
Identity-based Chameleon Hash and Applications

Giuseppe Ateniese Breno de Medeiros
{ateniese, breno}@cs.jhu.edu

Department of Computer Science
The Johns Hopkins University

Abstract. Chameleon signatures are non-interactive signatures based on
a hash-and-sign paradigm, and similar in efficiency to regular signatures.
The distinguishing characteristic of chameleon signatures is that their are
non-transferable, with only the designated recipient capable of asserting
its validity. In this paper, we introduce the first identity-based chameleon
hash function. The general advantages of identity-based cryptography
over conventional schemes relative to key distribution are even more pro-
nounced in a chameleon hashing scheme, because the owner of a public
key does not necessarily need to retrieve the associated secret key. We
use the identity-based chameleon hashing scheme to build the id-based
chameleon signature and a novel sealed-bid auction scheme that is ro-
bust, communication efficient (bidders send a single message), and secure
under a particular trust model.

Keywords: Digital signatures, secure hash functions, chameleon hashing, sealed-
bid auctions

1 Introduction

Chameleon signature schemes were introduced in [1]. A distinguishing feature
of chameleon signature schemes is that they are non-transferable, i.e. a signature
issued to a designated recipient cannot be validated by another party. While
not universally verifiable, chameleon signatures provide non-repudiation: If pre-
sented with a false signature claim, the signer can prove that the signature
is forged, while incapable of doing so for legitimate claims. Accordingly, the
signer’s refusal to invalidate a signature is considered equivalent to her affir-
mation that the signature is valid.

Unlike undeniable signatures [2–6], which also provide non-repudiation and
non-transferability, chameleon signatures are non-interactive protocols. More
precisely, the signer can generate the chameleon signature without interacting
with the designated recipient, and the latter will be able to verify the signature
without interacting with the former. Similarly, if presented with a forged signa-
ture, the signer can deny its validity by revealing certain values. These values
will revoke the original signature and the forged one simultaneously, and the
revocation can be universally verified. In other words, the forged-signature de-
nial protocol is also non-interactive. There also exist non-interactive versions

of undeniable signatures [7]. Chameleon signatures are considerably less com-
plex, at the sacrifice of not conferring the signer the ability to engage in non-
transferable secondary proofs of signature (non-)validity.

Chameleon signatures are based on the well established hash-and-sign para-
digm, where a chameleon hash function is used to compute the cryptographic
message digest. A chameleon hash function is a trapdoor one-way hash func-
tion: Without knowledge of the associated trapdoor, the chameleon hash func-
tion is resistant to the computation of pre-images and of collisions. However,
with knowledge of the trapdoor, collisions are efficiently computable.

When a chameleon hash function is used within a hash-and-sign signature
scheme, it permits the party with knowledge of the trapdoor to re-use the sig-
nature value to authenticate other messages of choice. In particular, if the hash
function is part of the recipient’s public key, then the signature is publicly ver-
ifiable by no one other than the intended recipient. On the other hand, if the
recipient re-uses the hash value to obtain a signature on a second message, the
signer can prove knowledge of a hash collision, since the original signed mes-
sage and the claimed signed message have the same hash value. Because com-
puting hash collisions is infeasible for the signer, possession of such a collision
is seen as proof of forgery by the signature recipient.

1.1 ID-based Chameleon Hashing

In this paper, we propose the first ID-based chameleon hashing scheme. ID-
based cryptography is an alternate form of public-key cryptography that does
not use certification authorities or certificates. Instead, an ID-based scheme de-
fines “identity strings”, which are nothing more than a special string format
to describe real entities (persons or machines). For instance, an identity string
could be an e-mail address, a URL, a person’s address, or any other unambigu-
ous reference. The public keys are derived from these identity strings by means
of a public algorithm, which is part of the scheme description. Any entity that
can be described with an identity string (as specified in the particular scheme)
has automatically a public key. Since the identity string is a ‘natural’ way to
refer to the entity, anyone who knows the entity will also be able to compute
the entity’s public key, without having to look it up in a key distribution center.
Instead, the owner of the key is responsible for contacting an escrow server to
obtain the secret key associated to his public key. Identity-based cryptography
was originally introduced in the classical paper [8], which described id-based
identification and signature schemes. Despite several efforts, id-based encryp-
tion eluded researchers until recently [9, 10].

As with other cryptographic primitives, such as encryption and regular dig-
ital signatures, there are considerable advantages to be gained from employing
an ID-based chameleon hash scheme over a regular scheme. For instance, a
signer can sign a message to an intended recipient, without having to first re-
trieve the recipient’s certificate; in fact, the signer can sign a message to the
recipient before the recipient has registered with the system and obtained the

secret key. This reduces the negative network effects that make it hard to deploy
public key infrastructures.

