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Abstract

In this paper, we examine issues related to the construction of identity-based threshold
decryption schemes and argue that it is important in practice to design an identity-based
threshold decryption scheme in which a private key associated with an identity is shared. A
major contribution of this paper is to construct the first identity-based threshold decryption
scheme secure against chosen ciphertext attack. A formal proof of security of the scheme
is provided in the random oracle model, assuming the Bilinear Diffie-Hellman problem is
computationally hard. Another contribution of this paper is, by extending the proposed
identity-based threshold decryption scheme, to construct a mediated identity-based encryp-
tion scheme secure against more powerful attacks than those considered previously.

1 Introduction

Threshold decryption is particularly useful where the centralization of the power to decrypt
is a concern. On the other hand, the motivation of identity (ID)-based encryption originally
proposed by Shamir [17] is to provide confidentiality without the need of exchanging public keys
or keeping public key directories. A major advantage of ID-based encryption is that it allows
one to encrypt a message by using a recipient’s identifiers such as an email address.

A combination of these two concepts will allow one to build an “ID-based threshold decryp-
tion” scheme. One possible application of such scheme can be considered in a situation where
an identity denotes the name of the group sharing a decryption key. As an example, suppose
that Alice wishes to send a confidential message to a committee in an organization. Alice can
first encrypt the message using the identity (name) of the committee and then send over the ci-
phertext. Let us assume that Bob who is the committee’s president has created the identity and
hence has obtained a matching private decryption key from the Private Key Generator (PKG).
Preparing for the time when Bob is away, he can share his private key out among a number
of decryption servers in such a way that any committee member can successfully decrypt the
ciphertext if, and only if, the committee member obtains a certain number of decryption shares
from the decryption servers.

Another application of the ID-based threshold decryption scheme is use it as a building
block to construct a mediated ID-based encryption scheme [7]. The idea is to split a private key
associated with the receiver Bob’s ID into two parts, and give one share to Bob and the other
to the Security Mediator (SEM). Accordingly, Bob can decrypt a ciphertext only with the help
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of the SEM. As a result, instantaneous revocation of Bob’s privilege to perform decryption is
possible by instructing the SEM not to help him any more.

The construction of an ID-based threshold decryption scheme which is efficient and practical
while meets a strong security requirement is the focus of this paper. First, we briefly review
Boneh and Franklin’s ID-based encryption scheme [4] and its underlaying mathematical prim-
itive in Section 2 for discussion throughout the paper. In the following section, we investigate
issues related to the construction of ID-based decryption schemes and argue that when realizing
a functional ID-based threshold scheme, it is more advantageous to share a private key associated
with an identity than to share a master key of the PKG. Through Sections 4 and 5, we formulate
a chosen ciphertext security notion for ID-based threshold decryption and present a concrete
ID-based threshold decryption scheme which is provably secure against chosen ciphertect attack
in the random oracle model [1], assuming that the Bilinear Diffie-Hellman problem [4] is com-
putationally hard. Furthermore, we show in Section 6 that the chosen ciphertext security of our
scheme plays an important role in constructing a mediated ID-based encryption scheme secure
against strong attackers who are able to corrupt users within the system.

2 Preliminaries

We first review the “admissible bilinear map”, which is the mathematical primitive that plays
on central role in Boneh and Franklin’s ID-based encryption scheme [4].

Bilinear Map. The admissible bilinear map ê [4] is defined over two groups of the same
prime-order q denoted by G and F in which the Computational Diffie-Hellman problem is hard.
(By G∗ and ZZ∗

q , we denote G\{O} where O is the identity element of G, and ZZq\{0} respectively.)
We will use an additive notation to describe the operation in G while we will use a multiplicative
notation for the operation in F . In practice, the group G is implemented using a group of points
on certain supersingular elliptic curves and the group F will be implemented using a subgroup of
the multiplicative group of a finite field. The admissible bilinear map, denoted by ê : G×G → F ,
has the following properties.

• Bilinear: ê(aR1, bR2) = ê(R1, R2)
ab, where R1, R2 ∈ G and a, b ∈ ZZ∗

q .

• Non-degenerate: ê does not send all pairs of points in G × G to the identity in F . (Hence,
if R is a generator of G then ê(R, R) is a generator of F .)

• Computable: For all R1, R2 ∈ G, the map ê(R1, R2) is efficiently computable.

Throughout this paper, we will simply use the term “Bilinear map” to refer to the admissible
bilinear map defined above.

The “BasicIdent” Scheme. We now describe Boneh and Franklin’s basic version of ID-based
encryption scheme called “BasicIdent” which only gives semantic security (that is, indistinguisha-
bility under chosen plaintext attack).

In the setup stage, the PKG specifies a group G generated by P ∈ G∗ and the Bilinear map
ê : G×G → F . It also specifies two hash functions H1 : {0, 1}∗ → G∗ and H2 : F → {0, 1}l, where
l denotes the length of a plaintext.The PKG then picks a master key x uniformly at random
from ZZ∗

q and computes a public key YPKG = xP . The PKG publishes descriptions of the group
G and F and the hash functions H1 and H2. Bob, the receiver, then contacts the PKG to get his
private key DID = xQID where QID = H1(ID). Alice, the sender, can now encrypt her message
M ∈ {0, 1}l using the Bob’s identity ID by computing U = rP and V = H2(ê(QID, YPKG)r)⊕M ,
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where r is chosen at random from ZZ∗
q and QID = H1(ID). The resulting ciphertext C = (U, V )

is sent to Bob. Bob decrypts C by computing M = V ⊕ H2(ê(DID, U)).

3 Related Work

3.1 Boneh and Franklin’s “Distributed PKG”

In order to prevent a single PKG from full possession of the master key in ID-based encryption,
Boneh and Franklin [4] suggested that the PKG’s master key should be shared among a number
of PKGs using the techniques of threshold cryptography, which they call “Distributed PKG”.
More precisely, the PKG’s master key x is distributed into a number of PKGs in such a way
that each of the PKG holds a share xi ∈ ZZ∗

q of a Shamir’s (t, n) secret–sharing [16] of x ∈ ZZ∗
q

and responds to a user’s private key extraction request with Di
ID

= xiQID, where QID = H1(ID).
If the technique of [11] is used, one can ensure that the master key is jointly generated by PKGs
so that the master key is not stored or computed in any single location.

As an extension of the above technique, Boneh and Franklin suggested that the distributed
PKGs should function as decryption servers for threshold decryption. That is, each PKG re-
sponds to a decryption query C = (U, V, W ) in BasicIdent with ê(xiQID, U). However, we argue
that this method is not quite practical in practice since it requires each PKG to be involved at

all times (that is, on-line) in the generation of decryption shares because the value “U” changes
whenever a new ciphertext is created. Obviously, this creates a bottleneck on the PKGs and
also violates one of the basic requirements of an ID-based encryption scheme, “the PKG can
be closed after key generation”, which was envisioned by Shamir in his original proposal of ID-
based cryptography [17]. Moreover, there is a scalability problem when the number of available
distributed PKGs is not matched against the number of decryption servers required, say, there
are only 3 available PKGs while a certain application requires 5 decryption servers.

Therefore, a better approach would be sharing a private key associated with an identity rather
than sharing a master key of the PKG. In addition to its easy adaptability to the situation where
an identity denotes a group sharing a decryption key as described in Section 1, an advantage
of this approach is that one can fully utilize Boneh and Franklin’s Distributed PKG method
without the above-mentioned scalability problem, dividing the role of “distributed PKGs” from
that of “decryption servers”. That is, an authorized dealer (a representative of group, such as
“Bob” described in Section 1, or a single PKG) may ask an identity to each of the “distributed
PKGs” for a partial private key associated the identity. Having obtained enough partial private
keys, the dealer can construct the whole private key and distribute it into the “decryption
servers” in his domain at will while the master key remains secret from any parties.

3.2 Dodis and Yung, and Libert and Quisquiter’s Work

To our knowledge, other papers that have treated “threshold decryption” in the context of
ID-based cryptography are [8] and [14].

Dodis and Yung observed in [8] how threshold decryption can be realized in Gentry and
Silverberg [12]’s “hierarchical ID-based encryption” setting. Interestingly, their approach is to
share a private key (not the master key of the PKG) obtained from a user at a higher level.
Although this was inevitable in the hierarchical ID-based encryption setting and its advantage
in general ID-based cryptography was not mentioned in [8], it is more sound approach than
sharing the master key of the PKG as we discussed above. However, their threshold decryption
scheme is very-sketched and chosen ciphertext security for the scheme was not considered in [8].
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In [14], Libert and Quisquater also constructed an ID-based threshold decryption scheme
and discussed its application to mediated ID-based encryption [7]. However, their approach was
to share a master key of the PKG, which is different from ours. Moreover, our scheme gives
chosen ciphertext security while Libert and Quisquater’s scheme does not. (For the discussions
on their mediated ID-based encryption scheme, readers are referred to Section 6.)

3.3 Other Related Work

Although not being directly related to “ID-based threshold decryption”, there have been in-
teresting proposals on applications of Boneh and Franklin’s Distributed PKG. Recently, Chen,
Harrison, Soldera and Smart [6] illustrated how the use of multiple PKGs in Boneh and Franklin’s
ID-based encryption scheme can be applied to the real world situations. Furthermore, they dealt
with general cases of disjunction and conjunction of the multiple PKGs/identities exploiting,
the algebra of the bilinear maps. Subsequently, more complicated cases of the disjunction and
conjunction of the multiple PKGs and their applications to access controls were discussed by
Smart [19].

Khalili, Katz and Arbaugh [13] also discussed the use of the distributed PKGs in Boneh and
Franklin’s scheme, especially focusing on its application to ad-hoc networks.

3.4 Our Contribution

The above literature review shows that a complete solution for constructing an ID-based thresh-
old decryption scheme secure against chosen ciphertext attack has not yet given. As will be
further discussed in Section 6.2, chosen ciphertext security for ID-based threshold decryption
plays an important role in constructing a mediated ID-based encryption scheme [7] secure against
strong inside attackers.

In this paper, we give a solution for the above problem. Namely, we construct the first ID-
based threshold decryption scheme secure against chosen ciphertext attack in the random oracle
model [1], assuming the Bilinear Diffie-Hellman problem [4] is computationally intractable. We
also discuss how our scheme can be adapted to a mediated ID-based encryption scheme [7] and
show our mediated ID-based encryption scheme is secure against strong inside attackers, which
was left as an open problem by Libert and Quisquater [14].

4 Security Notion for ID-based Threshold Decryption

4.1 High Level Description of ID-based Threshold Decryption

We first denote a generic (t, n) ID-based threshold decryption scheme by “IDT HD”, which
consists of sub-algorithms GK, EX, DK, E, D, SV, and SC.

