
Identity-Based Threshold Decryption

Joonsang Baek1 Yuliang Zheng2

1 School of Network Computing, Monash University, Frankston, VIC 3199, Australia
joonsang.baek@infotech.monash.edu.au

2 Dept. of Software and Info. Systems, University of North Carolina at Charlotte,
Charlotte, NC 28223, USA

yzheng@uncc.edu

Abstract

In this paper, we consider the problem of constructing an identity-based threshold decryption
scheme. In contrast to previous approaches that had focused on the distribution of the master
key of a Private Key Generator (PKG) in an identity-based public key encryption scheme, we
argue that it is more important in practice to distribute a users private key after the user acquires
it from the PKG. A major contribution of this paper is to design successfully the first identity-
based threshold decryption scheme in which the role of the PKG is minimized to issuing private
keys to users. We also formulate a precise definition for the security of identity-based threshold
decryption against adaptive chosen ciphertext attacks and prove that our scheme is secure in
the random oracle model, under the assumption that the Bilinear Diffie-Hellman problem is
computationally hard.

1 Introduction

Threshold decryption is particularly useful where the centralization of the power to decrypt is
a concern. On the other hand, the motivation of identity (ID)-based public key encryption is to
provide confidentiality without the need of exchanging public keys or keeping public key directories.
A major advantage of ID-based encryption is that it allows one to encrypt a message by using a
recipient’s identifiers such as an email address.

A successful combination of these two concepts will allow one to build an “ID-based threshold
decryption” scheme. As an example, consider a situation where Alice wishes to send a confidential
message to a committee in an organization. Alice can first encrypt the message using the identity of
the committee and then send over the ciphertext. Let us assume that Bob who is the committee’s
president has created the identity and hence has obtained a matching private decryption key from
the Private Key Generator (PKG). Preparing for the time when Bob is away, he can share his
private key out among a number of decryption servers in such a way that any committee member
can successfully decrypt the ciphertext if, and only if, the committee member obtains a certain
number of decryption shares from the decryption servers.

One possible approach to ID-based threshold decryption was suggested by Boneh and Franklin
[4]. The essence of the approach is to split the master secret key of the PKG for an ID-based
encryption among a number of PKGs and use these distributed PKGs as decryption servers. While
this approach provides a partial solution to the problem of ID-based threshold decryption, it has a
drawback that limits its practical usefulness. The drawback stems from the fact that the PKGs are

1

required to be engaged in the decryption of a ciphertext on line, which will be discussed in more
detail in a later section.

In this paper, we take a fresh approach to ID-based threshold decryption. We focus on ID-based
public key encryption schemes in which the role of the PKG is minimized to issue private keys of
users and a user who acquired a private key from the PKG can distribute the private key into a
number of decryption servers at will.

2 Discussions on Related Work

2.1 ID-based Encryption as Envisioned by Shamir

The concept of ID-based encryption was originally proposed by Shamir [14]. In ID-based encryption,
Alice, for example, who wants to send a confidential message to Bob, can use Bob’s identity such as
email or IP address to encrypt her message. Upon receiving the ciphertext from Alice, Bob checks
whether he is already in possession of the private key that matches his public identity. If not, he
contacts the trusted entity, which Boneh and Franklin called the “Private Key Generator” (PKG)
[4], to obtain the private key. Bob is now able to decrypt the ciphertext with the private key. It
is important to note that services of the PKG are needed once only when Bob acquires the private
key and hence the PKG can be closed after the key generation. This was emphasized by Shamir in
his original proposal [14].

2.2 Boneh and Franklin’s ID-Based Encryption Scheme

In contrast to the simplicity of the concept, successful realization of the ID-based encryption was
only made recently by Boneh and Franklin [4], and Cocks [7]. Since our work is more related to
Boneh and Franklin’s work, we discuss it in more detail.

2.2.1 Bilinear Map

The admissible bilinear map ê is defined over two groups of the same prime-order q denoted by
G and F in which the Computational Diffie-Hellman problem is hard. (By G∗ and ZZ∗q , we denote
G \ {O} where O is the identity element of G, and ZZq \ {0} respectively.) We will use an additive
notation to describe the operation in G while we will use a multiplicative notation for the operation
in F . In practice, the group G will be implemented using a group of points on certain supersingular
elliptic curves and the group F will be implemented using a subgroup of the multiplicative group of
a finite field. The admissible bilinear map, denoted by ê : G × G → F , has the following properties
[4].

• Bilinear: ê(aR1, bR2) = ê(R1, R2)ab, where R1, R2 ∈ G and a, b ∈ ZZ∗q .

• Non-degenerate: ê does not send all pairs of points in G × G to the identity in F . (Hence, if
R is a generator of G then ê(R,R) is a generator of F .)

• Computable: For all R1, R2 ∈ G, the map ê(R1, R2) is efficiently computable.

Throughout this paper, we will simply use the term “bilinear map” to refer to the admissible
bilinear map defined above.

2

2.2.2 The ID-based Encryption Scheme “BasicIdent”

Using the bilinear map, Boneh and Franklin constructed an ID-based encryption scheme called
“BasicIdent”.

In the setup stage, the PKG specifies a group G generated by P ∈ G∗ and the bilinear map
ê : G × G → F . It also specifies two hash functions H1 : {0, 1}∗ → G∗ and H2 : F → {0, 1}l, where l
is the length a plaintext message. Then, the PKG picks a master key x uniformly at random from
ZZ∗q and computes a public key YPKG = xP . The PKG publishes descriptions of the group G and F
and the hash functions H1 and H2.

Bob, the receiver, then contacts the PKG to get his private key DID = xQID where QID = H1(ID),
which matches to his identity ID.

Alice, the sender, can now encrypt her message m using the Bob’s identity ID by computing
U = rP and V = H2(ê(QID, YPKG)r)⊕m, where r is chosen at random from ZZ∗q and QID = H1(ID).
The resulting ciphertext C = (U, V) is sent to Bob.

Bob decrypts C by computing m = V ⊕ H2(ê(DID, U)).

2.2.3 Boneh and Franklin’s “Distributed PKG”

As an extension of their ID-based encryption scheme, Boneh and Franklin [4] suggested that the
BasicIdent scheme should be associated with the techniques of threshold cryptography. Their idea
focuses on distributing the PKG’s master key x in such a way that each of a number of PKGs is
given one share xi ∈ ZZ∗q of a Shamir’s (t, n) secret sharing [13] of x ∈ ZZ∗q and can respond to a
private key extraction request with Di

ID = xiQID, where QID = H1(ID). If the technique of [9] is
used, one can ensure that the master key is jointly generated by PKGs so that the master key is
not stored or computed in any single location.

Now, we investigate the above method of distributing the PKG’s master key, called the “Dis-
tributed PKG”, in more detail. We assume below that Bob, who is not a PKG, has published his
identity and has obtained the matching private key from the PKG.

First, we emphasize that as its name suggests, the purpose of the Distributed PKG method is to
prevent a single PKG from possessing the whole master key, rather than to distribute Bob’s private
key. In other words, the method only provides a distribution of the PKG’s master key before Bob
obtains his private key, which we call a “first-level distribution”. A distribution of Bob’s private
key obtained from the PKG (It does not matter whether the PKG is distributed or not.) into other
users (decryption servers), which we call a “second-level distribution”, was not treated in [4].

Although, in theory, each of the distributed PKGs may also function as a decryption server
for the second-level distribution, such a method is not quite practical in practice as will be shown
below.

Let us assume that n PKGs have jointly generated a master key x and a global public key
YPKG = xP . Let t be a threshold. Assume further that each of the n distributed PKGs now
functions as a decryption server. Suppose that Bob has published an identity ID which Alice can
use to encrypt her message. Alice can encrypt her message m by creating a ciphertext C = (U, V) =
(rP, m⊕ê(QID, YPKG)r) for random r ∈ ZZ∗q , where QID = H1(ID). Now, a user who wants to decrypt
C should get at least t decryption shares to recover the Alice’s plaintext m.

For generation of decryption shares of C, Boneh and Franklin [4] suggest that one should
use “per-message” basis threshold decryption method. In this method, each of the distributed
PKGs responds to the decryption request C = (U, V) with ê(xiQID, U) where xi is one share of
the master key x. However, this requires each PKG be involved at all times in the generation
of decryption shares because the value “U” changes whenever a new ciphertext is created, which

3

creates a bottleneck on the PKGs. It also violates one of the basic requirements of an ID-based
encryption scheme as envisioned by Shamir, that is “the PKG can be closed after key generation”.