One limitation of the original chameleon signature scheme ([1]) is that sig-
nature forgery results in the signer recovering the recipient’s trapdoor informa-
tion. Such feature has some advantages: For instance, since with the knowledge
of the trapdoor the signer can compute other collisions, she can prove knowl-
edge of a collision without revealing the original message signed. This message hid-
ing permits the signer to deny forged messages without the onus of confirming
the original signature. However, the signer can use this trapdoor information to
deny other signatures given to the recipient, whether or not the recipient tried
to re-use the corresponding hash values. In the worst case, the signer could col-
laborate with other individuals to invalidate any signatures which were desig-
nated to be verified by the same public key. This creates a strong disincentive
for the recipient to forge signatures, partially undermining the concept of non-
transferability. If a third party is aware of the potential damage to the recipient
that would result from the forgery of a signature, she will likely believe the
authenticity of a recipient’s claims.

Non-transferability is more convincing if the scheme is such that forgery of
a hash value does not compromise the long-term key of the recipient. Clearly,
this can be accomplished in any chameleon hashing scheme if the public keys
are changed often. However, one now has a key distribution problem. The
signer must be able to retrieve the most recent public key for the recipient, most
likely by interacting with the recipient itself. The protocol then ceases to be non-
interactive, at least in a practical sense.

The scheme we present permits the signer to use a different public key for
each transaction with a recipient, without having to retrieve a new certificate:
The signer concatenates the recipient’s identification information with a string
which uniquely identifies the transaction. Notice that the recipient does not need
to retrieve the associated secret key to verify the signature’s validity. Only if the recip-
ient wishes to compute a collision and a forgery does he need to recover the secret key.
Clearly, the key escrowing function is provided by the scheme manager for the
bona fide reason that non-transferability, i.e., the ability of the recipient to forge
signatures, is a property of the scheme that protects the legitimate signer. We
remark that collision-forgery still results in the trapdoor information – now as-
sociated to a single transaction key – being recovered. Therefore, if the recipient
produces a hash collision, the signer may deny the original message by provid-
ing a different collision, still enjoying the message hiding property. She will not
be capable, however, of denying signatures on any other messages.

1.2 Our Results

To summarize, chameleon signature schemes introduced in [1] have the follow-
ing properties.

– Non-repudiation: The signer cannot deny legitimate signature claims.
– Non-transferability or non-universal verifiability.

– Non-interactive.
– Practical and efficient: The algorithms have costs comparable with those of

standard signature schemes.
– Semantic security: The hash value does not reveal information about the

message signed.
– Message hiding: The signer does not have to reveal the original message to

deny the validity of a forgery.
– Convertibility: A variant of the chameleon signature can be transformed

into a regular signature by the signer.

The scheme we present in this paper enjoys all the attributes above, with the
added characteristics of being ID-based:

– ID-based: Parties can sign messages for recipients, even if these recipients
do not yet have the corresponding secret keys. Also, signers do not need to
retrieve public key certificates of the intended recipient.

– Lightweight key distribution/refreshment: Public keys do not need to be
distributed after a refreshment. Secret key retrieval is optional for recipi-
ents.

– Stronger non-transferability: The penalty for the recipient for engaging in
forgery can be restricted to the loss of the original signature.

We describe in later sections some applications which make use of these
extra properties of the ID-based scheme. These applications are not meant to be
the only motivation for the primitive we are introducing, but only illustrative
examples of its potential uses.

2 ID-based Chameleon Hashing

We assume that all system users are identifiable by a bit-string easily derivable
from public knowledge about the individual. For instance, it could be the user’s
e-mail address, augmented by some information such as an expiration-date. We
call such a string an identity string. Formally, an ID-based chameleon hashing
scheme is defined by a family of efficiently computable algorithms:

Setup: A trusted party, the key escrow, runs this efficient, probabilistic algo-
rithm to generate a pair of keys SK and PK defining the scheme. It pub-
lishes PK and keeps SK secret. The input to this algorithm is a security
parameter(s).

Extract: An efficient, deterministic algorithm that, on inputs SK and an iden-
tity string S, outputs the trapdoor information B associated to the identity.

Hash: An efficient, probabilistic algorithm that, on inputsPK, an identity string
S, and a message m, outputs a hash value h.

Forge: An efficient algorithm that, on inputs PK, an identity string S, the trap-
door information B associated with S (i.e., the output of Extract(SK, S)), a
message m′, and a hash value h of a message m, outputs a sequence of ran-
dom bits that correspond to a valid computation of Hash(PK, S,m′) yield-
ing the target value h.

Repeating a computation of the hash function involves knowledge of the
random choices made by the algorithm. We use also the notation Hash(S, m, r)
to denote the deterministic algorithm that takes as inputs an identity string, a
message and a string of random bits. (This notation leaves implicit the public
key of the trusted party.) In practice, the Forge algorithm needs as input the
random string r leading to a valid computation of h = Hash(S, m, r) and then
can output a second r′ 6= r such that also h = Hash(S, m′, r′). We denote the
deterministic algorithm by Forge(S, B, m, r, h, m′), where B = Extract(SK, S).

2.1 Security Requirements

In establishing the security of a chameleon hashing scheme, one may consider
vulnerabilities against different attacks. A total break would be an attack result-
ing in the recovery of the secret key SK of the trusted party. This would permit
the attacker to obtain the trapdoor information associated to any given identity
string.

