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Abstract

In a practical system, a message is often encrypted more than once by different encryptions, which we
call multiple encryption, to enhance its security. Other schemes use multiple encryption to achieve new
features, such as anonymity of sender. Intuitively, whenever there is one component cipher unbreakable,
such multiple encryption remains “secure”. However, in this paper we show this is not always true.
We introduce a new security definition called ME-CCA that is a natural extension of the CCA security
in analyzing partial breaking of component ciphers in a multiple encryption. Our result shows even all
component ciphers are IND-CCA secure, the whole multiple encryption may be not possibly ME-CCA
secure. One the other hand, ME-gCCA security, the relaxation of ME-CCA security, is easily gained if the
all component ciphers are gCCA secure. We study the relation of security notions of multiple encryption.
We apply this analysis to key-insulated cryptosystem [10], showing the generic construction there is
actually insecure against CCA attack. However, we point out their generic construction is in fact provably
secure in the relaxed ME-gCCA model. We further add a patch to their scheme, which yields the first
key-insulated cryptosystem provably secure against CCA attack.

1 Introduction

A practical cryptosystem often encrypts a message several times with independent secret keys or even
encryption schemes based on different assumptions to enhance the confidentiality of message, (specifically
double encryption and triple encryption for two times and three times multiple encryptions).

Why multiple encryption. This approach is widely believed to provide better security because even
if underlying assumptions of some component ciphers are broken or some of secret keys are compromised,
the confidentiality can still be maintained by the remaining encryptions. Historically, sudden emergence
of efficient attacks against the elliptic curve cryptosystem on supersingular curves [22] and on prime-field
anomalous curves [31] have already reminded us the necessity to do this. For example, it is suggested by
NESSIE [24] on asymmetric encryption scheme to “use double encryption using ACE-KEM and RSA-KEM
with different DEMs gives a good range of security, based on various different assumptions”, “if very long
term security is important”. Furthermore, “Triple encryption that also uses a public-key scheme not based
on number-theoretical assumptions might increase the security against future breakthrough”.

On the other hand, multiple encryption may provide additional new features. Combination of ordinary
threshold encryptions may yield new threshold encryption with various access structure. Many practical
applications achieving sender anonymity via practical open network, Mix-net, Onion routing and so on, are
all typical constructions of multiple encryption.

Multiple encryption has been studied in the literature such as [21, 2]. However, we argue in what sense
this is correct, because in these work, only kind of passive attack on symmetric encryption is considered,
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while the analysis under the standard security definition of public key encryption schemes, especially the
chosen ciphertext security, does not seem to have been touched yet.

In this paper, we show that even if it consists of only independently selected IND-CCA secure components,
a multiple encryption is not necessarily secure at all in the sense of chosen ciphertext attack. This seems
contradictive to our intuition at the first sight. However, many natural constructions of multiple encryption
from combinations of IND-CCA secure components can be shown easily to lose the CCA security. For example,
one of our results shows that generic construction of key-insulated encryption [10] from cover free family can
be broken under CCA. On the other hand, this result may imply CCA-security is too strong a notion because it
overkills some schemes with practical use. We shall discuss relaxed security definition emphasizing practical
usability based on the “natural” constructions. As theoretical interest, we also propose a construction of
multiple encryption scheme achieving CCA security. However, our work is chiefly to show the existence
of multiple encryption with various different assumptions can be CCA secure. It cannot compare to the
performance of the key insulated cryptosystem [10] for practical resistance of key exposure.

1.1 Related work

In this section we review some previous work on multiple encryption and related primitives. Rather than
simple repeat of ordinary public key encryption schemes, we regard multiple encryption as a separate
primitive.

Multiple Encryption and Related Primitives. Multiple encryption has already been used in prac-
tical schemes against partial key exposures in distributed systems. One example is the key-insulated cryp-
tosystem, recently proposed by Dodis et al. [10]. The lifetime of a (t,N) key-insulated secure cryptosystem
is divided into N periods, where the user secret key is updated at the beginning of each period. The generic
construction in [10] is formed by a multiple encryption: a message is first processed by AONT (All-Or-
Nothing-Transform) [26, 4] into n shares, and encrypt these shares with n public keys, with corresponding
secret keys generated from cover free family [20]. With physical assumption (separate physically secure
device), it is guaranteed that secret key of period i cannot be compromised even if user secret keys are
exposed to the adversary up to a number of t other periods.

Another important category of applications using multiple encryption are those practical implementa-
tions of anonymous channel in open network, for instance, the Mix-net [18] and onion routing [6]. In these
settings, several agents are appointed to transmit data from the sender to the receiver without revealing
identity of the sender. Typical design of such protocols is to encrypt data under multiple public keys of these
agents, which decrypt the data one layer after another until eventually reach the destination. It is essential
to perform these decryption correctly, e.g., [1] has shown some practical attacks against some carelessly
designed Mix-net protocols [19, 17], which if translated in our language, are insecure multiple encryption.

A similar notion to multiple encryption is the threshold cryptosystem [7, 8, 30], which maintains secrecy
of decryption key even if some of the secret key shares are compromised. However, all known constructions
are based on particular number theoretic assumption and can be employed to only a restrictive range of
applications.