Indeed, we do not expect the PKG to be involved in particular applications such as threshold
decryption especially where a service of the PKG is provided by a third-party corporation such as
a commercial PKI provider. Hence, we still need a new type of ID-based threshold decryption in
which the role of the PKG is as minimal as possible.

2.3 Other Related Work

Since Boneh and Franklin’s work, there have been interesting proposals on applications of the ID-
based encryption scheme. Recently, Chen, Harrison, Soldera and Smart [6] illustrated how the use
of multiple PKGs/identities in Boneh and Franklin’s ID-based encryption scheme can be applied to
the real world situations. Furthermore, they dealt with general cases of disjunction and conjunction
of the multiple PKGs/identities exploiting, the algebra of the bilinear maps. Subsequently, more
complicated cases of the disjunction and conjunction of the multiple PKGs and their applications
to access controls were discussed by Smart [16].

Khalili, Katz and Arbaugh [10] also discussed the use of the distributed PKGs in Boneh and
Franklin’s scheme, especially focusing on its application to ad-hoc networks.

However, the issue of how to distribute a user’s private key after the user acquires it from the
PKG was not discussed in any of [6], [16] and [10].

Very recently and independently of our work, Libert and Quisquater [11] proposed an ID-based
threshold decryption scheme based on the bilinear map, which is similar to Boneh and Franklin’s
“per-message” basis threshold decryption discussed in the previous section. The difference is that
in Libert and Quisquater’s scheme, one PKG is fixed as a dealer to create shared-secret/public
key pairs (xiQID, xiP) (QID = H1(ID)) on behalf of Bob who has created the identity ID, where
xi is a (t, n) Shamir secret sharing [13] of the master key x ∈ ZZ∗q , and send them to decryption
servers. The PKG also publishes its global public key YPKG = xP . Upon receiving a ciphertext
C = (U, V) = (rP, ê(QID, YPKG)r) that encrypts Alice’s message m, each decryption server simply
outputs ê(xiQID, U) as a decryption share.

However, unlike our approach to ID-based threshold decryption scheme, the above scheme still
does not provide a feature that a user who obtained a private key from the PKG can share the
key among decryption servers at will. Moreover, their scheme only provides security against chosen
plaintext attack and chosen ciphertext security was not treated in [11].

3 Security Notion for ID-based Threshold Decryption

In this section, we formulate a security notion for ID-based threshold decryption scheme against
adaptive chosen ciphertext attacks.

3.1 Generic ID-based Threshold Decryption

We describe a generic (t, n) ID-based threshold decryption scheme “IDT HD”, which consists of
sub-algorithms GK, EX, DK, E, D, SV and SC.

Like other ID-based cryptographic schemes, there exists a PKG in the ID-based threshold
decryption scheme. The PKG runs the key generation algorithm GK to generate its master/public
key pair and all other necessary common parameters. The PKG’s public key and the common
parameters are given to every entity involved.

4

One of the entities, which is assumed to behave honestly, then creates an identity and contacts
the PKG to obtain a private key that associated with the identity. Upon receiving the request,
the PKG runs the private key extraction algorithm EX to extract the private key and returns it to
the entity. Having obtained the private key, the entity runs the private key distribution algorithm
DK to share the private key into n decryption servers. DK makes use of an appropriate threshold
sharing technique to generate shares of the private key as well as verification keys that will be used
for checking the validity of decryption shares. Each share of the private key and its corresponding
verification key are sent to each of the decryption servers. Each decryption server then keeps its
private key share as secret but publishes the verification key.

Given the entity’s identity, any other entity can now encrypt a plaintext by running the en-
cryption algorithm E.

A legitimate entity that wants to decrypt a ciphertext gives it to the decryption servers request-
ing decryption shares. The decryption servers then run the decryption share generation algorithm
D on input the ciphertext and send corresponding decryption shares to the entity. Note that the
validity of the shares can be checked by running the decryption share verification algorithm SV.
When the entity collects valid decryption shares from at least t (a threshold) servers, the ciphertext
can be decrypted by running SC.

Below, we formally describe the above algorithms.

Definition 1 (ID-Based Threshold Decryption Scheme) IDT HD consists of the following
algorithms.

• A randomized key generation algorithm GK(k): Given a security parameter k ∈ N, this
algorithm computes a PKG’s master/public key pair (skPKG, pkPKG). Then, it generates
necessary common parameters, e.g., descriptions of hash functions and mathematical groups.
The output of this algorithm denoted by cp includes such parameters and the PKG’s public
key pkPKG. Note that cp is given to all entities involved and is provided as input to the
following algorithms while the matching master key skPKG of pkPKG is kept secret.

• A private key extraction algorithm EX(cp, ID): Given an identity ID, this algorithm generates
a private key associated with ID, denoted by skID.

• A randomized private key distribution algorithm DK(cp, skID, n, t): Given a private key skID
associated with an identity ID, a number of decryption servers n and a threshold parameter
t, this algorithm generates n shares of skID and provides each one to decryption servers
Γ1, Γ2, . . . ,Γn. It also generates a set of verification keys that can be used to check the
validity of each shared private key. We denote the shared private keys and the matching
verification keys by {ski}1≤i≤n and {vki}1≤i≤n, respectively. Note that each (ski, vki) is sent
to the decryption server Γi, then Γi publishes vki but keeps ski as secret.

• A randomized encryption algorithm E(cp, ID,m): Given a public identity ID and a plaintext
m, this algorithm generates a ciphertext denoted by C.

• A decryption share generation algorithm D(cp, ski, C): Given a ciphertext C and a shared
private key ski of a decryption server Γi, this algorithm generates a decryption share denoted
by δi.

• A decryption share verification algorithm SV(cp, vki, C, δi): Given a ciphertext C, a verifica-
tion key vki of each decryption server Γi and a decryption share δi, this algorithm checks the
validity of δi. The output of this algorithm is either “valid” or “invalid”.

5

• A share combining algorithm SC(cp, C, {δi}i∈Φ): Given a ciphertext C and a set of decryption
shares {δi} where Φ ⊂ {1, . . . , n} such that |Φ| ≥ t (|·| denotes the cardinality), this algorithm
outputs a plaintext m. Note that the combining algorithm is allowed to output a symbol
“void”, which is distinct from all possible plaintexts.

3.2 Chosen Ciphertext Security for ID-Based Threshold Decryption

We now describe a security notion for the IDT HD scheme against adaptive chosen ciphertext
attacks, which we call “IDTHD-IND-CCA”.

Definition 2 (IDTHD-IND-CCA) Let ACCA be an attacker that defeats the security of an ID-
based threshold decryption scheme IDT HD in the sense of IDTHD-IND-CCA. We assume that
ACCA is a probabilistic Turing machine taking a security parameter k as input.

Consider the following game in which an attacker ACCA interacts with the “Challenger”.

Phase 1: The Challenger runs the PKG’s key/common parameter generation algorithm
taking a security parameter k. The Challenger gives ACCA the resulting common parameter
cp which includes a PKG’s public key pkPKG. However, the Challenger keeps the master key
skPKG secret from ACCA.

Phase 2: ACCA issues a number of private key extraction queries. We denote each of these
queries by ID. On receiving the identity query ID, the Challenger runs the private key
extraction algorithm on input ID and obtains a corresponding private key skID. Then, the
Challenger returns skID to ACCA.

Phase 3: ACCA corrupts t− 1 out of n decryption servers.

Phase 4: ACCA issues a target identity query ID∗. On receiving ID∗, the Challenger runs
the private key extraction algorithm to obtain a private key skID∗ associated with the target
identity. The Challenger then runs the private key distribution algorithm on input skID∗ with
parameter (t, n) and obtains a set of private/verification key pairs {(ski, vki)}, where 1 ≤
i ≤ n. Next, the Challenger gives ACCA the private keys of corrupted decryption servers and
the verifications keys of all the decryption servers. However, the private keys of uncorrupted
servers are kept secret from ACCA.

Phase 5: ACCA issues arbitrary private key extraction queries and arbitrary decryption share
generation queries to the uncorrupted decryption servers. We denote each of these queries
by ID and C respectively. On receiving ID, the Challenger runs the private key extraction
algorithm to obtain a private key associated with ID and returns it to ACCA. The only
restriction here is that ACCA is not allowed to query the target identity ID∗ to the private key
extraction algorithm. On receiving C, the Challenger runs the decryption share generation
algorithm on input C to obtain a corresponding decryption share and returns it to ACCA.