A lesser powerful attack model involves extracting the trapdoor informa-
tion of some identity string, not necessarily a meaningful string, chosen by the
attacker, i.e., an existential attack on the extract protocol. In this case, the string
very probably does not correspond to the identity of any real-world party. Such
an attack is dangerous inasmuch as it can lead to an advantage in forging hash
collisions for hash values published by real-world entities.

Any attack is said to be successful if it accomplishes collision forgery.

Definition 1. (Collision forgery): A collision-forgery strategy is an efficient, proba-
bilistic algorithm that, given identity string S, message m, and random bits r, outputs
another message m′ and random bits r′, such that Hash(S, m, r) = Hash(S, m′, r′),
with non-negligible probability.

We say that the hashing scheme is secure against existential collision forgery
by passive attacks if no collision-forgery strategy against it exists. However, to
model an active attacker that could compromise various users and obtain their
secrets, we must also allow oracle queries to the Extract(·) algorithm as part of
the collision-forgery strategy. (Clearly, querying Extract(·) on the identity string
of the target is not permitted.)

Definition 2. (Resistance to collision forgery by active attacks): Let S be a target
identity string. Let m be a target message. The chameleon hashing scheme is secure
against (existential) collision forgery by active attacks if, for all four-tuples of non-
constant polynomials f1(·), f2(·),f3(·), f4(·), and for large enough k, there is no prob-
abilistic algorithm A which runs in time less than f1(k), makes at most f2(k) queries
to an Extract(·) oracle (on identity strings other than S), and succeeds with proba-
bility larger than 1

f3(k) in computing integers r and r′, and binary string m′, where
m′ 6= m, such that Hash(S, m, r) = Hash(S, m′, r′), where Hash(·) is an instance of
the scheme with security parameter f4(k).

The chameleon hashing scheme must also be semantically secure. ¿From the
hash value it is infeasible to determine which message is likely to have resulted
in such value by an application of the hash algorithm.

Definition 3. (Semantic security): The chameleon hashing scheme is said to be se-
mantically secure if, for all identity strings S, and all pairs of messages m and m′, the
probability distributions of the random variables Hash(S, m, r) and Hash(S, m′, r)
are computationally indistinguishable.

Note that the semantic security of a chameleon hashing scheme implies the
non-transferability of the corresponding chameleon signature scheme.

3 The Scheme

Let τ and κ be security parameters. The scheme fixes a secure hash function
H : {0, 1}∗ → {0, 1}2τ , mapping strings of arbitrary length to strings of fixed
length 2τ . Reasonable choices for an implementation of the scheme are τ = 80
and SHA-1 for H(·).

The setup algorithm is similar to an RSA key generation step. The trusted
party T generates two safe prime numbers p and q in the set {2κ−1, . . . , 2κ − 1}.
(A prime p is said to be safe if p = 2p′ + 1 with prime p′.) Let n = pq. The
bit-length of n, `(n), is no less than 2κ. Let C : {0, 1}∗ → {0, · · · , 22κ−1} be a
secure deterministic hash-and-encode scheme mapping arbitrary bit-strings to
integers less than n. For instance, it is possible to use the deterministic version
of EMSA-PSS encoding defined in [11, 12]1.

T then generates a random integer v s.t. v > 22τ , and such that neither p′ nor
q′ divide v. To simplify the protocol description and analysis we assume that v
is a prime. In particular, v is odd, so it has no common factors with φ(n) = (p−
1)(q−1). Applying the extended Euclidean algorithm for the GCD, T computes
w and z such that wv + z(p− 1)(q − 1) = 1.

T’s public key is (n, v). Its secret key is (p, q, w).
We can now describe the extraction algorithm. Let S be the identity string

associated to some party. First we apply the deterministic hash-and-encode
scheme to obtain the element J = C(S) in Zn. The secret key is extracted as
B = Jw mod n. Notice that being able to compute B from S should be infea-
sible. In particular, if C is chosen as the EMSA-PSS encoding, then B is a secure
RSA signature on the string S, under the public key (n, v).

The Hash(·) algorithm is:

Hash(S, m, r) = JH(m)rv mod n,

where, again, H(·) is the secure hash function, and J = C(S).

1 Clearly, any deterministic encoding method would suffice. However, EMSA-PSS is
recommended because the security of its deterministic version (when seedLen=0
[11]) is shown to be loosely reducible to the security of the RSA function in the random
oracle model.

The Forge algorithm is:

Forge(S, B, m, r, h, m′) = r′ = rBH(m)−H(m′) mod n.

Note indeed that

Hash(S, m′, r′) = JH(m′)r′v

= JH(m′)rvBv(H(m)−H(m′))

= JH(m′)Jvw(H(m)−H(m′))rv

= JH(m′)JH(m)−H(m′)rv

= JH(m)rv

= Hash(S, m, r).

3.1 Security Analysis

As remarked above, the extraction algorithm requires knowledge of the trap-
door; obtaining the secret key from the private key without knowledge of the
trapdoor requires forgery of a secure RSA signature. We now extend this argu-
ment to the other security requirements.

Theorem 1. The chameleon hashing scheme is resistant to forgery under active at-
tacks, provided that the secure RSA signature scheme is similarly resistant.