Security Notions. To define the security of an encryption scheme, one needs to consider two aspects: the
security goal and attack model, as has been suggested in [3]. Standard definition of a public key encryption
scheme is founded with gradual progress in literature e.g. [16, 11, 25, 3, 12] and the strongest security notion
is proved to be indistinguishability against (adaptive) chosen-ciphertext attack (IND-CCA) [3, 12]. Semantic
security, first defined by Goldwasser and Micali [16], later refined by Goldreich [15] and Watanabe, Shikata
and Imai [32], captures the computational approximation of Shannon’s information-theoretic security, or
perfect secrecy [27], regulating that it should be infeasible for any PPT (Probabilistic Polynomial Time)
adversary to obtain any partial information about the plaintext of a given ciphertext. A similar definition,
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indistinguishability, defines that given a ciphertext an adversary cannot distinguish which plaintext is en-
crypted from two plaintexts. Indistinguishability is proved to be equivalent to semantic security in several
attack models, namely chosen plaintext attack (CPA), (non-adaptive) chosen-ciphertext attack (CCA1) and
adaptive chosen-ciphertext attack (CCA2) [16, 32]. Another intricate notion, non-malleability, defined by
Dolev, Dwork and Naor [11, 12] formulates that the adversary should not be able to create a ciphertext
of a different message that is meaningfully related to the original ciphertext and non-malleability implies
indistinguishability in all above three attack models. Independently in [3] and [12], indistinguishability and
non-malleability are proved to be equivalent under (adaptive) chosen-ciphertext attack (CCA).

CCA security is crucial in analyzing security of protocols. However, Shoup first argues CCA security
is stringent for practical schemes and suggests “benign malleability” in the proposal for ISO public key
encryption standard [29], as a relaxation for CCA model. An et al. give similar discussion under the name
“generalized-CCA” (a.k.a. gCCA). In these two relaxations, a relation function checks and rejects “obvious”
decryption queries decrypted to the target message. We note that such ciphertexts are publicly detectable.

Previous Work on Security of Multiple Encryption. Multiple encryption was addressed by Shan-
non as early as [27] under the name “product cipher”, and in [9, 23] in context of symmetric key cryptosys-
tems. Maurer et al. [21] have also studied similar problem under the name “cascade cipher”. We point out
that all above work is not adequate: largely symmetric key encryptions with sequential order are studied,
while CCA security of public key multiple encryption has never been mentioned yet.

1.2 Our contributions

Our contributions are in following aspects:

Model and Security Definition of Multiple Encryption. We give a formal model regarding public
key multiple encryption. To the best of our knowledge, no previous work has strict formalization on this, and
actually our model can be extended to both public key and symmetric key based cryptosystems. Our model
consorts the modular design: combining “secure” component cryptosystems to have a “secure” multiple
encryption. Some analyses here can be applied to symmetric key schemes also. As theoretical extension
of traditional security definitions, we give the corresponding security definition on multiple encryptions
based on indistinguishability, especially chosen ciphertext attack. We introduce a Key Exposure Oracle
(KE) to model multiple encryption’s ability. Without loss of generality, breaking underlying assumptions
of component ciphers can be emulated as the secret key is leaked to the adversary.We allow underlying
cryptosystems can be chosen independently as well as the secret keys. Of course, one can weaken this
requirement by choosing all component on the same number theoretic assumption in practical schemes
as [10]. It should be emphasized that choosing multiple encryption on different assumptions is the most
generalized form of multiple encryption, with more favorable confidentiality protection to the plaintext, or
provides maximum independence of multiple encrypter.

Vulnerability of Natural Multiple Encryption. We demonstrate attacks against multiple encryp-
tion schemes with each component IND-CCA secure. We show that there exists such adversary against such
nature construction with access to the Decryption Oracle and Key Exposure Oracle, breaks the indistin-
guishability of the scheme, which consists of only IND-CCA secure components! As a matter of fact, such
adversary even breaks the onewayness of the whole system.

Secure Construction of Multiple Encryption. We consider constructions of multiple encryption
meeting CCA security. We exhibit the existence of transforms to enhance “weak” multiple encryption to
satisfy “strong” security notion of indistinguishability against chosen ciphertext attack. However, in most
cases, CCA security for multiple encryption seems rather literal and should be of little practical advantage
over the straightforward combination of IND-CCA component ciphers, except that it meets CCA security
exactly.
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Re-defining Security of Multiple Encryption. IND-CCA security has been treated as standard
definition for encryption schemes, as usually this is convenient to have modular design on cryptographical
protocols in the universal composable framework [5]. However, our analysis shows CCA security may be too
stringent as even IND-CCA secure components would result in a CCA insecure multiple encryption in most
of the cases. We argue the CCA security definition is too strong for defining the multiple encryptions. As
a reasonable relaxation, we give a new security definition named IND-ME-gCCA security that with aid of
a relation function rules out some malleable ciphertext decryption queries. We prove that in the relaxed
model the equivalence of indistinguishability and malleability still hold.