Phase 6: ACCA outputs two equal-length plaintexts (m0,m1). Then the Challenger chooses
a bit β uniformly at random and runs the encryption algorithm on input cp, mβ and ID∗

to obtain a target ciphertext C∗ = E(cp, ID∗,mβ). Finally, the Challenger gives (C∗, ID∗) to
ACCA.

Phase 7: ACCA issues arbitrary private key extraction queries and arbitrary decryption share
generation queries. We denote each of these queries by ID and C respectively. On receiving
ID, the Challenger runs the private key extraction algorithm to obtain a private key associated

6

with ID and returns it to ACCA. As Phase 5, the only restriction here is that ACCA is not
allowed to query the target identity ID∗ to the private key extraction algorithm. On receiving
C, the Challenger runs the decryption share generation algorithm on input C to obtain a
corresponding decryption share and returns it to ACCA. Differently from Phase 5, the target
ciphertext C∗ is not allowed to query in this phase.

Phase 8: ACCA outputs a guess β̃ ∈ {0, 1}.
We define the attacker ACCA’s success by

SuccIDTHD−IND−CCA
IDT HD,ACCA (k) = 2 · Pr[β̃ = β]− 1.

We denote by SuccIDTHD−IND−CCA
IDT HD (tIDCCA, qE , qD) the maximum of the attacker ACCA’s suc-

cess over all attackers ACCA having running time tIDCCA and making at most qE private key ex-
traction queries and qD decryption share generation queries. Note that the running time and the
number of queries are all polynomial in the security parameter k. We say that the ID-based thresh-
old decryption scheme IDT HD is secure in the sense of THD-IND-CCA if SuccIDTHD−IND−CCA

IDT HD
(tIDCCA, qE , qD) is negligible in k.

In the next section, we present three important building blocks for constructing our ID-based
threshold decryption scheme.

4 Building Blocks for Proposed Scheme

4.1 Publicly Checkable Encryption

Publicly checkable encryption is particularly useful for building threshold decryption schemes as
discussed by Lim and Lee [12]. The main reason is that in the threshold cryptosystem the attacker
has decryption shares as additional information, as well as decryption of chosen ciphertext. (Readers
are referred to [12] and [15] for more detailed explanations.)

Note that public checkability in threshold decryption schemes is usually given by non-interactive
zero-knowledge (NIZK) proofs, e.g., [15, 8]. However, we emphasize that in our scheme, this can be
done without a NIZK proof, exploiting the special property of the underlying group G, as mentioned
in [4] and further exploited in [3]. We illustrate this as follows:

Suppose that our scheme encrypts a message m by creating a ciphertext C = (U, V,W) =
(rP, H1(κ) ⊕ m, rH2(U, V)), where H1 : F → {0, 1}l and H2 : G∗ × {0, 1}l → G∗ are appropriate
hash functions, and κ is the Bilinear Diffie-Hellman key which will be described in greater detail
in Section 5. Without employing the NIZK proof, the validity of C can be checked by verifying
if ê(P,W) = ê(U,H2), where H2 = H2(U, V) ∈ G∗. Note that the existence of this validity check
implies the Decisional Diffie-Hellman (DDH) problem can be easily solved in the group G since, if
the above test holds then (P, U,H2,W) = (P, rP, sP, rsP) assuming that H2 = sP ∈R G∗ for some
s ∈ ZZ∗q , namely, (P,U,H2, W) is a Diffie-Hellman tuple.

4.2 A New Technique of Sharing Points on Elliptic Curves

Recall that the multiple PKGs in Boneh and Franklin’s ID-based encryption scheme can be achieved
by sharing the PKG’s master key x [4]. Indeed, this can easily be done using the Shamir’s secret
sharing technique [13] as the master key x is a single element in ZZ∗q and hence Shamir’s technique
[13] can be used directly to distribute an element in ZZ∗q .

7

However, in order to distribute a private key DID obtained from the PKG, we need to devise a
new sharing technique since DID is a point on an elliptic curve and moreover, its discrete logarithm
is unknown, so Shamir’s technique cannot be applied.

In what follows we describe our method for sharing a secret point on an elliptic curve. The
method represents a simple adaptation of Shamir’s classic (t, n) secret sharing technique.

Distribution Phase: Let q be a prime order of a group G of points on elliptic curve. Let
S ∈ G∗ be a secret (point) to share. Suppose that we have chosen integers t and n satisfying
1 ≤ t ≤ n < q.

First, we pick R1, R2, . . . , Rt−1 at random from G∗. Then, we define a function F : IN∪{0} → G
such that

F (u) = S +
t−1∑

l=1

ulRl.

Now, we compute Si = F (i) ∈ G for 1 ≤ i ≤ n and send (i, Si) to the i-th member of the
group of cardinality n. Note that when i = 0, we obtain the secret itself, that is, S = F (0). (We
assume that the “multiplication-by-m map for a positive integer m” denoted by mP is extended to
all integer m ∈ ZZ by defining 0P = O where O is the identity element of G, and (−m)P = −(mP)
[2].)

Reconstruction Phase: Let Φ ⊂ {1, . . . , n} be a set such that |Φ| ≥ t, where | · | denotes the
cardinality of the given set. The function F (u) can be reconstructed by computing

F (u) =
∑

j∈Φ

cΦ
ujSj where cΦ

uj =
∏

ι∈Φ,ι6=j

u− ι

j − ι
∈ ZZq.

Actually, the value cΦ
uj ∈ ZZq is the Lagrange interpolation coefficient used in Shamir’s secret

sharing scheme: If we write S = sP and Rl = rlP for for some s, rl ∈ ZZ∗q and 1 ≤ l ≤ t−1 (but, we do
not know s and rl), we have F (u) = sP +ur1P +· · ·+ut−1rt−1P = (s+r1u+· · ·+rt−1u

t−1)P . Hence,
the Lagrange coefficients cΦ

uj ’s reconstruct the original function F (u). In practice, we recover the
secret S directly (without reconstructing F (u)) by computing

∑
j∈Φ cΦ

0jSj where cΦ
0j =

∏
ι∈Φ,ι6=j

ι
ι−j .

4.3 A New Zero Knowledge Proof System for the Equality of Two Discrete
Logarithms Based on the Bilinear Map

For decryption share verification, that is, ensuring that all decryption shares are consistent, we need
a certain checking procedure. In contrast to the validity checking method of ciphertexts discussed
in Section 4.1, we need a zero-knowledge proof system since the share of BDH key κ appeared in
the decryption share in our scheme is resulted from the bilinear map ê and hence is the element in
the group F , where the DDH problem is believed to be hard.

Motivated by [5] and [15], we construct the new zero-knowledge proof of membership system
for the following language

LEDLogF
P,P̃

def= {(µ, µ̃) ∈ F × F | logg µ = logg̃ µ̃ where g = ê(P, P) and g̃ = ê(P, P̃)

for generators P and P̃ of G},
where two groups G and F , and the bilinear map ê are as defined in Section 2.2.

It is easy to see that g and g̃ are generators of F , and that (κ, κ̃) ∈ LEDLogF if and only if there
exists a non-identity element S ∈ G such that κ = ê(S, P) and κ̃ = ê(S, P̃). (These have formally
been proven as Lemmas 1 and 2 in Appendix A.)

8

Now, suppose that (P, P̃ , g, g̃) and (κ, κ̃) ∈ LEDLogF
P,P̃

are given to the Prover and the Verifier,

and the Prover knows S. The proof system which we call “ZKBm” works as follows.

• The Prover chooses a non-identity element Q uniformly at random from G and computes
γ = ê(Q,P) and γ̃ = ê(Q, P̃). The Prover sends γ and γ̃ to the Verifier.

• The Verifier chooses h uniformly at random from ZZ∗q and sends it to the Prover.

• On receiving h, the Prover computes L = Q + hS ∈ G and sends it to the Verifier. The
Verifier checks if ê(L, P) = γκh and ê(L, P̃) = γ̃κ̃h. If the equality holds then the Verifier
returns “accept”, otherwise, returns “reject”.

The above system satisfies completeness, soundness and zero-knowledge property against honest
verifier. (This has proven as Theorem 2 in Appendix A.) Also, ZKBm can easily be converted to a
NIZK proof, making the random challenge an output of a random oracle [1]. Note that the above
protocol can be viewed as a proof that (g, g̃, κ, κ̃) is a Diffie-Hellman tuple since if (κ, κ̃) ∈ LEDLogF

P,P̃

then κ = gx and κ̃ = g̃x for some x ∈ ZZ∗q and hence (g, g̃, κ, κ̃) = (g, g̃, gx, g̃x) = (g, gy, gx, gxy) for
some y ∈ ZZ∗q .