The proof is simple, so we sketch it here. Given a collision, Hash(S, m, r) =
Hash(S, m′, r′), it is possible to extract the secret key B associated to the public
key J = C(S).

JH(m)rv = JH(m′)r′v =⇒ (r′/r)v = JH(m)−H(m′) =⇒ r′/r = BH(m)−H(m′).
(1)

Now, each hash value is the binary representation of a positive integer of
value smaller than 22τ , and so the absolute value of ∆ = H(m)−H(m′) is also
smaller than 22τ . Since v is a prime integer larger than 22τ , it follows that these
values are relatively prime, i.e. gcd(∆, v) = 1. Using the Extending Euclidean
algorithm for the GCD, one computes α and β such that α∆ + βv = 1. B can
now be extracted:

(r′/r)αJβ = Bα∆+βv = B. (2)

Recall that he secret key B is a secure RSA signature on the identity string S,
as remarked above. Hence, being able to compute collision forgeries for target
strings implies in the capability of computing secure RSA signatures on mes-
sages of choice. ut

Theorem 2. The chameleon hashing scheme is semantically secure.

This is because all elements of the RSA ring are v-powers when v is relatively
prime to the factors of the modulus n. Thus, given a hash value z and any
message m, there is exactly one random integer r, with 0 ≤ r < (p − 1)(q − 1),
such that Hash(S, m, r) equals z, namely r is equal to the v-th root of zJ−H(m).ut

4 ID-based Chameleon Signatures

Our hash function shares all the benefits of any ID-based construct (such as
ID-based encryption or signature schemes), in particular:

– There is no need to retrieve the certificate of the intended recipient. The
hash function can be computed from publicly available identity informa-
tion (e.g., the recipient’s email address).

– The hash function can be computed under a recipient’s identity even if such
recipient does not even exist or will join the system at a later time.

– Exposure of secret keys can be minimized by customizing the identity in-
formation under which the hash is computed (e.g., by concatenating time
information to the identity of the recipient).

A chameleon signature scheme ([1]) is a signature computed over a cha-
meleon hash function. The recipient can verify that the signature of a certain
message m is valid but cannot prove to others that the signer actually signed m
and not another message. Indeed, the recipient can find collisions of the chame-
leon hash function, thus finding a message different from m which would pass
the signature verification procedure.

An ID-based chameleon signature on m consists of a traditional signature
scheme, such as RSA or DSA, computed over the ID chameleon hash of m un-
der the hashed identity J of the intended recipient. In particular, the signer
generates a random r and computes:

SID = {Sign(S, Hash(S, m, r)),m, r},

where Hash(S, m, r) = JH(m)rv mod n is the id-based chameleon hash func-
tion computed for J = C(S).

As suggested in [1], an authenticated description of the hash function should
also be added whenever such a description is not publicly available. As already
mentioned, Sign(·) can be any standard signature scheme. In particular, it can
also be implemented as any identity-based signature scheme, such as the Fiat-
Shamir [8] or Guillou-Quisquatter [13]. This way, the verification process would
be also ID-based since the signature can be verified from the identity of the
signer.

The above signature could be repudiated by a malicious signer who claimed
that the recipient had forged the signature. But a trusted third party, or judge,
could intervene to settle the dispute by asking the signer to provide a pair of
values, different from (m, r), which would pass the signature verification pro-
cedure. If the signer does not provide such a pair then the signature on m is
considered valid. If the signer does provide a different pair (m′, r′) 6= (m, r),
which passes the signature verification procedure, then the judge can conclude
that the recipient has cheated and the signature on m is marked as invalid.

As with all identity-based schemes, only the trusted third party can extract
the secret key – the value B such that J = Bv mod n. One fundamental feature
of an identity-based chameleon signature scheme, computed under a hashed

identity J , is that the recipient does not have to know the secret B unless he
wants to forge the signature. Interestingly, this adds a new flavor to the identity-
based cryptography in general: The user does not have to retrieve the secret to ter-
minate a transaction unless he wants to diverge from the basic scheme. This is some-
how different from the identity-based encryption where one has to necessarily
retrieve the secret in order to decrypt messages or from identity-based signa-
tures where one has to have the secret in order to start signing messages. In
our case, the recipient may never ask for the secret but still successfully com-
plete all transactions. However, the recipient can potentially obtain the secret
from the trusted third party at any time which makes the original signature
non-transferable. (A verifier does not know whether the recipient queried the
trusted third party or not.)

4.1 Message Hiding

When a dispute takes place, it is often desirable to protect the confidentiality of
the original message even against the judge. As suggested in [1], whenever the
recipient cheats, the judge can solve any dispute without knowing the message
originally signed by the signer. Indeed, it would be enough to reveal any col-
lision of the chameleon hash function to convince the judge that the recipient
cheated. This can be easily accomplished since the secret trapdoor information
associated to the recipient’s public key is revealed whenever a collision of the
chameleon hash function is known. For instance, suppose the signer computes
the signature on the pair (m, r) and the recipient finds a collision and claims
that the signature is on (m′, r′). During the dispute resolution, the judge re-
veals (m′, r′), enabling the signer to compute the trapdoor, as follows: First, the
signer calculates r′/r = BH(m)−H(m′). Then, B is extracted given that J = Bv

is known and that GCD(H(m) − H(m′), v) = 1 always holds. For details, see
section §3.1 and the proof of Fact 1.