Security Analysis of Multiple Encryption. We also study the relation between different definitions
in multiple encryption settings. We believe a good analysis of these relations will help protocol designer more
than simply give a specific construction based on some concrete mathematical assumption. Actually we give
analysis on the security definitions namely indistinguishability and non-malleability under a number of attack
models. We show indistinguishability and non-malleability are equivalent under chosen ciphertext attack
and generalized chosen ciphertext attack for multiple encryption, which has known in the extreme case: a
multiple encryption degenerates to an ordinary public key cryptosystem, if there is only one component
cipher in it.

Application to Key Insulated Encryption. As an application, we reconsider the security of key-
insulated encryption proposed by Dodis, Katz, Xu and Yung [10]. In fact, their analysis on generic con-
struction is insufficient: the security proof given there considers only chosen plaintext security, though their
definition states also the chosen ciphertext security. In fact, their generic construction can be broken by a
CCA adversary. However, we show that their scheme is in fact provably secure in the relaxed gCCA model,
which reasonably supports the correctness and practical usability of their scheme. We further give a patch
on their scheme to make it meet CCA security. We point out this is the first generic construction of provably
secure key-insulated cryptosystem in CCA model.

2 Preliminary

We shall give the basic definitions for the rest part of the paper.

2.1 Public key encryption scheme

An public key encryption scheme E is a 3-tuple algorithm: E = (Enc-Gen, Enc,Dec). Enc-Gen(1k) is a
probabilistic algorithm, where k is the security parameter, with internal random coin flipping outputs a
pair of keys (pk, sk). pk is the encryption key which is made public, and sk is the decryption which is kept
secret. Enc may be a probabilistic algorithm that takes as input a key pk and a message m from associated
message space M, and internally flips some coins and outputs a ciphertext c, denoted by c ← Encpk(m), in
short c ← Enc(m). Dec is a deterministic algorithm takes as input the ciphertext c and the secret key sk,
and outputs some message m ∈ M, or “⊥” in case c is “invalid”. We denote it by m ← Decsk(c), in short
m ← Dec(c).

A function f : D → R is called negligible if for every constant l ≥ 0 there exists an integer k such
that f(k) ≤ k−l

c for all k ≥ kc, denoted by neg(k). Indistinguishability (semantic security) under chosen-
ciphertext attack (IND-CCA), is defined as: if no PPT adversary A can distinguish encryptions of any two
messages (M0,M1) of equal length chosen by it with negligible advantage than random guess. We require
that A runs in two stages Afind and Aguess, in which Afind gets side information α from the queries and
output a pair of challenge messages, and Aguess outputs a guess b̃ on b according to the ciphertext Cb

encrypted by Encryption Oracle with randomly chosen b ∈ {0, 1}. According to the ability of the adversary,
Afind and Aguess can be assisted by an Decryption Oracle DO that for a decryption query other than the
target ciphertext, returns the plaintext. Note that according to the adversary’s ability, sometimes DO is
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unavailable (or equivalently denoted by DO outputting an empty string ε). In our analysis, it is sufficient to
consider the case where DO is available, for one can easily construct an adversary B without DO achieving
the same advantage of another adversary A with DO by using A as an oracle. We denote this as:

Pr

[
b = b̃

(pk, sk) ← Enc-Gen(1k), (M0,M1, α) ← ADOfind(pk),

b
R← {0, 1}, Cb ← Enc(Mb), b̃ ← AKE,DO

guess (Cb, α)

]
≤ 1

2
+ neg(k)

If no such PPT adversary exists against E , then we call E IND-CCA secure.

2.2 All-or-Nothing Transform

An AONT is a randomized transform T called an (L, l, n)-AONT if (1): on input M ∈ {0, 1}L, T outputs
X

def=(m1, ..., mn), where mj ∈ {0, 1}l; (2) here exists an efficient inverse function I such that I(X) = M ; (3)
I satisfies indistinguishability. Let X−j = (m1, ..., mj−1,mj+1, ..., mn) and T−j(M)=X−j , where X←T (M).

Let left-or-right oracle LRb(j, M0,M1)
def=T−j(Mb), for any PPT adversary A attacking AONT, define its

advantage as AdvA,T
def=Pr[b ← {0, 1}; b′ ← ALRb(·,·,·) : b′ = b]− 1/2. Then Adv is negligible.

2.3 Cover-free family
A family of subsets S1, ..., SN over some unicerse U is said to be t-cover-free if no t subsets Si1 , ..., Sit

contain a (different) subset Si0 , that is, for all {i0, ..., it} with i0 /∈ {i0, ..., it}, we have Si0 * ∪t
t=1Sij . A

family is said to be (t, β)-cover-free, where 0 < β < 1, if for all {i0, ..., it} with i0 /∈ {i1, ..., it}, we have
|Si0\∪t

j=1Sij | ≥ β|Si0 |.

3 The model

In this section, we shall give the model of a multiple encryption, basic construction methods and relative
security definitions. Multiple encryption is a generalized form of public key encryption.

3.1 Multiple encryption scheme

Informally a multiple encryption is a message encrypted by multiple cryptosystems. A multiple encryption
schemeME is generated by some component cipher systems. We shall give some intuitive descriptions before
giving the formal definition. Naturally we have two basic combinations of these cryptosystems: parallel and
serial connection among different components.

