 = 0: The word will undergo the S operation. Bi−1
0 is uniformly

distributed within the interval [0, 128], thus Bi
4 is uniformly distributed

within the interval [0, 100]∪ [228, 255]. Hence p(bi
32 = 0) = 27/128 and

p(bi
32 = 1) = 101/128.

This means that overall, after the R or S function, p(ki−1 = bi
32) ≈ 35.55%. This

property can be used to break one round of the block cipher using ciphertext-
only: the bias will simply propagate to the left after the rotation step, and will
then remain unchanged until it enters B0 after 25 more subrounds. The attack
scenario is as follows: given 100 ciphertexts, we count the number of times b64

7 ,
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b64
8 . . . b64

31 are zero. It is easy to see that these values correspond to the value of
bit b32 after mixing in the key bit k39, k40 . . . k63 respectively. So if b7 is equal to
0 more than 50 times, this means that k39 = 1, and so on for the other values.
25 bits of the key can be determined with a very high probability (when using
100 ciphertexts, the probability of error is only 0.05%). The other 39 key bits
can now be determined by an exhaustive search.

This attack would be easily extendible to the four rounds, if the key schedule
of ASHF was not data-dependent. The data-dependent key schedule does not
allow to add up the occurrences for different ciphertexts, because the key in the
final round will be different for every ciphertext. It is possible that the designers
were aware of this property and therefore chose the data-dependent key schedule.

However, we can mount the following key-recovery attack on the full four-
round function: given a ciphertext, we know that the most probable value for
k39 . . . k63 of the key in the final round, is the complement of b7 . . . b31. The
probability that this guess for the 25 bits is correct is (165/256)25 ≈ 2−16. With
239 more guesses, we can determine the other bits of the key in the final round. It
is then possible, knowing the plaintext-ciphertext pair, to work our way back to
the secret key. This attack requires on average 215 plaintexts and corresponding
ciphertexts, and 255 steps.

Finding the secret key given the plaintext, the ciphertext and the key in the
final round is not straightforward, as the round function is not a bijection. An
ad hoc algorithm has been implemented to perform this. This means that each
step is expensive in terms of CPU usage.

B Example of Vanishing Differentials

In this section we provide an example of vanishing differentials observed in a
simulation of a token output during one year. This example is taken from a test
run with 100 different token keys. Out of these 45 keys produced at least one
vanishing differential, 26 keys produced two or more, 19 produced three or more,
17 produced four or more. In terms of differences: 34 cases had single vanishing
difference, 11 cases had two or more vanishing differences.

Token key: 659f8031552d30a2_x

1st Input 2nd Input Difference

----------------------------------------------------------------

0401d0d00401d0d0 0407d0d00407d0d0 0006000000060000

0481d0d00481d0d0 0487d0d00487d0d0 0006000000060000

0441d0d00441d0d0 0447d0d00447d0d0 0006000000060000

04c1d0d004c1d0d0 04c7d0d004c7d0d0 0006000000060000

Below we show 64 bits of the input after the initial key-dependent permutation
(the 1st line describes 32 bits from B0 to B3, then 2nd 32 bits represent B4

to B7). Here by ∗ we denote bits of the difference and by V bits which can be
flipped without spoiling the vanishing differential. Notice that permutation maps
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the key bits in chunks. Average chunk has 3 bits. Notice also that, as expected,
the bits that can be flipped are mapped after the regions of differences, and that
differences are mapped into compact 8-bit areas which are 4-words away from
each other.

* * V V

55 20 21 54 22 23 52 53| 56 17 18 19 57 58 59 60| 44 45 46 47 48 49 50 51| 24 25 30 43 35 40 41 42

* * V V

36 37 38 39 31 32 33 34| 26 27 28 29 61 62 15 16| 63 00 01 02 03 12 13 14| 04 05 10 11 06 07 08 09

One possible attack approach would be to partially reconstruct the mapping
of the 8-bit areas around the differences, guess the control bits for 6-8 steps from
the moment that the first difference enters the B0/B4 area and then check if the
guess leads to vanishing of the differences. The power of this filter is about 2−17.

C Differential Trail

Table 2. Unrestricted differential trail for the first 50 subrounds (avalanche demon-
stration).

Subround B0 B1 B2 B3 B4 B5 B6 B7

0 00 00 00 00 00 00 00 01

1 00 00 00 00 00 00 00 02

2 00 00 00 00 00 00 00 04

3 00 00 00 00 00 00 00 08

4 00 00 00 00 00 00 00 10

5 00 00 00 00 00 00 00 20

6 00 00 00 00 00 00 00 40

7 00 00 00 00 00 00 00 80

. . .

24 00 00 00 00 01 00 00 00

25 02 00 00 00 02 00 00 00

26 1a 00 00 00 04 00 00 01

27 08 00 00 00 1c 00 00 02

28 38 00 00 00 70 00 00 04

29 f4 00 00 00 e0 00 00 08

30 68 00 00 01 40 00 00 11

31 4c 00 00 02 80 00 00 22

32 22 00 00 05 00 00 00 45

33 00 00 00 0a cc 00 00 8a

34 98 00 00 15 98 00 01 15

35 2c 00 00 2b 88 00 02 2a

36 10 00 00 56 28 00 04 55

37 50 00 00 ac e0 00 08 aa

38 c0 00 01 58 a0 00 11 55

39 c2 00 02 b1 10 00 22 ab

40 0e 00 05 63 ec 00 45 56

41 e4 00 0a c7 d8 00 8a ac

42 c2 00 15 8f 3e 01 15 59

43 72 00 2b 1e 50 02 2a b2

44 a0 00 56 3c 64 04 55 64

45 9c 00 ac 78 9c 08 aa c9

46 14 01 58 f0 b8 11 55 92

47 4a 02 b1 e1 70 22 ab 25

48 e0 05 63 c2 94 45 56 4a

49 b6 0a c7 84 0a 8a ac 94

50 3e 15 8f 08 0b 15 59 29

. . .