Once the signer knows B, she can use the recipient’s Forge(·) algorithm to
compute a new collision (m′′, r′′) and provide it to the judge, proving that the
recipient cheated while keeping the original pair (m, r) private.

4.2 Customized Identities

Notice that anyone knowing a collision can find the recipient’s secret B. Sim-
ilarly, this happens with the original scheme in [1] where the secret key cor-
responding to the public key used for the hash computation is revealed. This
works as a deterrent to forging. However, if the recipient is unwilling to forge
a signature, in order to avoid exposing his secret key, the non-transferability
property of chameleon signature schemes is somewhat weakened. Third-party
verifiers may be inclined to consider valid any signatures proposed by the re-
cipient, upon knowing his hesitation in forging them. Would a recipient forge a
signature when this might jeopardize all other transactions involving his public
key? The identity-based chameleon hash function offers a natural way to solve

this problem without requiring the recipient to interact with the signer. Indeed,
the hash can be computed under a customized identity J ; for instance, J could
be the result of applying a hash-and-encode function C(·) to the identity of the
recipient, concatenated with the identity of the signer, plus some transaction
identifier:

J = C(identity recipient || identity signer || transaction ID).

In this case, the scheme should stipulate that the secret key B will be pro-
vided only to the recipient, identified as the person whose identity prefixes the
string used to form the public key J .

Whenever public keys are employed, one should in principle check whether
a public key has been revoked or not. The use of properly customized identi-
ties eliminates this need. If the customized identity is unique to each message
signed, the signer is certain that the corresponding secret has never been ex-
posed since it has not even been computed by the trusted authority. In this
regard, we stress again that the recipient does not have to retrieve the secret
key to verify the signature. In a practical system, recipients would be eventual
signers, and thus would have an interest in recovering secret keys occasionally,
to ensure that the trusted party works correctly and that the non-transferability
property holds. Clearly such frequency could be considerably lower than the
frequency of transactions the recipient participates in.

4.3 Message Recovery

In case of forgery, the recipient’s key compromise results in the signer being
capable of claiming any message as the one originally signed. Moreover, it be-
comes impossible for the signer to prove which message was the original one.
In some applications, this may not be an acceptable outcome. Circumstances
may be such that the signer has an interest in being capable to affirm the orig-
inal signature if she so desires. This situation has been addressed in [1], and
the solution can be applied to our scheme. The convertible variant of the basic
scheme provides the signer with a non-interactive algorithm to transform any
instance of the chameleon signature into a universally verifiable instance.

A different possibility is that the application requires that the original mes-
sage be recoverable even without the signer’s cooperation. In these cases, it
may be necessary to add to the signature some additional information about
the message itself. One possibility is to include in the signature an encryption
of the pair (m, r) computed under the public key of the judge. That is, the sig-
nature becomes:

SID = {Sign(S, Hash(S, m, r), PK[(m, r)]),m, r},

where the public-key encryption is assumed to be semantically secure. 2 In
practice, one would sign a hash of the encryption, so as to compute the signa-
ture on parameters of fixed size.

The above construction eliminates the need for the signer to store signatures
in order to repudiate forgeries, shifting the storage burden onto the recipient, as
in regular (digital) signatures. With this scheme, the signer is protected against
a malicious recipient that produces a forgery and then prevents the signer from
participating in the adjudication of the claim – a denial-of-service attack on the
signer. This scheme does not provide the recipient with a mechanism for ad-
judicated convertibility, because the recipient has no guarantee that the signer
has encrypted the correct information during the signing step. It only protects
the recipient against a later “change of heart” by the signer.

5 Sealed-Bid Auction System

In this section, we describe a very simple sealed-bid auction scheme based on
ID-based chameleon signatures. We stress that this application is not meant to
be the sole motivation for the primitive we are introducing, but only an illus-
tration of some of its potential uses and benefits.

In public seller auctions, also called English or forward auctions, bidders
compete by announcing successive bids, with the highest offer acquiring the
good being auctioned. Alternatively, public buyer auctions (also called reverse
auctions) are used by the Government and by businesses to procure supplies
and services. In reverse auctions the lowest bid wins.

By contrast, in sealed-bid auctions (whether forward or reverse), bidders
are allowed to submit a single, sealed bid. The seller stipulates a period for
accepting bids, at the end of which the bids are unsealed and compared. The
winning bid is revealed so that all competitors can ascertain its winning merits.

The Internet has transformed the auctioning business. Auction systems were
some of the earliest success stories in the commercial Internet, and continue
to grow profitably. While the site eBay c© is a household name, multiple other
sites cater to the vast segment of business-to-business procurement. The auction
type (forward/reverse) varies but proxy bidding is commonly found. Proxy
bidding-based auctions are intermediate between open and sealed-bid auctions.
As in public auctions, the current winning price is openly determined, con-
stantly changing while the auction is ongoing. However, in similarity with
closed auctions the maximum bid (or minimum bid in a reverse auction) is
not known to competitors.