Like other ID-based cryptographic schemes, we assume the existence of a trusted PKG. The
PKG runs the key/common parameter generation algorithm GK to generate its master/public
key pair and all the necessary common parameters. The PKG’s public key and the common
parameters are given to every interested party.

On receiving a user’s private key extraction request which consists of an identity, the PKG
then runs the private key extraction algorithm EX to generate the private key associated with
the requested identity.

An authorized dealer who possesses the private key associated with an identity can run the
private key distribution algorithm DK to distribute the private key into n decryption servers.
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DK makes use of an appropriate secret-sharing technique to generate shares of the private key
as well as verification keys that will be used for checking the validity of decryption shares.
Each share of the private key and its corresponding verification key are sent to an appropriate
decryption server. The decryption servers then keep their private key shares secret but publish
the verification keys. It is important to note here that the entity that runs DK can vary flexibly
depending on the cryptographic services that the PKG can offer. For example, if the PKG has
an only functionality of issuing private keys, the authorized dealer that runs DK would be a
normal user (such as Bob in the example given in Section 1) other than the PKG. However, if
the PKG has other functionalities, for example, organizing threshold decryption, the PKG can
run DK.

Given a user’s identity, any user that wants to encrypt a plaintext can run the encryption
algorithm E to obtain a ciphertext. A legitimate user that wants to decrypt a ciphertext gives
it to the decryption servers requesting decryption shares. The decryption servers then run the
decryption share generation algorithm D taking the ciphertext as input and send the resulting
decryption shares to the user. Note that the validity of the shares can be checked by running the
decryption share verification algorithm SV. When the user collects valid decryption shares from
at least t servers, the plaintext can be reconstructed by running the share combining algorithm
SC.

Below, we formally describe IDT HD.

Definition 1 (ID-Based Threshold Decryption Scheme) IDT HD consists of the follow-
ing algorithms.

• A randomized key/common parameter generation algorithm GC(k): Given a security pa-
rameter k ∈ N, this algorithm computes the PKG’s master/public key pair (skPKG, pkPKG).
Then, it generates necessary common parameters, e.g., descriptions of hash functions and
mathematical groups. The output of this algorithm denoted by cp includes such parame-
ters and the PKG’s public key pkPKG. Note that cp is given to all interested entities while
the matching master key skPKG of pkPKG is kept secret.

• A private key extraction algorithm EX(cp, ID): Given an identity ID, this algorithm gen-
erates a private key associated with ID, denoted by skID.

• A randomized private key distribution algorithm DK(cp, skID, n, t): Given a private key
skID associated with an identity ID, a number of decryption servers n and a threshold
parameter t, this algorithm generates n shares of skID and provides each one to decryption
servers Γ1, Γ2, . . . ,Γn. It also generates a set of verification keys that can be used to check
the validity of each shared private key. We denote the shared private keys and the matching
verification keys by {ski}1≤i≤n and {vki}1≤i≤n, respectively. Note that each (ski, vki) is
sent to the decryption server Γi, then Γi publishes vki but keeps ski as secret.

• A randomized encryption algorithm E(cp, ID, M): Given a public identity ID and a plain-
text M , this algorithm generates a ciphertext denoted by C.

• A decryption share generation algorithm D(cp, ski, C): Given a ciphertext C and a shared
private key ski of a decryption server Γi, this algorithm generates a decryption share δi,C .
Note that the value of δi,C can be a special symbol “Invalid Ciphertext”.

• A decryption share verification algorithm SV(cp, {vki}1≤i≤n, C, δi,C): Given a ciphertext
C, a set of verification keys {vki}1≤i≤n, and a decryption share δi,C , this algorithm checks
the validity of δi,C . The output of this algorithm is either “Valid Share” or “Invalid Share”.

5



• A share combining algorithm SC(cp, C, {δi,C}i∈Φ): Given a ciphertext C and a set of de-
cryption shares {δi,C} where Φ ⊂ {1, . . . , n} such that |Φ| ≥ t (| · | denotes the cardinality),
this algorithm outputs a plaintext M . Note that the combining algorithm is allowed to
output a special symbol “Invalid Ciphertext”, which is distinct from all possible plaintexts.

4.2 Chosen Ciphertext Security for ID-Based Threshold Decryption

We now define a security notion for the IDT HD scheme against chosen ciphertext attacks,
which we call “IND-IDTHD-CCA”.

Definition 2 (IND-IDTHD-CCA) Let ACCA be an attacker assumed to be a probabilistic
Turing machine. Suppose that a security parameter k is given to ACCA as input. Now, consider
the following game in which the attacker ACCA interacts with the “Challenger”.

Phase 1: The Challenger runs the PKG’s key/common parameter generation algorithm
taking a security parameter k as input. The Challenger gives ACCA the resulting common
parameter cp which includes the PKG’s public key pkPKG. However, the Challenger keeps
the master key skPKG secret from ACCA.

Phase 2: ACCA issues a number of private key extraction queries. We denote each of these
queries by ID. On receiving the identity query ID, the Challenger runs the private key
extraction algorithm on input ID and obtains a corresponding private key skID. Then, the
Challenger returns skID to ACCA.

Phase 3: ACCA corrupts t − 1 out of n decryption servers.

Phase 4: ACCA issues a target identity query ID
∗. On receiving ID

∗, the Challenger runs
the private key extraction algorithm to obtain a private key skID∗ associated with the target
identity. The Challenger then runs the private key distribution algorithm on input skID∗

with parameter (t, n) and obtains a set of private/verification key pairs {(skID∗i
, vkID∗i

)},
where 1 ≤ i ≤ n. Next, the Challenger gives ACCA the private keys of corrupted decryption
servers and the verifications keys of all the decryption servers. However, the private keys
of uncorrupted servers are kept secret from ACCA.

Phase 5: ACCA issues arbitrary private key extraction queries and arbitrary decryption
share generation queries to the uncorrupted decryption servers. We denote each of these
queries by ID and C respectively. On receiving ID, the Challenger runs the private key
extraction algorithm to obtain a private key associated with ID and returns it to ACCA.
The only restriction here is that ACCA is not allowed to query the target identity ID

∗ to
the private key extraction algorithm. On receiving C, the Challenger runs the decryption
share generation algorithm on input C to obtain a corresponding decryption share and
returns it to ACCA.

Phase 6: ACCA outputs two equal-length plaintexts (M0, M1). Then the Challenger
chooses a bit β uniformly at random and runs the encryption algorithm on input cp,
Mβ and ID

∗ to obtain a target ciphertext C∗ = E(cp, ID∗, Mβ). Finally, the Challenger
gives (C∗, ID∗) to ACCA.

Phase 7: ACCA issues arbitrary private key extraction queries and arbitrary decryption
share generation queries. We denote each of these queries by ID and C respectively. On
receiving ID, the Challenger runs the private key extraction algorithm to obtain a private
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key associated with ID and returns it to ACCA. As Phase 5, the only restriction here is
that ACCA is not allowed to query the target identity ID

∗ to the private key extraction
algorithm. On receiving C, the Challenger runs the decryption share generation algorithm
on input C to obtain a corresponding decryption share and returns it to ACCA. Differently
from Phase 5, the target ciphertext C∗ is not allowed to query in this phase.

Phase 8: ACCA outputs a guess β̃ ∈ {0, 1}.

We define the attacker ACCA’s success by

SuccIND−IDTHD−CCA

IDT HD,ACCA (k) = 2 · Pr[β̃ = β] − 1.

We denote by SuccIND−IDTHD−CCA
IDT HD (tIDCCA, qE , qD) the maximum of the attacker ACCA’s

success over all attackers ACCA having running time tIDCCA and making at most qE private
key extraction queries and qD decryption share generation queries. Note that the running time
and the number of queries are all polynomial in the security parameter k. We say that the ID-
based threshold decryption scheme IDT HD is IND-IDTHD-CCA secure if SuccIND−IDTHD−CCA

IDT HD

(tIDCCA, qE , qD) is negligible in k.

We now proceed to describe our ID-based threshold decryption scheme.

5 Our ID-Based Threshold Decryption Scheme

5.1 Building Blocks

First, we present necessary building blocks that will be used to construct our ID-based threshold
decryption scheme. We remark that since our ID-based threshold decryption scheme is also of
the Diffie-Hellman (DH)-type, it follows Shoup and Gennaro [18]’s framework for the design of
DH-based threshold decryption schemes to some extent. However, our scheme has a number
of features that distinguishes itself from the schemes in [18] due to the special property of the
underlying group G.

5.1.1 Publicly Checkable Encryption

Publicly checkable encryption is a particularly important tool for building threshold decryp-
tion schemes secure against chosen ciphertext attack as discussed by Lim and Lee [15]. The
main reason is that in the threshold decryption, the attacker has decryption shares as additional
information as well as a ciphertext, hence there is a big chance for the attacker to get enough de-
cryption shares to recover the plaintext before the validity of the ciphertext is checked. (Readers
are referred to [15] and [18] for more detailed discussions on this issue.)

Note that public checkability of ciphertexts in threshold decryption schemes is usually given
by non-interactive zero-knowledge (NIZK) proofs, e.g., [18, 10]. However, we emphasize that in
our scheme, this can be done without a NIZK proof, by simply creating a tag on the ElGamal
[9] ciphertext as follows.

Let M ∈ {0, 1}l be a message. Then, encrypt M by creating a ciphertext C = (U, V, W ) =
(rP, H2(κ) ⊕ M, rH3(U, V )) where κ = ê(H1(ID), YPKG)r for hash functions H1 : {0, 1}∗ → G∗,
H2 : F → {0, 1}l, and H3 : G∗ × {0, 1}l → G∗. Without recovering M during the decryption
process (that is, leaving the ciphertext C intact), the validity of C can be checked by testing
if ê(P, W ) = ê(U, H3), where H3 = H3(U, V ) ∈ G∗. Note that this validity test exploits the
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fact that the Decisional Diffie-Hellman (DDH) problem can be solved in polynomial time in
the group G, and passing the test implies that (P, U, H3, W ) is a Diffie-Hellman tuple since
(P, U, H3, W ) = (P, rP, sP, rsP ) assuming that H3 = sP ∈R G∗ for some s ∈ ZZ∗

q .

5.1.2 Sharing a Point on G

Recall that the distributed PKGs of Boneh and Franklin’s ID-based encryption scheme can be
achieved by sharing the PKG’s master key x. Indeed, this can be done using Shamir’s secret-
sharing technique [16] as the master key x is a single element in ZZ∗

q and hence Shamir’s technique
can directly be used to distribute an element in ZZ∗

q .
However, in order to distribute a private key DID ∈ G, we need some trick. In what follows,

we show one can easily share a point on G by modifying Shamir’s (t, n) secret-sharing scheme.
(Note that although “Shamir’s secret-sharing over G” was mentioned in [8], how to realize it was
not described. So we explicitly describe it for clarity.)