3.1.1 Basic specification

Multiple encryption is a complex system composed by distinct component ciphers, combined together to
realize a certain functionality. Suppose {Ei | i = 1, . . . , n} are a set of compatible component ciphers, where

Enc-Geni the probabilistic key-generation algorithm, with the input (1k) and internal coin
flipping produces a public-secret key pair (pki, ski);

Enci the encryption algorithm, with an input message mi ∈Mi and internal coin flipping,
outputs a ciphertext ci ∈ Ci;

Deci the decryption algorithm, which is a deterministic algorithm, with the input cipher-
text ci outputs the message mi or “⊥”.

A multiple encryption is a 3-tuple algorithm (MEnc-Gen,MEnc,MDec), each combined from a number of
public key cryptosystems with a unifilar connecting order. MEnc-Gen invokes Enc-Geni and outputs a list
of secret keys (sk1, ..., skn). MEnc with an input message M chosen from the message space M, performs
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encryption MEnc on M by invoking a list of component ciphers {Ei} also including AONT T if necessary,
eventually outputs a ciphertext C ∈ C. The decryption algorithm MDec takes C as input and outputs M ,
or “⊥” if C is invalid. Essentially, we have two basic constructions:

Parallel construction. A parallel multiple encryption is an operation that messages is encrypted in
parallel by cryptosystems E1, . . . , En. If a message m is chosen from the message space M and is directly
processed by E1, . . . , En, the merit of multiple encryption will never exist – if the adversary breaks one
component cipher, it succeeds. The right way is to pre-process the plaintext before encrypting it. Such
pre-procession can be an All-Or-Nothing Transform (AONT) (intuitively one can consider a (n−1, n) secret
sharing), which maps the desired message into several sub-messages, so that only after all the sub-messages
are decrypted can the plaintext be recovered. Figure 1 depicts the construction in Appendix A.

To decrypt the ciphertext c = (c1, . . . , cn), one uses every ski in the underlying Ei to decrypt every ci

and gets mi (1 ≤ i ≤ n). The plaintext m can then be reconstructed from m1, . . . , mn. For an adversary
attacking AONT, it can never obtain any information of the plaintext unless it gets all mi’s. The generic
construction of the key-insulated cryptosystem [10] is an example of multiple parallel encryption.

Serial construction. Serial multiple encryption is more straightforward, is identical to cascade cipher
in [21]. It should be clarified that there exists significant difference between multiple serial encryption and
the product cipher [27]: for multiple encryption, each component cipher scheme can be chosen independently.
Initially the plaintext is encrypted by the most inner component cipher. Each output (ciphertext) of an
component cipher system will be passed on as the input of the next component cipher system. Finally
the output of the last component cipher is taken as the output of this multiple encryption system. An
illustration can be found in Figure 2 in Appendix A. Since the operation is done sequentially, by observing
C = cn, the decryption algorithm takes cn and ski, i = 1, . . . , n as input and eventually outputs m. The
construction of onion routing [6] is an example of multiple serial encryption.

Hybrid construction. If a multiple encryption contains both parallel encryption block and serial en-
cryption block, we call it a hybrid multiple encryption. We give another description that may help readers
to understand the structure. Consider a cipher cryptosystem with a tree structure. Fixing the root as the
first layer cipher system, then adding a parallel multiple encryption to a node just encreases the sub-nodes
of a node into m, where m is the number of parallelled cipher cryptosystems. Adding a serial cipher cryp-
tosystem to a node will increase the tree depth with a factor of n from that node, where n is the number in
this serial multiple encryption block. Then the output of the whole multiple encryption is the output of all
nodes that don’t have sub-nodes. We call the set of a node of a certain level and its sub-nodes a branch. If
there is more than one end node in the branch, we say the branch ends with parallel block. Otherwise, ends
with serial block. Then a multiple encryption ends with a parallel block if there is one parallel encryption
block in any branch, and ends with serial encryption block if there is only one branch, with its all component
cipher forming a serial encryption block.

3.1.2 Parallel construction vs serial construction

Parallel multiple encryption may act as a secure data storage where a document is split into n pieces with
(t, n) threshold (computational) secret sharing other than AONT and stored in several not necessarily secure
servers. As long as no more than t secret keys are not compromised, the secret is still secure. Compared
to parallel multiple encryption, serial multiple encryption has gain in the data size while enhancing the
security. However, for careless users who do not tend to manage their keys well, it is better to use parallel
multiple encryption to have a secure backup.
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3.2 Security definition

Here two things should be specified: the security goal and attack model. We should not apply IND-CCA
directly to the multiple encryption because partially breaking of underlying assumptions (key exposure) is
usually not considered in IND-CCA. As discussed previously, a multiple encryption is aimed at improving
the security in longer term. We believe breaking of assumptions of underlying component ciphers should be
considered in its definition1. We capture this real world behavior by introducing a Key Exposure Oracle KE ,
that according to the key exposure queries from the adversary, returns the secret keys of concrete component
cipher systems. We shall focus the more stronger attack model CCA attack and briefly discuss the weaker
attack CPA later. These definitions are natural extensions from those of traditional public key encryptions:
by fixing the number of component ciphers n = 1, we get normal IND-CCA or NM-CCA definition.

