
Multipurpose Identity-Based Signcryption
A Swiss Army Knife for Identity-Based Cryptography

Xavier Boyen

2003

An extended abstract of this paper appears in CRYPTO ’03 — Dan Boneh (editor), Proceedings of the 23rd
International Conference on Advances in Cryptology, Lecture Notes in Computer Science, volume 2729,
pages 382–398, Berlin: Springer-Verlag, 2003.

Abstract

Identity-Based (IB) cryptography is a rapidly emerging approach to public-key cryptography
that does not require principals to pre-compute key pairs and obtain certificates for their public
keys—instead, public keys can be arbitrary identifiers such as email addresses, while private
keys are derived at any time by a trusted private key generator upon request by the designated
principals. Despite the flurry of recent results on IB encryption and signature, some questions
regarding the security and efficiency of practicing IB encryption (IBE) and signature (IBS) as a
joint IB signature/encryption (IBSE) scheme with a common set of parameters and keys, remain
unanswered.

We first propose a stringent security model for IBSE schemes. We require the usual strong se-
curity properties of: (for confidentiality) indistinguishability against adaptive chosen-ciphertext
attacks, and (for non-repudiation) existential unforgeability against chosen-message insider at-
tacks. In addition, to ensure as strong as possible ciphertext armoring, we also ask (for
anonymity) that authorship not be transmitted in the clear, and (for unlinkability) that it
remain unverifiable by anyone except (for authentication) by the legitimate recipient alone.

We then present an efficient IBSE construction, based on bilinear pairings, that satisfies all
these security requirements, and yet is as compact as pairing-based IBE and IBS in isolation.
Our scheme is secure, compact, fast and practical, offers detachable signatures, and supports
multi-recipient encryption with signature sharing for maximum scalability.

1 Introduction

Recently, Boneh and Franklin [5] observed that bilinear pairings on elliptic curves could be used
to make identity-based encryption possible and practical. Following this seminal insight, the last
couple of years have seen a flurry of results on a number of aspects of what has now become the
nascent field of Identity-Based (IB) cryptography.

1.1 Identity-Based Cryptography

The distinguishing characteristic of IB cryptography is the ability to use any string as a public
key; the corresponding private key can only be derived by a trusted Private Key Generator (PKG),
custodian of a master secret. For encryption purposes, this allows Alice to securely send Bob an
encrypted message, using as public key any unambiguous name identifying Bob, such as Bob’s email
address, possibly before Bob even knows his own private key. For signature purposes, Alice may
sign her communications using a private key that corresponds to an unambiguous name of hers, so
that anybody can verify the authenticity of the signature simply from the name, without the need
for a certificate. Revocation issues are handled by using short-lived time-dependent identities [5].

1

An inherent limitation of IB cryptography is the trust requirement that is placed on the PKG,
as an untrustworthy PKG will have the power to forge Alice’s signature, and decrypt Bob’s past
and future private communications. This can be partially alleviated by splitting the master secret
among several PKGs under the jurisdiction of no single entity, as explained in [5]. The window of
vulnerability can also be reduced by periodically changing the public parameters, and purging any
master secret beyond a certain age, effectively limiting the interval during which IB cryptograms can
be decrypted. Traditional public-key cryptography is not completely immune to the problem, either:
in a public key infrastructure, the certification authority has the power to issue fake certificates and
impersonate any user for signature purposes; it can similarly spoof encryption public key certificates
in order to decrypt future ciphertexts addressed to targeted users, albeit not in a manner not
amenable to easy detection.

The idea of IB cryptography first emerged in 1984 [24], although only an IB signature (IBS)
scheme was then suggested, based on conventional algebraic methods in Zn. Other IBS and iden-
tification schemes were quick to follow [13, 12]. However, it is only in 2001 that a practical IB
encryption (IBE) mechanism was finally suggested [5], based on the much heavier machinery of
bilinear pairings on elliptic curves, whose use in cryptography had slowly started to surface in the
few years prior, e.g., for key exchange [18] and IBS [23]. Interestingly, a more conventional approach
to IBE was proposed shortly thereafter [10], albeit not as efficient as the pairing-based IBE scheme
of Boneh and Franklin.

1.2 Motivation and Contribution

Following the original publication of the BF-IBE scheme [5], a number of authors have proposed
various new applications of pairing-based IB cryptography. These include various IB signature
schemes [22, 16, 8], key agreement [25], a 2-level hierarchical IB encryption [17], and a general
hierarchical IB encryption that can also be used to produce signatures [15]. More specifically
focusing on joint authentication and encryption, we note a repudiable authenticated IBE [20], an
authenticated key agreement scheme [9], and a couple of IB signcryption schemes that efficiently
combine signature and encryption [21, 19].

What the picture is currently missing is an algorithm that combines (existing or new) IBE and
IBS in a practical and secure way. Indeed, it would be of great practical interest to be able to use
the same IB infrastructure for signing and encrypting. A possibility is to combine some existing
IBE and IBS using black-box composition techniques, such as [1]; this is however rather suboptimal.

A better approach would be to exploit the similarities between IBE and IBS, and elaborate
a dual-purpose IB Encryption-Signature (IBSE) scheme based on a shared infrastructure, toward
efficiency increases and security improvements. Doing so, we would have to ensure that no hidden
weakness arises from the combination, which is always a risk if the same parameters and keys are
used. The issues that arise from this approach are summarized as follows:

• Can IBE and IBS be practiced in conjunction, in a secure manner, sharing infrastructure,
parameters, and keys, toward greater efficiency?

• What emerging security properties can be gained from such a combination?

Our contributions to answering these questions are twofold. We first specify a security model
that a strong IBSE combination should satisfy. Our model specifies the IBSE version of the strongest
notions of security usually considered in public-key cryptography. For confidentiality, we define
a notion of ciphertext indistinguishability under adaptive chosen-ciphertext attacks. For non-
repudiation, we define a notion of signature unforgeability under chosen-message attacks, in the

2

stringent case of an ‘insider’ adversary, i.e., with access to the decryption private key, as considered
in [1]. We also specify the additional security features of ciphertext authentication, anonymity, and
unlinkability, that, if less conventional, are highly desirable in practice: together, they convince the
legitimate recipient of the ciphertext origin, and conceal it from anyone else.

We then propose a fast IBSE scheme satisfying our strong security requirements, which we prove
in the random oracle model [3]. Our scheme uses the properties of bilinear pairings to achieve a
two-layer sign-then-encrypt combination, featuring a detachable randomized signature, followed by
anonymous deterministic encryption. The scheme is very efficient, more secure than what we call
monolithic signcryption—in which a single operation is used for decryption and signature verifica-
tion, as in the original signcryption model of [27]—and more compact than generic compositions
of IBE and IBS. Our two-layer design is also readily adapted to provide multi-recipient encryption
of the same message with a shared signature and a single bulk message encryption.

Performance-wise, our dual-purpose optimized IBSE scheme is as compact as most existing
single-purpose IBE and IBS taken in isolation. It is also about as efficient as the monolithic IB
signcryption schemes of [21] and [19], with the added flexibility and security benefits that separate
anonymous decryption and signature verification layers can provide. A comparative summary of
our scheme with competing approaches can be found in §6, Table 2.

1.3 Outline of the Paper

We start in §2 by laying out the abstract IBSE specifications. In §3, we formalize the various
security properties sought from the cryptosystem. In §4, we review the principles of IB cryptography
based on pairings. In §5, we describe an implementation of our scheme. In §6, we make detailed
performance and security comparisons with the competition. In §7, we prove compliance of our
implementation with the security model. In §8, we study a few extensions of practical significance.
Finally, in §9, we draw some conclusions.

2 Specification of the Cryptosystem

An Identity-Based Signature/Encryption scheme, or IBSE, consists of a suite of six algorithms:
Setup, Extract, Sign, Encrypt, Decrypt, and Verify. In essence, Setup generates random instances of
the common public parameters and master secret; Extract computes the private key corresponding
to a given public identity string; Sign produces a signature for a given message and private key;
Encrypt encrypts a signed plaintext for a given identity; Decrypt decrypts a ciphertext using a
given private key; Verify checks the validity of a given signature for a given message and identity.
Messages are arbitrary strings in {0, 1}∗.

The functions that compose a generic IBSE are thus specified as follows.

Setup On input 1n, produces a pair 〈σ, π〉 (where σ is a randomly generated master secret and π
the corresponding common public parameters, for the security meta-parameter n).

Extractπ,σ On input id, computes a private key pvk (corresponding to the identity id under 〈σ, π〉).
Signπ On input 〈pvkA, idA,m〉, outputs a signature s (for pvkA, under π), and some ephemeral state

data r.

Encryptπ On input 〈pvkA, idB,m, s, r〉, outputs an anonymous ciphertext c (containing the signed
message 〈m, s〉, encrypted for the identity idB under π).

Decryptπ On input 〈pvkB, ĉ〉, outputs a triple 〈îdA, m̂, ŝ〉 (containing the purported sender identity
and signed message obtained by decrypting ĉ by the private key pvkB under π).

3

Verifyπ On input 〈îdA, m̂, ŝ〉, outputs > ‘true’ or ⊥ ‘false’ (indicating whether ŝ is a valid signature
for the message m̂ by the identity îdA, under π).

Since we are concerned with sending messages that are simultaneously encrypted and signed, we
allow the encryption function to make use of the private key of the sender. Accordingly, we
assume that Encrypt is always used on an output from Sign, so that we may view the Sign/Encrypt
composition as a single ‘signcryption’ function; we keep them separate to facilitate the treatment of
multi-recipient encryption with shared signature in §8.1. We also insist on the dichotomy Decrypt
vs. Verify, to permit the decryption of anonymous ciphertexts, and to decouple signature verification
from the data that is transmitted over the wire, neither of which would be feasible had we used a
monolithic ‘unsigncryption’ function.

It is required that these algorithms jointly satisfy the following consistency constraints.

Definition 1. For all master secret and common parameters 〈σ, π〉 ← Setup[1n], any identities idA
and idB, and matching private keys pvkA = Extractπ,σ[idA] and pvkB = Extractπ,σ[idB], we require
for consistency that, ∀m ∈ {0, 1}∗:

〈s, r〉 ← Signπ[pvkA, idA,m]
c ← Encryptπ[pvkA, idB,m, s, r]

〈îdA, m̂, ŝ〉 ← Decryptπ[pvkB, c]

 =⇒

 îdA = idA
m̂ = m

Verifyπ[idA, m̂, ŝ] = >

In the sequel, we omit the subscripted parameters π and σ when understood from context.

3 Formal Security Model

Due to the identity-based nature of our scheme, and the combined requirements on confidentiality
and non-repudiation, the security requirements are multifaceted and quite stringent. For example,
for confidentiality purposes, one should assume that the adversary may obtain any private key other
than that of the targeted recipient, and has an oracle that decrypts any valid ciphertext other than
the challenge. For non-repudiation purposes, we assume that the forger has access to any private
key other than that of the signer, and can query an oracle that signs and encrypts any message but
the challenge. These assumptions essentially amount to the ‘insider’ model in the terminology of
[1].

We also consider the notions of ciphertext unlinkability and ciphertext authentication, which
allow the legitimate recipient to privately verify—but not prove to others—that the ciphertext
addressed to him and the signed message it contains were indeed produced by the same entity. We
note that these properties are not jointly achieved by other schemes that combine confidentiality
and non-repudiation, such as the signcryption of [21] and [19]. We also ask for ciphertext anonymity ,
which simply means that no third party should be able to discover whom a ciphertext originates
from or is addressed to, if the sender and recipient wish to keep that a secret.

All these properties are recapitulated as follows.

1. message confidentiality (§3.1): allows the communicating parties to preserve the secrecy of
their exchange, if they choose to.

2. signature non-repudiation (§3.2): makes it universally verifiable that a message speaks in
the name of the signer (regardless of the ciphertext used to convey it, if any). This implies
message authentication and integrity.

3. ciphertext unlinkability (§3.3): allows the sender to disavow creating a ciphertext for any
given recipient, even though he or she remains bound to the valid signed message it contains.

4

4. ciphertext authentication (§3.4): allows the legitimate recipient, alone, to be convinced that
the ciphertext and the signed message it contains were crafted by the same entity. This implies
ciphertext integrity. It also reassures the recipient that the communication was indeed secured
end-to-end.

5. ciphertext anonymity (§3.5): makes the ciphertext appear anonymous (hiding both the sender
and the recipient identities) to anyone who does not possess the recipient decryption key.

For simplicity of the subsequent analysis, we disallow messages from being addressed to the
same identity as authored them—a requirement that we call the irreflexivity assumption. Remark
that if such a mode of operation is nonetheless desired, it can easily be achieved, either, (1) by
endowing each person with an additional ‘self’ identity, under which they can encrypt messages
signed under their regular identity, or, (2) by splitting each identity into a ‘sender’ identity and
a ‘recipient’ identity, to be respectively used for signature and encryption purposes. This can be
done, e.g., by prepending an indicator bit to all identity strings; each individual would then be
given two private keys by the PKG.

For clarity, and regardless of which of the above convention is chosen, if any, we use the subscripts
‘A’ for Alice the sender and ‘B’ for Bob the recipient.

3.1 Message Confidentiality

Message confidentiality against adaptive chosen-ciphertext attacks is defined in terms of the fol-
lowing game, played between a challenger and an adversary. We combine signature and encryption
into a dual-purpose oracle, to allow Encrypt to access the ephemeral random state data r from Sign.

Start The challenger runs the Setup procedure for a given value of the security parameter n, and
provides the common public parameters π to the adversary, keeping the secret σ for itself.

Phase 1 The adversary makes a number of queries to the challenger, in an adaptive fashion (i.e.,
one at a time, with knowledge of the previous replies). The following queries are allowed:

signature/encryption queries in which the adversary submits a message and two distinct
identities, and obtains a ciphertext containing the message signed in the name of the
first identity and encrypted for the second identity;

decryption queries in which the adversary submits a ciphertext and an identity, and ob-
tains the identity of the sender, the decrypted message, and a valid signature, provided
that (1) the decrypted identity of the sender differs from that of the specified recipient,
and (2) the signature verification condition Verify = > is satisfied; otherwise, the oracle
only indicates that the ciphertext is invalid for the specified recipient;

private key extraction queries in which the adversary submits an identity, and obtains
the corresponding private key;

Selection At some point, the adversary returns two distinct messages m0 and m1 (assumed of
equal length), a signer identity idA, and a recipient identity idB, on which it wishes to be
challenged. The adversary must have made no private key extraction query on idB.

Challenge The challenger flips b ∈ {0, 1}, computes pvkA = Extract[idA], 〈s, r〉 ← Sign[pvkA,mb],
c← Encrypt[pvkA, idB,mb, s, r], and returns the ciphertext c as challenge to the adversary.