Distribution Phase: Let q be a prime order of a group G of points on elliptic curve. Let
S ∈ G∗ be a secret-point to share. Suppose that we have chosen integers t and n satisfying
1 ≤ t ≤ n < q.

First, we pick R1, R2, . . . , Rt−1 at random from G∗. Then, we define a function F : IN ∪
{0} → G such that F (u) = S +

∑t−1

l=1 ulRl.

Now, we compute Si = F (i) ∈ G for 1 ≤ i ≤ n and send (i, Si) to the i-th member of the
group of cardinality n.

Reconstruction Phase: Let Φ ⊂ {1, . . . , n} be a set such that |Φ| ≥ t, where | · | denotes
the cardinality of the given set. The function F (u) can be reconstructed by computing

F (u) =
∑

j∈Φ

cΦ
ujSj where cΦ

uj =
∏

ι∈Φ,ι 6=j

u − ι

j − ι
∈ ZZq.

Notice that cΦ
uj ∈ ZZq is the Lagrange interpolation coefficient used in Shamir’s secret sharing

scheme: If we write S = sP and Rl = rlP for for some s, rl ∈ ZZ∗
q and 1 ≤ l ≤ t − 1 (but, we do

not know s and rl), we have F (u) = sP +ur1P + · · ·+ut−1rt−1P = (s+ r1u+ · · ·+ rt−1u
t−1)P .

Hence, the Lagrange coefficients cΦ
uj ’s reconstruct the original function F (u). In practice, we

recover the secret S directly (without reconstructing F (u)) by computing
∑

j∈Φ cΦ
0jSj where

cΦ
0j =

∏

ι∈Φ,ι 6=j
ι

ι−j
. Note that the computation of cΦ

ij ∈ ZZq can be done in polynomial time.

5.1.3 Zero Knowledge Proof for the Equality of Two Discrete Logarithms Based
on the Bilinear Map

To ensure that all decryption shares are consistent, that is, to give robustness to threshold
decryption, we need a certain checking procedure. In contrast to the validity checking method
of ciphertexts discussed in Section 5.1.1, we need a non-interactive zero-knowledge proof system
since the share of the key κ is the element of the group F , where the DDH problem is believed
to be hard.

Motivated by [5] and [18], we construct a zero-knowledge proof of membership system for

the language LEDLogF
P,P̃

def
= {(µ, µ̃) ∈ F ×F| logg µ = logg̃ µ̃} where g = ê(P, P ) and g̃ = ê(P, P̃ )

for generators P and P̃ of G (the groups G and F and the Bilinear map ê are as defined in
Section 2) as follows.
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Suppose that (P, P̃ , g, g̃) and (κ, κ̃) ∈ LEDLogF
P,P̃

are given to the Prover and the Verifier, and

the Prover knows a secret S ∈ G∗. The proof system which we call “ZKBm” works as follows.

• The Prover chooses a non-identity element T uniformly at random from G and computes
γ = ê(T, P ) and γ̃ = ê(T, P̃ ). The Prover sends γ and γ̃ to the Verifier.

• The Verifier chooses h uniformly at random from ZZ∗
q and sends it to the Prover.

• On receiving h, the Prover computes L = T + hS ∈ G and sends it to the Verifier. The
Verifier checks if ê(L, P ) = γκh and ê(L, P̃ ) = γ̃κ̃h. If the equality holds then the Verifier
returns “Accept”, otherwise, returns “Reject”.

We state the following lemma regarding the security of ZKBm.

Lemma 1 The ZKBm protocol satisfies completeness, soundness and zero-knowledge against the

honest Verifier.

Proof. As preliminaries, we first prove the following two claims.

Claim 1 Let P and P̃ be generators of G. Then ê(P, P̃ ) is a generator of F .

Proof. The proof will use the basic fact from the elementary abstract algebra that if a is a
generator of a finite cyclic group G of order n, then the other generators of G are the elements
of the form ar, where gcd(r, n) = 1.

First, note that the two groups G and F are cyclic because their order q is a prime. Since
P̃ is another generator of G by assumption, we can write P̃ = uP , where gcd(u, q) = 1. Then,
by the bilinear property of ê, we have ê(P, P̃ ) = ê(P, uP ) = ê(P, P )u. Also, by the non-
degenerate property of ê, ê(P, P ) is a generator of F . Hence, ê(P, P̃ ) is also a generator of F
since ê(P, P̃ ) = ê(P, P )u and gcd(u, q)=1. ⊓⊔

Claim 2 Let P and P̃ be generators of G. Then, (κ, κ̃) ∈ LEDLogF
if and only if there exists a

non-identity element S ∈ G such that κ = ê(S, P ) and κ̃ = ê(S, P̃ ).

Proof. By Claim 1, g and g̃ are generators of F . Now, suppose that (κ, κ̃) ∈ LEDLogF
P,P̃

.

Then, by definition of LEDLogF
P,P̃

, there exists x ∈ ZZ∗
q such that gx = g̃x. Since g = ê(P, P ) and

g̃ = ê(P, P̃ ), gx = g̃x implies ê(P, P )x = ê(P, P̃ )x. But, by the bilinear property of ê, we have
ê(P, P )x = ê(P, xP ) and ê(P, P̃ )x = ê(P, xP̃ ). Hence letting S = xP , we obtain κ = ê(S, P )
and κ̃ = ê(S, P̃ ). The proof of converse is also easy. ⊓⊔

Now, we show that the protocol is complete. That is, if the Prover and the Verifier follow the
protocol without cheating, the Verifier accepts the Prover’s claim with overwhelming probability:
Assume that (κ, κ̃) ∈ LEDLogF

P,P̃

. By Claim 2, we have κ = ê(S, P ) and κ̃ = ê(S, P̃ ) for some

S ∈ G. Assume that the Prover sends (γ, γ̃) where γ = ê(T, P ) and γ̃ = ê(T, P̃ ) for random
T ∈ G to the honest Verifier. Now, observe from the above protocol that ê(L, P ) = ê(T +hS, P )
and that γκh = ê(T, P )ê(S, P )h = ê(T, P )ê(hS, P ). By the bilinear property of ê, we have
ê(T, P )ê(hS, P ) = ê(T +hS, P ). Thus, we obtain ê(L, P ) = γκh and this implies that the above
protocol satisfies completeness property.
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Second, we show the soundness of the protocol: Assume that (κ, κ̃) /∈ LEDLogF
P,P̃

. Namely, we

have κ = ê(S, P ) and κ̃ = ê(S′, P̃ ) for some S 6= S′ ∈ G. Assume that a cheating Prover sends
(γ, γ̃) where γ = ê(T, P ) and γ = ê(T ′, P̃ ) to the honest Verifier. If the Verifier is to accept
this, we should have that ê(L, P ) = γκh and ê(L, P̃ ) = γ̃κ̃h, which implies T + hS = T ′ + hS′.
Now suppose that T = tP , T ′ = t′P ; S = xP and S′ = x′P for t, t′, x, x′ ∈ ZZ∗

q . Then,
T + hS = T ′ + hS′ implies (t− t′) + h(x− x′) = 0. However, this happens with probability 1/q,
since we have assumed that S′ 6= S which implies x′ 6= x.

Finally, we can construct a simulator which simulates the communication between the Prover
and the Verifier provided that the Verifier behaves honestly. More precisely, the simulator chooses
h̄ and L̄ uniformly at random from ZZ∗

q and G respectively. Then, it computes γ̄ = ê(L̄, P )/κh̄ and
¯̃γ = ê(L̄, P̃ )/κ̃h̄. The output of the simulator is a tuple (γ̄, ¯̃γ, h̄, L̄). It can be easily verified that
the simulated values are identically distributed as those in the real communication if the Verifier
behaves honestly. As a result, the above protocol becomes a zero-knowledge proof against a
honest Verifier. ⊓⊔

Notice that ZKBm can easily be converted to a NIZK proof, making the random challenge
an output of a random oracle [1]. Note that the above protocol can be viewed as a proof that
(g, g̃, κ, κ̃) is a Diffie-Hellman tuple since if (κ, κ̃) ∈ LEDLogF

P,P̃

then κ = gx and κ̃ = g̃x for some

x ∈ ZZ∗
q and hence (g, g̃, κ, κ̃) = (g, g̃, gx, g̃x) = (g, gy, gx, gxy) for some y ∈ ZZ∗

q .

5.2 Description of the Scheme

We now describe our ID-based threshold decryption scheme. We call our scheme “IdThdBm”,
meaning “ID-based threshold decryption scheme from the bilinear map”. IdThdBm consists of
the following algorithms.

• GC(k): Given a security parameter k, this algorithm generates two groups G and F of the
same prime order q ≥ 2k and chooses a generator P of G. Then, it specifies the Bilinear
map ê : G ×G → F and the hash functions H1, H2, H3 and H4 such that H1 : {0, 1}∗ → G∗;
H2 : F → {0, 1}l; H3 : G∗ × {0, 1}l → G∗; H4 : F → ZZ∗

q , where l denotes the length of
a plaintext. Next, it chooses the PKG’s master key x uniformly at random from ZZ∗

q and
computes the PKG’s public key YPKG = xP . Finally, it returns a common parameter cp
= (G, q, P , ê, H1, H2, H3, H4, YPKG) while keeping the master key x secret.

• EX(cp, ID): Given an identity ID, this algorithm computes QID = H1(ID) and DID = xQID.
Then, it returns the private key DID associated with ID.

• DK(cp, ID, DID, t, n) where 1 ≤ t ≤ n < q: Given a private key DID, the number of
decryption servers n and a threshold parameter t, this algorithm first picks R1, R2, . . . , Rt−1

at random from G∗ and constructs F (u) = DID +
∑t−1

j=1 ujRj for u ∈ {0} ∪ IN. It then
computes each server Γi’s private key Si = F (i) and verification key yi = ê(Si, P ) for
1 ≤ i ≤ n. Subsequently, it secretly sends the distributed private key Si and the verification
key yi to server Γi for 1 ≤ i ≤ n. Γi then keeps Si as secret while making yi public.

• E(cp, ID, m): Given a plaintext M ∈ {0, 1}l and an identity ID, this algorithm chooses
r uniformly at random from ZZ∗

q , and subsequently computes QID = H1(ID) and κ =
ê(QID, YPKG)r. It then computes

U = rP ; V = H2(κ) ⊕ M ; W = rH3(U, V )
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and returns a ciphertext C = (U, V, W ).