5 Our ID-Based Threshold Decryption Scheme

5.1 Description of the Scheme

We now describe our ID-based threshold decryption scheme. We call our scheme “IdThdBm”,
meaning “ID-based threshold decryption scheme from the bilinear map”. IdThdBm consists of the
following algorithms.

• GK(k): Given a security parameter k, this algorithm generates two groups G and F of the
same prime order q ≥ 2k and chooses a generator P ∈ G. Then, it specifies the bilinear map
ê : G×G → F and the following hash functions H1, H2, H3 and H4 such that H1 : F → {0, 1}l,
H2 : G∗ × {0, 1}l → G∗, H3 : {0, 1}∗ → G∗; H4 : F → ZZ∗q , where l is the length a plaintext
message. Next, it chooses a PKG’s master key x uniformly at random from ZZ∗q and computes
a PKG’s public key YPKG = xP . Finally, it returns a common parameter1 cp = (G, q, P , ê,
H1, H2, H3, H4, YPKG). Note that the master key x is kept secret.

• EX(cp, ID): Given an identity ID, this algorithm computes QID = H3(ID) and DID = xQID.
Then, it returns the private key DID.

• DK(cp, ID, DID, t, n) where 1 ≤ t ≤ n < q: Given a private key DID, the number of decryption
servers n and a threshold parameter t, this algorithm first picks R1, R2, . . . , Rt−1 at random
from G∗ and constructs F (u) = DID+

∑t−1
j=1 ujRj for u ∈ {0}∪IN. It then computes each server

Γi’s private key Si = F (i) and verification key yi = ê(Si, P) for 1 ≤ i ≤ n. Subsequently,
it secretly sends the distributed private key Si and the verification key yi to server Γi for
1 ≤ i ≤ n. Γi then keeps Si as secret while it publishes yi.

• E(cp, ID,m): Given a plaintext message m ∈ {0, 1}l and an identity ID, this algorithm chooses
r uniformly at random from ZZ∗q , and computes QID = H3(ID), d = ê(QID, YPKG) and κ = dr

in turn. It then computes

U = rP ; V = H1(κ)⊕m;W = rH2(U, V)
1As mentioned, cp is provided as input to all of the following algorithms.

9

and returns a ciphertext C = (U, V, W).

• D(cp, Si, C): Given a private key Si of each decryption server and a ciphertext C, this al-
gorithm computes H2 = H2(U, V) and checks if ê(P,W) = ê(U,H2). If the test holds then
this algorithm computes κi = ê(Si, U), κ̃i = ê(Qi, U), ỹi = ê(Qi, P), λi = H4(κi, κ̃i, ỹi) and
Li = Qi + λiSi in turn for random Qi ∈ G, and outputs δi = (i, κi, κ̃i, ỹi, Li). Otherwise, it
returns (i, “void”).

• SV(cp, vk, C, δi): Given a ciphertext C and a decryption share δi, this algorithm computes
H2 = H2(U, V) and checks if ê(P, W) = ê(U,H2). If the tests holds then it does the following
2 :

- If δi is of the form (i, “void”) then output “invalid”.
- Else parse δi as (i, κi, κ̃i, ỹi, Li) and compute λi = H4(κi, κ̃i, ỹi).

- Check if ê(Li, U)/κλi
i = κ̃i and ê(Li, P)/yλi

i = ỹi.
- If the test above holds, output “valid”, else output “invalid”.

Otherwise, do the following:

- If δi is of the form (i, “void”), output “valid”, else output “invalid”.

• SC(cp, C, {δj}j∈Φ): Given a ciphertext C and a set of decryption shares {δj}j∈Φ where |Φ| ≥ t,
this algorithm computes H2 = H2(U, V) and checks if ê(P, W) = ê(U,H2). If the ciphertext

passes the test then this algorithm computes κ =
∏

j∈Φ κ
cΦ0j

j and m = H1(κ)⊕ V in turn, and
outputs m. Otherwise, it outputs “void”3.

It is easy to see that if C is a valid ciphertext and |Φ| ≥ t then SC(C, {δj}j∈Φ) = m: Indeed, if
C = (U, V, W) has passed all the validity checks above,

∏

j∈Φ

κ
cΦ0j

j =
∏

i∈Φ

ê(Sj , U)cΦ0j =
∏

j∈Φ

ê(Sj , rP)cΦ0j = ê(
∑

j∈Φ

cΦ
0jSj , rP)

= ê(DID, P)r = ê(xQID, P)r = ê(QID, xP)r

= ê(QID, YPKG)r = dr = κ,

where cΦ
0j is the Lagrange coefficient defined in Section 4.2. Hence, H1(κ)⊕V = H1(κ)⊕ (H1(dr)⊕

m) = m.

5.2 Extension to the First-Level Distribution

As emphasized through previous sections, our approach to ID-based threshold decryption focuses
on providing the second-level distribution in which the user’s private key obtained from the PKG
is distributed into a number of decryption servers. However, our scheme provides the first-level
distribution as well. More precisely, if the PKG’s master key is of particular importance and
is required to be distributed into multiple PKGs, one can use, e.g., the technique of [9] for the
master key x to be jointly generated by the multiple PKGs as suggested by Boneh and Franklin
(Distributed PKG method). Holding a share xi of x, each of the multiple PKGs responds to Bob’s
private key extraction request with Di

ID = xiQID then he can collect these shares and recover the
private key DID. After Bob acquires DID, he can distribute it into decryption servers in the group
at will, using our method proposed in this paper.

2If we let g = ê(P, P) and g̃ = ê(P, U) then passing the above test means (g, g̃, yi, κi) is a Diffie-Hellman tuple.
3Note that this algorithm is allowed to output a symbol “void”, which is distinct from all possible plaintexts.

10

6 Security Analysis

6.1 Bilinear Diffie-Hellman Problem

Before analyzing our scheme, we review the Bilinear Diffie-Hellman (BDH) problem which is a new
class of computational problem introduced by Boneh and Franklin [4].

Definition 3 (BDH) Let G and F be two groups of order q where q is prime, as defined in Section
2.2. Let P ∈ G∗ be a generator of G. Suppose that there exists a bilinear map ê : G × G → F . Let
ABDH be an attacker modelled as a probabilistic Turing machine.

The BDH problem refers to the computational problem in which ABDH tries to compute the
BDH key ê(P, P)abc given (G, q, P, aP, bP, cP) and a security parameter k.

We define ABDH’s success SuccBDH
G,ABDH(k) by the probability ABDH outputs ê(P, P)abc. We denote

by SuccBDH
G (tBDH) the maximal success probability SuccBDH

G,ABDH(k) over all attackers having running
time bounded by tBDH which is polynomial in the security parameter k. We say that the BDH
problem is intractable if SuccBDH

G (tBDH) is negligible in k.

6.2 Proof of Security

Regarding the security of the IdThdBm scheme, we obtain the following theorem implying that the
IdThdBm scheme is secure in the sense of IDTHD-IND-CCA in the random oracle model assuming
that the BDH problem is intractable.

Theorem 1 Suppose that an IDTHD-IND-CCA attacker for the scheme IdThdBm issues up to qE

private key extraction queries, qD decryption share generation queries, qH1, qH2, qH3 and qH4 queries
to each of the random oracles. Using this attacker as a subroutine, we can construct a BDH attacker
for the group G, whose advantage including running time tBDH is bounded as follows.

1
qH3

SuccIDTHD−IND−CCA
IdThdBm (tIDCCA, qE , qD, qH1 , qH2 , qH3 , qH4)

≤ 2SuccBDH
G (tBDH) +

qD + qDqH4

2k−1
,

where tBDH = tIDCCA +max(qE , qH3)O(k3)+qH1 +qH2O(k3)+qH4qDO(k3) for a security parameter
k.

To prove the above theorem, we define an ordinary (non-ID-based) threshold decryption scheme
called “ThdBm” by modifying the IdThdBm scheme, which will be described shortly. Then, we show in
Lemma 3 that the security of the ThdBm scheme in the sense of THD-IND-CCA defined in Appendix
B implies the IDTHD-IND-CCA security of the IdThdBm scheme. Next, we show in Lemma 4 that
the intractability of the BDH problem implies the THD-IND-CCA security of the ThdBm scheme.
Combining Lemmas 3 and 4, we obtain Theorem 1 above. Precise statements and proofs of Lemmas
3 and 4 are given in Appendices C and D respectively.