Phase 2 The adversary adaptatively issues a number of additional encryption, decryption, and
extraction queries, under the additional constraint that it not ask for the private key of idB
or the decryption of c under idB.

5

Response The adversary returns a guess b̂ ∈ {0, 1}, and wins the game if b̂ = b.

It is emphasized that the adversary is allowed to know the private key pvkA corresponding to
the signing identity, which gives us insider-security for confidentiality [1]. On the one hand, this is
necessary if confidentiality is to be preserved in case the sender’s private key becomes compromised.
On the other hand, this will come handy when we study a ‘repudiable’ IBSE variant in §8.2.

This game is very similar to the IND-ID-CCA attack in [5]; we call it an IND-IBSE-CCA attack.

Definition 2. An identity-based joint encryption and signature (IBSE) scheme is said to be se-
mantically secure against adaptive chosen-ciphertext insider attacks, or IND-IBSE-CCA secure,
if no randomized polynomial-time adversary has a non-negligible advantage in the above game.
In other words, any randomized polynomial-time IND-IBSE-CCA adversary A has an advantage
AdvA[n] = |P[b̂ = b]− 1

2 | that is o[1/poly[n]] for any polynomial poly[n] in the security parameter.

Remark that we insist that the decryption oracle perform a validity check before returning
a decryption result, even though Decrypt does not specify it. This requirement hardly weakens
the model, and allows for stronger security results. We similarly ask that the oracles enforce the
irreflexivity assumption, e.g., by refusing to produce or decrypt non-compliant ciphertexts.

3.2 Signature Non-Repudiation

Signature non-repudiation is formally defined in terms of the following game, played between a
challenger and an adversary.

Start The challenger runs the Setup procedure for a given value of the security parameter n, and
provides the common public parameters π to the adversary, keeping the secret σ for itself.

Query The adversary makes a number of queries to the challenger. The attack may be conducted
adaptively, and allows the same queries as in the Confidentiality game of §3.1, namely: sig-
nature/encryption queries, decryption queries, and private key extraction queries.

Forgery The adversary returns a recipient identity idB and a ciphertext c.

Outcome The adversary wins the game if the ciphertext c decrypts, under the private key of idB,
to a signed message 〈idA, m̂, ŝ〉 that satisfies idA 6= idB and Verify[idA, m̂, ŝ] = >, provided
that (1) no private key extraction query was made on idA, and (2) no signature/encryption
query was made that involved m̂, idA, and some recipient idB′ , and resulted in a ciphertext
c′ whose decryption under the private key of idB′ is the claimed forgery 〈idA, m̂, ŝ〉.

Such a model is very similar to the usual notion of existential unforgeability against chosen-
message attacks [11, 26]; we call it an EUF-IBSE-CMA attack.

Definition 3. An IBSE scheme is said to be existentially signature-unforgeable against chosen-
message insider attacks, or EUF-IBSE-CMA secure, if no randomized polynomial-time adversary
has a non-negligible advantage in the above game. In other words, any randomized polynomial-time
EUF-IBSE-CMA adversary A has an advantage AdvA[n] = P[Verify[idA, m̂, ŝ] = >] that behaves
as o[1/poly[n]] for any polynomial poly[n].

In the above experiment, the adversary is allowed to obtain the private key pvkB for the forged
message recipient idB, which corresponds to the stringent requirements of insider-security for au-
thentication [1]. There is one important difference, however: in [1], non-repudiation applies to the
ciphertext itself, which is the only sensible thing to do in the context of a signcryption model with
a monolithic ‘unsigncryption’ function. Here, given our two-step Decrypt/Verify specification, we
define non-repudiation with respect to the decrypted signature, which is more intuitive and does
not preclude ciphertext unlinkability (see §3.3).

6

3.3 Ciphertext Unlinkability

Ciphertext unlinkability is the property that makes it possible for Alice to deny having sent a given
ciphertext to Bob, even if the ciphertext decrypts (under Bob’s private key) to a message bearing
Alice’s signature. In other words, the signature should only be a proof of authorship of the plaintext
message, and not the ciphertext. (We shall make one exception to this requirement in §3.4, where
we seek that the legitimate recipient be able privately authenticate the ciphertext, in order to be
convinced that it is indeed addressed to him or her.)

Ciphertext unlinkability allows Alice, e.g., as a news correspondent in a hostile area, to stand
behind the content of her reporting, but conceal any detail regarding the particular channel, method,
place, or time of communication, lest subsequent forensic investigations be damaging to her sources.
When used in conjunction with the multi-recipient technique of §8.1, this property also allows her
to deniably provide exact copies of her writings to additional recipients.

We do not present a formal experiment for this property. Suffice it to say that it is enough
to ask that, given a plaintext message signed by Alice, Bob be able to create a valid ciphertext
addressed to himself for that message, that is indistinguishable from a genuine ciphertext from
Alice.

Definition 4. An IBSE scheme is said to be ciphertext-unlinkable if there exists a polynomial-time
algorithm that, given an identified signed message 〈idA,m, s〉 such that Verify[idA,m, s] = >, and
a private key dB = Extract[idB], assembles a ciphertext c that is computationally indistinguishable
from a genuine encryption of 〈m, s〉 by idA for idB.

As mentioned earlier, ciphertext unlinkability is the reason why we considered the notion of
signature unforgeability in §3.2, instead of the usual notion of ciphertext unforgeability as studied
in the signcryption model of [1]. Indeed, if a ciphertext were unforgeable, surely it would be
undeniably linkable to its author.

Note also that ciphertext unlinkability only makes sense in a two-layer signcryption model like
ours, as opposed to the monolithic model of [27] used in [21, 19]. Indeed, if part of the ciphertext
itself is needed to verify the authenticity of the plaintext, ciphertext indistinguishability is lost as
soon as the recipient is compelled to prove authenticity to a third party.

3.4 Ciphertext Authentication

Ciphertext authentication is, in a sense, the complement to unlinkability. Authentication requires
that the legitimate recipient be able to ascertain that the ciphertext did indeed come from the same
person who signed the message it contains. (Naturally, he or she cannot prove this to anyone else,
per the unlinkability property.)

Another use of ciphertext authentication is to convince the recipient that the ciphertext was
encrypted throughout the entire transmission. In particular, a ciphertext properly authenticated
in this model cannot have been the target of a (successful, active) man-in-the-middle interception.

We define ciphertext authentication in terms of the following game.

Start The challenger runs the Setup procedure for a given value of the security parameter n, and
provides the common public parameters π to the adversary, keeping the secret σ for itself.

Query The adversary makes a number of queries to the challenger, as in the Confidentiality game
of §3.1 and the Non-repudiation game of §3.2.

Forgery The adversary returns a recipient identity idB and and a ciphertext c.

7

Outcome The adversary wins the game if c decrypts, under the private key of idB, to a signed
message 〈idA, m̂, ŝ〉 such that idA 6= idB and that satisfies Verify[idA, m̂, ŝ] = >, provided that
(1) no private key extraction query was made on either idA or idB, and (2) c did not result
from a signature/encryption query with sender and recipient identities idA and idB.

We contrast the above experiment, which is a case of ‘outsider’ security for authentication on the
whole ciphertext, with the scenario for signature non-repudiation, which required insider security
on the signed plaintext only. We call the above experiment an AUTH-IBSE-CMA attack.

Definition 5. An IBSE scheme is said to be existentially ciphertext-unforgeable against chosen-
message outsider attacks, or AUTH-IBSE-CMA secure, if no randomized polynomial-time adver-
sary has a non-negligible advantage in the above game. In other words, any randomized polynomial-
time EUF-IBSE-CMA adversary A has an advantage AdvA[n] = P[Verify[idA, m̂, ŝ] = >] that be-
haves as o[1/poly[n]] for any polynomial poly[n].

3.5 Ciphertext Anonymity

Finally, we require ciphertext anonymity, which is to say that the ciphertext must contain no infor-
mation in the clear that identifies the author or recipient of the message (and yet be decipherable
by the intended recipient without that information).

Ciphertext anonymity against adaptive chosen-ciphertext attacks is defined as follows.

Start The challenger runs the Setup procedure for a given value of the security parameter n, and
provides the common public parameters π to the adversary, keeping the secret σ for itself.

Phase 1 The adversary is allowed to make adaptive queries of the same types as in the Confiden-
tiality game of §3.1, i.e.: signature/encryption queries, decryption queries, and private key
extraction queries.

Selection At some point, the adversary returns a message m, two sender identities idA0 and idA1 ,
and two recipient identities idB0 and idB1 , on which it wishes to be challenged. The adversary
must have made no private key extraction query on either idB0 or idB1 .

Challenge The challenger flips two random coins b′, b′′ ∈ {0, 1}, computes pvk = Extract[idAb′],
〈s, r〉 ← Sign[pvk,m], c← Encrypt[pvk, idBb′′ ,m, s, r], and gives the ciphertext c to the adver-
sary.

Phase 2 The adversary adaptatively issues a number of additional encryption, decryption, and
extraction queries, under the additional constraint that it not ask for the private key of either
idB0 or idB1 , or the decryption of c under idB0 or idB1 .

Response The adversary returns two guesses b̂′, b̂′′ ∈ {0, 1}, and wins the game if 〈b̂′, b̂′′〉 = 〈b′, b′′〉.

This game is the same as for confidentiality, except that the adversary is challenged on the
identities instead of the message; it is an insider attack. We call it an ANON-IBSE-CCA attack.

Definition 6. An IBSE is said to be ciphertext-anonymous against adaptive chosen-ciphertext
insider attacks, or ANON-IBSE-CCA secure, if no randomized polynomial-time adversary has a
non-negligible advantage in the above game. In other words, any randomized polynomial-time
ANON-IBSE-CCA adversary A has an advantage AdvA[n] = |P[b̂ = b]− 1

4 | that is o[1/poly[n]]
for any polynomial poly[n] in the security parameter.

8

We emphasize that anonymity only applies to the ciphertext, against non-recipients, and is thus
consistent with both non-repudiation (§3.2) and authentication (§3.4). To illustrate the difference
bewteen unlinkability and anonymity, note that the authenticated IBE scheme of [20] is unlinkable
but not anonymous, since the sender identity must be known prior to decryption.

Ciphertext anonymity and ciphertext unlinkability are two properties that are unattainable in
the monolithic signcryption model.

4 Review of IB Cryptography from Pairings

We now give a brief summary of the Boneh-Franklin algorithm for identity-based cryptography
based on bilinear pairings on elliptic curves.

Let G1 and G2 be two cyclic groups of prime order p, writing the group action multiplicatively
(in both cases using 1 to denote the neutral element).

Definition 7. An (efficiently computable, non-degenerate) map e : G1 × G1 → G2 is called a
bilinear pairing if, for all x, y ∈ G1 and all a, b ∈ Z, we have e[xa, yb] = e[x, y]a b.

Definition 8. The (computational) bilinear Diffie-Hellman problem for a bilinear pairing as above
is described as follows: given g, ga, gb, gc ∈ G1, where g is a generator and a, b, c ∈ F?p are chosen
at random, compute e[g, g]a b c. The advantage of an algorithm B at solving the BDH problem is
defined as AdvB[e] = P[B[g, ga, gb, gc] = e[g, g]a b c].

Definition 9. Let G be a polynomial-time randomized function that, on input 1n, returns the
description of a bilinear pairing e : G1 × G1 → G2 between two groups G1 and G2 of prime
order p. A BDH parameter generator G satisfies the bilinear Diffie-Hellman assumption if there
is no randomized algorithm B that solves the BDH problem in time O[poly[n]] with advantage
Ω[1/poly[n]]. The probability space is that of the randomly generated parameters 〈G1,G2, p, e〉,
the BDH instances 〈g, ga, gb, gc〉, and the randomized executions of B.

The Boneh-Franklin system provides a concrete realization of the above definitions. It is based
on an elliptic-curve implementation of the BDH parameter generator G, which we describe following
[2, 14] as recently generalized in [6].

Let E/Fq be an elliptic curve defined over some ground field Fq of prime characteristic χ. For
any extension degree r ≥ 1, let E(Fqr) be the group of points in {〈x, y〉 ∈ (Fqr)2}∪{∞} that satisfy
the curve equation over Fqr . Let ν = #E(Fq), the number of points on the curve including ∞. Let
p be a prime 6= χ and - χ − 1, such that p | ν and p2

- ν. Thus, there exists a subgroup G′1 of
order p in E(Fq). Let κ be the embedding degree of G′1 in E(Fq), i.e., the smallest integer ≥ 1 such
that p | qκ − 1, but p - qr − 1 for 1 ≤ r ≤ κ. Under those conditions, there exist a subgroup G′′1 of
order p in E(Fqκ), and a subgroup G2 of order p in the multiplicative group F?qκ . For appropriately
chosen curves, one can then construct a non-degenerate bilinear map e : G1 × G1 → G2 believed
to satisfy the BDH assumption, where G1 is either G′1 or G′′1.

Specifically, [7] show how to obtain a non-degenerate pairing ē : G′1 × G′′1 → G2, based on the
Tate or the Weil pairing, which can then be combined with a computable isomorphism ψ : G′′1 →
G
′
1, called the trace map, to obtain a suitable bilinear map e : G1 × G1 → G2 with G1 = G

′′
1.

Alternatively, selected curves afford efficiently computable isomorphisms φ : G′1 → G
′′
1, called

distortion maps, which can be combined with ē to yield pairings of the form e : G1 × G1 → G2

with G1 = G
′
1. The benefit of the latter construction is that the elements of G′1 have more compact

representations than those of G′′1.

9

It is desired that p and qκ be large enough for the discrete logarithm to be intractable in generic
groups of size p and in the multiplicative group F?qκ . Most commonly, q is a large prime or power
of 2 or 3, and log p ≥ 160, log qκ ≥ 1000. We refer the reader to [4] for background information,
and to [5] and [14] for details on the concrete implementation.

In the sequel, we treat the above notions as abstract mathematical objects satisfying the prop-
erties summarized in Definitions 7, 8, and 9.

Based on this setup, the Boneh-Franklin system defines four operations, the first two for setup
and key extraction purposes by the PKG, the last two for encryption and decryption purposes.
The two PKG functions are recalled below.

bfSetup On input a security parameter n ∈ N: obtain 〈G1,G2, p, e〉 ← G[1n] from the BDH pa-
rameter generator; pick two random elements g ∈ G?1 and σ ∈ F?p, set gσ = (g)σ ∈ G?1;
and construct the hash function H0 : {0, 1}∗ → G

?
1. Finally, output the common public

parameters π = 〈G1,G2, p, e, g, gσ,H0〉 and the master secret σ = σ.

bfExtract On input id ∈ {0, 1}∗: hash the given identity into a public element iid = H0[id] ∈ G?1,
and output did = (iid)σ ∈ G?1 as the private key pvkid.