• D(cp, Si, C): Given a private key Si of each decryption server and a ciphertext C =
(U, V, W ), this algorithm computes H3 = H3(U, V ) and checks if ê(P, W ) = ê(U, H3).

If C has passed the above test, this algorithm computes κi = ê(Si, U), κ̃i = ê(Ti, U),
ỹi = ê(Ti, P ), λi = H4(κi, κ̃i, ỹi), and Li = Ti + λiSi for random Ti ∈ G, and outputs
δi,C = (i, κi, κ̃i, ỹi, λi, Li). Otherwise, it returns δi,C =(i, “Invalid Ciphertext”).

• SV(cp, {yi}1≤i≤n, C, δi,C): Given a ciphertext C = (U, V, W ), a set of verification keys
{y1, . . . , yn}, and a decryption share δi,C , this algorithm computes H3 = H3(U, V ) and
checks if ê(P, W ) = ê(U, H3).

If C has passed the above test then this algorithm does the following:

- If δi,C is of the form (i, “Invalid Ciphertext”) then return “Invalid Share”.

- Else parse δi,C as (i, κi, κ̃i, ỹi, λi, Li) and compute λ′
i = H4(κi, κ̃i, ỹi).

- Check if λ′
i = λi, ê(Li, U)/κ

λ′

i

i = κ̃i and ê(Li, P )/y
λ′

i

i = ỹi.

- If the test above holds, return “Valid Share”, else output “Invalid Share”.

Otherwise, does the following:

- If δi,C is of the form (i, “Invalid Ciphertext”), return “Valid Share”, else output
“Invalid Share”.

• SC(cp, C, {δj,C}j∈Φ): Given a ciphertext C and a set of valid decryption shares {δj,C}j∈Φ

where |Φ| ≥ t, this algorithm computes H3 = H3(U, V ) and checks if ê(P, W ) = ê(U, H3).

If C has not passed the above test, this algorithm returns “Invalid Ciphertext”. (In this
case, all the decryption shares are of the form (i, “Invalid Ciphertext”).) Otherwise, it

computes κ =
∏

j∈Φ κ
cΦ
0j

j and M = H2(κ) ⊕ V , and returns M .

It is easy to see that if C is a valid ciphertext and |Φ| ≥ t then SC(C, {δj}j∈Φ) = m: Indeed,
if C = (U, V, W ) has passed all the validity checks above,

∏

j∈Φ

κ
cΦ
0j

j =
∏

i∈Φ

ê(Sj , U)cΦ
0j =

∏

j∈Φ

ê(Sj , rP )cΦ
0j = ê(

∑

j∈Φ

cΦ
0jSj , rP )

= ê(DID, P )r = ê(xQID, P )r = ê(QID, xP )r

= ê(QID, YPKG)r = dr = κ,

where cΦ
0j is the Lagrange coefficient defined in Section 5.1.2. Hence, H2(κ) ⊕ V = H2(κ) ⊕

(H1(d
r) ⊕ M) = M .

5.3 Security Analysis

5.3.1 Bilinear Diffie-Hellman Problem

Before analyzing our scheme, we review the Bilinear Diffie-Hellman (BDH) problem, which is a
new class of computational problem introduced by Boneh and Franklin [4].
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Definition 3 (BDH) Let G and F be two groups of order q where q is prime, as defined
in Section 2. Let P ∈ G∗ be a generator of G. Suppose that there exists a bilinear map
ê : G × G → F . Let ABDH be an attacker modelled as a probabilistic Turing machine.

The BDH problem refers to the computational problem in which ABDH tries to compute the
BDH key ê(P, P )abc given (G, q, P, aP, bP, cP ) and a security parameter k.

We define ABDH’s success SuccBDH

G,ABDH(k) by the probability ABDH outputs ê(P, P )abc. We

denote by SuccBDH
G (tBDH) the maximal success probability SuccBDH

G,ABDH(k) over all attackers
having running time bounded by tBDH which is polynomial in the security parameter k. We
say that the BDH problem is intractable if SuccBDH

G (tBDH) is negligible in k.

5.3.2 Proof of Security

Regarding the security of the IdThdBm scheme, we obtain the following theorem implying that
the IdThdBm scheme is secure in the sense of IND-IDTHD-CCA in the random oracle model
assuming that the BDH problem is intractable.

Theorem 1 Suppose that an IND-IDTHD-CCA attacker for the scheme IdThdBm issues up to

qE private key extraction queries, qD decryption share generation queries, qH1
, qH2

, qH3
and

qH4
queries to to the random oracles H1, H2, H3, and H4 respectively. Using this attacker as a

subroutine, we can construct a BDH attacker for the group G, whose running time is bounded

by tBDH . Concretely, we obtain the following advantage bound.

1

qH3

SuccIND−IDTHD−CCA
IdThdBm

(tIDCCA, qE , qD, qH1
, qH2

, qH3
, qH4

)

≤ 2SuccBDH
G (tBDH) +

qD + qDqH4

2k−1
,

where tBDH = tIDCCA + max(qE , qH3
)O(k3) + qH1

+ qH2
O(k3) + qH4

qDO(k3) for a security pa-

rameter k.

To prove the above theorem, we define an ordinary (non-ID-based) threshold decryption
scheme called “ThdBm” by modifying the IdThdBm scheme, which will be described shortly. Then,
we show in Lemma 2 that the IND-THD-CCA security of the ThdBm scheme, which will be
defined after the description of ThdBm, implies the IND-IDTHD-CCA security of the IdThdBm

scheme. Next, we show in Lemma 3 that the intractability of the BDH problem implies the
THD-IND-CCA security of the ThdBm scheme. Combining Lemmas 2 and 3, we obtain Theorem
1.

As mentioned, we describe the ThdBm scheme. Actually, ThdBm is very similar to IdThdBm

except for some differences in the key generation and encryption algorithm. We only describe
these two algorithms here.

• GC(k, t, n): Taking a security parameter k as input, this algorithm generates two groups G
and F of the same prime order q ≥ 2k and chooses a generator P of G. Then, it specifies
the Bilinear map ê : G × G → F and the following hash functions H2, H3, and H4 such
that H2 : F → {0, 1}l; H3 : G∗ × {0, 1}l → G∗; H4 : F → ZZ∗

q , where l denotes the length
of a plaintext. Next, it chooses x uniformly at random from ZZ∗

q and computes Y = xP .
Then, it chooses Q uniformly at random from G∗ and computes D = xQ. Note that (Y, D)
will be a public/private key pair. Now, given a private key D, the number of decryption
servers n and a threshold parameter t, this algorithm picks R1, R2, . . . , Rt−1 at random
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from G and computes F (x) = D+
∑t−1

j=1 xjRj . Then, it computes each server’s private key
Si = F (i) for 1 ≤ i ≤ n and verification key yi = ê(Si, P ) for 1 ≤ i ≤ n. Finally, it outputs
a common parameter cp = (G, q, P, ê,H2, H3, H4, Y, Q), and sends the verification/private
key pair (yi, Si) to each decryption server Γi for 1 ≤ i ≤ n. Upon receiving (yi, Si), each
decryption server publishes yi where 1 ≤ i ≤ n.

• E(cp, m): Given a plaintext message m ∈ {0, 1}l, this algorithm chooses r uniformly at
random from ZZ∗

q and computes d = ê(Q, Y ), κ = dr in turn. Then, it computes U = rP ,
V = H2(κ) ⊕ m and W = rH3(U, V ), and outputs a ciphertext C = (U, V, W ).

We now review the security notion for the threshold decryption scheme against chosen ci-
phertext attack. First, we call a generic (t, n) threshold decryption scheme in the ordinary
(non-ID-based) public key setting “T HD”. T HD consists of a key generation algorithm GK, an
encryption algorithm E, a decryption share generation algorithm D, a decryption share verifica-
tion algorithm SV and a share combining algorithm SC.

By running GK, a trusted dealer generates a public key and its matching private key, and
shares the private key among a n decryption servers. The dealer also generates (public) verifi-
cation keys that will be used for share verification. Given the public key, a sender encrypts a
plaintext by running E. A user who wants to decrypt a ciphertext gives the ciphertext to the
decryption servers requesting decryption shares. The decryption servers then run D to generate
corresponding decryption shares. The user can check the validity of the shares by running SV.
When the user collects valid decryption shares from at least t servers, the ciphertext can be
decrypted by running SC.

We now review the security notion for the threshold decryption scheme against chosen ci-
phertext attack, which we call “IND-THD-CCA”, defined in [18].

Definition 4 (IND-THD-CCA) Let BCCA be an attacker that defeats the security of the
scheme T HD in the sense of IND-THD-CCA. We assume that BCCA is a probabilistic Turing
machine taking a security parameter k as input.

Consider the following game in which the attacker BCCA interacts with the “Challenger”.

Phase 1: BCCA corrupts a fixed subset of t − 1 servers.

Phase 2: The Challenger runs the key generation algorithm taking a security parameter
k. The Challenger gives BCCA the resulting private keys of the corrupted servers, the public
key, the verification key and the common parameter. However, the Challenger keeps the
private keys of uncorrupted servers secret from BCCA.

Phase 3: BCCA adaptively interacts with the uncorrupted decryption servers, submitting
ciphertexts and obtaining decryption shares.

Phase 4: BCCA chooses two equal-length plaintexts (M0, M1). If these are given to the
encryption algorithm then the Challenger chooses β ∈ {0, 1} at random and returns a
target ciphertext C∗ = E(cp, pk, Mβ) to BCCA.

Phase 5: BCCA adaptively interacts with the uncorrupted decryption servers, submitting
ciphertexts and obtaining decryption shares. However, the target ciphertext C∗ is not
allowed to query to the decryption servers.

Phase 6: BCCA outputs a guess β̃ ∈ {0, 1}.
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We define the attacker BCCA’s success by

SuccIND−THD−CCA

T HD,BCCA (k) = 2 · Pr[β̃ = β] − 1.

We denote by SuccIND−THD−CCA
T HD (tCCA, qD) the maximum of the attacker BCCA’s success

over all attackers BCCA having running time tCCA and making at most qD decryption share
generation queries. Note that the running time and the number of queries are all polynomial in
the security parameter k. We say that the threshold decryption scheme T HD is IND-THD-CCA
secure if SuccIND−THD−CCA

T HD (tCCA, qD) is negligible in k.

We now prove the following lemma.