Definition 1 (IND-ME-CCA) Assume any PPT adversary play the following game with a multiple encryp-
tion ME: First key generation algorithm MEnc-Gen is run, by calling each Enc-Geni independently to produce
distinct public key and secret key pairs. The public key pk = {pki | i = 1, . . . , n} is then given to an Encryp-
tion Oracle EO and the adversary. The secret key sk = {ski|i = 1, . . . , n} is given to a Decryption Oracle
DO and a Key Exposure Oracle KE. The adversary adaptively chooses arbitrarily a part of the component
ciphers {Eit |1 ≤ t ≤ n− 1} at his will, informs KE, who will hand all requested secret keys to the adversary.
The adversary chooses some ciphertexts C according to his choice and submits to the Decryption Oracle
DO. The adversary sends {M0,M1} to the Encryption Oracle EO, which chooses b ∈R {0, 1}, encrypts Mb

and returns the corresponding ciphertext Cb to the adversary. The adversary continues to submit decryption
queries. The only limit on these queries is that the adversary can’t query DO with the target ciphertext.
Finally the adversary outputs a guess b̃ on b. If the difference of the success probability of the adversary A
compared to random guess in the IND-ME-CCA game is negligible:

Pr

[
b = b̃

(pk, sk) ← MEnc-Gen(1k), (M0,M1, α) ← AKE,DO
find (pk),

b
R← {0, 1}, Cb ← MEnc(Mb), b̃ ← AKE,DO

guess (Cb, α)

]
≤ 1

2
+ neg(k)

then we call this ME IND-ME-CCA secure, furthermore, adversary playing this game is called ME-CCA
adversary.

in ordinary public key cryptosystem, non-malleability can be also defined. The formulation of non-
malleability is that the adversary cannot produce a valid “new” ciphertext meaningfully related to the
original one. We can define non-malleability under the chosen ciphertext attack of a multiple encryption.

Definition 2 (NM-ME-CCA) A PPT adversary A = (A1,A2) againstME schedules its attack in two stages:
in the first stages, it adaptively interacts with a Decryption Oracle DO, which on requests of ciphertext
returns the plaintexts, and a Key Exposure Oracle KE, which on requests of index of component ciphers
returns the corresponding secret key. The adversary finally outputs a pair of message (M0,M1). In the
second stage, an Encryption Oracle EO chooses one message randomly from the two the adversary and give
the adversary a challenge ciphertext Cb. Denote M,C as sets of plaintexts and ciphertext respectively. If the
adversary cannot output a valid “new” set of ciphertext with Cb /∈ C and a relation R with which states the
relation between Mb ← MDec(Cb) and M← MDec(C). In both stages, the adversary may query the oracles
adaptively, in any order he wants, subject to the restriction that he makes only one query to the Encryption
Oracle. Such scheme is secure if any probabilistic polynomial time adversary has success probability negligibly
close to 1/2.

Pr

[
b = 1

(pk, sk) ← MEnc-Gen(1k), (M0, M1, α) ← AKE,DO
1 (pk), Cb ← MEnc(M1),

(R,C) ← AKE,DO
2 (Cb, α,M0,M1),M← MDec(C), (Cb /∈ C) ∧ (⊥ /∈M) ∧R(Mb,M)

]
≤ 1

2
+neg(k)

1If all component ciphers are unbreakable, then there is no need to do multiple encryption.
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4 Insecurity of natural constructions of multiple encryption

Given each component IND-CCA secure, let’s consider the following problem, is above “natural” construction
IND-ME-CCA secure? Rather disappointing, the answer is negative. There does exit insecure constructions.

Basic Idea. At the first glance, one may think all multiple encryption from such construction should
be secure, since each component is chosen independently from each other and satisfies strong security
notion IND-CCA, then all outputs will be indistinguishable from random sequence. However, this reasoning
is fallacious. The flaw is in that this does not consider the case that the adversary can make use of the
Decryption Oracle DO. The Decryption Oracle DO can be very helpful in this case because every ciphertext
different from the original can be decrypted and returned according to the definition of CCA attack. Then
all the adversary needs to do is to modify the challenge ciphertext to a “new” one but decrypt to the same
message, and submit it to the Decryption Oracle DO. In an IND-CCA setting, the adversary cannot do
this easily because the (whole) secret key is kept privately. However, in ME-CCA setting, partial key can be
exposed by the Key Exposure Oracle KE , moreover, since every component is semantically secure, as it must
be probabilistic, where there exist at least two valid ciphertexts C0, C1 ∈ C with Dec(C0) = Dec(C1) = M ,
where M ∈M is any valid plaintext. Furthermore, we have the following theorem.

Theorem 4.1 Multiple encryption may be totally insecure in ME-CCA model, even it is combined from
independently chosen IND-CCA secure component ciphers and secure AONT.

Proof. Given a multiple encryption scheme ME constructed in the following way: independently take
IND-CCA secure component ciphers ME = {Enci}, i = 1, ..., n, and connect them according to parallel or
serial order, we have two claims:

Claim 1 If a multiple encryption has a branch that ends with a parallel multiple encryption block, we are
then able to construct an adversary A that breaks the it with only one key exposure query and one decryption
query.