5 Encryption-Signature Scheme

We now present an efficient realization of the abstract IBSE specifications of §2.
Table 1 details the six algorithms of our scheme. The Setup and Extract functions are essentially

the same as in the original Boneh-Franklin system [5]. Sign and Encrypt implement the IBS of [8],
although other randomized signature schemes could be substituted for it. Encrypt and Decrypt are
less conventional.

Intuitively, Sign implements a randomized IBS whose signatures comprise a commitment j to
some random r chosen by the sender, and a closing v that depends on r and the message m.
Encrypt superposes two layers of (expansionless) deterministic encryption. The inner layer encrypts
j into x using a minimalist authenticated IBE built from zero-round pairing-based key agreement.
The outer layer concurrently determines the value w that encrypts to the same x under a kind of
anonymous IBE, derandomized to rely on the entropy already present in x. Then, w is hashed into
a one-time pad to encrypt the second half of the signature v, which in turn seeds a one-time pad
for the bulk encryption of m.

It is helpful to observe that the exponentiations ?r and ?k used in Sign for commitment and
in Encrypt for authenticated encryption, as well as the key extraction ?σ, and the bilinear pairing
e[?, iB] that intervenes in the determination of w, all commute. The legitimate recipient derives its
ability to decrypt x from the capacity to perform all of the above operations (either explicitly or
implicitly)—but it can only do so in a specific order, different than the sender.

The results of §7 show the scheme is secure. We now prove its consistency.

Theorem 10. The IBSE scheme of Table 1 is consistent.

Proof. For decryption, if 〈x̂, ŷ, ẑ〉 = 〈x, y, z〉, it follows that ŵ = e[iAr k, iBσ] = e[iAσ, iB]r k = w (in
G
?
2), and thus v̂ = v and 〈îdA, m̂〉 = 〈idA,m〉; we also have û = e[̂iA, iB]σ = u (in G?2), hence k̂ = k

(in F?p), and thus ĵ = (jk)k̂
−1

= j (in G?1). For verification, if 〈m̂, îdA, ĵ, v̂〉 = 〈m, idA, j, v〉, we have
e[g, v̂] = e[g, iA]σ (r+h) = e[gσ, (̂iA)h (̂iA)r] = e[gσ, (̂iA)h ĵ] (in G2), as required.

10

Table 1: The IBSE algorithms. The hash functions are modeled as random oracles. The output of H4 is
viewed as a stream that is truncated as dictated by context, viz., H4[key]⊕ data perfoms a length-preserving
“one-time pad” encryption or decryption.

Setup On input a security parameter n ∈ N: establish the Boneh-Franklin parameters G1, G2, p, e,
g, gσ, σ as in bfSetup, and select five hash functions H0 : {0, 1}∗ → G

?
1, H1 : G?1×{0, 1}∗ → F

?
p,

H2 : G?2 → {0, 1}dlog pe, H3 : G?2 → F
?
p, H4 : G1 → {0, 1}∗; then, output the common public

parameters 〈G1,G2, p, e, g, gσ,H0,H1,H2,H3,H4〉 and the master secret σ.

Extract On input id ∈ {0, 1}∗: proceed as in bfExtract.

Sign On input the private key dA of some sender
identity idA, and a message m:
derive iA = H0[idA] (so dA = (iA)σ),
pick a random r ∈ F?p,
let j = (iA)r ∈ G?1,
let h = H1[j,m] ∈ F?p,
let v = (dA)r+h ∈ G1,
then, output the signature 〈j, v〉; also for-
ward 〈m, r, idA, iA, dA〉 for further use by
Encrypt.

Encrypt On input a recipient identity idB, and
〈j, v,m, r, idA, iA, dA〉 from Sign as above:
derive iB = H0[idB],
compute u = e[dA, iB] ∈ G?2,
let k = H3[u] ∈ F?p;
set x = jk ∈ G?1,
let w = uk r ∈ G?2,
set y = H2[w]⊕ v,
set z = H4[v]⊕ 〈idA,m〉;
then, output the ciphertext 〈x, y, z〉.

Decrypt On input a private key dB for idB, and
an anonymous ciphertext 〈x̂, ŷ, ẑ〉:
derive iB = H0[idB],
compute ŵ = e[x̂, dB],
recover v̂ = H2[ŵ]⊕ ŷ,
recover 〈îdA, m̂〉 = H4[v̂]⊕ ẑ,
derive îA = H0[îdA],
compute û = e[̂iA, dB],
let k̂ = H3[û],
set ĵ = x̂k̂

−1
;

then, output the decrypted message m̂,
the signature 〈ĵ, v̂〉, and the purported
identity of the originator îdA.

Verify On input a signed message 〈m̂, ĵ, v̂〉 by
purported sender identity îdA:
derive îA = H0[îdA],
let ĥ = H1[ĵ,m],
check whether e[g, v̂] ?= e[gσ, (̂iA)ĥ ĵ];
then, output > if the equality holds, out-
put ⊥ otherwise.

6 Competitive Performance

Table 2 gives a comparison between various IB encryption and signature schemes, in terms of size,
performance, and security properties.

Our comparisons include most relevant pairing-based IB schemes for encryption, authenticated
encryption, signature, and signcryption. We also include a suite of hybrid schemes, obtained by
combining IBS [8] with either IBE [5] or AuthIBE [20]; each pair is composed in three different
ways depending on the order of application of the primitives: encrypt-then-sign (EtS), sign-then-
encrypt (StE), and commit-then-parallel-encrypt-and-sign (CtS&E), as per [1]. Roughly speaking,
in CtS&E , the plaintext m is reversibly transformed into a redundant pair 〈a, b〉, where a is a
commitment to m that reveals “no information” about m; then, a is signed and b encrypted using
the given primitives, in parallel.

For fairness, the size comparison factors out the overhead of explicitly including the sender
identity to the signed plaintext prior to encryption; our scheme does this to avoid sending the

11

Table 2: Comparison between various IB encryption, signature, signcryption, and multipurpose schemes.
Times are expressed as triples 〈#b,#m,#e〉, where #b is the number of bilinear pairings, #m is the number
of G1 exponentiations, and #e is the number of G2 or Fp exponentiations (simple group operations in G1 and
multiplications and inversions in Fp or G2 are omitted). Sizes are reported as pairs 〈#p,#q〉, where #p is the
number of G1 elements, and #q is the number of Fp elements, in excess of the original unsigned message size
‖m‖ taken as baseline (treating the sender identity as part of m, if included); the ‘cipher’ size is the ciphertext
overhead, ‖c‖−‖m‖, for schemes that support encryption; whereas the ‘plain’ size is the signature overhead
after decryption, or ‖〈m, s〉‖ − ‖m‖, for schemes that support plaintext signatures. Security is indicated as
follows: message Confidentiality, signature Non-repudiation, and ciphertext Authentication, Unlinkability,
and anOnymity; for non-IBSE schemes, an uppercase denotes an analogous security notion, a lowercase a
weaker notion.

Scheme Security: Conf, Size: #elt.G1, Fp Time: #pairings, #expn.G1, G2+Fp
Nrep,Auth,Ulnk,anOn Cipher Plain Sign Encrypt Decrypt Verify

IB Encryption [5] C,–, –, U,O 1, 1 — — 1, 0, 0 1, 1, 0 —
IB Auth.Encr. [20] C,–, A,U,– 0, 2 — — 1, 0, 0 1, 0, 0 —
IB Signature [8] –, N,A,–, – — 2, 0 0, 2, 0 — — 2, 1, 0

a IB Signature [22] –, N,A,–, – — 2, 0 0, 4, 0 — — 2(3), 0, 2
IB Sign. [16, #3] –, N,A,–, – — 1, 1 1, 2, 1 — — 2, 0, 1
IB Sign. [16, #4] –, N,A,–, – — 2, 0 0, 2, 0 — — 2, 0, 1

b IB SignCrypt. [21] *, N,A,–, – 2, 0 2, 0 · · · 1, 3, 0 · · · · · · 4, 0, 1 · · ·
IB SignCrypt. [19] C,N,A,–, – 1, 1 1, 1 · · · 2, 2, 2 · · · · · · 4, 0, 2 · · ·

c IB E–then–S c, N,A,–, – 3, 1 — 0, 2, 0 1, 0, 0 1, 1, 0 2, 1, 0
c IB S–then–E C,n, –, U,O 3, 1 2, 0 0, 2, 0 1, 0, 0 1, 1, 0 2, 1, 0
c IB commit–E&S C,N,A,U,– 3, 1, + 2, 0, + 0, 2, 0 1, 0, 0 1, 1, 0 2, 1, 0
d IB AE–then–S c, N,A,U,– 2, 2 — 0, 2, 0 1, 0, 0 1, 0, 0 2, 1, 0
d IB S–then–AE C,n, A,U,– 2, 2 2, 0 0, 2, 0 1, 0, 0 1, 0, 0 2, 1, 0
d IB commit–AE&S C,N,A,U,– 2, 2, + 2, 0, + 0, 2, 0 1, 0, 0 1, 0, 0 2, 1, 0
IBSE: this paper C,N,A,U,O 2, 0 2, 0 0, 2, 0 1, 0, 2 2, 1, 0 2, 1, 0

a Signature verification in [22] requires 3 pairings, one of which may be precomputed.
b The signcryption scheme of [21] is not adaptive CCA-secure, see [19] for details.
c These are compositions of IBE [5] and IBS [8, 16] using EtS, StE , CtS&E from [1].
d These are compositions of AuthIBE [20] and IBS [8, 16] using EtS, StE , CtS&E [1].

EtS and StE respectively degrade the CCA indistinguishability and CMA unforgeability of its constituents in the

insider model; the ‘+’ are a reminder that the more secure CtS&E incurs extra overhead due to the commitment

redundancy. See [1] for details.

identity in the clear. Note that all authenticated communication schemes require the recipient to
get hold of that information, but most simply assume that it is conveyed using a different channel.

Evidently, the proposed scheme offers an interesting solution to the problem of identity-based
signed encryption: it offers an unmatched combination of security features that not only provide the
usual confidentiality/non-repudiation requirements, but also guarantee authentication, anonymity,
and unlinkability of the ciphertext. Our scheme achieves all this at a cost comparable to that of
monolithic IB signcryption, and in a significantly tighter package than any generic combination of
existing IB encryption and signature algorithms.

By comparison, the two listed signcryption schemes have comparable spatial and computational
overheads but, by the very nature of monolithic signcryption, cannot offer ciphertext anonymity.

12

As for the suite of generic compositions, they have a slight advantage in terms of cost, but incur a
large size penalty, and require us to choose between ciphertext authentication and anonymity.

We also note that, in the original Boneh-Franklin setup, the IBSE ciphertexts and signed
plaintexts are essentially as compact as that of IBE or IBS taken in isolation; this is generally true
when p ≈ q, and when G1 = G

′
1 so that its points can be represented as elements of Fq using point

compression [4]. However, the schemes of [5], [19], and especially [20] have smaller ciphertexts and
signatures, as the case may be, in generalized setups where p� q, or G1 = G

′′
1.

7 Security Analysis

We now state our security results for the scheme of §5 in the models of §3. These results are given
under the irreflexivity assumption1.

Theorem 11. Let A be a polynomial-time IND-IBSE-CCA attacker that has advantage ≥ ε, and
makes ≤ µi queries to the random oracles Hi, i = 0, 1, 2, 3, 4. Then, there exists a polynomial-time
algorithm B that solves the bilinear Diffie-Hellman problem with advantage ≥ ε/(µ0 µ2).

Theorem 12. Let A be an EUF-IBSE-CCA attacker that makes ≤ µi queries to the random oracles
Hi, i = 0, 1, 2, 3, 4, and ≤ µse queries to the signature/encryption oracle. Assume that, within a
time span ≤ τ , A produces a successful forgery with probability ≥ ε = 10 (µse + 1) (µse + µ1)/2n, for
a security parameter n. Then, there exists an algorithm B that solves the bilinear Diffie-Hellman
problem in expected time ≤ 120686µ0 µ1 τ/ε.

Theorem 13. There exists a polynomial-time algorithm that, given an identifier idA, a signed
plaintext 〈m, j, v〉 from idA, and a private key dB, creates a ciphertext 〈x, y, z〉 that decrypts to
〈m, j, v〉 under dB, with probability 1.

Theorem 14. Let A be a polynomial-time AUTH-IBSE-CMA attacker with advantage ≥ ε, that
makes ≤ µi queries to the random oracles Hi, i = 0, 1, 2, 3, 4. Then, there exists a polynomial-time
algorithm B that solves the bilinear Diffie-Hellman problem with advantage ≥ 2 ε/(µ0 (µ0 − 1) (µ1 µ2 + µ3)).

Theorem 15. Let A be a polynomial-time ANON-IBSE-CCA attacker that has advantage ≥ ε, and
makes ≤ µi queries to the random oracles Hi, i = 0, 1, 2, 3, 4. Then, there exists a polynomial-time
algorithm B that solves the bilinear Diffie-Hellman problem with advantage ≥ 3 ε/(µ0 (µ0 − 1) (µ1 µ2 + 2µ2 + µ3)).

8 Practical Extensions

We now mention a few straightforward generalizations of practical interest.

8.1 Encrypting for Multiple Recipients

Encrypting the same message m for a set of n recipients idB1 , ..., idBn is easily achieved as follows.
The Sign operation is carried out once (which establishes the randomization parameter r), then the
Encrypt operation is performed independently for each recipient, based on the output from Sign.

Since the message m and the randomization parameter r are invariant for all the Encrypt
instances, it is easy to see that the z component of the ciphertext also remains the same. Thus, the

1Analogous claims can be made in the general case without the irreflexivity assumption, i.e., allowing the oracles
to encrypt and decrypt messages with the same sender and recipient keys; however the reductions from the BDH
problem are significantly more involved and less efficient. See Appendix D for details.

13

multi-recipient composite ciphertext is easily assembled from one instance of 〈xi, yi〉 ∈ G?1×G?1 for
each recipient Bi, plus a single instance of z ∈ {0, 1}∗ to be shared by all. Thus, a multi-recipient
ciphertext is compactly encoded in the form c = 〈〈x1, y1〉, ..., 〈xn, yn〉, z〉.

The security models of §3 have to support two additional types of queries: multi-recipient
signature/encryption queries, in which a given message, sender, and list of recipients, are turned
into a multi-recipient ciphertext, and multi-recipient decryption queries, in which the individual
elements of a multi-recipient ciphertext are decrypted, under a given identity, and a valid plaintext
is returned, if there is any. The modified security analysis is deferred to the full paper2.

8.2 Integrity Without Non-Repudiation

The scheme of §5 is trivially modified to provide message integrity without non-repudiation or
authentication. To do this, the sender merely substitutes the public parameters 〈g, gσ〉 for 〈iA, dA〉,
wherever the sender’s key pair is used in the Sign and Encrypt operations. The sender also tags
the message as ‘anonymous’, instead of specifying an identity. Similarly, the Decrypt and Verify
operations are performed substituting g for îA wherever it appears as a function argument.