Lemma 2 Suppose that an IND-IDTHD-CCA attacker for the IdThdBm scheme issues up to

qE private key extraction queries, qD decryption share generation queries, qH1
, qH2

, qH3
and

qH4
queries to the random oracles H1, H2, H3, and H4 respectively. Using this attacker as a

subroutine, we can construct an IND-THD-CCA attacker for the ThdBm scheme, whose running

time and the number of decryption share generation queries and the random oracle queries to

H2, H3, and H4 are bounded by tCCA, q′D and q′H2
, q′H3

, and q′H4
respectively. Concretely, we

obtain the following advantage bound.

1

qH1

SuccIDTHD−IND−CCA
IdThdBm

(tIDCCA, qE , qD, qH1
, qH2

, qH3
, qH4

)

≤ SuccTHD−IND−CCA
ThdBm

(tCCA, q′D, q′H2
, q′H3

, q′H4
),

where tCCA = tIDCCA + max(qE , qH3
)O(k3), q′D = qD, q′H2

= qH2
, q′H3

= qH3
and q′H4

= qH4

for a security parameter k. Here, tIDCCA denotes the running time of the IDTHD-IND-CCA

attacker.

Proof. For notational convenience, we assume that the same group parameters {G, q, ê, P} and
security parameter k are given to attackers for IdThdBm and ThdBm.

Let ACCA denote an attacker that defeats the IND-IDTHD-CCA security of the IdThdBm

scheme. We assume that ACCA has access to the common parameter cpIdThdBm = (G, q, P , ê, H1,
H2, H3, H4, YPKG) of the IdThdBm scheme, where YPKG = x′P for random x′ ∈ ZZ∗

q . We also

assume that ACCA has access to its decryption servers and a set of verification keys.
Let BCCA denote an attacker that defeats the THD-IND-CCA security of the ThdBm scheme.

We assume that BCCA has access to the common parameter cpThdBm = (G, q, P, ê,H1, H2, H4, Y, Q)
of the ThdBm scheme, where Y = xP for random x ∈ ZZ∗

q and Q has been randomly chosen from

G. Also, we assume that BCCA has access to its decryption servers and a set of verification keys.
Our aim is to simulate the view of ACCA in the real attack game denoted by G0 until we

obtain a game denoted by G1, which is related to the ability of the attacker BCCA to defeat the
THD-IND-CCA security of the ThdBm scheme.

• Game G0: As mentioned, this game is identical to the real attack game described in
Definition 2. We denote by E0 the event that ACCA’s output β̄ ∈ {0, 1} is equal to
β ∈ {0, 1} chosen by the Challenger. We use a similar notation Ei for all Games Gi. Since
Game G1 is the same as the real attack game, we have

Pr[E0] =
1

2
+

1

2
SuccIND−IDTHD−CCA

IdThdBm,ACCA (k).
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• Game G1: First, we deal with the simulation of ACCA’s view in Phase 1 of the real attack
game as follows. We replace YPKG of ACCA’s common parameter cpIdThdBm by Y of BCCA’s
common parameter cpThdBm, that is, we set YPKG = Y . We also replace ACCA’s decryption
servers by BCCA’s decryption servers. Then, we randomly choose an index µ from the range
[1, qE ] where qE is the maximum number of private key extraction queries made by ACCA.
We denote the µ-th private key extraction query by IDµ.

Now, we simulate ACCA’s random oracle H1, which can be queried at any time during the
attack. To respond to queries to H1, we maintain an “input-output” list H1List whose
entry is of the form 〈(ID, QID), τ, c)〉 as explained below. Whenever H1 is queried at ID,
we perform the following. Note below that Q is from BCCA’s common parameter cpThdBm.

– If the query ID exists in the entry 〈(ID, QID), τ, c)〉, we respond with QID.

– Else we do the following.

∗ If ID = IDµ then we set QID = Q, where Q is from BCCA’s common parameter
cpThdBm.

· Set c = 1; Return QID.

∗ Else (ID 6= IDµ) do the following.

· Choose τ uniformly at random from ZZ∗
q .

· Compute QID = τP ; Set c = 0; Return QID.

We continue to deal with the simulation of ACCA’s view in other phases of the real attack
game.

If ACCA issues a private key extraction query ID in Phase 2 then we first run the simulator
for the random oracle H1 described above to obtain the corresponding entry 〈(ID, QID), τ, c)〉
in H1List. If c = 1 then we output “Abort” and make BCCA terminate the game, otherwise
we compute DID = τYPKG and respond with it. Note here that, DID = τYPKG = τY =
τxP = xτP = xQID. Hence ACCA’s view in this step of the game is identical to that in the
real attack as long as BCCA does not abort.

If ACCA corrupts t − 1 decryption servers in Phase 3, that is, it obtains private keys
{Si}1≤i≤t−1 of corrupted decryption servers, we give them to BCCA.

Next, if ACCA submits a target identity ID
∗ in Phase 4 then we run the simulator for the

random oracle H1 to obtain the corresponding entry 〈(ID∗, QID∗), τ, c)〉 in H1List. This
time, if c = 0 then we output “Abort” and make BCCA terminate the game, otherwise
we continue to deal with the next game. Note that if BCCA dose not terminate, we have
QID∗ = QIDµ = Q. Since Q was randomly chosen from G, ACCA’s view in this step of the
game is identical to that in the real attack as long as BCCA doesn’t abort.

In Phase 5, if ACCA issues private key extraction queries ID 6= ID
∗, we respond to these

queries as we did in the simulation for Phase 2 above. Note in this phase that ACCA submits
a ciphertext (i, C) to the i-th uncorrupted decryption server and obtains a corresponding
decryption share. (Recall that BCCA’s decryption servers were provided as its decryption
servers to ACCA .)

If ACCA submits a pair of two equal-length plaintexts (M0, M1) in Phase 6, we give it
to BCCA, then BCCA uses (M0, M1) as its plaintext-pair to be challenged. After BCCA

queries (M0, M1) to its encryption oracle, it obtains a target ciphertext C∗ such that
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C∗ = (U, V, W ) = (rP, Mβ⊕H2(ê(Q, Y )r), rH3(U, V )), where r and β are chosen uniformly
at random from ZZ∗

q and {0, 1} respectively.

Now, we return C∗ to ACCA as its target ciphertext. Note here that

C∗ = (rP, Mβ ⊕ H2(ê(QIDµ , YPKG)r), rH3(U, V ))

= (rP, Mβ ⊕ H2(ê(QID∗ , YPKG)r), rH3(U, V ))

= (rP, Mβ ⊕ H2(ê(H1(ID
∗), YPKG)r), rH3(U, V )).

Hence, C∗ is exactly the same as the target ciphertext that ACCA acquires in Phase 6 of
the real attack.

In Phase 7, we answer ACCA’s queries in the same way we did in the simulation for Phase 5.
Note however that ACCA is not allowed to query C∗ to any of the uncorrupted decryption
servers.

Finally, if ACCA submits its guess β̃ in Phase 8, we give it to BCCA.

Now we quantitatively analyze the simulations above. Note that if BCCA does not abort
in the simulation of Phases 2, 3, 5 and 7, ACCA’s view in the real attack game is identical
to it’s view in Game G1. Note also that the bit β is uniformly chosen. Hence we have

Pr[E1] −
1

2
≥ ǫ

(

Pr[E0] −
1

2

)

,

where ǫ denotes the probability that BCCA does not abort in Phases 2, 3, 5 and 7, that
is, the chance that IDµ = ID

∗. Since µ has been uniformly chosen from [1, qH1
], we have

ǫ = 1
qH1

.

Hence, by definition of Pr[E0] and Pr[E1], we obtain

SuccIND−THD−CCA

ThdBm,BCCA (k) ≥
1

qH1

SuccIND−IDTHD−CCA

IdThdBm,ACCA (k).

Finally note that the running time tCCA of an arbitrary IND-THD-CCA attacker for the scheme
ThdBm is lower-bounded by tIDCCA + max(qE , qH1

)O(k3). Note also that the number of queries
to the random oracles H2, H3, H4 and the decryption servers made by BCCA are the same as the
number of those ACCA has made. Hence, we obtain the bound in the lemma statement. ⊓⊔

We then state and prove the following lemma.

Lemma 3 Suppose that an IND-THD-CCA attacker for the ThdBm scheme issues up to qD

decryption share generation queries, qH2
, qH3

and qH4
queries to the random oracles H1, H2,

H3, and H4 respectively. Using this attacker as a subroutine, we can construct a BDH attacker

for the group G, whose advantage including running time is bounded by tBDH . Concretely, we

obtain the following advantage bound.

1

2
SuccIND−THD−CCA

ThdBm
(t, qH2

, qH3
, qH4

qD) ≤ SuccBDH
G (tBDH) +

qD + qDqH4

2k
,

where tBDH = tCCA + qH2
+ qH3

O(k3) + qH4
qDO(k3) for a security parameter k.
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Proof. For notational convenience, we assume that the same group parameters {G, q, ê, P} and
security parameter k are given to attackers for ThdBm and the BDH problem.

Let BCCA be an attacker that defeats the THD-IND-CCA security of the ThdBm scheme. Let
ABDH be an attacker for the BDH problem given (G, q, ê, P, aP, bP, cP ), as defined in Section
5.3.1. We provide a same security parameter k as input to both BCCA and ABDH.

We start with Game G0 which is the same as the real attack game associated with BCCA.
Then, we modify this game until we completely simulate the view of BCCA and obtain a game
in which ABDH is able to solve the BDH problem.

• Game G0: This game is actually the same as the real attack game. However, we repeat it
for cleaning up notations.

First, we run the key/common parameter generation algorithm of the ThdBm scheme on
input a security parameter k, a threshold parameter t and a number of decryption servers
n. We give BCCA the resulting common parameter cpThdBm = (G, q, ê, P,H2, H3, H4, Y, Q)
where Y = xP for random x ∈ ZZ∗

q and the set of verification keys {yi}, where 1 ≤ i ≤ n.
But we keep the private key D = xQ as secret.

If BCCA submits a pair of plaintexts (M0, M1), we choose a bit β uniformly at random and
create a target ciphertext C∗ = (U∗, V ∗, W ∗) as follows.

U∗ = r∗P, V ∗ = H∗
2 ⊕ Mβ , and W ∗ = r∗H∗

3 ,

where κ∗ = ê(Q, Y )r∗ for random r∗ ∈ ZZ∗
q , H∗

2 = H2(κ
∗) and H∗

3 = H3(U
∗, V ∗).

Once all the decryption servers are set up, BCCA can issue decryption share generation
queries at its will. We denote those queries by C = (U, V, W ). Note that C is different
from the target ciphertext C∗.

On input C∗, BCCA outputs β̃. We denote by E0 the event β̃ = β and use a similar notation
Ei for all Gi. Since game G0 is the same as the real attack game, we have

Pr[E0] =
1

2
+

1

2
SuccTHD−IND−CCA

ThdBm,BCCA (k).