As mentioned, we describe the ThdBm scheme. Actually, ThdBm is very similar to IdThdBm except
for some differences in the key generation and encryption algorithm. We only describe these two
algorithms here.

• GK(k, t, n): On input a security parameter k, this algorithm generates two groups G and
F of the same prime order q ≥ 2k and chooses a generator P ∈ G. Then, it specifies the
bilinear map ê : G × G → F and the following hash functions H1, H2 and H4 such that

11

H1 : F → {0, 1}l, H2 : G∗×{0, 1}l → G∗ and H4 : F → ZZ∗q , where l is the length of a plaintext
to be encrypted. Next, it chooses x uniformly at random from ZZ∗q and computes Y = xP . It
then chooses Q uniformly at random from G∗ and computes D = xQ. Note that (Q, Y) and
D will serve as public and private key respectively. Now, given a private key D, the number
of decryption servers n and a threshold parameter t, this algorithm picks R1, R2, . . . , Rt−1 at
random from G∗ and constructs F (u) = D +

∑t−1
j=1 ujRj for u ∈ {0} ∪ IN. Then, it computes

each server’s private key Si = F (i) for 1 ≤ i ≤ n and verification key yi = ê(Si, P) for
1 ≤ i ≤ n. Finally, it outputs a common parameter cp = (G, q, P, ê, H1, H2,H4, Y,Q), and
sends the verification/private key pair (yi, Si) to each decryption server Γi for 1 ≤ i ≤ n.
Upon receiving (yi, Si), each decryption server publishes yi where 1 ≤ i ≤ n.

• E(cp,m): Given a plaintext message m ∈ {0, 1}l, this algorithm chooses r uniformly at
random from ZZ∗q and computes d = ê(Q,Y), κ = dr in turn. Then, it computes U = rP ,
V = H1(κ)⊕m and W = rH2(U, V), and outputs a ciphertext C = (U, V, W).

7 Concluding Remarks

In this paper, we discussed the issues on realization of ID-based threshold decryption and gave a
precise definition for secure ID-based decryption schemes. By taking advantage of a new technique
of sharing a point on elliptic curves, we constructed an ID-based threshold decryption scheme in
which a user who obtained a private key from the PKG can distribute the private key into a number
of decryption servers at will, and proved its chosen ciphertext security in the random oracle model,
assuming the Bilinear Diffie-Hellman (BDH) problem is intractable.

There are some interesting problems remained. From a theoretical point of view, how to build
up a new ID-based threshold decryption scheme that gives chosen ciphertext security but depends
on other computational primitives such as the integer factorization problem is one of them. From a
practical point of view, how to apply the ID-based threshold decryption scheme to various security
applications such as access controls is another interesting problem.

References

[1] M. Bellare and P. Rogaway: Random Oracles are Practical: A Paradigm for Designing Efficient Pro-
tocols, Proceedings of First ACM Conference on Computer and Communications Security 1993, pages
62–73.

[2] I. F. Blake, G. Seroussi and N. P. Smart: Elliptic Curves in Cryptography, London Mathematical Society
Lecture Note Series 265, 1999, Cambridge University Press.

[3] A. Boldyreva: Efficient Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-
Diffie-Hellman-group Signature Scheme, Proceedings of Public Key Cryptography 2003 (PKC 2003),
Vol. 2567 of LNCS, Springer-Verlag 2003, pages 31–46.

[4] D. Boneh and M. Franklin: Identity-Based Encryption from the Weil Pairing, Advances in Cryptology
- Proceedings of CRYPTO 2001, Vol. 2139 of LNCS, Springer-Verlag 2001, pages 213–229.

[5] D. Chaum and T. Perderson: Wallet Databases with Observers, Advances in Cryptology - Proceedings
of CRYPTO ’92, Vol. 740 of LNCS, Springer-Verlag 1992, pages 89–105.

[6] L. Chen, K. Harrison, D. Soldera and N. P. Smart: Applications of Multiple Trust Authorities in
Pairing Based Cryptosysems, Proceedings of InfraSec 2002, Vol. 2437 of LNCS, Springer-Verlag 2002,
pages 260–275.

12

[7] C. Cocks: An Identity Based Encryption Scheme Based on Quadratic Residues, Cryptography and
Coding - Proceedings of the 8th IMA International Conference, Vol. 2260 of LNCS, Springer-Verlag
2001, pages 360–363.

[8] P. Fouque and D. Pointcheval: Threshold Cryptosystems Secure Chosen-Ciphertext Attacks, Advances
in Cryptology - Proceedings of ASIACRYPT 2001, Vol. 2248 of LNCS, Springer-Verlag 2001, pages
351–368.

[9] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin : Secure Distributed Key Generation for Discrete-Log
Based Cryptosystem, Advances in Cryptology - Proceedings of EUROCRYPT ’99, Vol. 1592 of LNCS,
Springer-Verlag 1999, pages 295–310.

[10] A. Khalili, J. Katz and W. Arbaugh:Toward Secure Key Distribution in Truly Ad-Hoc Networks, Pro-
ceedings of IEEE Workshop on Security and Assurance in Ad-Hoc Networks, 2003.

[11] B. Libert and J. Quisquater: Efficient Revocation and threshold Pairing Based Cryptosystems, Principles
of Distributed Computing (PODC) 2003, to appear.

[12] C. Lim and P. Lee: Another Method for Attaining Security Against Adaptively Chosen Ciphertext Attack,
Advances in Cryptology - Proceedings of CRYPTO ’93, Vol. 773 of LNCS, Springer-Verlag 1993, pages
410–434.

[13] A. Shamir: How to Share a Secret, Communications of the ACM, Vol. 22, 1979, pages 612–613.

[14] A. Shamir: Identity-based Cryptosystems and Signature Schemes, Advances in Cryptology - Proceedings
of CRYPTO ’84, Vol. 196 of LNCS, Springer-Verlag 1984, pages 47–53.

[15] V. Shoup and R. Gennaro: Securing Threshold Cryptosystems against Chosen Ciphertext Attack, Jour-
nal of Cryptology, Vol. 15, Springer-Verlag 2002, pages 75–96.

[16] N. P. Smart: Access Control Using Pairing Based Cryptography, Proceedings of Topics in Cryptology-
CT-RSA 2003, Vol. 2612 of LNCS, Springer-Verlag 2003, pages 111–121.

A Proofs of Lemmas for ZKBm

Lemma 1 Let P and P̃ be generators of G. Then ê(P, P̃) is a generator of F .

Proof. The proof will use the basic fact from the elementary abstract algebra that if a is a
generator of a finite cyclic group G of order n, then the other generators of G are the elements of
the form ar, where gcd(r, n) = 1.

First, note that the two groups G and F are cyclic because their order q is a prime. Since P̃ is
another generator of G by assumption, we can write P̃ = uP , where gcd(u, q) = 1. Then, by the
bilinear property of ê, we have ê(P, P̃) = ê(P, uP) = ê(P, P)u. Also, by the non-degenerate property
of ê, ê(P, P) is a generator of F . Hence, ê(P, P̃) is also a generator of F since ê(P, P̃) = ê(P, P)u

and gcd(u, q)=1. ut

Lemma 2 Let P and P̃ be generators of G. Then, (κ, κ̃) ∈ LEDLogF if and only if there exists a
non-identity element S ∈ G such that κ = ê(S, P) and κ̃ = ê(S, P̃).

Proof. By Lemma 1, g and g̃ are generators of F . Now, suppose that (κ, κ̃) ∈ LEDLogF
P,P̃

.

Then, by definition of LEDLogF
P,P̃

, there exists x ∈ ZZ∗q such that gx = g̃x. Since g = ê(P, P) and

g̃ = ê(P, P̃), gx = g̃x implies ê(P, P)x = ê(P, P̃)x. But, by the bilinear property of ê, we have
ê(P, P)x = ê(P, xP) and ê(P, P̃)x = ê(P, xP̃). Hence letting S = xP , we obtain κ̃ = ê(S, P̃) and
κ̃ = ê(S, P̃). The proof of converse is also easy. ut

13

Theorem 2 The ZKBm protocol satisfies completeness, soundness and zero-knowledge against the
honest Verifier.