This is valid since the key pair relation dA = (iA)σ is paralleled by gσ = (g)σ, but authentication
is meaningless since the signing ‘private’ key gσ is public.

9 Conclusion

In this paper, we have proposed a comprehensive security model for multi-purpose identity-based
encryption-signature cryptosystems. Our security model defines five core properties that we believe
precisely capture what a consumer of cryptography intuitively expects when he or she wishes to
engage in “secure signed communication” with a remote party. It bears repeating that these do
not only include the standard confidentiality and non-repudiation requirements, but also the much
less commonly offered features of ciphertext authentication, ciphertext deniability or unlinkability,
and true ciphertext anonymity with respect to third parties. We have given precise definitions for
all these properties in the context of identity-based cryptography.

As second contribution, we have presented a new cryptographic scheme that precisely imple-
ments all facets of the aforementioned notion of “secure signed communication”, in the certificate-
free world of identity-based cryptography. Our scheme offers efficient security bounds in all the
above respects; it is fast, compact, scalable, and practical—as we have illustrated through detailed
comparisons with most or all mainstream identity-based cryptosystems to date.

Acknowledgements

The author would like to thank Dan Boneh, Jonathan Katz, and the anonymous referees of Crypto
2003 for many helpful suggestions and comments. Credit goes to Guido Appenzeller for suggesting
the “Swiss Army Knife” moniker.

References

[1] J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. In Proc. Eurocrypt ’02,
LNCS 2332, 2002.

2The corresponding proofs of security are straightforward generalizations of the single-recipient case. See Ap-
pendix C for details.

14

[2] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based cryptosystems. In
Proc. Crypto ’02, LNCS 2442, 2002.

[3] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In Proc.
Conf. Computer and Communication Security, 1993.

[4] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cambridge University Press, 1999.

[5] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Proc. Crypto ’01, LNCS 2139,
pages 213–229, 2001. See [6] for the full version.

[6] D. Boneh and M. Franklin. Identity based encryption from the weil pairing. Cryptology ePrint Archive, Report
2001/090, 2001. http://eprint.iacr.org/.

[7] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In Proc. Asiacrypt ’01, LNCS
2248, pages 514–532, 2001.

[8] J.C. Cha and J.H. Cheon. An identity-based signature from gap Diffie-Hellman groups. Cryptology ePrint
Archive, Report 2002/018, 2002. http://eprint.iacr.org/.

[9] L. Chen and C. Kudla. Identity based authenticated key agreement from pairings. Cryptology ePrint Archive,
Report 2002/184, 2002. http://eprint.iacr.org/.

[10] C. Cocks. An identity based encryption scheme based on quadratic residues. In Proc. 8th IMA Int. Conf.
Cryptography and Coding, pages 26–28, 2001.

[11] U. Feige, A. Fiat, and A. Shamir. A digital signature scheme secure against adaptive chosen-message attacks.
SIAM J. Computing, 17(2):281–308, 1988.

[12] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. J. Cryptology, 1:77–94, 1988.

[13] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
Proc. Crypto ’86, LNCS 263, pages 186–194, 1984.

[14] S.D. Galbraith, K. Harrison, and D. Soldera. Implementing the Tate pairing. Technical Report HPL-2002-23,
HP Laboratories Bristol, 2002.

[15] C. Gentry and A. Silverberg. Hierarchical ID-based cryptography. Cryptology ePrint Archive, Report 2002/056,
2002. http://eprint.iacr.org/.

[16] F. Hess. Exponent group signature schemes and efficient identity based signature schemes based on pairings.
Cryptology ePrint Archive, Report 2002/012, 2002. http://eprint.iacr.org/.

[17] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In Proc. Eurocrypt ’02, LNCS 2332,
pages 466–481, 2002.

[18] A. Joux. A one round protocol for tripartite Diffie-Hellman. In Proc. 4th Alg. Numb. Th. Symp., LNCS 1838,
pages 385–294, 2000.

[19] B. Libert and J.-J. Quisquater. New identity based signcryption schemes based on pairings. Cryptology ePrint
Archive, Report 2003/023, 2003. http://eprint.iacr.org/.

[20] B. Lynn. Authenticated identity-based encryption. Cryptology ePrint Archive, Report 2002/072, 2002.
http://eprint.iacr.org/.

[21] J. Malone-Lee. Identity-based signcryption. Cryptology ePrint Archive, Report 2002/098, 2002.
http://eprint.iacr.org/.

[22] K.G. Paterson. ID-based signatures from pairings on elliptic curves. Cryptology ePrint Archive, Report 2002/004,
2002. http://eprint.iacr.org/.

[23] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairings. In Proc. SCIS ’00, pages 26–28,
Okinawa, Japan, 2000.

[24] A. Shamir. Identity-based cryptosystems and signature schemes. In Proc. Crypto ’84, LNCS 196, pages 47–53,
1984.

[25] N.P. Smart. An identity based authenticated key agreement protocol based on the Weil pairing. Cryptology
ePrint Archive, Report 2001/111, 2001. http://eprint.iacr.org/.

[26] D. Pointcheval J. Stern. Security arguments for digital signatures and blind signatures. J. Cryptology, 13:361–396,
2000.

[27] Y. Zheng. Digital signcryption or how to achieve cost (signature & encryption) � cost (signature) +
cost (encryption). In Proc. Crypto ’97, LNCS 1294, 1997.

15

A Related IBE and IBS Schemes

A.1 The Boneh-Franklin IBE

In this section, we give a brief description of the Boneh-Franklin IBE for a fixed message size κ, as originally
described in [5]. The following two functions ibeSetup and ibeExtract are used by the trusted Private Key
Generator (PKG).

ibeSetup On input a security parameter n ∈ N: obtain 〈G1,G2, p, e, g, gσ,H0〉 as in bfSetup, select a message
size κ ∈ N in function of the security parameter, and construct the additional three hash functions
H ′1 : G2 → {0, 1}κ, H ′2 : {0, 1}κ × {0, 1}κ → F

?
p, H

′
3 : {0, 1}κ → {0, 1}κ. Finally, output the common

public parameters π = 〈G1,G2, p, e, g, gσ, κ,H0,H
′
1,H

′
2,H

′
3〉 and the master secret σ = σ. (Note:

‘BasicIBE’ uses only H0 and H ′1; ‘FullIBE’ also uses H ′2 and H ′3.)
ibeExtract On input id ∈ {0, 1}∗: proceed as bfExtract.

The next two functions ibeBasicEncrypt and ibeBasicDecrypt implement the first ‘basic’ IBE described in [5,
§4.1], which offers semantic security against passive attacks.

ibeBasicEncrypt On input a message m ∈ {0, 1}κ, and a recipient identity id ∈ {0, 1}∗: derive the public
element iid = H0[id], pick a random number r ∈ F?p, calculate wid = e[iid, gσ] ∈ G?2, and output
〈gr,H ′1[wrid]⊕m〉 as the ciphertext c.

ibeBasicDecrypt On input a received ciphertext ĉ = 〈ĉ1, ĉ2〉, and a private key did ∈ G?1: compute and return
H ′1[e[did, ĉ1]]⊕ ĉ2 as the decrypted message m̂.

The last two functions ibeFullEncrypt and ibeFullDecrypt implement a Fujisaki-Okamoto strengthening of the
basic IBE above into the full IBE of [5, §4.2], which is semantically secure against CCA attacks.

ibeFullEncrypt On input a message m ∈ {0, 1}κ, and a recipient identity id ∈ {0, 1}∗: derive iid = H0[id],
pick a random number t ∈ F

?
p, set r = H ′2[t,m], calculate wid = e[iid, gσ] ∈ G

?
2, and output

〈gr,H ′1[wrid]⊕ t,H ′3[t]⊕m〉 as the ciphertext c.
ibeFullDecrypt On input a received ciphertext ĉ = 〈ĉ1, ĉ2, ĉ3〉, and a private key did ∈ G?1: compute t̂ =

H ′1[e[did, ĉ1]] ⊕ ĉ2, compute m̂ = H ′3[t] ⊕ ĉ3, and let r̂ = H ′2[t̂, m̂]; if gr̂ 6= ĉ1, reject the ciphertext,
otherwise, output m̂ as the decrypted message.

A.2 The Cha-Cheon IBS

We now briefly describe one of several comparable IB signature schemes inspired from the BF IBE [22, 16, 8].
The following is the Cha-Cheon scheme [8] for signing messages in {0, 1}∗.

ibsSetup On input n ∈ N, do as bfSetup, and construct an additional hash function function H ′′1 : {0, 1}∗ ×
G1 → F

?
p.

ibsExtract On input id ∈ {0, 1}∗, do as bfExtract.
ibsSign On input a message m ∈ {0, 1}∗, an identity id, and the private key did ∈ G?1: derive iid = H0[id],

pick a random number r ∈ F?p, let t = (iid)r, h = H ′′1 [m, t], v = (did)t+h, and output the pair 〈t, v〉 as
the signature s.

ibsVerify On input an identity id, a message m̂, and a signature 〈t̂, v̂〉: derive iid = H0[id], compute ĥ =
H ′′1 [m̂, t̂], and verify that e[gσ, (iid)ĥ t̂] = e[g, v̂].

B Proofs of Security

The proofs of four out of the five security theorems (Theorems 11, 12, 14, and 15) use a reduction argument
based on a simulation. Since the simulations are fairly similar amongst the proofs, the common aspects are
captured in a generic simulator described in a lemma (Lemma 17). The generic simulator is constructed to
make extensive use of the random oracles, but leaves the final reduction open for customization.

16

The remaining theorem (Theorem 13) is shown using the direct construction of an additional feature of
the IBSE system, also used in other proofs, the gist of which is presented in another lemma (Lemma 16).

We begin by stating and proving Lemmas 16 and 17.

Lemma 16. There exists an efficient algorithm EncryptToSelf that, given the private key dB of a recipient
identity idB, and a valid signed plaintext 〈idA,m, j, v〉, encrypts the given plaintext to the given recipient,
without being given the private key of idA.

The output of EncryptToSelf is indistinguishable from that of Encrypt, i.e., the encryption by EncryptToSelf
of 〈idA,m, j, v〉 under dB has the same distribution as the output of Encrypt on inputs idB and 〈j, v,m, r, idA, iA, dA〉,
when the latter tuple is any output from Sign that matches the given values of 〈idA,m, j, v〉.

Proof. Consider the following (polynomial-time, deterministic) algorithm:

EncryptToSelf On input a signed plaintext 〈idA,m, j, v〉, and a private key dB :
derive iA = H0[idA],
compute u = e[iA, dB],
let k = H3[u],
set x = jk,
compute w = e[x, dB],
set y = H2[w]⊕ v,
set z = H4[v]⊕ 〈idA,m〉;
then, output 〈x, y, z〉 as the ciphertext c.

The EncryptToSelf algorithm is easily observed to produce a valid ciphertext from idA to idB , provided that
the given plaintext was validly signed by idA.

Since any valid signed plaintext 〈idA,m, j, v〉 corresponds to exactly one legitimate Sign output tuple
〈j, v,m, r, idA, iA, dA〉, and, in turn, has exactly one ciphertext under Encrypt for any given recipient, it
follows that EncryptToSelf will output the same ciphertext for matching values of 〈idA,m, j, v〉.

Lemma 17. There exists an efficient algorithm S that, given a pair of G?1-elements 〈g, gζ〉—called ‘public’—
, and a finite set of G?1-elements {gξi}—called ‘crucial’—, provides an interactive simulation of all functions
of an IBSE oracle with public parameters 〈g, gζ〉, when the queries are subject to the following constraints:

1. Never during the course of the simulation, should S be asked to perform either:

(a) private key extraction queries for crucial identities, i.e., any identity id whose public key H0[id]
belongs to the set of crucial elements {gξi};

(b) decryption queries on ciphertexts signed by and encrypted for crucial identities, viz., the oracle
output is unspecified on such inputs3;

(c) signature/encryption queries where the sender and recipient are both crucial.

2. At arbitrary times for as many as #{gξi} occurences throughout the simulation, S may be directed (by
some controlling entity) to evaluate the next previously unseen random oracle query H0[id] (called a
designated query) to any previously unused crucial element gξ ∈ {gξi} (thereby forcibly assigning to
the designated identity id the crucial public key gξ).

During the course of a polynomial-length interaction under those conditions, S will be indistinguishable from
a real IBSE oracle (except with some negligible probability that corresponds to the occurence of a random
oracle anomaly, i.e., either a collision or the guessing of a preimage).

3It is noted that a bona fide adversary interacting with the simulator S may unwittingly violate Condition 1b in
Lemma 17, as the signing identity of a ciphertext is generally concealed until the ciphertext is decrypted. The lemma
states that the simulator will produce an unspecified output in such a situation, but will resume normal operation
on the subsequent queries.

17

Proof. We exhibit a construction of S that we show satisfies the listed requirements.

Construction:

For simplicity, we assume that all random oracle queries made to S are distinct, and that any query
involving an identifier id is preceded by the random oracle query H0[id]. (This can always be enforced by
appropriate caching of the queries.)

In a preliminary step, S starts by initializing one empty list Li for each random oracle Hi. S also
maintains a pool of unused crucial elements, initially equal to the entire set of crucial elements.

The various oracle queries are then serviced by S as follows. As regards queries to the random oracles:

• Queries on H0 for a given identifier id are handled as follows:

– If the query at hand is one of the designated queries, then S fetches a crucial element gξ from
the unused pool (or verifies that the crucial element designated by the controlling entity is still
unused), removes gξ from the pool, adds the tuple 〈id, gξ〉 to L0, and returns gξ. In the sequel,
we call any identity determined in this manned a ‘guessed’ identity, and denote it by idξ as a
reminder of its newly assigned crucial public key gξ. (Note that the exponent ξ is merely a
notational expedient; its value is unknown to S.)

– Otherwise, S picks a random λ ∈ F?p, add the tuple 〈id, λ〉 to the list L0, and return the public
key i = gλ.

• Queries on H1, H2, H3, and H4 are handled the obvious way, by producing a randomly sampled
element from the appropriate codomain, and adding both query and answer to L1, L2, L3, or L4,
respectively. 4

As regards oracle queries to S that involve IBSE operations:

• Signature/encryption queries: suppose S is asked to sign a message m in the name of sender idA and
encrypt it for recipient idB .

– If idA is some guessed identity idξ, then S proceeds as follows. First, S picks two random
numbers r, h ∈ F?p, lets j = gr (gξ)−h, and v = (gζ)r. Next, S adds the tuple 〈j,m, h〉 to the list
L1 (thereby forcing the value of the simulated random oracle to H1[j,m] = h). Hence, S now
has a signature 〈j, v〉 for the given message m and signer identity idξ. Then:

∗ If idB is also a guessed identity, i.e., both the sender and the recipient have crucial public
keys, then S signals a violation of the assumptions.