Proxy bidding has a few characteristics that makes it less desirable than
sealed-bid auctions, at least in some circumstances. For instance, late bidders

2 This is required to maintain the non-transferability of the signature once augmented
by the encrypted message. Informally, a semantically secure encryption is a random-
ized encryption that protects all the bits of the plaintext. In particular, if one of two
publicly known messages is encrypted, no-one can tell which of the two was en-
crypted by just looking at the ciphertext.

(those who submit their bids closest to the auction closing time) are at an ad-
vantage, raising both questions of fairness to all bidders and of possible under-
estimation of the market value of the product being auctioned, which is unfair
to the seller. As the value, variety, and complexity of items auctioned online in-
crease, it is possible that some markets will favor auction systems that optimize
for factors such as efficiency and fairness, for instance by featuring sealed-bid
auctions [14].

5.1 Closed auction system models

Standard models for sealed-bid auction systems require that the following prop-
erties hold:

Correctness: The correct winner and clearing price are determined in each auc-
tion.

Confidentiality: Bids remain hidden before the action ends.
(Optionally): Only the winning bid and the clearing price are revealed. Losing bids

remain private.
Fairness: Bidders do not learn information about competing bids before the

auction closes, neither can they change their bid after the closing of the
auction.

Non-repudiation: The winner cannot repudiate his bid.
Robustness: No party, whether or not a legitimate party in the auction, may

maliciously or accidentally compromise the correct functioning of the sys-
tem.

There has been considerable research on secure, closed e-auction systems,
such as [15–21]. Most of these systems are fairly complex, employing techniques
such as secure multi-party evaluation of predicates on encrypted bids. The gen-
eral idea is that the bidders submit encrypted bids. The auctioneer, or other
bidders, cannot determine from the encrypted values the original bids, but can
cooperate to determine the highest bid value and the auction winner. It is neces-
sarily true that only systems based on encrypted bids can achieve the strongest
possible security guarantees. In particular, without keeping the bids encrypted
before the auction closing time, it is not possible to provide fairness without
making some additional trust assumptions, because if a bid is ever available as
clear-text its content could be communicated to competitors. Similarly, losing
bids must never be decrypted if full privacy is desired.

In practical applications one must consider the optimal trade-off between
security properties and other worthwhile goals such as lower communication
complexity (reducing the number of messages sent greatly simplifies system
design as a whole), computational costs and administrative ones (such as key
management issues). Our approach considers the design of a system that is
extremely practical. The design goals are as follows:

Thin clients: The client software/hardware (assisting the bidder function) should
be of minimal complexity. Optimally, it should consist of a non-customized

(or minimally customized) web browser or even a text-messaging applica-
tion.

Stateless clients: A stateless protocol is much easier to implement correctly
and to analyze for its security properties. Moreover, less state information
results in greater robustness.

Low communication: The communication complexity of a distributed proto-
col can be defined either as the number of bits sent or the number of mes-
sages sent. From a practical perspective, the number of messages influences
the complexity of protocol implementation and analysis, while the number
of bits is important whenever network bandwidth is at a premium.

Asynchronous communication model: The only timeliness constraint is that
auctioneer and bidders can agree on whether a bid is submitted after or
before the closing of an auction.

Auction rule flexibility: This is an important requirement for a general-purpose
auction system. Different auction styles require different methods to deter-
mine the clearing price for the item(s). For instance, a (k + 1)-auction is one
in which k items are auctioned. The k-th highest bidders claim items, all at
the same clearing price, which corresponds to the k + 1-st highest bid.

5.2 The auction scheme

We present a sealed-bid auction protocol satisfying all the above design goals,
while providing only partially the security guarantees of the general model. We
first describe a straightforward protocol, which provides non-repudiation:

1. Each bidder sends a single signed message to the auctioneer, containing the bid
information.

2. The auctioneer publishes a receipt for each bid received.
3. The auctioneer publishes the winning bid. (After auction closes.)

The above protocol also reaches correctness, if the following conditions hold:

– All bids submitted before the auction closes are accepted by the auctioneer.
In particular, this implies that all parties can agree on the auction closing
time – a soft synchronization requirement.

– Consistency of view of the published information must be assured.

We remark that both conditions are required of any robust protocol. We as-
sume that the underlying communication channel between bidders and the
auctioneer is such that both properties above hold, as the techniques for achiev-
ing such guarantees are well understood and can be achieved in practice. Under
such assumption, the above protocol is robust.

On the other hand, this protocol achieves neither fairness or privacy unless
the auctioneer can be trusted not to publish any undue information. As alluded
to before, fairness and absolute privacy can only be achieved by performing
all computations (such as clearing price and auction winner determination)

on encrypted bids. Use of encryption increases the communication complex-
ity (once to collect bids and another to perform decryptions) and makes ro-
bustness harder to achieve. (For instance, one must ensure that encryption keys
can be recovered for the winning bid or else there is no robustness of the non-
repudiation guarantee.) This poses the question of whether partial fairness and
privacy guarantees can be achieved without resorting to computation on en-
crypted information.