Proof. First, we show that the protocol is complete. That is, if the Prover and the Verifier
follow the protocol without cheating, the Verifier accepts the Prover’s claim with overwhelming
probability: Assume that (κ, κ̃) ∈ LEDLogF

P,P̃
. By Lemma 2, we have κ = ê(S, P) and κ̃ = ê(S, P̃)

for some S ∈ G. Assume that the Prover sends (γ, γ̃) where γ = ê(Q,P) and γ̃ = ê(Q, P̃) for
random Q ∈ G to the honest Verifier. Now, observe from the above protocol that ê(L,P) =
ê(Q + hS, P) and that γκh = ê(Q,P)ê(S, P)h = ê(Q,P)ê(hS, P). By the bilinear property of ê,
we have ê(Q,P)ê(hS, P) = ê(Q + hS, P). Thus, we obtain ê(L, P) = γκh and this implies that the
above protocol satisfies completeness property.

Second, we show the soundness of the protocol: Assume that (κ, κ̃) /∈ LEDLogF
P,P̃

. Namely, we

have κ = ê(S, P) and κ̃ = ê(S′, P̃) for some S 6= S′ ∈ G. Assume that a cheating Prover sends
(γ, γ̃) where γ = ê(Q,P) and γ = ê(Q′, P̃) to the honest Verifier. If the Verifier is to accept this,
we should have that ê(L,P) = γκh and ê(L, P̃) = γ̃κ̃h, which implies Q + hS = Q′ + hS′. Now
suppose that Q = tP , Q′ = t′P ; S = xP and S′ = x′P for t, t′, x, x′ ∈ ZZ∗q . Then, Q+hS = Q′+hS′

implies (t− t′)+h(x−x′) = 0. However, this happens with probability 1/q, since we have assumed
that S′ 6= S which implies x′ 6= x.

Finally, we can construct a simulator which simulates the communication between the Prover
and the Verifier provided that the Verifier behaves honestly. More precisely, the simulator chooses
h̄ and L̄ uniformly at random from ZZ∗q and G respectively. Then, it computes γ̄ = ê(L̄, P)/κh̄ and
¯̃γ = ê(L̄, P̃)/κ̃h̄. The output of the simulator is a tuple (γ̄, ¯̃γ, h̄, L̄). It can be easily verified that
the simulated values are identically distributed as those in the real communication if the Verifier
behaves honestly. As a result, the above protocol becomes a zero-knowledge proof against a honest
Verifier. ut

B Non-ID-Based Threshold Decryption Schemes

B.1 Security Notion for Threshold Cryptosystem

A (t, n)-threshold decryption scheme T HD in the normal (non-ID-based) public key setting con-
sists of a key generation algorithm GK, an encryption algorithm E, a decryption share generation
algorithm D, a decryption share verification algorithm SV and a share combining algorithm SC.

By running GK, a trusted dealer generates a public key and its matching private key, and
shares the private key among a n decryption servers. The dealer also generates (public) verification
keys that will be used for share verification. Given the public key, a sender encrypts a plaintext
by running E. A user who wants to decrypt a ciphertext gives the ciphertext to the decryption
servers requesting decryption shares. The decryption servers then run D to generate corresponding
decryption shares. The user can check the validity of the shares by running SV. When the user
collects valid decryption shares from at least t servers, the ciphertext can be decrypted by running
SC.

The security notion for the threshold decryption scheme T HD used in this paper is the indis-
tinguishability under adaptive chosen ciphertext attack, which we call “THD-IND-CCA” and can
be found in [15].

14

Definition 4 (THD-IND-CCA) Let ACCA be an attacker that defeats the security of the scheme
T HD in the sense of THD-IND-CCA. We assume that ACCA is a probabilistic Turing machine taking
a security parameter k as input.

Consider the following game in which an attacker ACCA interacts with the “Challenger”.

Phase 1: ACCA corrupts a fixed subset of t− 1 servers.

Phase 2: The Challenger runs the key generation algorithm taking a security parameter k.
The Challenger gives ACCA the resulting private keys of the corrupted servers, the public key,
the verification key and the common parameter. However, the Challenger keeps the private
keys of uncorrupted servers secret from ACCA.

Phase 3: ACCA adaptively interacts with the uncorrupted decryption servers, submitting
ciphertexts and obtaining decryption shares.

Phase 4: ACCA chooses two equal length plaintexts (m0,m1). If these are given to the
encryption algorithm then the Challenger chooses β ∈ {0, 1} at random and returns a target
ciphertext C∗ = E(cp, pk,mβ) to ACCA.

Phase 5: ACCA adaptively interacts with the uncorrupted decryption servers, submitting
ciphertexts and obtaining decryption shares. However, the target ciphertext C∗ is not allowed
to query to the decryption servers.

Phase 6: ACCA outputs a guess β̃ ∈ {0, 1}.

We define the attacker ACCA’s success by

SuccTHD−IND−CCA
T HD,ACCA (k) = 2 · Pr[β̃ = β]− 1.

We denote by SuccTHD−IND−CCA
T HD (tCCA, qD) the maximum of the attacker ACCA’s success over

all attackers ACCA having running time tCCA and making at most qD decryption share generation
queries. Note that the running time and the number of queries are all polynomial in the security
parameter k. We say that the threshold decryption scheme T HD is secure in the sense of THD-
IND-CCA if SuccTHD−IND−CCA

T HD (tCCA, qD) is negligible in k.

C Proof of Lemma 3

Lemma 3 Suppose that an IDTHD-IND-CCA attacker for the IdThdBm scheme issues up to qE

private key extraction queries, qD decryption share generation queries, qH1, qH2, qH3 and qH4 queries
to each of the random oracles. Using this attacker as a subroutine, we can construct an THD-IND-
CCA attacker for the ThdBm scheme, whose advantage including running time tCCA, decryption
share generation queries q′D and random oracle queries q′H1

, q′H2
and q′H4

are as follows.

1
qH3

SuccIDTHD−IND−CCA
IdThdBm (tIDCCA, qE , qD, qH1 , qH2 , qH3 , qH4)

≤ SuccTHD−IND−CCA
ThdBm (tCCA, q′D, q′H1

, q′H2
, q′H4

),

where tCCA = tIDCCA + max(qE , qH3)O(k3), q′D = qD, q′H1
= qH1, q′H2

= qH2 and q′H4
= qH4. Here,

tIDCCA denotes the running time of the IDTHD-IND-CCA attacker. Also k in the running time
denotes a security parameter.

15

Proof. For notational convenience, we assume that the same group parameters {G, q, ê, P} and
security parameter k are given to attackers for IdThdBm and ThdBm.

Let ACCA denote an attacker that defeats the IDTHD-IND-CCA security of the IdThdBm scheme.
We assume that ACCA has access to the common parameter cpIdThdBm = (G, q, P , ê, H1, H2, H3, H4,
YPKG) of the IdThdBm scheme, where YPKG = x′P for random x′ ∈ ZZ∗q . We also assume that ACCA

has access to its decryption servers and a set of verification keys.
Let BCCA denote an attacker that defeats the THD-IND-CCA security of the ThdBm scheme.

We assume that BCCA has access to the common parameter cpThdBm = (G, q, P, ê, H1, H2, H4, Y, Q) of
the ThdBm scheme, where Y = xP for random x ∈ ZZ∗q and Q has been randomly chosen from G.
Also, we assume that BCCA has access to its decryption servers and a set of verification keys.

Our aim is to simulate the view of ACCA in the real attack game denoted by G0 until we obtain
a game denoted by G1, which is related to the ability of the attacker BCCA to defeat the security
of the ThdBm scheme in the sense of THD-IND-CCA.

• Game G0: As mentioned, this game is identical to the real attack game described in Definition
2. We denote by E0 the event that ACCA’s output β̄ ∈ {0, 1} is equal to β ∈ {0, 1} chosen by
the Challenger. We use a similar notation Ei for all Games Gi. Since Game G1 is the same
as the real attack game, we have

Pr[E0] =
1
2

+
1
2
SuccIDTHD−IND−CCA

IdThdBm,ACCA (k).

• Game G1: First, we deal with the simulation of ACCA’s view in Phase 1 of the real attack
game as follows.

We replace YPKG in ACCA’s common parameter cpIdThdBm by Y in BCCA’s common parameter
cpThdBm, that is, we set YPKG = Y . We also replace ACCA’s decryption servers by BCCA’s
decryption servers.

Then, we randomly choose an index µ from the range [1, qH3] where qH3 is the maximum
number of queries made by ACCA to the random oracle H3. We denote the µ-th private key
extraction query by IDµ.

Now, we simulate ACCA’s random oracle H3, which can be queried at any time during the
attack. To respond to queries to H3, we maintain an “input-output” list H3List whose entry
is of the form 〈(ID, QID), τ, c)〉 as explained below. Whenever H3 is queried at ID, we perform
the following.