∗ Otherwise, S computes the private key of idB , which is given by dB = (gζ)λB , where λB
is found in L0. The last step is performed by applying the function EncryptToSelf from
Lemma 16 to the signed message 〈idξ,m, j, v〉 and the private key dB , which produces the
desired ciphertext 〈x, y, z〉.

– If instead idA is not a guessed identity, then S computes the private key dA = (gζ)λA of the
sender idA, where λA is found in L0, and computes the desired ciphertext the regular way using
Sign followed by Encrypt.

• Decryption queries: suppose S is given a recipient identity idB and a ciphertext c = 〈x, y, z〉.

– If idB is some guessed identity idξ, then S does the following. First, the lists are searched for all
combinations 〈idA,m, j, v〉 such that 〈j,m, h1〉 ∈ L1, 〈w, h2〉 ∈ L2, 〈u, h3〉 ∈ L3, 〈v, h4〉 ∈ L4, for
some h1, h2, h3, h4, u, w, under the constraints that h2 ⊕ y = v, xh

−1
3 = j, h4 ⊕ z = 〈idA,m〉,

and Verify[idA,m, j, v] = >. Then, for each such 〈idA,m, j, v〉:
∗ If idA is also a guessed identity, then that particular instance 〈idA,m, j, v〉 is rejected from

further consideration as a decryption candidate.
4Note regarding the simulation of H4: we have assumed that H4 produced an output stream of unbounded length,

that was then truncated as needed (i.e., to match the size of the data to encrypt, see Table 1). In this proof and all
the others, we assume for simplicity that the output of H4 has a definite length that is known from context. It would
be tedious but straightforward to simulate H4 as a stream in all generality and maintain L4 accordingly.

18

∗ Otherwise, if the two additional constraints that e[v (dA)−h1 , gξ]h3 = w and e[dA, gξ] = u
are satisfied, where dA = (gζ)λA is the private key of idA, with λA such that 〈idA, λA〉 ∈ L0,
then the tuple 〈idA,m, j, v〉 is selected as a decryption candidate.

Finally, the oracle selects a decryption candidate 〈idA,m, j, v〉 that satisfies all the above condi-
tions (breaking ties arbitrarily), and returns it as the decrypted signed plaintext for the query.
In case no eligible instance is found, the oracle signals that the ciphertext is invalid.

– Otherwise, S retrieves 〈idB , λB〉 from L0, computes the private key dB = (gζ)λB , uses it to
decrypt the ciphertext using Decrypt in the regular way, and verifies the resulting signed plaintext
with Verify. If all is well, the output from Decrypt is returned; otherwise, it is signaled that the
ciphertext is invalid.

• Key extraction queries: suppose S is queried on an identity id.

– If id is a guessed identity idξ, then S signals a violation of the assumptions.
– Otherwise, as L0 necessarily contains a unique matching entry 〈id, λ〉, the simulator S retrieves λ

from the list, and computes the corresponding private key as d = (gζ)λ, which is then returned.

Analysis:

It is readily observed that the simulation of: (1) the signature/encryption oracle, (2) the key extraction
oracle, and (3) the decryption oracle in the case where idB is not a guessed identity, are all true to life, as
long as the adversary making the queries abides by the stated constraints. In particular, the correctness of
the signature/encryption oracle when idA—but not idB—is a guessed identity, follows from Lemma 16.

The simulation of the decryption oracle in the case where idB is a guessed identity, is also accurate,
but this requires proof. We consider all the anomalies that may cause an adversary to detect a fault in the
simulation, and argue against each of them in sequence. The possible anomalies are, a priori :

1. a refusal by the oracle to decrypt a valid ciphertext from a non-guessed sender identity idA addressed
to some guessed recipient identity idB (recall that the case where both idA and idB are guessed is
unspecified);

2. an incorrect decryption or non-rejection by the oracle of a ciphertext for some guessed recipient idB
(regardless of the sender, the intended recipient or even the validity of the ciphertext for any recipient).

We show that in order for any of these anomalies to occur and be detected by the adversary, the adversary
would have to defeat the random oracles, either by correctly guessing an unseen preimage or by finding a
collision in one of the hash functions.

1. Regarding the refusal by the oracle to decrypt a valid ciphertext from a non-guessed sender idA for
some guessed recipient idB = idξ, we show to a contradition that any valid such a ciphertext that an
adversary may present must necessarily be recognized as such by the oracle. The argument goes as
follows:

• Since for each triple 〈idA,m, j〉, there exists exactly one value of v such that Decrypt[idA,m, j, v] =
>, which furthermore depends on the random oracle H1[j,m], it is not feasible for an adversary
to produce a valid signature for any m, or a ciphertext that decrypts to a validly signed m,
without 〈j,m, v〉 belonging to L1.

• Similarly, it is not feasible for the adversary to produce a string z such that h4 ⊕ z = 〈idA,m〉,
for 〈idA,m〉 fixed as above, unless the adversary has knowledge of h4 (or at least a plain-
text/ciphertext pair under h4); for this to happen, the adversary would have to have obtained
h4 from a query to H4, causing h4 to appear in some list entry 〈v, h4〉 on L4.

• In turn, the adversary cannot produce a string y such that h2 ⊕ y = v for the specific value of v
as above, without the adversary having knowledge of the one-time pad h2; thus there must be
some entry 〈w, h2〉 on L2.

• For analogous reasons, there must also be an entry 〈u, h3〉 in L3, such that u = e[dA, iB] =
e[dA, gξ]. Note that the value of u is easily computable by the simulator as long as idA and idB
are not both guessed identities.

19

• In view of the above, it follows that the adversary cannot produce a ciphertext 〈x, y, z〉 that
decrypts to a valid plaintext signed by a non-guessed identity idA, unless all the various values
needed to reconstruct that plaintext figure on the random oracle lists. Therefore, the decryption
oracle will always be able to decrypt any valid ciphertext signed by a non-guessed identity, that
an adversary may feasibly produce without defeating the random oracles.

In other words, the first type of anomaly—i.e., a refusal by the oracle to decrypt a valid ciphertext
from a non-guessed sender idA—cannot occur with a non-negligible probability in the random oracle
model.

2. Regarding the possibility that the oracle returns an incorrect decryption (including a decryption when
a rejection is warranted), we show to a contradiction that, for any guessed identity idξ, any candidate
plaintext 〈idA,m, j, v〉 6= ⊥ that may be returned by the simulator, is the unique correct decryption of
the query ciphertext for the given recipient idB = idξ.

• First, we note that for any fixed ciphertext and recipient, there corresponds at most one correct
plaintext 〈idA,m, j, v〉, since decryption is deterministic. Thus, there can be no more than one
correct entry in the set of candidate plaintexts entertained by the decryption oracle.

• It is also noted that any candidate plaintext 〈idA,m, j, v〉 entertained by the simulator will bear
a sender identity idA that is not a guessed identity.

• Next, we observe that the set of constraints that any candidate plaintext 〈idA,m, j, v〉 must
satisfy, when idA is not guessed, corresponds to a proof that the plaintext is consistent with the
output of Decrypt on the given ciphertext, and is furthermore valid according to Verify. (More
precisely, there is a direct correspondence between the constraints enforced by the oracle on the
one hand, and the computations performed by Decrypt and Verify on the other hand.)

• It follows that any (non-reject) plaintext 〈idA,m, j, v〉 returned by the decryption oracle is nec-
essarily the correct and valid decryption of the ciphertext for the given recipient idB , where idA
is not a guessed identity. By unicity, it is also the case that the decryption procedure in S never
has to break ties; therefore the output is well-defined.

In other words, the second type of anomaly—i.e., an incorrect output that is not a rejection—cannot
occur with a non-negligible probability in the random oracle model.

In summary, as long as the queries remain within the given specifications, the simulation provided by S
is indistinguishable from the reality, barring the improbable occurence of a random oracle anomaly.

B.1 Confidentiality

Proof of Theorem 11. We outline the construction of an algorithm B, that, given a BDH instance 〈g, gα, gβ , gγ〉,
probabilistically computes e[g, g]αβ γ , by posing as a challenger for A which it uses as a subroutine while
emulating the required oracles. (It is assumed that B is given the other common parameters: p, G1, G2, e.)

Construction:

The construction of B is based on the generic simulator S described in Lemma 17, augmented as follows.
First, B sets up a simulator S as in Lemma 17, setting its formal public parameters 〈g, gζ〉 to 〈g, gγ〉 and

its crucial set {gξi} to {gγ}. In addition, B picks a number ηβ uniformly at random in {1, ..., µ0}. Then,
B runs A on the IBSE public parameters 〈g, gγ〉, servicing all queries from A exactly as S in Lemma 17,
except for the following modifications. As to queries to the random oracles:

• Queries to H0:

– The ηβ-th distinct query to H0 is automatically evaluated to the crucial element gβ , as permitted
per Lemma 17. The corresponding queried identity is denoted idβ and is singled out as the
‘guessed’ recipient.

As for the IBSE oracles, the modifications are:

20

• Key extraction queries:

– If a key extraction query is made on the guessed identity idβ , then B terminates its interaction
with A, having failed to guess the targeted recipient among those in L0.

At some point, A produces two identities idA and idB and two equal-length messages m0 and m1 on
which it wishes to be challenged. B responds with the challenge ciphertext 〈(gα), y, z〉, where y and z are
random strings of appropriate size.

All further queries by A (subject to the additional restrictions stated in the security model) are processed
as previously described.

Finally, A returns its final guess. B ignores the answer from A, picks an entry 〈w̄, h2〉 uniformly at
random in L2, and returns w̄ as its guess for the solution to the given BDH instance.

Analysis:

Per Lemma 17, whenever the recipient identity idB selected by A is the one idβ guessed by B, the simu-
lation provided by B is indistinguishable from a genuine attack scenario, except for the challenge ciphertext
eventually presented to A. (Indeed, per the irreflexivity assumption, sender and recipient identities are
always different for a given ciphertext, so that all the conditions of Lemma 17 are met.)

Since the challenge ciphertext presented to A is randomly distributed in the space of ciphertexts of the
correct size, A cannot gain any advantage in this simulation. Thus, any adversary that has advantage ε
in the real IND-IBSE-CCA game must necessarily recognize with probability at least ε that the challenge
ciphertext provided by B is incorrect.

Recognizing that the challenge ciphertext of the form 〈x, y, z〉 with x = gα is incorrect requires a random
oracle query H2[w̄] with w̄ = e[x, dβ] = e[g, g]αβ γ . Any such query by A leaves an entry 〈w̄, h2〉 on L2, from
which B can then extract e[g, g]αβ γ = w̄ with (conditional) probability 1/µ2.

Taking into account the marginal probability 1/µ0 of the conditioning event that B makes the correct
choice for the guessed identity idβ , the probability of B correctly solving the BDH instance becomes:

Adv[B] =
1

µ0 µ2
ε ,

where ε = Adv[A] is the advantage of A in the real IND-IBSE-CCA game.

B.2 Non-Repudiation

Proof of Theorem 12. We outline the construction of B, that, given a BDH instance 〈g, gα, gβ , gγ〉, prob-
abilistically computes e[g, g]αβ γ , posing as a challenger for A which it uses as a subroutine. In fact, B
computes gαγ , thus solving the computational Diffie-Hellman problem in G1, which is clearly at least as
hard as computing e[g, g]αβ γ .

The reduction is similar to the proof of unforgeability in [8], itself based on the powerful “Forking
Lemma” by Pointcheval and Stern [26].

Preliminaries:

The forking lemma essentially says the following [26, §3.2.1]. Consider a signature scheme produc-
ing signatures of the form 〈m,σ1, h, σ2〉, where each of σ1, h, σ2 corresponds to one of the three phases of
some honest-verifier zero-knowledge identification protocol—i.e., σ1 is a commitment by the prover/signer,
h = H[m,σ1] serves to simulate a random challenge by the verifier, and σ2 is the prover/signer’s re-
sponse to the challenge. Suppose that A is an adaptive CMA existential forger, that makes µS signa-
ture queries and µR random oracle queries, and forges a signature 〈m,σ1, h, σ2〉 in time τ with probability
ε ≥ 10 (µS + 1) (µS + µR)/2n. If the triples 〈σ1, h, σ2〉 can be perfectly simulated without knowing the pri-
vate key (e.g., by manipulating the random oracles instead), then there exists an algorithm A′ that, using A
as a subroutine, produces two valid signatures 〈m,σ1, h, σ2〉 and 〈m,σ1, h

′, σ′2〉 such that h 6= h′, in expected
time τ ′ ≤ 120686µR τ/ε.

21

First, we observe that the IBSE Sign algorithm produces signatures of the form 〈m,σ1, h, σ2〉, which
corresponds to the required three-phase honest-verifier zero-knowledge identification protocol, σ1 = j being
the prover’s commitment, h = H1[j,m] a hash value substituted for the verfier’s challenge, and σ2 = v the
prover’s response.

The rest of the proof then consists of the following steps:

1. A simulation step, in which we show how to simulate the triples 〈σ1, h, σ2〉 without the secret key of
the sender (and thus, also without the master secret). By the forking lemma, this gives us a machine
A′ that produces two valid signatures 〈m,σ1, h, σ2〉 and 〈m,σ1, h

′, σ′2〉 with h 6= h′, as described above.
2. A reduction step, in which we show how to solve the BDH problem by interacting with A′.

Simulation:

We start by describing a machine B′ that provides a faithful simulation to the forger A (where A is
assumed, for simplicity, to always run a decryption query on its forged ciphertext before returning it to B′).
The construction is based on the simulator S described in Lemma 17, extended as follows.

First, B′ sets up a simulator S as in Lemma 17; S is supplied with the public parameters 〈g, gγ〉 and a
crucial singleton {gα}. In addition, B′ picks a number ηα uniformly at random in {1, ..., µ0}. B′ then runs
A on the IBSE public parameters 〈g, gγ〉, servicing all queries from A exactly as S in Lemma 17, except for
the following modifications:

• Queries to H0:

– If the query is the ηα-th (distinct) such query so far, it is evaluated as gα, as per Lemma 17.
The corresponding identity is denoted idα and is called the ‘guessed’ sender.

• Key extraction queries:

– If a key extraction query concerns the guessed identity idα, then B′ terminates its interaction
with A, having failed to guess the targeted sender among those in L0.

Eventually, A returns a forgery, consisting of a ciphertext c and a recipient identity idB . B′ decrypts the
ciphertext for idB (by invoking its own decryption oracle, supplied by the simulator S), which causes the
plaintext forgery 〈idA,m, j, v〉 to be revealed. Note that if B′ has made the correct guess, i.e., idA = idα,
then necessarily idB 6= idα and the decryption works.

