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1. Introduction 
 
VMPC is an abbreviation of Variably Modified Permutation Composition.  
 
The VMPC function is a combination of triple permutation composition and integer 
addition. It differs from a simple triple permutation composition with one integer addition 
operation performed on some of the elements of the permutation. The consequence of this 
addition operation is corruption of cycle structure of the transformed permutation - the 
fundamental source of the function's resistance to inverting.  
 
The VMPC function has a simple formal definition and the value of the function can be 
computed with 3 one-clock-cycle instructions of an Intel 80486 and newer or compatible 
processor per byte.  
 
Inverting the function is estimated to require an average computational effort of about 2260 
operations.  This effort can be significantly extended at only linear cost. 
 
Adding one more one-cycle instruction to the implementation of the function increases its 
resistance to inverting to an average level of about 2420 operations. Adding another one-
cycle instruction raises it to about 2550 operations and adding yet another one-cycle 
instruction produces a function requiring an average computational effort of about 2660 
operations to be inverted.  
 
The simplicity of the VMPC function could raise a question whether it might be possible to 
prove the lower bound on the complexity of inverting it. This currently is an open problem 
and a possible subject of future research. 
 
The more detailed explanation of why the VMPC function it hard to invert is to be found in 
section 6. 

Abstract.    The VMPC function is a combination of 
two basic operations: permutation composition and 
integer addition. The function resulting from this 
combination shows to have very high resistance to 
inverting.  Computational effort of about 2260 
operations is estimated to be required to invert the 
VMPC function. The value of the function can be 
computed with 3 elementary computer processor 
instructions per byte.   An open question is whether 
the function's simplicity raises a realistic chance that 
the lower bound on the complexity of inverting it 
might be proved. 



 
2. Definition of the VMPC function 
 
Notation: 
 

     n, P, Q  : P and Q: n-element permutations. For simplicity of further implementations  

                    P and Q are one-to-one mappings A → A, where A = {0,1,…,n-1}   

     k   : Level of the function; k<n 

     +   : addition modulo n 

  
Definition: 
 
           A  k-level  VMPC function, referred to as VMPCk, is such transformation of  
           P into  Q,  where 
 

Q[ x ] = P [ Pk [ Pk -1 […[ P1 [ P [ x ] ] ] …] ] ] , 
 
x ∈ {0,1,…,n-1}, 

Pi  is  an n-element permutation such that  Pi[x] = f i (P[x]), where f i is any function  

such that  Pi[x] ≠ P[x] ≠ Pj[x]  for i∈ {1…k} ,  j∈ {1…k} / { i }.  

 
For simplicity of further implementations f i is assumed to be  f i (x) = x + i 
 
 

Example: 
 
            Q=VMPC1(P) is such transformation of P into Q, where: 
  

Q[ x ] = P[P1[P[x]]] ,   

P1[x]=P[x]+1. 

 

Table 1. Definitions of 1,2,3 and 4-level VMPC function 
Function Definition 

VMPC1 Q[x]=P[P[P[x]]+1] 

VMPC2 Q[x]=P[P[P[P[x]]+1]+2] 

VMPC3 Q[x]=P[P[P[P[P[x]]+1]+2]+3] 

VMPC4 Q[x]=P[P[P[P[P[P[x]]+1]+2]+3]+4] 

   

 

 



3. The 3-instruction implementation of the VMPC function 
 
Implementation of a 1-level VMPC function, where Q[x] = P[P[P[x]]+1], for 256-element 
permutations P and Q in assembly language is described.  
 
Assume that : 
 
- Pa is a 257-byte array indexed by numbers from 0 to 256, the P permutation is               

stored in the array at indexes from 0 to 255 (Pa[0...255]=P) and that  Pa[256]=Pa[0]. 
 
- the EAX 32-bit register stores value zero. ("AL" denotes 8 least significant bits of EAX) 
 
- the EDX 32-bit register stores an address, where the Pa array is stored in memory 
 
- the ECX 32-bit register specifies which element of the Q permutation to compute 
 
 
Execute: 
 
            Table 2. Implementation of 1-level VMPC function  

Instruction Decription 

 MOV AL, [EDX] + ECX  

 MOV AL, [EDX] + EAX 

 MOV AL, [EDX] + EAX + 1    

 Store ECX-th element of P in AL 

 Store AL-th element of P in AL 

 Store (AL+1)-th element of P in AL    

 
The 3 MOV instructions in Table 2 store the ECX-th element of permutation Q, where 
Q=VMPC1(P), in the AL (and EAX) register. 
 
 
4. Example values of the VMPC function 
 
Values of the 1,2,3 and 4-level VMPC function of an example 10-element permutation P 
are shown in Table 3.  