– If the query ID exists in the entry 〈(ID, QID), τ, c)〉, we respond with QID.

– Else we do the following.

∗ If ID = IDµ then we set QID = Q, where Q is from BCCA’s common parameter cpThdBm.
· Set c = 1; Return QID.

∗ Else (ID 6= IDµ) do the following.
· Choose τ uniformly at random from ZZ∗q .
· Compute QID = τP ; Set c = 0; Return QID.

We continue to deal with the simulation of ACCA’s view in other phases of the real attack
game.

If ACCA issues a private key extraction query ID in Phase 2 then we first run the simulator
for the random oracle H3 described above to obtain the corresponding entry 〈(ID, QID), τ, c)〉
in H3List. If c = 1 then we output “abort” and make BCCA terminate the game, otherwise we

16

compute DID = τYPKG and respond with it. Note here that, DID = τYPKG = τY = τxP =
xτP = xQID. Hence ACCA’s view in this step of the game is identical to that in the real attack
as long as BCCA doesn’t abort.

If ACCA corrupts t−1 decryption servers in Phase 3, that is, it obtains private keys {Si}1≤i≤t−1

of corrupted decryption servers, we give them to BCCA.

Next, if ACCA submits a target identity ID∗ in Phase 4 then we run the simulator for the
random oracle H3 to obtain the corresponding entry 〈(ID∗, QID∗), τ, c)〉 in H3List. This time,
if c = 0 then we output “abort” and make BCCA terminate the game, otherwise we continue
to deal with the next game. Note that if BCCA dose not terminate, we have QID∗ = QIDµ = Q.
Since Q was randomly chosen from G, ACCA’s view in this step of the game is identical to that
in the real attack as long as BCCA doesn’t abort.

In Phase 5, if ACCA issues private key extraction queries ID 6= ID∗, we respond to these
queries as we did in the simulation for Phase 2 above. Note in this phase that ACCA submits
a ciphertext (i, C) to the i-th uncorrupted decryption server and obtains a corresponding
decryption share. (Remember that BCCA’s decryption servers were provided as its decryption
servers to ACCA .)

If ACCA submits a pair of two equal-length plaintexts (m0,m1) in Phase 6, we give it to
BCCA, then BCCA uses (m0,m1) as its plaintexts-pair to be challenged. After BCCA queries
(m0,m1) to its encryption oracle, it obtains a target ciphertext C∗ such that C∗ = (U, V, W) =
(rP,mβ ⊕H1(ê(Q,Y)r), rH2(U, V)), where r and β are chosen uniformly at random from ZZ∗q
and {0, 1} respectively.

Now, we return C∗ to ACCA as its target ciphertext. Note here that

C∗ = (rP, mβ ⊕ H1(ê(QIDµ , YPKG)r), rH2(U, V))
= (rP, mβ ⊕ rH1(ê(QID∗ , YPKG)r), rH2(U, V))
= (rP, mβ ⊕ H1(ê(H3(ID∗), YPKG)r), rH2(U, V)).

Hence, C∗ is exactly the same as the target ciphertext that ACCA acquires in Phase 6 of the
real attack.

In Phase 7, we answer ACCA’s queries in the same way we did in the simulation for Phase
5. Note however that ACCA is not allowed to query C∗ to any of the uncorrupted decryption
servers.

Finally, if ACCA submits its guess β̃ in Phase 8, we give it to BCCA.

Now we quantitatively analyze the simulations above. Note that if BCCA does not abort in
the simulation of Phases 2, 3, 5 and 7, ACCA’s view in the real attack game is identical to it’s
view in Game G1. Note also that the bit β is uniformly chosen. Hence we have

Pr[E1]− 1
2
≥ ε

(
Pr[E0]− 1

2

)
,

where ε denotes the probability that BCCA does not abort in Phases 2, 3, 5 and 7, that is, the
chance that IDµ = ID∗. Since µ has been uniformly chosen from [1, qH3], we have ε = 1

qH3
.

Hence, by definition of Pr[E0] and Pr[E0], we obtain

SuccTHD−IND−CCA
ThdBm,BCCA (k) ≥ 1

qH3

SuccIDTHD−IND−CCA
IdThdBm,ACCA (k).

17

Finally note that the running time tCCA of an arbitrary THD-IND-CCA attacker for the scheme
ThdBm is lower-bounded by tIDCCA + max(qE , qH3)O(k3). Note also that the number of queries
to the random oracles H1, H2, H4 and the decryption servers made by BCCA are the same as the
number of those ACCA has made. Hence, we obtain the bound in the lemma statement. ut

D Proof of Lemma 4

Lemma 4 Suppose that an THD-IND-CCA attacker for the ThdBm scheme issues up to qD de-
cryption share generation queries, qH1, qH2 and qH4 queries to each of the random oracles. Using
this attacker as a subroutine, we can construct a BDH attacker for the group G, whose advantage
including running time tBDH is bounded as follows.

1
2
SuccTHD−IND−CCA

ThdBm (t, qH1 , qH2 , qH4qD) ≤ SuccBDH
G (tBDH) +

qD + qDqH4

2k
,

where tBDH = tCCA + qH1 + qH2O(k3) + qH4qDO(k3) for a security parameter k.

Proof. For notational convenience, we assume that the same group parameters {G, q, ê, P} and
security parameter k are given to attackers for ThdBm and the BDH problem.

Let BCCA be an attacker that defeats the THD-IND-CCA security of the ThdBm scheme. Let
ABDH be an attacker for the BDH problem given (G, q, ê, P, aP, bP, cP), as defined in Section 6.1.
We provide a same security parameter k as input to both BCCA and ABDH.

We start with Game G0 which is the same as the real attack game associated with BCCA. Then,
we modify this game until we completely simulate the view of BCCA and obtain a game in which
ABDH is able to solve the BDH problem.

• Game G0: This game is actually the same as the real attack game. However, we repeat it for
cleaning up notations.

First, we run the key/common parameter generation algorithm of the ThdBm scheme on input
a security parameter k, a threshold parameter t and a number of decryption servers n. We give
BCCA the resulting common parameter cpThdBm = (G, q, ê, P, H1,H2, H4, Y, Q) where Y = xP
for random x ∈ ZZ∗q and the set of verification keys {yi}, where 1 ≤ i ≤ n. But we keep the
private key D = xQ as secret.

If BCCA submits a pair of plaintexts (m0, m1), we choose a bit β uniformly at random and
create a target ciphertext C∗ = (U∗, V ∗,W ∗) as follows.

U∗ = r∗P, V ∗ = H∗
1 ⊕mβ, and W ∗ = r∗H∗

2 ,

where κ∗ = ê(Q,Y)r∗ for random r∗ ∈ ZZ∗q , H∗
1 = H1(κ∗) and H∗

2 = H2(U∗, V ∗).

Once all the decryption servers are set up, BCCA can issue decryption share generation queries
at its will. We denote those queries by C = (U, V,W). Note that C is different from the
target ciphertext C∗.

On input C∗, BCCA outputs β̃. We denote by E0 the event β̃ = β and use a similar notation
Ei for all Gi. Since game G0 is the same as the real attack game, we have

Pr[E0] =
1
2

+
1
2
SuccTHD−IND−CCA

ThdBm,BCCA (k).

18

• Game G1: First, we replace replace Y and Q in cpThdBm by bP and cP respectively, all of
which are given to ABDH. We denote bP and cP by YBDH and QBDH respectively. Now, we
assume that a subset of t−1 decryption servers have been corrupted without loss of generality.
Let Φ′ = {0, 1, . . . , t− 1}. Then, we choose S1, S2, . . . , St−1 uniformly at random from G and

compute yi = ê(QBDH, YBDH)cΦ
′

i0
∏t−1

j=1 ê(Sj , P)cΦ
′

ij , where t ≤ i ≤ n and cΦ′
ij denotes a Lagrange

coefficient with respect to the set Φ′. We send Si where 1 ≤ i ≤ t−1 to each of the corrupted
servers and send yi where t ≤ i ≤ n to each of the uncorrupted decryption servers. Then,
BCCA obtains access to {Si} and {yi}.
Now, we modify the target ciphertext C∗ = (U∗, V ∗,W ∗) as follows. First, we choose κ+

uniformly at random from F and replace κ∗ by κ+. We also choose H+
1 uniformly at random

from {0, 1}l, replace H∗
1 by H+

1 and V ∗ by V + = H+
1 ⊕ mβ. Accordingly, whenever the

random oracle H1 is queried at κ+, we respond with H+
1 .