It is easy to see that the simulation provided by B′ is true to life; in particular, the distribution of
signatures in the case idA = idα is the same as in reality.

Reduction:

From the results of Lemma 17, it is easy to see that the simulation provided by B′ is true to life within the
constraints of the EUF-IBSE-CMA attack, provided that B′ correctly guessed the targeted sender identity. It
follows from the forking lemma that if A is a sufficiently efficient forger in the above interaction, then we can
construct a Las Vegas machine A′ that outputs two signed messages 〈〈idA,m〉, j, h, v〉 and 〈〈idA,m〉, j, h′, v′〉
with h 6= h′.

It is remarked here that we are implicitly coalescing the signing identity idA and the message proper m
into a ‘generalized’ forged message 〈idA,m〉, for the purpose of applying the forking lemma. This is in order
to hide the identity-based aspect of the EUF-IBSE-CMA attack, and simulate the setting of an (identity-less)
adaptive-CMA existential forgery for which the forking lemma is proven [26, §3.2.1].

Thus, given A, we derive a machine A′, and use it to construct a second machine B that is our reduction
from the BDH problem. B proceeds as follows.

1. B runs A′ to obtain two distinct forgeries 〈〈idA,m〉, j, h, v〉 and 〈〈idA,m〉, j, h′, v′〉.
2. B derives the value of gαγ as (v′ v−1)(h′−h)−1

.

Analysis:

22

First, we note that if A′ returns two valid forged signatures with h 6= h′, then B successfully computes
gαγ , and thus e[g, g]αβ γ . Indeed, for some r ∈ F?p:

(v′ v−1)(h′−h)−1
= ((gαγ)h

′+r−h−r)(h′−h)−1
= gαγ .

It remains to show that the simulation provided to A by B′ in the first phase of the proof succeeds with
non-negligible probability. To this end, we note that for the simulation to succeed, it suffices that A ask no
key extraction query on idα. Since this holds with probability at least 1/µ0, as there are at most µ0 entries
in L0, the expected number of attempts required to achieve a successful simulation is at most µ0.

Incorporating the bound from the forking lemma, we obtain that, if A succeeds in time ≤ τ with
probability ≥ ε = 10 (µse + 1) (µse + µ1)/2n, then B solves the bilinear Diffie-Hellman problem in expected
time ≤ 120686µ0 µ1 τ/ε.

B.3 Unlinkability

Proof of Theorem 13. This theorem is a direct consequence of the existence of an efficient EncryptToSelf
function, as shown in Lemma 16.

The EncryptToSelf function allows any recipient idB to transform any plaintext signed by idA into a valid
ciphertext from idA addressed to idB . By Lemma 16, the ciphertext thus obtained is easily verified to be
identical to the ciphertext that idA would have produced from the same message with the same signature
(recall that Encrypt and EncryptToSelf are deterministic).

B.4 Authentication

Proof of Theorem 14. We outline the construction of B, that, given a BDH instance 〈g, gα, gβ , gγ〉, proba-
bilistically computes e[g, g]αβ γ , posing as a challenger for A which it uses as a subroutine.

Construction:

For simplicity, we assume that the adversary A always runs a decryption query on its forged ciphertext
before returning it to B.

The construction of B is based on the generic simulator described in Lemma 17, augmented as follows.
First, B sets up a simulator S as in Lemma 17, which is given the public parameters 〈g, gγ〉 and the

crucial set {gα, gβ}. In addition, B picks two numbers ηα and ηβ uniformly at random in {1, ..., µ0}. It also
initializes an empty special list L? for its own use.
B then runs A on the IBSE public parameters 〈g, gγ〉, servicing all queries from A exactly as S in

Lemma 17, except for the following modifications. Regarding queries to the random oracles:

• Queries to H0:

– If the query is either the ηα-th or ηβ-th such (distinct) query encountered so far, then the query
is evaluated it as gα or gβ , respectively, as per Lemma 17. The corresponding query identities
are denoted idα and idβ , and called the ‘guessed’ sender and recipient, respectively.

As for the IBSE oracles, the modifications are:

• Key extraction queries:

– If a key extraction query identity is made on either idα or idβ , then B terminates its interaction
with A, having failed to guess the targeted sender or recipient among those in L0.

• Signature/encryption queries:

– If the specified sender identity is idα: B proceeds as S would, per Lemma 17, which results in a
valid signature 〈j, v〉 for the query message m and signer identity idα (and causes the addition
of a new entry 〈j, v, h1〉 ∈ L1). For future use, recall that two random numbers r, h ∈ F?p are
created in this process (cf. Lemma 17). Then:

23

∗ If the specified recipient identity is idβ , B proceeds with the encryption task as follows: B
successively picks two random elements u ∈ G?2 and w ∈ G?2, obtains h2 = H2[w], h3 = H3[u],
h4 = H4[v], and computes x = jh3 , y = h2 ⊕ v, z = h4 ⊕ 〈idα,m〉. Finally, B adds the tuple
〈idα,m, j, v, u, w, r, h〉 to the special list L?, and returns the (fake) ciphertext 〈x, y, z〉.

∗ Otherwise, B continues the encryption process exactly as S would, i.e., using EncryptToSelf
to produce a (correct) ciphertext from the signature obtained thus far. In addition, B adds
the tuple 〈idα,m, j, v, u, w, r, h〉 to the special list L?, where u and w are computed during
the execution of EncryptToSelf (cf. Lemma 16).

Note that a tuple 〈idα,m, j, v, u, w, r, h〉 is added to the special list L? in all cases where the
sender identity is the guessed sender idα.

– If the specified sender identity is idβ : B proceeds as above, where the roles of idα and idβ are
interchanged. (In this case a tuple 〈idβ ,m, j, v, u, w, r, h〉 is added to the special list L?.)

• Decryption queries:

– If the recipient identity specified to the oracle is idβ , B proceeds as follows. First, the lists are
searched for all instances of 〈idA,m, j, v〉 such that 〈j,m, h1〉 ∈ L1, 〈w, h2〉 ∈ L2, 〈u, h3〉 ∈ L3,
〈v, h4〉 ∈ L4, for some h1, h2, h3, h4, u, w, under the constraints that h2 ⊕ y = v, xh

−1
3 = j,

h4 ⊕ z = 〈idA,m〉, and Verify[idA,m, j, v] = >. Then, for each such 〈idA,m, j, v〉:
∗ If idA = idβ , then the instance 〈idA,m, j, v〉 is rejected from further consideration as a

decryption candidate.
∗ If idA = idα, then the instance 〈idA,m, j, v〉 is retained as a decryption candidate if L?

contains a tuple 〈idα,m, j, v, u, w, r, h〉, for some r, h.
∗ Otherwise, the instance 〈idA,m, j, v〉 is retained as a decryption candidate if e[dA, gβ] = u

and e[v (dA)−h1 , gβ]h3 = w, where dA = (gγ)λA is the private key of idA, with λA found in
an entry 〈idA, λA〉 ∈ L0.

Finally, the oracle selects a decryption candidate 〈idA,m, j, v〉 that satisfies all the above con-
ditions (giving priority to any decryption with idA 6= idα, then breaking ties arbitrarily), and
returns it as the decrypted signed plaintext for the query. In case no eligible candidate is found,
the oracle signals that the ciphertext is invalid.

– If the recipient identity is idα: B proceeds as above, where the roles of idα and idβ are interchanged
wherever they appear.

(Recall that any legitimate query that does not fit any of the special cases above is treated by default as
described in Lemma 17.)

At some point, A returns its forgery, consisting of a recipient identity idB and a ciphertext c = 〈x, y, z〉,
where it is assumed that A has previously made a decryption query on c for recipient idB .
B then produces its own answer in the following randomized manner:

Choice 1 With probability µ3/(µ1 µ2 + µ3), B picks an entry 〈ū, h3〉 uniformly at random in L3, and returns
the value ū.

Choice 2 With probability µ1 µ2/(µ1 µ2 + µ3), B picks an entry 〈w̄, h2〉 uniformly at random in L2, and an
entry 〈id,m, j, v, u, w, r, h〉 uniformly at random in L? such that id = idα and ∃h3 : 〈u, h3〉 ∈ L3, and
returns the value w̄−(hh3)−1

e[gα, gγ]h
−1 r.

Analysis:

We assume that B correctly guessed idα and idβ for the forged sender and recipient identities respectively,
which it does with probability 1/(µ0(µ0 − 1)).

First, we observe that the simulation provided by B is indistinguishable from reality for all queries that
do not involve idβ , since then B merely replicates the behavior of S from Lemma 17 in those cases. Detectable
discrepancies with a true attack scenario only occur in the following situations:

1. Signature/encryption queries when sender and recipient identities are idα and idβ (in either order): in
this case the oracle is unable to construct a correct ciphertext, and returns a fake one instead.

24

2. Decryption queries for recipient idβ (resp. idα), where the plaintext candidates entertained by the
decryption oracle all bear signatures by idα (resp. idβ): in this case the oracle always rejects the
ciphertext, unless it can positively trace it (via the random oracle simulation lists L1, L2, L3, L4, and
the special list L?) to a prior signature/encryption query.

Notice that the verification against L? ensures that there is no risk of decrypting an incorrect ciphertext for
recipient idβ or idα that did not result from a previous signature/encryption query.

We now show that in all cases where A either manages a successful forgery or detects any of the above
discrepancies, B is in a position to solve the BDH instance with non-negligible probability. The cases to
consider are:

1. A detects that a ciphertext from idα to idβ is correct even though it is rejected by the decryption
oracle: for this to happen the adversary must learn the value of H3[ū] with ū = e[iα, dβ] = e[g, g]αβ γ .
Any such query by A leaves an entry 〈ū, h3〉 on L3, from which B can extract e[g, g]αβ γ = w̄ with
(conditional) probability 1/µ3 when B executes Choice 1.

2. A detects that a ciphertext 〈x, y, z〉 returned by a signature/encryption query with sender identity idα
and recipient identity idβ is incorrect: for this to happen, the adversary has to query the oracle for
H2[w̄] with w̄ = e[x, gβ γ]. Since in this case x = (gr (gα)−h)h3 for some 〈idα,m, j, v, u, w, r, h〉 ∈ L?
with 〈u, h3〉 ∈ L3, it follows that w̄ = e[x, dβ] = e[gr, gβ γ]h3 e[g−αh, gβ γ]h3 . Thus, any such query
leaves an entry 〈w̄, h2〉 on L2, from which B can extract

e[g, g]αβ γ = w̄−(hh3)−1
e[gβ , gγ]h

−1 r ,

with (conditional) probability 1/(µ2 |L?|) ≥ 1/(µ1 µ2), since the size of the list L? is never greater
than that of L1. This happens conditionally upon B executing Choice 2.

3. A successfully forges a ciphertext that would decrypt under idβ to a validly signed plaintext by idα:
since A is assumed to run the decryption oracle on any forgery it returns, this case reduces to the
detection of an incorrect rejection, as above, and is thus covered by B executing Choice 2.

The cases where idβ is the sender and idα the recipient are analogous.
Accounting for the probability that B correctly guesses idα and idβ , it follows from the above analysis

that B solves the BDH problem with probability

Adv[B] =
1

µ0 (µ0 − 1)

(
µ3

µ1 µ2 + µ3

1
µ3

+
µ1 µ2

µ1 µ2 + µ3

1
µ1 µ2

)
ε

=
2 ε

µ0 (µ0 − 1) (µ1 µ2 + µ3)
,

where ε = Adv[A] is the advantage of A in a real AUTH-IBSE-CMA attack.

B.5 Anonymity

Proof of Theorem 15. We outline the construction of B, that, given a BDH instance 〈g, gα, gβ , gγ〉, proba-
bilistically computes e[g, g]αβ γ , by using A as a subroutine.

Construction:

First, B sets up a simulator S as in Lemma 17, which is given the public parameters 〈g, gγ〉 and the
crucial set {gα, gβ}. In addition, B picks two distinct numbers ηα and ηβ uniformly at random in {1, ..., µ0}.
It also initializes a special list L? for its own use. B then runs A on the IBSE public parameters 〈g, gγ〉,
servicing all queries from A exactly as S in Lemma 17, except for the following modifications. For queries
to the random oracles:

• Queries to H0:

– On the ηα-th distinct query to H0, B directs S to evaluate it as gα as in Lemma 17. The query
identity is denoted idα and is called the first ‘guessed’ recipient.

25

– On the ηβ-th distinct query to H0, B similarly directs S to evaluate it as gβ . The query identity
is denoted idβ and is called the second ‘guessed’ recipient.

The IBSE oracles are modified from S as follows:

• Key extraction queries:

– If a key extraction query is made on either idα or idβ , then B terminates its interaction with A,
having failed to guess the two targeted recipients among those in L0.

• Signature/encryption queries:

– If the designated sender and recipient identities are idα and idβ (in either order; but it is assumed
for the sake of exposition that idα is the sender and idβ the recipient): B proceeds as S would,
per Lemma 17, toward the production a valid signature 〈j, v〉 for the query message m and signer
identity idα. (We note that this causes the addition of a new entry 〈j, v, h1〉 ∈ L1, and involves
the selection of two random numbers denoted r, h ∈ F?p, cf. Lemma 17.) B then continues as
follows. B successively picks two random elements u ∈ G?2 and w ∈ G?2, obtains h2 = H2[w],
h3 = H3[u], h4 = H4[v], and computes x = jh3 , y = h2 ⊕ v, z = h4 ⊕ 〈idα,m〉. Finally, B adds
the tuple 〈idα,m, j, v, u, w, r, h〉 to the special list L?, and returns the (fake) ciphertext 〈x, y, z〉.

• Decryption queries:

– If the requested recipient identity is either idα or idβ (assuming for the sake of exposition that it
is idβ): First, B determines all instances of 〈idA,m, j, v〉 such that 〈j,m, h1〉 ∈ L1, 〈w, h2〉 ∈ L2,
〈u, h3〉 ∈ L3, 〈v, h4〉 ∈ L4, for some h1, h2, h3, h4, u, w, under the constraints that h2 ⊕ y = v,
xh
−1
3 = j, h4 ⊕ z = 〈idA,m〉, and Verify[idA,m, j, v] = >. Then, for each such 〈idA,m, j, v〉:
∗ If idA = idβ , 〈idA,m, j, v〉 is rejected from further consideration as a decryption candidate.
∗ If idA = idα, 〈idA,m, j, v〉 is retained as a decryption candidate only if there exists a tuple
〈idα,m, j, v, u, w, r, h〉 ∈ L?, for some r and h.

∗ Otherwise, 〈idA,m, j, v〉 is retained provided that e[v (dA)−h1 , gβ]h3 = w and e[dA, gβ] = u,
where dA = (gγ)λA is the private key of idA, with λA found in some entry 〈idA, λA〉 ∈ L0.