Table 3. Example values of the VMPC function for 10-element permutations 
Index 0 1 2 3 4 5 6 7 8 9 

P 2 0 4 3 6 9 7 8 5 1 

Q1=VMPC1(P) 9 3 8 6 5 4 1 7 2 0 

Q2=VMPC2(P) 0 9 2 5 8 7 3 1 6 4 

Q3=VMPC3(P) 3 4 9 5 0 2 7 6 1 8 

Q4=VMPC4(P) 8 5 3 1 6 7 0 2 9 4 

 
 



5. Complexities of computing / inverting the VMPC function 
 
Efforts required to compute and to invert the 1,2,3 and 4-level VMPC function for 256-
element permutations are shown in Table 4: 

 
Table 4. Complexities of computing / inverting the VMPC function for 256-element permutations 
Function VMPC1 VMPC2 VMPC3 VMPC4 

Number of MOV instructions required to compute 
one byte of the value of the function 3 4 5 6 

Estimated average number of computational 
operations required to invert the function 2260 2420 2550 2660 

 

 

6. Difficulty of inverting the VMPC function 

n-element permutation P has to be recovered given information from n-element 
permutation, Q, where Q=VMPCk(P) (e.g. n=256, k=1: Q[x]=P[P[P[x]]+1]). 

By definition each element of Q is formed by k+2 (e.g. 3), usually different, elements of P. 
One element of Q (e.g. Q[33]=25) can be formed by many possible configurations of P 
elements (e.g. P[33]=10, P[10]=20, P[21]=25 or P[33]=1, P[1]=4, P[5]=25, etc.). 

It cannot be said which of the configurations is more probable. One of the configurations 
has to be picked (usually k+1 (e.g. 2) elements of P have to be guessed) and the choice 
must be verified using all those other Q elements, which use at least one of the P elements 
from the picked configuration. 

Each element of P is usually used to form k+2 (e.g. 3) different elements of Q. As a result, 
usually (k+2)*(k+1) (e.g. 6) new elements of Q need to be inverted (all k+2 elements of P 
used to form each of those Q elements need to be revealed) to verify the P elements from 
the picked configuration. 

This would not be difficult for a simple (e.g. triple) permutation composition, where the 
cycle structure of P is retained by Q (some cycles are only shortened). 

In Variably Modified Permutation Composition however the cycle structure of P is 
corrupted by the addition operation(s) and cannot be easily recovered from Q. 

Due to that it is usually impossible to find two different elements of Q, which use at least 
k+1 (e.g. 2) exactly the same elements of P. (This can be done easily for a simple 
permutation composition)  

 

 



In fact only such element of Q can usually be found, name it Q[r], which uses only one of 
the k+2 (e.g. 3) elements of P, used to form another Q element. This forces the k remaining 
(e.g. 1) elements of P, used to form Q[r], to be guessed to make the verification of the 
initial pick possible. 

However at each new guessed element of P, there usually occur k+1 (e.g. 2) new elements 
of Q which use this element of P and which need to be inverted to verify the guess. 

The algorithm falls into a loop, where at every step usually k (e.g. 1) new elements of P 
need to be guessed to verify the previously guessed elements. It quickly occurs that the k+2 
(e.g. 3) elements of P picked at the beginning of the process indirectly depend on all n (e.g. 
256) elements of Q.  
 

The described scenario is the case usually and it is sometimes possible to benefit from 
coincidences (where for example it is possible to find two elements of Q, which use more 
than one (e.g. 2) exactly the same P elements (e.g. Q[2]=3: P[2]=4, P[4]=8, P[9]=3 and 
Q[5]=8: P[5]=9, P[9]=3, P[4]=8)). 

The actual algorithm of inverting VMPC was optimized to benefit from the possible 
coincidences. The average number of P elements which need to be guessed - for n=256 - 
has been reduced to only about 34 for 1-level VMPC function, to about 57 for 2-level 
VMPC, to about 77 for 3-level VMPC and to about 92 for 4-level VMPC function. 

Searching through the possible states of these P elements takes on average about 2260 steps 
for 1-level VMPC function (not 2268,7), about 2420 for 2-level VMPC, about 2550 for 3-level 
VMPC and about 2660 steps for 4-level VMPC function. 

 

7. Algorithm of inverting the VMPC function 

The fastest method of inverting the VMPC function found derives n-element permutation P 
which produces a given Q=VMPCk(P) permutation, according to the following algorithm: 
 
Notation:  
 
    Pt  : n-element table, the searched permutation will be stored in 

 

    Argument, Value;  Base, Parameter of an element of Pt :  

          For an element Pt [x]=y : x is termed the argument and y the value. 