Suppose A = (Afind,Aguess) that chooses i, 1 ≤ i ≤ n, and submits Ei to KE . Denote (mi, ci) as the

input and output of ith component cipher. Let EO’s challenge be Cb = MEnc(Mb) (b R← {0, 1}). We can
construct the following adversary:

Adversary AKE,DO
find Adversary ADOguess(M0,M1, α, Cb)

(M0,M1, ski) ← AKE,DO
find (pk, i) mi ← Deci,ski(ci) where Cb = (c1, ..., ci, ..., cn)

α ← ski For c′i = ci do c′i = Enci(mi)
return (M0,M1, α) C ′

b = (c1, ..., c
′
i, ..., cn)

Mb = MDec(C ′
b) where C ′

b 6= Cb

return Mb

Claim 2 If a multiple encryption has a branch that ends with a serial encryption block, we may then able
to construct an adversary A that breaks the it with only one key exposure query on the last component and
one decryption query.

Observing that Decn(cn) = cn−1 and C = cn, we can build the adversary as follows:

Adversary AKE,DO
find Adversary ADOguess(M0,M1, α, Cb)

(M0,M1, skn) ← AKE,DO
find (pk, n) cn−1 ← Deci,skn(cn) where Cb = (c1, ..., cn)

α ← skn For c′n = cn do c′i = Encn(cn−1)
return (M0,M1, α) C ′

b = c′n
Mb = MDec(C ′

b) where C ′
b 6= Cb

return Mb
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where EO’s challenge is Cb = MEnc(Mb) (b R← {0, 1}).
We can see in both case, Mb can be returned by DO, which enables the adversary to obtain b easily.

Especially for some hybrid constructions, these two attacks can happen at the same time, where there is
with a serial encryption block as a branch in its all branches.

Above theorem only shows the case of indistinguishability under ME-CCA attack, we also briefly explain
the case of onewayness against ME-CCA, denoted as OW-ME-CCA. Onewayness is a strictly weaker notion
than indistinguishability. However, theorem 4.1 tells us that not only IND-ME-CCA, but also OW-ME-CCA
security cannot always be maintained in ME-CCA model, even if all the components are IND-CCA secure.
On the other hand, we can see such natural schemes are malleable because the adversary can easily produce
a “new” ciphertext with a proper key exposure query and simulates the encryption oracle. This result from
another aspect implies that non-malleability is also essential in analyzing security of encryption schemes.
NM-ME-CCA security better explains why the adversary in proving theorem 4.1 can launch that attack:
it actually has produced a ciphertext with relation that it contains the same plaintext to the challenge
ciphertext. It should be noted that NM-ME-CCA security is not trivially obtainable in such situations.

5 Securing multiple encryption in random oracle model

We have shown that the simple modular design without further treatment of multiple encryption is not
sufficient to yield ME-CCA security. Another question is if multiple encryption satisfying IND-ME-CCA
security can be achieved component ciphers with weaker security, e.g., OW-CPA security. In fact, this is
possible, at least in the random oracle model.

In multiple encryption, ME-CCA security is hard to achieve with simple connections of component ciphers
because partial exposure of the secret keys will always cause malleability of ciphertexts. This prompts us
the necessity to check the redundancy used in encryption to ensure the validity of all parts of a ciphertext.
Suppose all randomness used in the encryption can be verified during decryption, then the Decryption
Oracle in fact will not help in a chosen ciphertext attack scenario, which is also the pith of several generic
transforms from OW-CPA secure public key encryption schemes to IND-CCA secure schemes. Then what
remains unsolved is how to combine a set of OW-CPA encryption schemes to have IND-ME-CCA secure
multiple encryption. We notice that if consistence of randomness and the plaintext can be verified in the
decryption, that is, the adversary must be forced to know the plaintext when it submits a ciphertext to the
Decryption Oracle, then no ciphertext can be forged without breaking all underlying component ciphers.

5.1 Secure parallel construction of multiple encryption

We can build constructions based on any public key encryption components with OW-CPA security. Most
of the practical public key encryption schemes satisfy this. Denote Hi and Gi as hash functions, which are
regarded here as random oracles.

Key-Generation MGen-Enc(1k): (pki, ski)←Gen-Enci; pk = (pk1, ..., pkn), sk = (sk1, ..., skn).

Encryption MEnc(M): m1, ..., mn
AONT←− T (M), ri ∈R {0, 1}∗, i = 1, ..., n. For ith component cipher:

ci1 ← (Enci(ri; Hi(M, r1, ..., rn)), ci2 ← Gi(ri)⊕mi, ci = (ci1, ci2), 1 ≤ i ≤ n. Outputs C = (c1, ..., cn)
as ciphertext.

Decryption MDec(C): ri ← Deci(c̄i1), m̄i = G(r̄i) ⊕ c̄i2, 1 ≤ i ≤ n. Outputs M̄ ← I(m̄1, ..., m̄n) as
plaintext if c̄i1 == Enc(r̄i;Hi(M̄, r̄1, ..., r̄n)), otherwise “⊥”.
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5.2 Secure serial construction of multiple encryption

Serial construction can be based on the same idea. In the following constructions, Hi : {0, 1}∗ → {0, 1}ki

and Gi : {0, 1}∗ → {0, 1}|ci2| are random oracles.