Finally, the oracle selects any decryption candidate 〈idA,m, j, v〉 satisfying all of the applicable
conditions above (giving priority to any decrypted plaintext such that idA 6= idα, then breaking
ties arbitrarily), and returns the selected candidate as the answer to the decryption query. In
case no eligible candidate is found, the oracle signals that the ciphertext is invalid.

(As before, recall that any legitimate query that does not fit any of the above cases is processed by default
as described in Lemma 17.)

At some point, A will produce a message m, two sender identities idA0 and idA1 , and two recipient
identities idB0 and idB1 on which it wishes to be challenged. If {idB0 , idB1} 6= {idα, idβ}, then B declares
failure. Otherwise, B responds with a challenge ciphertext 〈(gα)r̄, y, z〉, where y and z are random strings of
appropriate size, and r̄ ∈ F?p is a random value saved for future use.

All further queries by A (subject to the appropriate additional restrictions) are processed as previously
described.

Finally, A returns its guess. B ignores it, and produces its own answer in the following randomized
manner:

Choice 1 With probability µ3/(µ1 µ2 + 2µ2 + µ3), B picks an entry 〈ū, h3〉 uniformly at random in L3, and
returns the value ū.

Choice 2 With probability µ1 µ2/(µ1 µ2 + 2µ2 + µ3), B picks an entry 〈w̄, h2〉 uniformly at random in L2,
and an entry 〈id,m, j, v, u, w, r, h〉 uniformly at random in L? such that id = idα and ∃h3 : 〈u, h3〉 ∈ L3,
and returns the value w̄−(hh3)−1

e[gα, gγ]h
−1 r.

Choice 3 With probability 2µ2/(µ1 µ2 + 2µ2 + µ3), B picks an entry 〈w̄, h3〉 uniformly at random in L3,
and returns the value w̄r̄

−1
.

26

Analysis:

We assume that B has made the correct choices for idα and idβ , which happens with probability
1/(µ0(µ0 − 1)).

First, we observe that the simulation provided by B is indistinguishable from reality for all queries that
do not simultaneously involve both idα and idβ ; this is because then B merely replicates the behavior of S
from Lemma 17. Detectable discrepancies from a genuine attack occur only in the following situations:

1. Signature/encryption queries when the sender and recipient identities are idα and idβ (in either order):
in this case B’s oracle is unable to construct a correct ciphertext and returns a fake one instead.

2. Decryption queries for recipient idβ (resp. idα), where the decryption candidates retained by the
decryption oracle all bear signatures from idα (resp. idβ): in this case the oracle always rejects the
ciphertext, unless it can positively trace it (via the random oracle simulation lists and the special list
L?) to a prior signature/encryption query.

Notice that the verification against L? ensures that there is no risk of decrypting an incorrect ciphertext for
recipient idβ or idα that did not result from a previous signature/encryption query.

Now, we argue that in all cases where A is in a position to either make a correct guess other than by
random guessing or detect any of the above discrepancy, B is in a position to solve the BDH instance with
non-negligible probability. The cases to consider are:

1. Detection that a ciphertext from idα to idβ is correct even though it is rejected by the decryption
oracle: for this to happen the adversary must learn the value of H3[ū] with ū = e[iα, dβ] = e[g, g]αβ γ .
Any such query made by A leaves an entry 〈ū, h3〉 on L3, from which B can extract e[g, g]αβ γ = w̄
with probability 1/µ3 conditionally on B selecting Choice 1.

2. Detection that a ciphertext 〈x, y, z〉 returned by a signature/encryption queries with sender identity idα
and recipient identity idβ is incorrect: for this to happen, the adversary has to make the oracle query
H2[w̄] with w̄ = e[x, gβ γ]. Since in this case x = (gr (gα)−h)h3 for some 〈idα,m, j, v, u, w, r, h〉 ∈ L?
with 〈u, h3〉 ∈ L3, it follows that w̄ = e[x, dβ] = e[gr, gβ γ]h3 e[g−αh, gβ γ]h3 . Thus, any such query
made by A leaves an entry 〈w̄, h2〉 on L2, from which B can extract

e[g, g]αβ γ = w̄−(hh3)−1
e[gβ , gγ]h

−1 r ,

with probability 1/(µ2 |L?|) ≥ 1/(µ1 µ2), conditionally on B selecting Choice 2.
3. Acquisition of any information about the challenge ciphertext 〈x, y, z〉, allegedly encrypted for either

idα or idβ : for this to happen, the adversary must make at least one of the two oracle queriesH2[w̄α] and
H2[w̄β], where w̄α = e[x, dα] and w̄β = e[x, dβ]. The two are equivalent from A’s viewpoint, but only
the latter is useful to B. In that case, since x = (gα)r̄, it follows that w̄ = e[x, dβ] = e[g, g]r̄ α β γ . Thus,
any such query made by A leaves an entry 〈w̄, h2〉 on L2, from which B can extract e[g, g]αβ γ = w̄r̄

−1

with probability 1/(2µ2), conditionally on B selecting Choice 3.

Summing up over the three events, it follows from the above analysis that B solves the BDH problem
with probability

Adv[B] =
3 ε

µ0 (µ0 − 1) (µ1 µ2 + 2µ2 + µ3)
,

where ε = Adv[A] is the advantage of A in a real ANON-IBSE-CCA attack.

C The multi-recipient case

The proofs of security given in Appendix B are easily adapted to the generalized IBSE scheme with compact
multi-recipient ciphertext capability of §8.1.

We start with the the following corollary to Lemma 17, providing a generic simulation under similar
restrictions as in the lemma, in the case of multi-recipient ciphertexts.

27

Corollary 18. There exists an efficient algorithm S that, given a pair of G?1-elements 〈g, gζ〉—called ‘public’—
, and a finite set of G?1-elements {gξi}—called ‘crucial’—, provides an interactive simulation of all functions
of a multi-recipient enabled IBSE oracle with public parameters 〈g, gζ〉, when the queries are subject to the
following constraints:

1. Never during the course of the simulation, should S be asked to perform either:

(a) private key extraction queries for crucial identities, i.e., any identity id whose public key H0[id]
belongs to the set of crucial elements {gξi};

(b) decryption queries on ciphertexts signed by and encrypted for crucial identities, viz., the oracle
output is unspecified on such inputs;

(c) single- or multi-recipient signature/encryption queries where the sender and at least one recipient
are crucial.

2. At arbitrary times for as many as #{gξi} occurences throughout the simulation, S may be directed
(by some controlling entity) to evaluate the next previously unseen random oracle query H0[id] to any
previously unused crucial element gξ ∈ {gξi} (thereby forcibly assigning to the designated identity id
the crucial public key gξ).

During the course of a polynomial-length interaction under those conditions, S will be indistinguishable from
a real IBSE oracle (except with some negligible probability that corresponds to the occurence of a random
oracle anomaly, i.e., either a collision or the guessing of a preimage).

Proof. The proof is analogous to that of Lemma 17. We highlight the differences in the construction and
the analysis.

Construction:

The only modifications to the construction consists in the processing of multi-recipient signature/encryption
queries and the decryption of multi-recipient ciphertexts, which go as follows:

• Multi-recipient signature/encryption queries: suppose S is to sign a message m in the name of sender
idA and encrypt it for a list of recipients {idBi : i = 1, ..., n}.

– If idA is some guessed identity idξ, then S proceeds as follows. First, S picks two random
numbers r, h ∈ F?p, lets j = gr (gξ)−h, and v = (gζ)r. Next, S adds the tuple 〈j,m, h〉 to the list
L1 (thereby forcing the value of the simulated random oracle to H1[j,m] = h). Hence, S now
has a signature 〈j, v〉 for the given message m and signer identity idξ. Then, for each recipient
idBi , i = 1, ..., n:

∗ If idBi is also a guessed identity, then S signals a violation of the assumptions.
∗ Otherwise, S recovers the private key of idBi , which is given by dBi = (gζ)λBi , where λBi

is found in L0. Then, a ciphertext 〈xBi , yBi , zBi〉 is obtained by applying the function
EncryptToSelf from Lemma 16 to the signed message 〈idξ,m, j, v〉 using the private key dBi .

The last step consists in aggregating the n individual ciphertexts 〈xBi , yBi , zBi〉 to form the
desired multi-recipient ciphertext 〈〈xB1 , yB1〉, ..., 〈xBn , yBn〉, z〉, where z is any one of the zBi
(they are all identical).

– If instead idA is not a guessed identity, then S recovers the corresponding private key dA =
(gζ)λA , where λA is found in L0. Next, S computes 〈j, v,m, r, idA, iA, dA〉 ← Sign[dA, idA,m] as
described in Table 1. Then, S computes 〈xBi , yBi , zBi〉 ← Encrypt[idB , j, v,m, r, idA, iA, dA] for
each recipient idBi , i = 1, ..., n. Finally, the desired multi-recipient ciphertext is assembled as
〈〈xB1 , yB1〉, ..., 〈xBn , yBn〉, z〉, where z is any one of the zBi (they are all identical).

• Decryption queries on multi-recipient ciphertext: suppose S is asked to decrypt a multi-recipient
ciphertext 〈〈xB1 , yB1〉, ..., 〈xBn , yBn〉, z〉 for some identity idB . First, S reassembles the single-recipient
ciphertexts 〈xBi , yBi , z〉 for each i = 1, ..., n. Then:

28

– If idB is some guessed identity idξ, S proceeds to decrypt the n single-recipient ciphertexts
〈xBi , yBi , z〉 using the same procedure as in the single-recipient decryption oracle, building a list
of all candidate decryptions along the way. S then returns any one of the resulting plaintexts,
breaking ties arbitrarily (note however that the sender identity of the returned plaintext cannot
be a guessed identity). If there is no eligible candidate, S indicates an invalid ciphertext.

– Otherwise, S recovers the private key of idB using its own key extraction oracle, and decrypts the
n single-recipient ciphertexts using the regular Decrypt algorithm, until it finds a signed plaintext
〈idA,m, j, v〉 that is valid according to Verify. The plaintext is returned.

Analysis:

We only need to study the multi-recipient functions of the simulator, since all single-recipient operations
are the same as in the simulator of Lemma 17.

It is easy to observe that the multi-recipient signature/encryption oracle produces correct multi-recipient
ciphertexts under the stated assumptions. In particular, since all zBi = H4[v] ⊕ 〈idA,m〉 are identical for
i = 1, ..., n in a given invocation of the oracle, it is legitimate to select any one of them as the z component
of the multi-recipient ciphertext.

It is also easy to see that the decryption oracle gives correct answers. This is obvious in the case where
the recipient identity idB is not guessed, since then S has access to the private key. In the case where idB is
a guessed identity, the possible anomalies to consider are:

1. A refusal by the oracle to decrypt a valid ciphertext from a non-guessed sender identity idA: this
cannot happen, exactly by the same argument as in Lemma 17 (i.e., if the ciphertext decrypts to a
valid plaintext signed by idA, then all the elements for its construction must be present on the various
random oracle lists, where S can unambiguously find them).

2. An incorrect decryption by the oracle of the given ciphertext (regardless of its sender, or whether it is
intended for idB , or even valid). We argue that this cannot happen, because:

• As shown in Lemma 17, each single-recipient ciphertext may lead to either zero or one candidate
plaintext (from a non-guessed identity), but not more; such candidate plaintext is necessarily
correct.

• We now claim that at most one of the single-recipient ciphertexts 〈xBi , yBi , z〉, i = 1, ..., n,
may yield a candidate plaintext (from a non-guessed identity). Suppose to a contradition that
〈xBi1 , yBi1 , z〉 and 〈xBi2 , yBi2 , z〉 respectively decrypt under idB to the distinct valid plaintexts
〈idA1 ,m1, j1, v1〉 and 〈idA2 ,m2, j2, v2〉. First, we necessarily have 〈idA1 ,m1, v1〉 6= 〈idA2 ,m2, v2〉,
since there can be only one 〈id,m, j, v〉 such that Verify[id,m, j, v] = > when 〈id,m, v〉 is fixed.
Next, since H4[v1] ⊕ 〈idA1 ,m1〉 = z = H4[v2] ⊕ 〈idA2 ,m2〉, it follows that v1 6= v2, otherwise
〈idA1 ,m1〉 and 〈idA2 ,m2〉 would also have to be the same, violating our assumption that the
plaintexts are distinct. Since the two plaintexts are supposedly valid, meeting the above require-
ments necessitates solving for 〈idA1 , idA2 ,m1,m2, r1, r2〉 in the following equation:

H4[H0[idA1]ξ (r1+H1[H0[idA1]r1 ,m1])︸ ︷︷ ︸
v1=v1[idA1 ,m1,...]

]⊕ 〈idA1 ,m1〉

=
H4[H0[idA2]ξ (r2+H1[H0[idA2]r2 ,m2])︸ ︷︷ ︸

v2=v2[idA2 ,m2,...]

]⊕ 〈idA2 ,m2〉 ,

where, again, v1 6= v2. It is clear that finding a solution to this equation requires at the very
least the breaking of one of the random oracles.

We conclude that the simulation provided by S is accurate as long as the queries remain within the
stated constraints, in the random oracle model.

The proofs for the five IBSE security properties (confidentiality, non-repudiation, unlinkability, authen-
tication, anonymity) are easily adapted to the multi-recipient case, using Corollary 18.

29

D Dropping the irreflexivity assumption

We now restate (some of) the security results of §7 in the general case without the irreflexivity assumption.
The irreflexivity assumption required that different identities be used for signature and encryption purposes.

We already note that the reductions are significantly more complicated and less efficient without the
irreflexivity assumption. As it is particularly easy to enforce the assumption in practice, e.g., by prepending
all identity strings with a bit indicating their type, it is anticipated that the irreflexive mode will be the
preferred mode of operation of the IBSE scheme, except in very special applications where it is crucial that
signature and encryption keys be the same. These results are thus mostly of academic interest.

First, we show the following useful lemma.

Lemma 19. Consider the following variant of the computational BDH problem:

Given a random triple of points 〈g, gζ , gξ〉 ∈ G?1, compute e[g, g]ζ ξ ξ ∈ G?2.

If there exists an algorithm A that solves the above problem in time τ with probability ε, then there exists an
algorithm A′ that solves the regular computational BDH problem in time 2 τ with probability ε2.

Proof. We exhibit a construction of A′ as follows.
Given an instance 〈g, gα, gβ , gγ〉 of the computational BDH problem, A′ combines the results of two

independent calls to A, as follows:

1. Posing gζ1 = gα and gξ1 = gβ gγ (where ζ1 and ξ1 are unknown), A′ uses A to obtain e[g, g]ζ1 ξ1 ξ1 =
e[g, g]α (β2+γ2+2 β γ) with probability ε in time τ .