Our approach is to simplify the trust model. Clearly, if the auctioneer is en-
tirely trusted then privacy and fairness can be achieved simply by protecting
the bid-submission channel. If the auctioneer may arbitrarily collude with bid-
ders then complex cryptographic techniques are required to ensure fairness or
privacy. These are not the only two possible trust models. Alternatively, the auc-
tioneer might not be trusted to keep the bids privately and yet also untrusted by
dishonest bidders to provide the correct information about competitors’ bids.
This model does not protect against auctioneer-bidder collusions but can accommodate
situations in which a hacker or malicious insider breaks into the system and tries to
peddle the information to a suspectful bidder.

Notice that the simple scheme described above is still vulnerable under
this restricted trust model. An insider could easily convince a suspicious bid-
der of the correctness of the peddled information because the bids are signed.
However, if the bids were to be signed using a chameleon-hashing scheme that
would not be the case. As the signature on bids are non-transferable, the suspi-
cious insider cannot be assured of the correctness of the reported bid value. We
now describe this in some detail. The final protocol is simply:

1. Each bidder sends a single signed message to the auctioneer. The message
contains the bid terms, signed using the identity-based chameleon signature
scheme.

2. The auctioneer publishes a receipt for each bid received.
3. The auctioneer publishes the winning bid. (After auction closes.)

The bids are submitted to the auctioneer in the clear, but since they are
signed using chameleon signatures, their validity can only be determined by
the auctioneer. The auctioneer publishes the signatures on each bid, which acts
as a receipt on the bid, but does not publish the value of the bids themselves.
If the auctioneer were to cheat and reveal to a bidder some of the competitors’
bids, that bidder would have no means to determine whether or not the auc-
tioneer is telling the truth. Yet, since chameleon signatures are non-repudiatable,
the bid winner must make good on her offer: In case of disputes, a judge would
determine the validity of the bid.

An important point is that it be believable that the auctioneer might cheat. If
regular chameleon signatures are used, it is unlikely that an auctioneer would
cheat by forging bids because, by cheating, it would reveal a collision of the
chameleon hash function. This in turn discloses its long-term secret key, afford-
ing the colluding bidder to repudiate his bid during any later auctions as well
as during the current one. However, the non-transferability of a chameleon sig-

nature comes from the fact that the recipient of such a signature may be willing
to forge it. If such an event is unlikely then the chameleon signature behaves,
de facto, much like a traditional signature scheme.

An alternative solution would be for the auctioneer to generate temporary
public keys, perhaps one for each item being auctioned. At the highest level of
granularity, the auctioneer might issue a different public key for each potential
bidder on the item. Clearly, such public keys cannot be pre-computed in large
systems with millions of users such as eBay c©. That implies that a bidder must
first contact the auctioneer about a particular auction and request the respec-
tive key. While correct, this solution requires a second round of communication
when compared to the previous one. Instead, an identity-based scheme allows
the bidder to generate a signature under a customized hashed identity J of the
following form:

J = C(auctioneer id || bidder id || item id).

This can be done without interacting with the auctioneer and would offer
the highest level of granularity. The auctioneer does not have to retrieve the
secret corresponding to J unless he wants to forge the signature. In case of
forgery and subsequent dispute, only the secret related to a particular trans-
action from a specific bidder is revealed, leaving the rest of the transactions
valid. This makes any signed bids completely useless for other bidders and
non-transferable.

Our identity-based scheme allows users to participate in digital auctions
that interface with real world. For instance, items for bidding can be labeled by
reference strings. Unlike regular public keys, reference strings can be mnemonic,
facilitating entry by potential buyers. For instance, realtors could put a sign in
front of houses available on the market with a realtor identity and a number
identifying the property. Auctioneers could advertise items for auction in pub-
lic newspapers, including item reference strings. (Today, in the US, government-
seized property auctions and foreclosure-related auctions must be advertised in
newspapers to comply with the law.) Potential buyers would view the property
and could type that information into an e-mail or text-messaging capable com-
puting device to submit a bid. Not needing to download a public key simplifies
the process, adding convenience: System users would be able to submit bids
from low-bandwidth communication devices such as cell phones and PDAs.
The above scheme is even more convenient if clients, such as cell phones, take
advantage of an architecture of strong authentication (permitted by the device
smartcard, in the case of cell phones) to eliminate the need for dedicated cryp-
tographic software and key management on the client side. The bids could be
forwarded to a proxy signature server (for instance, the site of the mortgage
banker) which would chameleon-sign the bid on behalf of the user.

To summarize we have designed a very simple e-auction protocol that achieves
correctness and non-repudiation in all cases, and which achieves fairness and

privacy only under certain trust assumptions: The auctioneer is allowed to mal-
function or to be dishonest, and the same is allowed of bidders, but the model
does not handle the case when bidders and the auctioneer may collude. How-
ever, the simplicity and convenience afforded by the proposed scheme would
be of considerable practical significance. In particular, we would like to point
out the statelessness of clients and the fact that protocol requires the sending
of a single message by bidders. Notice that the identity-based properties of the
chameleon signature are essential to enable the single-message feature within
this trusted model: Alternative methods would require schemes for delivering
temporary keys, for instance. The use of an identity-based scheme eliminates
the need of a certificate distribution architecture.