• Game G1: First, we replace replace Y and Q in cpThdBm by bP and cP respectively, all of
which are given to ABDH. We denote bP and cP by YBDH and QBDH respectively. Now,
we assume that a subset of t − 1 decryption servers have been corrupted without loss of
generality. Let Φ′ = {0, 1, . . . , t−1}. Then, we choose S1, S2, . . . , St−1 uniformly at random

from G and compute yi = ê(QBDH, YBDH)cΦ
′

i0

∏t−1

j=1 ê(Sj , P )cΦ
′

ij , where t ≤ i ≤ n and cΦ′

ij

denotes a Lagrange coefficient with respect to the set Φ′. We send Si where 1 ≤ i ≤ t − 1
to each of the corrupted servers and send yi where t ≤ i ≤ n to each of the uncorrupted
decryption servers. Then, BCCA obtains access to {Si} and {yi}.

Now, we modify the target ciphertext C∗ = (U∗, V ∗, W ∗) as follows. First, we choose
κ+ uniformly at random from F and replace κ∗ by κ+. We also choose H+

2 uniformly at
random from {0, 1}l, replace H∗

2 by H+
2 and V ∗ by V + = H+

2 ⊕mβ . Accordingly, whenever
the random oracle H2 is queried at κ+, we respond with H+

2 .

Summing up, we obtain a new challenge ciphertext denoted by C∗
+ such that C∗

+ =
(U∗, V +, W ∗), where V + = H+

2 ⊕ Mβ and H+
2 = H2(κ

+) for random κ+ ∈ F .

Note that the attacker BCCA’s view has the same distribution in both Game G0 and Game
G1, since we have replaced one set of random variables by another set of random variables
which is different, yet has the same distribution.
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Thus, we have

Pr[E1] = Pr[E0].

• Game G2: In this game, we restore the queries to the random oracle H2. That is, if H2 is
queried at κ+, we do not respond with H+

2 any more but respond with an answer from the
random oracle H2 instead. We assume that this rule applies to all the forthcoming games.

By the above rule, κ+ and H+
2 are used only in the target ciphertext C∗

+. Accordingly,
the distribution of input to BCCA does not depend on β. Hence, we get Pr[E2] = 1/2.

Note that Game G2 and Game G1 may differ if the random oracle H1 is queried at κ∗.
Let AskH22

denotes the event that, in game G2, H2 is queried at κ∗. We will use the same
notation AskH2i

to denote such events in all other games.

Now, we have

|Pr[E2] − Pr[E1]| ≤ Pr[AskH22
].

• Game G3: In this game, we further modify the target ciphertext C∗
+ = (U∗, V +, W ∗).

First, we replace U∗ by aP . We keep V +(= H+
2 ⊕Mβ = H2(κ

+)⊕Mβ) as it is, but define
κ+ as the BDH key ê(P, P )abc. Then, we choose s+ uniformly at random from ZZ∗

q , compute
s+aP and replace W ∗ by s+aP . Finally, we modify the computation of the random oracle
H3 as follows. Whenever H3 is queried at (aP, V +), we compute H+

3 = s+P and respond
with H+

3 . Namely, we set H+
3 = H2(aP, V +).

Summing up, we have obtained a new target ciphertext denoted by C∗
BDH = (UBDH, VBDH,

WBDH) such that

UBDH = aP ; VBDH = V +; WBDH = s+aP,

where V + = H2(ê(P, P )abc) ⊕ Mβ . Moreover, we have H3(UBDH, VBDH) = H+
3 = s+P .

Note that we have replaced one set of random variables {U∗, W ∗} by another set of random
variables {aP, s+aP} which is different, yet has the same distribution. Note also that
C∗

BDH is a valid ciphertext since ê(P, WBDH) = ê(UBDH, H+
3 ) by the construction of H+

3

and WBDH. Hence, the attacker BCCA’s view has the same distribution in both Game G2

and Game G3, and we have

Pr[AskH23
] = Pr[AskH22

].

• Game G4: In this game, we modify the random oracle H3. Note that we have already
dealt with the simulation of the random oracles H3 appeared in the target ciphertext C∗

BDH,
namely, the case when H3 is queried at (UBDH, VBDH). In the following, we deal with the
rest of simulation.

Whenever H3 is queried at (U, V ) 6= (UBDH, VBDH), we choose s uniformly at random from
ZZ∗

q , computes H3 = sY and respond with H3. Let H3List be a list of all “input-output”
pairs of the random oracle H3. Specifically, H3List consists of the pairs 〈(U, V ), H3〉 where
H3 = H3(U, V ) = sY . Notice that this list grows as BCCA’s attack proceeds.

Because H3 is assumed to be a random oracle, the above generation of the outputs of H3

perfectly simulates the real oracle. Hence, BCCA’s view in this game remains the same as
that in the previous game. Hence, we have

Pr[AskH24
] = Pr[AskH23

].
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Note that the decryption oracle has been regarded as perfect up to this game. The rest of
games will deal with simulation of the decryption oracle.

• Game G5: In this game, we make the decryption oracle reject all ciphertexts C = (U, V, W )
such that H3 = H3(U, V ) has not been queried. If C is a valid ciphertext while H3(U, V )
has not been queried, BCCA’s view in Game G5 and Game G4 may differ.

Note that if a ciphertext C is valid then it should be the case that ê(P, W ) = ê(U, H3).
However, since we have assumed that H3 has not been queried in this game, the above
equality holds with probability at most 1/2k since output of the simulated random oracle
H3 is uniformly distributed in G. Adding up all the decryption queries up to qD, we have

|Pr[AskH25
] − Pr[AskH24

]| ≤
qD

2k
.

• Game G6: In this game, we modify the decryption oracle in the previous game to yield a
decryption oracle simulator which decrypts a submitted decryption query C = (U, V, W )
without the private key. Note that the case when H3(U, V ) has not been queried are
excluded in this game since it was already dealt with in the previous game. Hence, we
assume that H3(U, V ) has been queried at some point.

Now we describe the complete specification of the decryption oracle simulator. On input
a ciphertext C = (U, V, W ), the decryption oracle simulator works as follows.

– Extract 〈(U, V ), H3〉 from H3List.

– If ê(P, W ) = ê(U, H3)

∗ Compute K = (1/s)W . (Note here that (1/s)W = (1/s)rsY = rY = rxP .)

∗ Compute κ = ê(Q, K)

∗ For t ≤ i ≤ n, compute κi = κcΦ
′

i0

∏t−1

j=1 ê(Sj , U)cΦ
′

ij .

∗ Return κi.

– Else reject C.

Note in the above construction that

κi = κcΦ
′

i0

t−1
∏

j=1

ê(Sj , U)cΦ
′

ij = ê(Q, K)cΦ
′

i0

t−1
∏

j=1

ê(Sj , U)cΦ
′

ij = ê(Q, rxP )cΦ
′

i0

t−1
∏

j=1

ê(Sj , rP )cΦ
′

ij

= ê(Q, xP )rcΦ
′

i0

t−1
∏

j=1

ê(Sj , P )rcΦ
′

ij =
(

ê(Q, Y )cΦ
′

i0

t−1
∏

j=1

ê(Sj , P )cΦ
′

ij

)r

= yr
i .

Hence, κi is a correct i-th share of the BDH key κ = ê(Q, Y )r. However, we need more
efforts to simulate a decryption share δi containing κi completely. This can be done as
follows.

First, we simulate the random oracle H4 in a classical way. That is, if H4 is queried, we
choose H4 uniformly at random from ZZ∗

q and respond with it. As usual, we maintain an
“input-output” list H4List for H4 whose entry is of the form 〈(κ, κ̃, ỹ), H4〉. Next, we choose
Li and λi uniformly at random from G and ZZ∗

q respectively, and compute κ̃i = ê(Li, U)/κλi

i

and ỹi = ê(Li, P )/yλi

i . Then, we set λi = H4(κi, κ̃i, ỹi). Finally, we check whether there
exists an entry 〈(κ, κ̃, ỹ), H4〉 in H4List satisfying H4 = λi but (κ, κ̃, ỹ) 6= (κi, κ̃i, ỹi). If such
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entry exists then we return “Abort” message to BCCA. Otherwise, we return the simulated
value δi = (i, κi, κ̃i, ỹi, Li) to BCCA as a decryption share corresponding to C and save
〈(κi, κ̃i, ỹi, ), λi〉 to H4List.

Since H3 are assumed to have already been queried in this game (i.e., these case were
already dealt with in the previous game), the above simulated decryption share generation
server perfectly simulates the real one except the error (collision) in the simulation of H4

occurs. Note that this happens with probability qH4
/2k, considering up to qH4

queries to
H4. Adding up all the decryption queries up to qD, we have

|Pr[AskH26
] − Pr[AskH25

]| ≤
qDqH4

2k
.

Now, recall that the target ciphertext used so far is C∗
BDH that constructed in Game G3.

Accordingly, AskH26
denotes an event that the BDH key ê(P, P )abc has been queried to the

random oracle H2. Note also that we have used the easiness of the DDH problem in the group
G to simulate the decryption oracle.

Therefore, at this stage, ABDH can solve the BDH problem by outputting the queries to the
random oracle H2. That is, we have

Pr[AskH26
] ≤ SuccBDH

G,ABDH(k).

Thus, putting all the bounds we have obtained in each game together, we have

1

2
SuccIND−THD−CCA

ThdBm,BCCA (k) = |Pr[E0] − Pr[E2]| ≤ Pr[AskH22
] ≤ Pr[AskH25

] +
qD

2k

≤
qD

2k
+ Pr[AskH26

] +
qDqH4

2k
≤

qD + qDqH4

2k
+ SuccBDH

G,ABDH(k).

Considering the running time tBDH and queries of an arbitrary BDH-attacker for the group G,
we obtain the bound in the lemma statement. ⊓⊔

6 Application to Mediated ID-Based Encryption Schemes

6.1 Security of Mediated ID-Based Encryption Schemes

The main motivation of mediated cryptography [3] is to revoke a user’s privilege to perform
cryptographic operations such as decrypting ciphertexts or signing messages instantaneously. In
[3], Boneh et al. constructed the first mediated encryption and signature schemes using the RSA
primitive. Their idea was to split a user’s private key into two parts and give one piece to the
on-line Security Mediator (SEM) and the other to the user. To decrypt or sign, the user must
acquire a message-specific token which is associated with the SEM part of private key from the
SEM. As a result, revocation is achieved by instructing the SEM not to issue tokens for the user.