          The base is either the argument or the value; the parameter is the corresponding –  

          the value or the argument. 

                 Example: for an element Pt [3]=5: If value 5 is the base, argument 3 is the   

                  parameter.  

 

 



 

1.1) Reveal one element of Pt by assuming Pt [x]=y;  where x and y are any values within    

        range x ∈ {0,1,…,n-1}, y ∈ {0,1,…,n-1}  

1.2) Choose at random whether x is the base and y the parameter or y the base and x the   

        parameter of the element Pt [x]=y. Denote Pt [x]=y as the current element of Pt. 

 

2) Reveal all possible elements of Pt by running the deducing process (see section 7.1) 

 

3) If n elements of Pt have been revealed with no contradiction in step 2: 

     Terminate the algorithm and output Pt 

 

4) If fewer than n elements of Pt have been revealed with no contradiction in step 2: 

 

    4.1) Reveal a new element of Pt by running the selecting process (see section 7.2). 

            Denote the revealed element as the current element of Pt. 

 

    4.2) Save the parameter of the current element of Pt  

 

    4.3) Go to step 2 

 

5) If a contradiction occurred in step 2: 

 

    5.1) Remove all elements of Pt revealed in step 2 when the current element of Pt  

           had been revealed    

 

    5.2) Increment modulo n the parameter of the current element of Pt 

 

    5.3) If the parameter of the current element of Pt has returned to the value  

           saved in step 4.2: 

 

           5.3.1) Remove the current element of Pt  

 

           5.3.2) Denote the element, which had been the current element of Pt directly before      

                      the element  removed in step 5.3.1 became the current one,  

                      as the current element of Pt 

 

           5.3.3) Go to step 5.1 

 

6) Go to step 2 



7.1. The deducing process 
 
The deducing process reveals all possible elements of Pt, given Q and given the already  
revealed elements of Pt according to the following algorithm: 
 
Notation: as in section 7, with: 
 
          C,A : temporary variables 

          Word x of Statement y:    

                    Statement y: A set of all elements of Pt used to calculate Q[y] 

                     Word x:  x-th consecutive element of Pt used to calculate Q[y]: 

                    Example for VMPC2 : Q[ x ] = P[P[P[P[x]]+1]+2] : 

                    Assume Pt[2]=3, Pt[3]=5, Pt[6]=2, Pt[4]=7, which produces Q[2]=7. 

                    The elements Pt[2]=3, Pt[3]=5, Pt[6]=2, Pt[4]=7 form statement 2. 

                    The element Pt[2]=3 is word 1 of statement 2; Pt[3]=5 is  

                    word 2 of statement 2, etc. 

 
 
 
1.1) Set C to 0  

1.2) Set A to 0 

 

2) If the element Pt [A] is revealed: 

 

    2.1) If the element Pt [A] and k other revealed elements of Pt fit a general pattern of k+1   

           words of any statement : Deduce the remaining word of that statement  

           (see example 7.1.1) 

 

    2.2) If the deduced word is not a revealed element of Pt : 

 

           2.2.1) Reveal the deduced word as an element of Pt 

 

           2.2.2) Set C to 1 

 

    2.3) If the deduced word contradicts any of the already revealed elements of Pt : 

           Output a contradiction and terminate the deducing algorithm (see example 7.1.2) 

 

3.1) Increment A 

3.2) If A is lower than n: Go to step 2 

3.3) If C is equal 1: Go to step 1.1 

 



Example 7.1.1)  

 

          For VMPC2  : Q[ x ] = P[P[P[P[x]]+1]+2]: 

 

          Assume that Q[0]=9 and that the following elements of Pt are revealed: 

          Pt [0]=1,   Pt [1]=3,  Pt [8]=9 

 

          Word 3 of statement 0 can be deduced as Pt‘ [4]=6  (Pt‘ [3+1]=8-2) 

 

Example 7.1.2)  

 

          For VMPC2  : Q[ x ] = P[P[P[P[x]]+1]+2]: 

 

          Assume that Q[7]=2 and that the following elements of Pt are revealed: 

          Pt [1]=8,   Pt [9]=3,  Pt [5]=2  and  Pt [6]=1  

 

          Word 1 of statement 7, deduced as Pt‘ [7]=1, contradicts the already revealed element   

           Pt [6]=1.     

    

 
7.2. The selecting process 
 
The selecting process selects such new element of Pt to be revealed which maximizes the 
number of elements of Pt possible to deduce in further steps of the inverting algorithm. 
   
The selecting process outputs a selected base and a randomly chosen parameter of a new 
element of Pt. 
 