Key-Generation MGen-Enc(1k): (pki, ski)←Gen-Enci; pk = (pk1, ..., pkn), sk = (sk1, ..., skn).

Encryption MEnc(M): Let c0 = M , ri ∈R {0, 1}∗, i = 1, ..., n. For ith component:
ci1 ← (Enci(ri; Hi(ci−1, r1, ..., rn)), ci2 = G1(ri)⊕ c0,...,

rn ∈R {0, 1}∗, cn1 ← (Encn(rn; Hn(cn−1, r1, ..., rn)), cn2 = Gn ⊕ cn−1. Output C = cn.

Decryption MDec(C): Let c̄n = C, for 1 ≤ i ≤ n, c̄n−1 ← Deci(c̄n). Outputs M̄ = c̄0 as output, if
c̄i1 == Enc(r̄i; Hi(M̄, r̄1, ..., r̄n)) for 1 ≤ i ≤ n. Otherwise “⊥”.

5.3 Security proof

We claim the following theorem holds for our construction:

Theorem 5.1 Multiple encryption consists of parallel or serial block with above construction is secure IND-
ME-CCA secure in random oracle model.

Assume each component cipher is chosen independently. We claim the following lemmas:

Lemma 1 If an adversary B breaks a parallel multiple encryption ME with the construction given the
section 5.1, then there is an adversary A breaks onewayness of any component cipher Ei or AONT with
non-negligible advantage.

B breaks ME with probability SuccB(k) = 1/2 + ε with adaptive Key Exposure Oracle that leaves
at most n − 1 keys to B. Construct A as follows: A picks arbitrary encryption scheme Ei and a secure
(L, l, n) − AONT and constructs ME as section 5.1. The adaptive key exposure is simulated as A chooses
arbitrary Ej for j 6= i and hand the secret keys to B. This time since B knows all the secret keys, then there
is no barrier for B to make decryption on cjs. A can simulate all this by itself.

When B asks encryption queries on a message M , A first transforms M with (m1, ..., mn) ← T (M)
with AONT, specially A will take mi as input for Ei. A simulates random oracle Hi and Gi as two tables
THi , TGi by itself: if when B has a query σcount on Hi, if it has not been entered as an entry in THi it
flips coins to get a random number increases the counter count (initially set 0) by 1, put the query and
answer (σi,count, hi,count) in the table and proceeds. It does the same for Gi where it instead puts the query
σi,count,mi,count and the answer is gi,count in TGi . Then A simulates other random oracle Hj and Gj and
gets output of Ej as cj = (cj1, cj2).

When B makes decryption query on C = (c1, ..., cn), A decrypts cj such that j 6= i to get X−i =
(m1, ..., mi−1,mi+1, ..., mn). Especially it runs the following program to get mi and inverses X = (m0, ..., mn)
to get M ← I(M) and hand M to B. Here, the program K(THi , TGi , ci, pki) for Ei, where on random oracle
queries THi , TGi , input ciphertext ci = (ci1, ci2) and public key pki outputs the plaintext mi if there is an
entry in THi satisfying ci1 ← (Enci(ri; Hi(M, ri)), and an entry in TGi satisfying ci2 ← Gi(ri)⊕mi.

First A runs B in the find model. When B makes encryption or decryption queries, A answers as
described above. Finally, B halts automatically, outputs (M0,M1, s). Otherwise, if B cannot finish within
couter = qHi + qHi queries on Hi and Gi stop B.

Let b ←R {0, 1}, an challenge ciphertext ci−b is generated by an Encryption Oracle EOi outside A. Using
the same b, Ei also generates X−i = (m1, ...,mi−1,mi+1, ..., mn). Now A runs B in the guess mode taking
(mi−0,mi−1, s, X−i) as input. If B asks encryption or decryption queries, follow above specifications. At
last, B outputs a guess bit b̃ on Mb. A also outputs b as its guess.
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Claim 3 If an IND-ME-CPA adversary B breaks parallel ME with advantage ε, there is A that breaks the
indistinguishability of ith component cipher with probability epsilon1 or indistinguishability of (L, l, n) −
AONT with advantage with advantage ε2. Then ε ≤ ε1 + 2ε2.

Proof. Denote some events as:

AdvB: B’s advantage on guessing b.
E1: B’s advantage to break the indistinguishability of AONT, that is, B guess b by only looking at

(X−i,M0,M1);
E2: B’s advantage to output mi−b from (mi−0,mi−1) and Cb.

Since E1 and E2 are independent, and Pr[AdvB|¬E1 ∧ ¬E2] must be 0 from the assumption, let the
advantage of B inverting ci−b to get mi−b be ε1 and breaks AONT as ε2, we have:

Pr[AdvB] = ε = Pr[Adv|E1 ∧ E2] · Pr[E1 ∧ E2] + Pr[AdvB|¬E1 ∧ E2] · Pr[¬E1 ∧ E2]
Pr[AdvB|E1 ∧ ¬E2] · Pr[E1 ∧ ¬E2] + Pr[AdvB|¬E1 ∧ ¬E2] · Pr[¬E1 ∧ ¬E2]

≤ Pr[E1 ∧ ¬E2] + Pr[¬E1 ∧ E2] + Pr[¬E1 ∧ ¬E2]
≤ ε1 + 2ε2

Completed.