Recently, the problem of realizing mediated encryption in the ID-based setting was considered
by Ding and Tsudik [7]. They proposed an ID-based mediated encryption scheme based on RSA-
OAEP [2]. Although their scheme offers good performance and practicality, from a security point
of view, it has a drawback which stems from the fact that a common RSA modulus is used for
all the users within the system and hence anyone obtained a single private/public key pair can
factor the modulus by compromising the SEM. Therefore, to guarantee the security of Ding and
Tsudik’s scheme, one should assume that the SEM’s private key must be protected throughout
the life of the system.
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As an alternative to Ding and Tsudik’s scheme, Libert and Quisquater [14] proposed a new
mediated ID-based encryption scheme. Due to its structural property (mainly because Boneh
and Franklin’s ID-based encryption scheme is used), their scheme does not suffer from the
“common modulus” problem of Ding and Tsudik’s scheme. That is, a compromise of the SEM’s
private key does not lead to a break of the whole system. In contrast to this positive result,
Libert and Quisquater, however, observed that even though the SEM’s private key is protected,
their scheme as well as Ding and Tsudik’s scheme are not secure against “inside attack” in which
the attacker who possesses the user part of private key conducts chosen ciphertext attack. As a
result, it should be strictly assumed in those schemes that users’ private keys must be protected
to ensure chosen ciphertext security. In practice, this assumption is fairly strong in that there
may be more chance for users to compromise their private keys than the SEM does since the
SEM is usually assumed to be a trusted entity configured by a system administrator.

According to Libert and Quisquater [14], the reason why the mediated schemes proposed so
far (including their scheme) are not secure against inside attack is that in the SEM architecture of
those schemes, there is no mechanism for checking the validity of a ciphertext before generating
a token from it (that is, “publicly checkable” validity test is missing). To get an intuition for
this, let us examine Libert and Quisquater’s scheme which can be described as follows. In the
setup stage, the common parameters including the PKG’s public key YPKG = xP where x is
the master key and hash functions H1, H2, H3, and H4 are generated. In the key generation
stage, the PKG computes QID = H1(ID) and DID = xQID on receiving a user’s identity ID.
Then, it chooses a random point DID,user from G∗ and computes DID,sem = DID − DID,user.
The PKG gives the partial private key DID,user to the user and DID,sem to the SEM. Given the
user’s identity ID and the common parameter, a sender can encrypt a message M ∈ {0, 1}l by
computing C = (U, V, W ) where U = rP , V = σ ⊕ H2(ê(YPKG, QID)

r), W = M ⊕ H4(σ), and
r = H3(σ, M) ∈ ZZ∗

q for random σ ∈ {0, 1}l. On receiving C = (U, V, W ), the user forwards it to
the SEM. Then, the SEM and the user perform the following in parallel.

• SEM (We call this procedure “SEM oracle”): Check if the user’s identity ID is revoked.
If it is, return “ID Revoked”. Otherwise, compute gsem = ê(U, DID,sem) and send it to the
user.

• User (We call this procedure “User oracle”): Compute guser = ê(U, DID,user). When
receiving gsem from the SEM, compute g = gsemguser. Then, compute σ = V ⊕H2(g) and
M = W ⊕ H4(σ). Finally, check U = r′P for r′ = H3(σ, M). If it is, return M , otherwise,
return “Reject”.

Now, let us assume that a “strong” attacker has a target ciphertext C∗ = (U∗, V ∗, W ∗) which
encrypts a message Mβ where β is chosen at random from {0, 1}, a target identity ID

∗, and a
private key DID∗,user associated with ID

∗. The attacker can easily defeat the indistinguishability
of C∗ by conducting a simple chosen ciphertext attack as follows. The attacker just changes
C∗ into C ′ = (U∗, V ∗, W ′) for W ′ 6= W ∗, and queries this to the SEM oracle. Upon receiving
C ′, the SEM oracle will simply return g∗sem = ê(U∗, DID∗,sem). The attacker then computes
g∗ = g∗semg∗user where g∗user = ê(U∗, DID∗,user) using the user’s private key DID∗,user. Obviously,
this problem is caused by the fact that the validity of queried ciphertexts is not checked in the
SEM oracle.

Libert and Quisquater remained removal of this drawback as an open problem, only providing
a proof that their scheme is secure against chosen ciphertext attack in a weaker sense – attackers
are not allowed to obtain the user part of private key.
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However, in the following section, we present a new mediated ID-based encryption scheme
which is secure against ciphertext attack in a strong sense, that is, secure against chosen cipher-
text attack conducted by the stronger attacker who obtains the user part of private key.

6.2 Our Mediated ID-Based Encryption Scheme

In what follows, we describe our mediated ID-based encryption scheme “mIdeBm”, which is based
on the IdThdBm scheme described in Section 5.2. mIdeBm consists of the following algorithms.

• A randomized key/common parameter generation algorithm GC(k): Given a security pa-
rameter k, the PKG runs the key generation algorithm of IdThdBm. The output of this
algorithm cp = (G, q, P , ê, H1, H2, H3, H4, YPKG) is as defined in the description of
IdThdBm. Note that cp is given to all interested parties while the master key x is kept
secret within the PKG.

• A private key extraction algorithm EX(cp, ID): This algorithm is run by the PKG on
receiving a private key extraction query from any user who wants to extract a private key
that matches to an identity ID.

– Given ID, compute QID = H1(ID) and DID = sQID.

– Output DID.

• A randomized private key distribution algorithm DK(cp, DID): Given DID which is a private
key associated with an identity ID, the PKG splits DID using (2, 2) secret-sharing technique
as follows.

– Pick R at random from G∗ and construct F (u) = DID + uR for u ∈ {0} ∪ IN.

– Compute DID,sem = F (1) and DID,user = F (2).

The PKG gives DID,sem to the SEM and DID,user to the user.

• A randomized encryption algorithm E(cp, ID, M): Given a plaintext M ∈ {0, 1}l and a
user’s identity ID, a user creates a ciphertext C = (U, V, W ) such that

U = rP ; V = H2(κ) ⊕ M ; W = rH3(U, V ),

where κ = ê(H1(ID), YPKG)r for random r ∈ ZZ∗
q .

• A decryption algorithm D(cp, DID,sem, DID,user, C): When receiving C = (U, V, W ), a user
forwards it to the SEM. The SEM and the user perform the following in parallel.

– SEM (We call this procedure “SEM oracle”):

1. Check if the user’s identity ID is revoked. If it is, return “ID Revoked”.

2. Otherwise, do the following:

∗ Compute H3 = H3(U, V ) and check if ê(P, W ) = ê(U, H3). If C has passed
this test, compute κsem = ê(DID,sem, U) and send δID,sem,C = (sem, κsem)
to the user. Otherwise, send δID,sem,C = (sem, “Invalid Ciphertext”) to the
user.

– User (We call this procedure “User oracle”):
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1. Compute H3 = H3(U, V ) and check if ê(P, W ) = ê(U, H3). If C has passed this
test, compute κuser = ê(DID,user, U). Otherwise, return “Reject” and terminate.

2. Get δID,sem,C from the SEM and do the following:

∗ If δID,sem,C is of the form (sem, “Invalid Ciphertext”), return “Reject” and

terminate. Otherwise, compute κ = κ
cΦ
01

semκ
cΦ
02

user where cΦ
01 and cΦ

02 denote the
Lagrange coefficients for the set Φ = {1, 2} and M = H2(κ) ⊕ V , and return
M .

Notice that in the SEM oracle of our scheme, the validity of a ciphertext is checked before
generating a token in the same way as the decryption share generation algorithm of IdThdBm
does. Indeed, we show that the IND-IDTHD-CCA (Definition 2) security of the IdThdBm scheme
with (t, n) = (2, 2) is sufficient for the mIdeBm scheme to be secure against the strong attacker
that conducts chosen ciphertext attack possessing the user part of private key, which we call
“IND-mID-sCCA (indistinguishability of mediated ID-based encryption against strong chosen
ciphertext attack, which is similar to Libert and Quisquater’s “IND-mID-wCCA (“w” stands
for “weak”) but assumes a stronger attacker)” defined in [14]. The formal definition of IND-
mID-sCCA is as follows.

Definition 5 (IND-mID-sCCA) Let ACCA′
be an attacker that defeats the IND-mID-sCCA

security of an mediated ID-based encryption scheme MIDE which consists of GK, EX, DK, E,
and D. (For details of these algorithms, readers are referred to [7], [14] or the description of
mIdeBm given in Section 6.2.) We assume that ACCA′

is a probabilistic Turing machine taking a
security parameter k as input. Consider the following game in which the attacker ACCA′

interacts
with the “Challenger”.

Phase 1: The Challenger runs the Setup algorithm taking a security parameter k. The
Challenger then gives the common parameter to ACCA′

.

Phase 2: Having obtained the common parameter, ACCA′
issues the following queries.

– “User key extraction” query ID: On receiving this query, the Challenger runs the
Keygen algorithm to obtain the user part of private key and sends it to ACCA′

.

– “SEM key extraction” query ID: On receiving this query, the Challenger runs the
Keygen algorithm to obtain the SEM part of private key and sends it to ACCA′

.

– “SEM oracle” query (ID, C): On receiving this query, the Challenger runs to obtain
a SEM part of private key. Taking the resulting private key as input, the Challenger
runs the SEM oracle in the Decrypt algorithm to obtain a decryption token for C
and sends it to ACCA′

.

– “User oracle” query (ID, C): On receiving this query, the Challenger runs to obtain
a User part of private key. Taking the resulting private key as input, the Challenger
runs the User oracle in the Decrypt algorithm to obtain a decryption token for C and
sends it to ACCA′

.

Phase 3: ACCA′
selects two equal-length plaintexts (M0, M1) and a target identity ID

∗

which was not queried before. On receiving (M0, M1) and ID
∗, the Challenger runs the

Keygen algorithm to obtain User and SEM parts of the private key associated with ID
∗.

The Challenger then chooses β ∈ {0, 1} at random and creates a target ciphertext C∗ by
encrypting Mβ under the target identity ID

∗. The Challenger gives the target ciphertext

and the User part of the private key to ACCA′
.
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Phase 4: ACCA′
continues to issue “User key extraction” query ID 6= ID

∗, “SEM key
extraction” query ID 6= ID

∗, “SEM oracle query” (ID, C) 6= (ID∗, C∗), and “User oracle”
query (ID, C) 6= (ID∗, C∗). The details of these queries are as described in Phase 2.

Phase 5: ACCA′
outputs a guess β̃ ∈ {0, 1}.

We define the attacker ACCA′
’s success by

SuccIND−mID−sCCA

MIDE,ACCA′ (k) = 2 · Pr[β̃ = β] − 1.