2. Posing gζ2 = gα and gξ2 = gβ (gγ)−1 (where ζ2 and ξ2 are unknown), A′ usesA to obtain e[g, g]ζ2 ξ2 ξ2 =
e[g, g]α (β2+γ2−2 β γ) with probability ε in time τ .

3. The final result, correct with probability ε2, is then computed as:

(
e[g, g]ζ1 ξ1 ξ1

e[g, g]ζ2 ξ2 ξ2

) 1
4

=

(
e[g, g]α (β2+γ2+2 β γ)

e[g, g]α (β2+γ2−2 β γ)

) 1
4

= e[g, g]αβ γ .

D.1 Confidentiality

Theorem 20. Let A be a polynomial-time IND-IBSE-CCA attacker that has advantage ≥ ε, and makes
≤ µi queries to the random oracles Hi, i = 0, 1, 2, 3, 4. Then, there exists a polynomial-time algorithm B
that solves the bilinear Diffie-Hellman problem with advantage ≥ 0.15 ε2/(µ0 (µ1 µ2 + µ3))2. In the special
case where encryption and signature keys are distinct, the advantage is ≥ ε/(µ0 µ2).

Proof. We outline the construction of B, that, given a BDH instance 〈g, gα, gβ , gγ〉, probabilistically computes
e[g, g]αβ γ by interacting with A and emulating the required oracles. (We assume that B is also given the
other common parameters: p, G1, G2, e.)

We first describe a simpler algorithm, called B′, that, given a tuple 〈g, gα, gζ , gξ〉, interacts with A to,
either , solve the BDH problem by computing e[g, g]α ζ ξ, or , solve the BDH variant defined in Lemma 19 by
computing e[g, g]ζ ξ ξ. B is then easily obtained by placing a wrapper around B′, using Lemma 19.

Construction of B′:

The construction of B′ is based on the generic simulator described in Lemma 17, augmented as follows.
First, B′ sets up a simulator S as in Lemma 17, with public parameters 〈g, gζ〉 and crucial singleton

{gξ}, where the tuple 〈g, gζ , gξ〉 is given to B′. In addition, B′ picks a number ηξ uniformly at random
in {1, ..., µ0}. It also initializes an empty special list L? for its own use. B′ then runs A on the IBSE
public parameters 〈g, gζ〉, servicing all queries from A exactly as S in Lemma 17, except for the following
modifications. Regarding queries to the random oracles:

30

• Queries to H0:

– If the query is the ηξ-th distinct identifier encountered so far, then B′ directs S to evaluate it as
gξ, as per Lemma 17. The singled out queried identity is denoted idξ and is called the ‘guessed’
recipient.

As for the IBSE oracles, the modifications are:

• Signature/encryption queries:

– If the sender identifier is idξ: B′ proceeds as S would, per Lemma 17, which results in a (valid)
signature 〈j, v〉 for the query message m and signer identity idξ. (Recall that this process causes
the addition of a new entry 〈j, v, h1〉 ∈ L1, and involves the selection of two random numbers
r, h ∈ F?p to be used next (cf. Lemma 17).) Then:

∗ If the recipient identifier is also idξ: instead of signaling an error as S would, B′ continues as
follows. B′ successively picks two random elements u ∈ G?2 and w ∈ G?2, obtains h2 = H2[w],
h3 = H3[u], h4 = H4[v], and computes x = jh3 , y = h2 ⊕ v, z = h4 ⊕ 〈idξ,m〉. Finally, B′
adds the tuple 〈idξ,m, j, v, u, w, r, h〉 to the special list L?, and returns the (fake) ciphertext
〈x, y, z〉.

∗ Otherwise, B′ proceeds as S in the case idA = idξ 6= idB , i.e., computing the private key
of the recipient and using EncryptToSelf to produce a (correct) ciphertext from the signed
message obtained thus far. In addition, B′ adds the tuple 〈idξ,m, j, v, u, w, r, h〉 to the special
list L?, where u and w are computed during the execution of EncryptToSelf (cf. Lemma 16).

Note that a tuple 〈idξ,m, j, v, u, w, r, h〉 is added to the special list L? in all cases where the
sender identity is idξ.

• Decryption queries:

– If the recipient identity is idξ, B′ proceeds exactly as S would, as in Lemma 17, except for the
following modifications:

∗ If S produces a decrypted plaintext 〈idA,m, j, v〉 with idA 6= idξ, then B′ simply returns it.
∗ In case S returns an error, i.e., fails to find a valid decryption candidate 〈idA,m, j, v〉

with idA 6= idξ, then B′ continues as follows. First, B′ searches the lists maintained by
S for all instances of 〈idξ,m, j, v〉 such that 〈j,m, h1〉 ∈ L1, 〈w, h2〉 ∈ L2, 〈u, h3〉 ∈ L3,
〈v, h4〉 ∈ L4, for some h1, h2, h3, h4, u, w, under the constraints that h2 ⊕ y = v, xh

−1
3 = j,

h4 ⊕ z = 〈idξ,m〉, Verify[idξ,m, j, v] = >, and 〈idξ,m, j, v, u, w〉 ∈ L?. Then, B′ returns any
tuple 〈idξ,m, j, v〉 satisfying all of the above conditions (breaking ties arbitrarily). If no such
tuple is found, B′ indicates that the ciphertext is invalid.

• Key extraction queries:

– If the key extraction query identity is idξ, then B′ terminates its interaction with A, having failed
to guess the targeted recipient among those in L0.

At some point, A will produce two identities idA and idB and two equal-length messages m0 and m1

on which it wishes to be challenged. B′ responds with a challenge ciphertext 〈gα, y, z〉, where y and z are
random strings of appropriate size.

All further queries by A (subject to the appropriate additional restrictions) are processed as previously
described.

Finally, A returns its final guess. B′ ignores it, and produces its own answer in the following randomized
manner.

Let φbdh ∈ {rbdh, vbdh} be a binary flag, where the value rbdh signifies an attempt at solving the regular
BDH problem, and the value vbdh indicates an attempt at solving the BDH variant of Lemma 19. Then, for
some choice probabilities z1, z2, z3 ≥ 0 with z1 + z2 + z3 = 1, to be determined later:

Choice 1 With probability z1, B′ picks an entry 〈w̄, h2〉 uniformly at random in L2, and returns the tuple
〈rbdh, w̄〉.

31

Choice 2 With probability z2, B′ picks an entry 〈ū, h3〉 uniformly at random in L3, and returns the tuple
〈vbdh, w̄〉.

Choice 3 With probability z3, B′ picks an entry 〈w̄, h2〉 in L2, and an entry 〈id,m, j, v, u, w, r, h〉 in
L?, uniformly at random such that id = idξ and ∃h3 : 〈u, h3〉 ∈ L3; it then returns the tuple
〈vbdh, w̄

−(hh3)−1
e[gξ, gζ]h

−1 r〉.
Observe that the first case corresponds to a random choice by B′ to try and solve the regular BDH problem,
as indicated by the flag φbdh = rbdh; the last two cases correspond to attemps by B′ to solve the BDH variant
of Lemma 19, as indicated by φbdh = vbdh.

Construction of B:

We now show how to construct B, using as a subroutine the machine B′ that is itself interacting with A.
Given a BDH instance 〈g, gα, gβ , gγ〉, B makes three independent calls to B′ with different input param-

eters, as follows:

• B′ is invoked on the input tuple 〈g, gα, gζ , gξ〉 with gζ = gγ and gξ = gβ (where ζ and ξ are of course
unknown). Denote by 〈φbdh1, e1〉 the outcome of this first execution of B′.

• B′ is invoked on the input tuple 〈g, gα, gζ , gξ〉 with gζ = (gα)r2 and gξ = gβ gγ , where r2 is taken at
random in F?p. Denote by 〈φbdh2, e2〉 the outcome of this second execution of B′.

• B′ is invoked on the input tuple 〈g, gα, gζ , gξ〉 with gζ = (gα)r3 and gξ = gβ (gγ)−1, where r3 is taken
at random in F?p. Denote by 〈φbdh3, e3〉 the outcome of this third execution of B′.

B then synthesizes its guess for the value of e[g, g]αβ γ , as follows:

• If φbdh1 = rbdh, then B returns e1.

• Else, if φbdh2 = vbdh and φbdh3 = vbdh, then B returns (er
−1
2

2 /e
r−1
3

3)1/4.
• Otherwise, B declares failure.

Analysis:

We first focus our analysis on B′.
Per Lemma 17, it is easy to see that the simulation provided by B′ is true to a genuine attack scenario,

except in the following respects:

1. The challenge ciphertext eventually presented to A: the method employed by B′ to construct the
ciphertext almost certainly results in an invalid challenge.

2. Signature/encryption queries when sender and recipient identities are both set to idξ: the oracle is
unable to construct a correct ciphertext in this case, and returns an incorrect one instead.

3. Decryption queries for the recipient idξ for which the only plaintext candidates all bear valid signatures
also from idξ: in this case the oracle always rejects the ciphertext, even if it is valid, unless it can be
positively traced (via the simulated random oracles and the special list L?) to the result of a preceding
signature/encryption query.

Notice that there is no risk that the decryption oracle erroneously decrypt an incorrect ciphertext for recipient
idξ, by virtue of the verification performed against the special list5.

Since the challenge ciphertext provided by B′ is randomly distributed in the space of ciphertexts of
correct size, there is no way that A could gain any advantage in this simulation. Thus, any adversary
that has advantage ε in the real IND-IBSE-CCA game must recognize with probability at least ε that the
simulation provided by B′ is incorrect.

Now, there are only three types of anomalies in the simulation by B′, the detectability of each of which
by A leads to a polynomial-time solution of the BDH problem or its variant by B′:

5The role of the special list L? is to ensure, in the decryption oracle, that the values 〈u,w〉 associated with a
candidate plaintext 〈idξ,m, j, v〉 are those associated with that plaintext in a previous call to the signature/encryption.
This ensures that, among all candidate plaintexts with a valid signature from idξ, exactly those that have been
constructed in a previous call to the signature/encryption oracle, and no other, are accepted by the decryption oracle
(barring a negligible probability of random oracle collision).

32

1. Recognition that the challenge ciphertext of the form 〈x, y, z〉 with x = gα is invalid: this requires
a random oracle query H2[w̄] with w̄ = e[x, dξ] = e[g, g]α ζ ξ. Any such query by A leaves an entry
〈w̄, h2〉 on L2, from which B′ can then extract e[g, g]α ζ ξ = w̄ with (conditional) probability 1/µ2.

2. Decryption queries for idξ where all valid plaintext candidates are signed by idξ: recognizing that such
a ciphertext 〈x, y, z〉 is in fact correct even though it is rejected by the decryption oracle, requires a
random oracle query H3[ū] with ū = e[iξ, dξ] = e[g, g]ζ ξ ξ. Any such query by A leaves an entry 〈ū, h3〉
on L3, from which B′ can extract e[g, g]ζ ξ ξ = w̄ with (conditional) probability 1/µ3.

3. Signature/encryption queries when sender and recipient identities are both idξ: in this case the ci-
phertext returned by the oracle is always of the form 〈x, y, z〉 where x = (gr (gξ)−h)h3 for some
〈idξ,m, j, v, u, w, r, h〉 ∈ L? with 〈u, h3〉 ∈ L3. Recognizing that such a ciphertext is invalid requires a
random oracle query H2[w̄] with w̄ = e[x, dξ] = e[gξ, gζ]r h3 e[g, g]−hh3 ζ ξ ξ. Any such query made by
A leaves an entry 〈w̄, h2〉 on L2, from which B′ can extract

e[g, g]ζ ξ ξ = w̄−(hh3)−1
e[gξ, gζ]h

−1 r ,

with (conditional) probability 1/(µ2 |L?|) ≤ 1/(µ1 µ2), since the list L? is never larger than L1.

We now determine the total probability of B solving the original BDH problem. Doing so, we also
determine the choice probabilities z1, z2, z3, left open in the construction of B′.

Let ε1, ε2, and ε3 be the respective probabilities that A encounters at least one simulation anomaly
of the first, second, and third type, during the course of an interaction with B′. Taking into account the
probability 1/µ0 of B′ making the correct choice for the guessed identity idξ, the total probability that B
solves the BDH problem is given by:

Adv[B] ≡ P[e[g, g]αβ γ ← B[g, gα, gβ , gγ]]

=
(

z1

µ0 µ2
ε1

)
+ (1− z1)

(
z2

µ0 µ3
ε2 +

z3

µ0 µ1 µ2
ε3

)2

.

Let ρ ≈ 0.68 be the real root of ρ3 + ρ− 1 = 0. Let z1 = 1− ρ, z2 = ρ µ3
µ1 µ2+µ3

, z3 = ρ µ1 µ2
µ1 µ2+µ3

, noting that
z1 + z2 + z3 = 1. The advantage of B becomes:

Adv[B] = (1− ρ)

((
ε1

µ0 µ2

)
+
(

ε2 + ε3
µ0 (µ1 µ2 + µ3)

)2
)
.

Clearly, the advantage of A must satisfy Adv[A] ≤ ε1 + ε2 + ε3. Note however that we cannot make any
assumption regarding the relative sizes of ε1, ε2, and ε3; hence, B should provide a reduction that is uniformly
efficient for all three possible types of anomalies. Hence, considering the worst case over 0 ≤ ε1, ε2, ε3 ≤ 1
such that Adv[A] ≤ ε1 + ε2 + ε3, noting that ε1 + (ε2 + ε3)2 ≥ (ε1 + ε2 + ε3)2/2, we get:

Adv[B] ≥ (1− ρ)
(

ε1 + (ε2 + ε3)2

(µ0 (µ1 µ2 + µ3))2

)
≥ 1− ρ

2

(
Adv[A]

µ0 (µ1 µ2 + µ3)

)2

≈ 0.15
(

Adv[A]
µ0 (µ1 µ2 + µ3)

)2

.

This proves the general case of the theorem.

Special case with distinct sender and recipient identities (Theorem 11):

In the special case where the sender and recipient identities and keys are distinct, the two types of
simulation anomalies involving idA = idξ = idB disappear, and the B′ simulation becomes perfect in all
regards except for the ciphertext challenge eventually given to A. In this situation, Adv[A] ≥ ε1.

We modify B′ to take Choice 1 with probability z1 = 1, and reprogram B to simply invoke B′ without
any additional processing. In this case, the expression of Adv[B] in terms of Adv[A] reduces to:

Adv[B] ≥ 1
µ0 µ2

Adv[A] ,

which is another proof of the special case considered in Theorem 11. This concludes the proof of Theorem 20.

33

Errata

The following corrections should be made to the version appearing in CRYPTO ’03:

In §6, Table 2: the plaintext sizes for “IB E-then-S” and “IB AE-then-S” should be ignored.

In §8.2: the text fragment “substituting gσ for îA” should be read as “substituting g for îA”.

34