Apart from (and partly because of) being very efficient, and achieving the
lowest possible message complexity, the protocol is quite robust. We believe
that the importance of robustness has been overlooked in some of the exist-
ing protocols. Without robustness, the strong fairness and privacy conferred
by some of the protocols based on encryption cannot be achieved in practice,
because in any realistic implementation one must consider how a protocol per-
forms under attacks or when parties malfunction.

6 Conclusions

Krawczyk and Rabin introduced in [1] the concept of chameleon hashing. In
this paper, we extended their work by introducing an ID-based chameleon hash
function. ID-based cryptography in general enjoys advantages relative to key
distribution over conventional schemes. In the case of chameleon hashing these
advantages are multiplied by the fact that the owner of a public key does not
necessarily need to retrieve the associated secret key. Therefore, ID-based cha-
meleon hashing can support single-use public keys very efficiently. We exploit
this feature to design a novel application of chameleon signatures to e-auction
schemes that enjoys efficiencies difficult to achieve with other cryptographic
techniques.

Acknowledgments. Many thanks to the anonymous referees for their insightful
comments. This work was partly funded by a NSF grant.

References

1. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Proceedings of NDSS 2000.
(2000) 143–154

2. Chaum, D., Antwerpen, H.: Undeniable signatures. In: Advances in Cryptology –
CRYPTO’89. Volume 435 of LNCS., Springer-Verlag (1991) 212–216

3. Chaum, D.: Zero-knowledge undeniable signature. In: Advances in Cryptology –
EUROCRYPT’90. Volume 473 of LNCS., Springer-Verlag (1990) 458—464

4. Boyar, J., Chaum, D., Damgård, I.B., Pedersen, T.P.: Convertible undeniable signa-
tures. In: Advances in Cryptology – CRYPTO’90. Volume 537 of LNCS., Springer-
Verlag (1990) 189–205

5. Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable sig-
natures, unconditionally secure for the signer. In: Proc. of Advances in Cryptology
– CRYPTO’91. Volume 576 of LNCS., Springer-Verlag (1991) 470–ff

6. van Heijst, E., Pedersen, T.: How to make efficient fail-stop signatures. In: Proc. of
Advances in Cryptology – EUROCRYPT’92. Volume 658 of LNCS., Springer-Verlag
(1993) 366–377

7. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their ap-
plications. In: Proc. of Advances in Cryptology – EUROCRYPT’96. Volume 1070 of
LNCS., Springer-Verlag (1996) 143–ff

8. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advances in
Cryptology – CRYPTO’84. Volume 196 of LNCS., Springer-Verlag (1984) 47–53

9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Proc.
of CRYPTO’01. Volume 2139 of LNCS. (2001) 213 ff.

10. Cocks, C.: An identity based encryption scheme based on quadratic residues.
(http://www.cesg.gov.uk/technology/id-pkc/media/ciren)

11. Bellare, M., Rogaway, P.: PSS: Provably secure encoding method for digital sig-
nature. IEEE P1363a: Provably secure signatures. http://grouper.ieee.org/-
groups/1363/p1363a/pssigs.html (1998)

12. RSA Labs: RSA Cryptography Standard: EMSAPSS – PKCS#1 v2.1. (2002)
13. Guillou, L.C., Quisquater, J.J.: A practical zero-knowledge protocol fitted to security

microprocessor minimizing both transmition and memory. In: Proc. of Advances in
Cryptology – EUROCRYPT’88. Volume 330 of LNCS., Springer-Verlag (1988) 123–
128

14. Chin, S.: Chip trade group calls for better governing of reverse auc-
tions. In: http://www.ebnonline.com/showArticle.jhtml?articleID-
=12803165 . EBN Online (2003)

15. Franklin, M., Reiter, M.: The design and implementation of a secure auction service.
In: Proc. IEEE Symp. on Security and Privacy, Oakland, CA, IEEE Computer Society
Press (1995) 2–14

16. Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey auctions without threshold trust.
In: Proc. of the 6th Annual Conference on Financial Cryptography. (2002)

17. Baudron, O., Stern, J.: Non-interactive private auctions. In: LNCS. Volume 2339.,
Springer-Verlag (2002) 364 ff

18. Harkavy, M., Tygar, J.D., Kikuchi, H.: Electronic auctions with private bids. In: 3rd
USENIX Workshop on Electronic Commerce. (1998) 61–74

19. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism de-
sign. In: Proc. of the 1st conf. on Electronic Commerce, ACM (1999) 129–139

20. Cachin, C.: Efficient private bidding and auctions with an oblivious third party.
In: 6th ACM Conference on Computer and Communications Security (CCS), ACM
Press (1999) 120–127

21. Kikuchi, H.: (m + 1)st-price auction protocol. In Syverson, P., ed.: Financial Cryp-
tography – Fifth International Conference. LNCS, Springer-Verlag (2002)

22. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Advances in Cryptology – CRYPTO’86. Volume 263 of
LNCS., Springer-Verlag (1987) 186–194