We denote by SuccIND−mID−sCCA
MIDE (tCCA,KEY,user , qKEY,sem, qD,sem, qD,user) the maximum of

the attacker ACCA′
’s success over all attackers ACCA′

having running time tCCA and making at
most qE,user “User key extraction” queries, qE,sem “SEM key extraction” queries, qD,sem “SEM
oracle” queries, and qD,user “User oracle” queries. Note that the running time and the number
of queries are all polynomial in the security parameter k. We say that the mediated ID-based en-
cryption scheme MIDE is IND-mID-sCCA secure if SuccIND−mID−sCCA

MIDE (tCCA,E,user , qE,sem, qD,sem, qD,user)
is negligible in k.

We now state and prove the following theorem which implies if the IdThdBm scheme is IND-
IDTHD-CCA secure then the mIdeBm scheme is IND-mID-sCCA secure.

Theorem 2 Suppose that an IND-mID-sCCA attacker for the mIdeBm scheme issues up to

qE,user “User key extraction” queries, qE,sem “SEM key extraction” queries, qD,sem “SEM oracle”

queries, and qD,user “User oracle” queries. Using this attacker as a subroutine, we can construct

an IND-IDTHD-CCA attacker for the IdThdBm scheme with (t, n) = (2, 2), whose running time,

private key extraction queries, and decryption share generation queries are bounded by tIDCCA,

qE, and qD respectively. Concretely, we obtain the following advantage bound.

SuccIND−mID−sCCA
mIdeBm

(tCCA,E,user , qE,sem, qD,sem, qD,user)

≤ SuccIND−IDTHD−CCA
IdThdBm

(tIDCCA, qE , qD),

where tIDCCA = tCCA +max(qE,user, qE,sem, qD,sem, qD,user)O(k3), qE = O(1)(qE,user + qE,sem +
qD,sem + qD,user), qD = O(1)(qD,sem + qD,user) for a security parameter k. Here, tCCA denotes

the running time of the ID-mID-CCA attacker.

Proof. For notational convenience, we assume that the same group parameter cp = {G, q, ê, P, YPKG}
where YPKG = xP and security parameter k are given to attackers for mIdeBm and IdThdBm.

Let ACCA′
denote an attacker that defeats the IND-mID-sCCA security of the mIdeBm scheme.

Let ACCA denote an attacker that defeats the IND-IDTHD-CCA security of the IdThdBm

scheme with (t, n) = (2, 2).
Our aim is to simulate the view of ACCA′

in the real attack game denoted by G0 until we
obtain a game denoted by G1, which is related to the ability of the attacker ACCA to defeat the
IND-IDTHD-CCA security of the IdThdBm scheme.

• Game G0: As mentioned, this game is identical to the real attack game described in
Definition 5. We denote by E0 the event that ACCA′

’s output β̄ ∈ {0, 1} is equal to
β ∈ {0, 1} chosen by the Challenger. We use a similar notation Ei for all Games Gi. Since
Game G1 is the same as the real attack game, we have

Pr[E0] =
1

2
+

1

2
SuccIND−mID−sCCA

mIdeBm,ACCA (k).
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• Game G1: First, we deal with the simulation of ACCA′
’s view in Phase 1 of the real

attack game as follows. On receiving ACCA′
’s “User key extraction” query ID in Phase

1, we search UserKeyList which consists of 〈identity, corresponding user part of private
key〉 pairs for an entry that is matched against ID. If there exists one, we extract a
corresponding user part of private key and return it to ACCA′

as an answer. Otherwise,
we forward ID to ACCA’s Challenger as a private key extraction query. The Challenger
then runs the private key extraction algorithm of IdThdBm taking ID as input and returns
a private key DID associated with ID. We intercept DID and split it into DID,sem and
DID,user using the (2, 2) secret-sharing technique presented in Section 5.1.2. We then add
〈ID, DID,user〉 to UserKeyList. We also add 〈ID, DID,sem〉 to SEMKeyList which consists of
〈identity, corresponding SEM part of private key〉 pairs.

We answer ACCA′
’s “SEM key extraction” query in a similar way as we do for the “User key

extraction” query. Note that in this case, SEMKeyList and UserKeyList are also updated
concurrently.

On receiving ACCA′
’s “SEM oracle” query (ID, C) where C = (U, V, W ) in Phase 1, we

searche SEMKeyList for an entry 〈ID, DID,sem〉. If it exists, we extract DID,sem. We then
check if ê(P, W ) = ê(U, H3) for H3 = H3(U, V ). If C has passed this test, we compute
κsem = ê(DID,sem, U) and return δID,sem,C = (sem, κsem) to ACCA′

. Otherwise, we re-

turn δID,sem,C = (sem, “Invalid Ciphertext”) to ACCA′
. If 〈ID, DID,sem〉 does not exist in

SEMKeyList, we forward ID as a “private key extraction” query to ACCA’s Challenger to
obtain a private key DID associated with ID. We then split it into DID,sem and DID,user us-
ing the (2, 2) secret-sharing technique. Then we generate a decryption share δID,sem,C of C
in the same way as we do for the case when 〈ID, DID,sem〉 exists in SEMKeyList, and return

δID,sem,C to ACCA′
. In this case, we add 〈ID, DID,sem〉 and 〈ID, DID,user〉 to SEMKeyList and

UserKeyList respectively.

On receiving ACCA′
’s “User oracle” query (ID, C), we first search SEMKeyList for an en-

try 〈ID, DID,sem〉. If it exists, we also search UserKeyList for the corresponding entry
〈ID, DID,user〉. (Recall that SEMKeyList and UserKeyList are updated concurrently.) Hav-
ing obtained DID,sem and DID,user, we generate corresponding decryption shares δID,sem,C

and δID,user,C in the same way as we do for “SEM oracle” query. Here, if C is invalid, that
is, ê(P, W ) 6= ê(U, H3) for H3 = H3(U, V ), we return “Reject”. Otherwise, we combine the
shares δID,user,C and δID,sem,C using the Lagrange interpolation technique and return the

resulting value to ACCA′
. On the other hand, if 〈ID, DID,sem〉 does not exist in SEMKeyList,

we query ID as a private key extraction query to ACCA’s Challenger to acquire DID. Having
obtained DID, we split DID into DID,sem and DID,user using (2, 2) secret-sharing technique
and update SEMKeyList and UserKeyList accordingly. We then perform the same routine
as we do for the case when 〈ID, DID,sem〉 exists in SEMKeyList and return a special symbol

“Reject” or a certain value to ACCA′
.

In Phase 3, if ACCA′
issues two equal-length plaintexts (M0, M1) and a target identity

ID
∗, we forward (M0, M1, ID

∗) to ACCA’s Challenger. On receiving (M0, M1, ID
∗), the

Challenger runs the private key extraction algorithm of IdThdBm to get a private key DID∗

associated with ID
∗ and runs the private key distribution algorithm of IdThdBm to split

ID
∗ into S∗

1 and S∗
2 . The Challenger returns S∗

2 to ACCA as a corrupted party’s private key.
We then rename S∗

2 as DID∗,user (let us then assume that S∗
1 represents DID∗,sem) and send

this to ACCA′
. (That is, the strong attacker ACCA′

possesses the user part of private key.)
Now, the Challenger chooses β ∈ {0, 1} at random and runs the encryption algorithm E
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of IdThdBm taking (Mβ , ID∗) as input and gets a target ciphertext C∗. If the Challenger

returns C∗, we send that to ACCA′
.

On receiving ACCA′
’s “User key extraction” and “SEM key extraction” queries in Phase 4,

we answer them in the same way we did in Phase 1.

Suppose now that ACCA′
issues a “SEM oracle” query (ID, C) 6= (ID∗, C∗) in Phase 4. If

ID 6= ID
∗, we answer it in the same way we did for the SEM oracle query in Phase 1. If ID =

ID
∗ (in this case, C 6= C∗), we query C to ACCA’s Challenger as a decryption share gener-

ation query. The Challenger then runs decryption share generation algorithm of IdThdBm
taking (S∗

1(= DID∗,sem), C) as input, gets a corresponding decryption share δ1,C and re-
turns it. We then take κ1 out from δ1,C if δ1,C 6= (1, “Invalid Ciphertext”). We rename κ1

as κsem and send δID∗,sem,C = (sem, κsem) to ACCA′
. If δ1,C = (1, “Invalid Ciphertext”), we

send δID∗,sem,C = (sem, “Invalid Ciphertext”) to ACCA′
.

Suppose now that ACCA′
issues a “User oracle” query (ID, C) 6= (ID∗, C∗) in Phase 4. If

ID 6= ID
∗, we answer it in the exactly same way we did for the “User oracle” query in

Phase 1. If ID = ID
∗ (in this case, C 6= C∗), we query C to ACCA’s Challenger as a

decryption share generation query. The Challenger then runs decryption share generation
algorithm of IdThdBm taking (S∗

1(= DID∗,sem), C) as input and returns a corresponding

decryption share δ1,C . If δ1,C = (1, “Invalid Ciphertext”), we send “Reject” to ACCA′

and terminate the game. Otherwise, we take out κ1 from δ1,C , rename it as κsem, and
form δID∗,sem,C = (sem, κsem). We then compute another decryption share of C using
the private key DID∗,user (recall that the ACCA’s Challenger returned it as a corrupted
party’s private key). If C is invalid, that is, ê(P, W ) 6= ê(U, H3) for H3 = H3(U, V ), we
return “Reject”. Otherwise, we combine the shares δID∗,user,C and and δID∗,sem,C using the

Lagrange interpolation technique and return the resulting value to ACCA′
.

Finally, once ACCA′
outputs a guess β′ ∈ {0, 1}, we returns it as ACCA’s guess.

Now we quantitatively analyze the simulations above.

Note from the simulation that ACCA′
’s view in the real attack game is identical to it’s view

in Game G1. Note also that the bit β is uniformly chosen. Hence we have

Pr[E1] −
1

2
≥ Pr[E0] −

1

2
.

Hence, by definition of Pr[E0] and Pr[E1], we obtain

SuccIND−IDTHD−CCA

IdThdBm,ACCA (k) ≥ SuccIND−mID−sCCA

mIdeBm,ACCA′ (k).

Considering the running time and the number of queries, we obtain the bound in the theorem
statement. ⊓⊔

7 Concluding Remarks

In this paper, we discussed the issues related to the realization of ID-based threshold decryption
and proposed the first threshold ID-based decryption scheme provably secure against chosen
ciphertext attack. We also showed how our ID-based threshold decryption scheme can result
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in a mediated ID-based encryption scheme secure against “inside attack”, whereby an attacker
who possesses a user part of private key conducts chosen ciphertext attack.

Interesting future research would be finding more security applications where “ID-based
threshold decryption” is particularly useful.
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