 
Notation: as in section 7.1, with: 
 

            G,R,X,Y : temporary variables 

 

            Ta,Tv     : temporary tables 

 

            Weight  : table of numbers:  

 

            Weight[1; 2; 3; 4] = (2; 5; 9; 14);  Example: Weight[3]=9      

 

 

 



1.1) Set Ta and Tv to 0 

1.2) Set G to 0 

1.3) Set R to 1 

 

2) Count the number of revealed elements of Pt which fit the general pattern of words of a     

    statement in which an unrevealed element of Pt with argument G would be word R.  

    Increment Ta[G] by Weight of this number (see example 7.2.1) 

 

3) Count the number of revealed elements of Pt which fit the general pattern of words of a    

    statement in which an unrevealed element of Pt with value G would be word R.  

    Increment Tv[G] by Weight of this number 

 

4.1) Increment R 

4.2) If R is lower than k+2: Go to step 2 

 

4.3) Increment G 

4.4) If G is lower than n: Go to step 1.3 

 

5.1) Pick any index of Ta or Tv for which the number stored in any of the tables Ta or Tv   

        is maximal (see example 7.2.2) 

 

5.2) If the index picked in step 5.1 is an index of Ta: 

 

        5.2.1) Store this index in variable X 

 

        5.2.2) Generate a random number Y within range Y∈ {0,1,…,n-1},  

                   such that an element of Pt with value Y is not revealed 

 

        5.2.3) Output Pt’ [X]=Y, where X is the base and Y is the parameter 

 

5.3) If the index picked in step 5.1 is an index of Tv: 

 

        5.3.1) Store this index in variable Y 

 

        5.3.2) Generate a random number X within range X∈ {0,1,…,n-1},  

                   such that an element of Pt with argument X is not revealed 

 

        5.3.3) Outputs Pt’ [X]=Y, where Y is the base and X is the parameter 

 



Example 7.2.1) 

 

          For VMPC2 : Q[ x ] = P[P[P[P[x]]+1]+2]: 

          Assume that G=8; R=2; Q[6]=1 and that the following elements of Pt are revealed: 

          Pt [6]=8,  Pt [5]=1 

 

          There are two revealed elements of Pt which fit the general pattern of words of a  

         statement in which  Pt [8] would be word 2 : Pt [6]=8,  Pt [5]=1: 

      

         word 1      word 2       word 3      word 4 

         Pt [6]=8,    Pt [8]=?,    Pt [?]=?,    Pt [5]=1 

 

         Ta[8] = Ta[8] + Weight[2] = Ta[8] + 5 

 
 
Example 7.2.2) 

 

           Assume Ta = (0, 5, 2, 7, 5, 7) and Tv = (2, 7, 0, 0, 5, 2) 

           The maximal number stored in any of the tables is 7: Ta[3]=Ta[5]=Tv[1]=7  

           Pick any of: index 3 of Ta, index 5 of Ta or index 1 of Tv 

 
 
 
8. Example complexities of inverting the VMPC function 
 
Complexity of inverting the VMPC function has been approximated as an average number 
of times the deducing process in step 2 of the inverting algorithm described in section 7 has 
to be run until permutation Pt satisfies Q=VMPCk(Pt) 
 
Complexities of inverting the VMPC function of the following levels have been 
approximated: 
 
 

VMPC1 :  Q[ x ] = P[P[ P[x]]+1] 

VMPC2 :  Q[ x ] = P[P[P[P[x]]+1]+2] 

VMPC3 :  Q[ x ] = P[P[P[P[P[x]]+1]+2]+3] 

VMPC4 :  Q[ x ] = P[P[P[P[P[P[x]]+1]+2]+3]+4] 

 
 
 
 
 



               Table 5. Example complexities of inverting the VMPC function 
Function 

n 
VMPC1 VMPC2 VMPC3 VMPC4 

6 24,1 25,5 26,1 26,9 
10 27,1 29,7 211,5  213,0 
16  211,5  216,6 220,4   223,3 
32 224 237 247 254 
64 253 284 2108 2127 
128 2117 2190 2245 2292 
256 2260 2420 2550 2660 

 

 

9. Conclusions 

An idea of a simple one-way function has been presented. The VMPC function’s resistance 
to inverting is strictly related to the addition operation(s) performed at some step(s) of the 
composition. Their  role can be clearly illustrated by comparing the process of inverting a 
simple permutation composition with inverting the Variably Modified Permutation 
Composition. 

It is an open problem whether the simplicity of the VMPC function helps make a 
hypothetical attempt to prove the lower bound on the complexity of inverting the function 
worth undertaking. 