Summing up, we obtain a new challenge ciphertext denoted by C∗
+ such that C∗

+ = (U∗, V +, W ∗),
where V + = H+

1 ⊕mβ and H+
1 = H1(κ+) for random κ+ ∈ F .

Note that the attacker BCCA’s view has the same distribution in both Game G0 and Game
G1, since we have replaced one set of random variables by another set of random variables
which is different, yet has the same distribution.

Thus, we have

Pr[E1] = Pr[E0].

• Game G2: In this game, we restore the queries to the random oracle H1. That is, if H1 is
queried at κ+, we do not respond with H+

1 any more but respond with an answer from the
random oracle H1 instead. We assume that this rule applies to all the forthcoming games.

By the above rule, κ+ and H+
1 are used only in the target ciphertext C∗

+. Accordingly, the
distribution of input to BCCA does not depend on β. Hence, we get Pr[E2] = 1/2.

Note that Game G2 and Game G1 may differ if the random oracle H1 is queried at κ∗. Let
AskH12 denotes the event that, in game G2, H1 is queried at κ∗. We will use the same notation
AskH1i to denote such events in all other games.

Now, we have

|Pr[E2]− Pr[E1]| ≤ Pr[AskH12].

• Game G3: In this game, we further modify the target ciphertext C∗
+ = (U∗, V +,W ∗). First,

we replace U∗ by aP . We keep V +(= H+
1 ⊕mβ = H1(κ+) ⊕mβ) as it is, but define κ+ as

the BDH key ê(P, P)abc. Then, we choose s+ uniformly at random from ZZ∗q , compute s+aP
and replace W ∗ by s+aP . Finally, we modify the computation of the random oracle H2 as
follows. Whenever H2 is queried at (aP, V +), we compute H+

2 = s+P and respond with H+
2 .

Namely, we set H+
2 = H2(aP, V +).

Summing up, we have obtained a new target ciphertext denoted by C∗
BDH = (UBDH, VBDH,

WBDH) such that

UBDH = aP ; VBDH = V +; WBDH = s+aP,

where V + = H1(ê(P, P)abc)⊕mβ. Moreover, we have H2(UBDH, VBDH) = H+
2 = s+P .

19

Note that we have replaced one set of random variables {U∗,W ∗} by another set of random
variables {aP, s+aP} which is different, yet has the same distribution. Note also that C∗

BDH

is a valid ciphertext since ê(P,WBDH) = ê(UBDH,H+
2) by the construction of H+

2 and WBDH.
Hence, the attacker BCCA’s view has the same distribution in both Game G2 and Game G3,
and we have

Pr[AskH13] = Pr[AskH12].

• Game G4: In this game, we modify the random oracle H2. Note that we have already
dealt with the simulation of the random oracles H2 appeared in the target ciphertext C∗

BDH,
namely, the case when H2 is queried at (UBDH, VBDH). In the following, we deal with the rest
of simulation.

Whenever H2 is queried at (U, V) 6= (UBDH, VBDH), we choose s uniformly at random from
ZZ∗q , computes H2 = sY and respond with H2. Let H2List be a list of all “input-output”
pairs of the random oracle H2. Specifically, H2List consists of the pairs 〈(U, V),H2〉 where
H2 = H2(U, V) = sY . Notice that this list grows as BCCA’s attack proceeds.

Because H2 is assumed to be a random oracle, the above generation of the outputs of H2

perfectly simulates the real oracle. Hence, BCCA’s view in this game remains the same as that
in the previous game. Hence, we have

Pr[AskH14] = Pr[AskH13].

Note that the decryption oracle has been regarded as perfect up to this game. The rest of
games will deal with simulation of the decryption oracle.

• Game G5: In this game, we make the decryption oracle reject all ciphertexts C = (U, V,W)
such that H2 = H2(U, V) has not been queried. If C is a valid ciphertext while H2(U, V) has
not been queried, BCCA’s view in Game G5 and Game G4 may differ.

Note that if a ciphertext C is valid then it should be the case that ê(P,W) = ê(U,H2).
However, since we have assumed that H2 has not been queried in this game, the above
equality holds with probability at most 1/2k since output of the simulated random oracle H2

is uniformly distributed in G. Adding up all the decryption queries up to qD, we have

|Pr[AskH15]− Pr[AskH14]| ≤
qD

2k
.

• Game G6: In this game, we modify the decryption oracle in the previous game to yield
a decryption oracle simulator which decrypts a submitted decryption query C = (U, V,W)
without the private key. Note that the case when H2(U, V) has not been queried are excluded
in this game since it was already dealt with in the previous game. Hence, we assume that
H2(U, V) has been queried at some point.
Now we describe the complete specification of the decryption oracle simulator. On input a
ciphertext C = (U, V, W), the decryption oracle simulator works as follows.

– Extract 〈(U, V),H2〉 from H2List.

– If ê(P, W) = ê(U,H2)

∗ Compute K = (1/s)W . (Note here that (1/s)W = (1/s)rsY = rY = rxP .)
∗ Compute κ = ê(Q,K)

20

∗ For t ≤ i ≤ n, compute κi = κcΦ′
i0

∏t−1
j=1 ê(Sj , U)cΦ′

ij .

∗ Return κi.

– Else reject C.

Note in the above construction that

κi = κcΦ
′

i0

t−1∏

j=1

ê(Sj , U)cΦ
′

ij = ê(Q,K)cΦ
′

i0

t−1∏

j=1

ê(Sj , U)cΦ
′

ij = ê(Q, rxP)cΦ
′

i0

t−1∏

j=1

ê(Sj , rP)cΦ
′

ij

= ê(Q, xP)rcΦ
′

i0

t−1∏

j=1

ê(Sj , P)rcΦ
′

ij =
(
ê(Q,Y)cΦ

′
i0

t−1∏

j=1

ê(Sj , P)cΦ
′

ij

)r
= yr

i .

Hence, κi is a correct i-th share of the BDH key κ = ê(Q,Y)r. However, we need more efforts
to simulate a decryption share δi containing κi completely. This can be done as follows.

First, we simulate the random oracle H4 in a classical way. That is, if H4 is queried, we
choose H4 uniformly at random from ZZ∗q and respond with it. As usual, we maintain an
“input-output” list H4List for H4 whose entry is of the form 〈(κ, κ̃, ỹ),H4〉. Next, we choose
Li and λi uniformly at random from G and ZZ∗q respectively, and compute κ̃i = ê(Li, U)/κλi

i

and ỹi = ê(Li, P)/yλi
i . Then, we set λi = H4(κi, κ̃i, ỹi). Finally, we check whether there exists

an entry 〈(κ, κ̃, ỹ),H4〉 in H4List satisfying H4 = λi but (κ, κ̃, ỹ) 6= (κi, κ̃i, ỹi). If such entry
exists then we return “abort” message to BCCA. Otherwise, we return the simulated value δi =
(i, κi, κ̃i, ỹi, Li) to BCCA as a decryption share corresponding to C and save 〈(κi, κ̃i, ỹi,), λi〉
to H4List.

Since H1 and H2 are assumed to have already been queried in this game (i.e., these case were
already dealt with in the previous game), the above simulated decryption share generation
server perfectly simulates the real one except the error (collision) in the simulation of H4

occurs. Note that this happens with probability qH4/2k, considering up to qH4 queries to H4.
Adding up all the decryption queries up to qD, we have

|Pr[AskH16]− Pr[AskH15]| ≤
qDqH4

2k
.

Now, recall that the target ciphertext used so far is C∗
BDH that constructed in Game G3.

Accordingly, AskH16 denotes an event that the BDH key ê(P, P)abc has been queried to the random
oracle H1. Note also that we have used the easiness of the DDH problem in the group G to simulate
the decryption oracle.

Therefore, at this stage, ABDH can solve the BDH problem by outputting the queries to the
random oracle H1. That is, we have

Pr[AskH16] ≤ SuccBDH
G,ABDH(k).

Thus, putting all the bounds we have obtained in each game together, we have

1
2
SuccTHD−IND−CCA

ThdBm,BCCA (k) = |Pr[E0]− Pr[E2]| ≤ Pr[AskH12] ≤ Pr[AskH15] +
qD

2k

≤ qD

2k
+ Pr[AskH16] +

qDqH4

2k
≤ qD + qDqH4

2k
+ SuccBDH

G,ABDH(k).

Considering the running time tBDH and queries of an arbitrary BDH-attacker for the group G, we
obtain the bound in the lemma statement. ut

21