Claim 4 Suppose Ei is γ-uniform (detailed discussion in [14]). Let li = |ci2|. If there is an adversary B
breaks ith component cipher ci1 ← (Enci(ri;Hi(M, ri)), ci2 ← Gi(ri) ⊕mi, ci = (ci1, ci2) with (qHi , qGi , qdi)
of Hi, Gi and decryption queries of advantage ε1, then A breaks onewayness of Ei with advantage at least
ε(1− 2−ki)qHi (1− γ − 2−li)qd.

Proof. Denote the event AskHi is true if there is an entry in THi satisfying Enci(ri;Hi(M, r1, ..., rn), and
AskGi is there is an entry in TGi satisfying Gi(M, r1, ..., rn) ⊕ mi. SucA0 is true if A correctly guess b.
SucA1 is true if A simulates at most qd decryption queries correctly. SucA2 is true if on input unknown
plaintext mi, A outputs a correct ciphertext ci. fail1 is true if A fails to simulate a specific B’s decryption
query.

From above specification, we know that A can simulate decryption queries for B, for ci2 part is in fact
one-time pad, the probability of A fails to simulate one decryption query of B, since AskHi and AskGi is
independent,

Pr[fail1] = Pr[fail1|AskHi ∧AskGi] · Pr[AskHi ∧AskGi]
+Pr[fail1|¬AskHi ∧AskGi] · Pr[¬AskHi ∧AskGi]
+Pr[fail1|AskHi ∧ ¬AskGi] · Pr[AskHi ∧ ¬AskGi]
+Pr[fail1|¬AskHi ∧ ¬AskGi] · Pr[¬AskHi ∧ ¬AskGi]

Since Pr[fail1|AskHi∧AskGi] must be 0, Pr[fail1|¬AskHi∧¬AskGi] must be 1, we have Pr[fail1] ≤
Pr[fail1|¬AskA0] · Pr[¬AskA0] ≤ γ + 2−li . So Pr[SucA1] = (1 − Pr[fail1])qd ≥ (1 − γ − 2−li)qd . On the
other hand, SucA2 fails when B make exactly query on ri, denote the length of ri to be ki = |ri|,

Pr[SucA2] = (1− 2−ki)qHi

Finally, from above specification of A we know AdvB, SucA1 and SucA2 are independent events. So
the advantage AdvA of A breaking onewayness of Ei using B as oracle is

AdvAB = Pr[AdvB ∧ SucA1 ∧ SucA2] = AdvB · Pr[SucA1] · Pr[SucA2]
= ε1(1− 2−ki)qHi (1− γ − 2−li)qd
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Proof completes.
Combining above two claims, we have A breaks onewayness of Ei with advantage at least:

AdvA ≥ min
1≤i≤n

{(ε− 2ε2)(1− 2−ki)qHi (1− γ − 2−li)qd}

Apparently both A and B can finish in polynomial time. By requirement of secure AONT, ε2 is negligible.
On the other hand we have assumed that no PPT adversary can break onewayness of Ei, i.e., AdvA is
negligible. Lemma 1 is thus proved.

Lemma 2 If an adversary B breaks a parallel multiple encryption ME with the construction given the
section 5.2, then there is an adversary A breaks onewayness of any component cipher Ei with non-negligible
advantage.

Based on similar analysis, we can formulate the following:

Claim 5 an adversary A can use an adversary B attacking ME-CCA with advantage ε to break the oneway-
ness of a certain component cipher Ei with advantage at least min1≤i≤n{ε(1− ·qHi · 2−ki)(1− γ − 2−li)qd}.

The proof is quite similar to that of theorem 5, and is left to the readers. From above two lemmas,
theorem 5.1 is proved.

One complementary remark should be addressed on the uniformity of underlying primitives [14]. What
we have considered so far is mainly IND-CCA or IND-CPA encryption serving as component ciphers. For
deterministic primitive public key encryption, e.g., RSA, above construction is not sufficient, however, it
can be modified to fit this transform by using the same technique in [14]. Furthermore, if all the component
ciphers are deterministic, the task is easier: just connect them together and set proper padding schemes
as pre-procession of the message, like OAEP+ [28], and form the whole multiple encryption with parallel
construction with compatible input domain, or serial connecting one after another. The AONT is even
unnecessary because of OAEP+. This construction is also secure because if the encryption primitive is
deterministic, an adversary cannot re-encrypt the corresponding parts of a ciphertext into valid new part
to produce another ciphertext even if it seizes corresponding secret keys. We shall give formal analysis
regarding the deterministic encryption primitive in the full version of this paper.

6 New definition regarding multiple encryption

It seems incredibly contradictive with our intuition that though component ciphers are independent, even
onewayness may lose with just simple connection of independently chosen ciphers. However, if we follow
the CCA security, it is doomed to appear completely insecure. From another aspect, it suggests ME-CCA is
somehow excessively strong, though it is such a natural extension of CCA security. In real world, it is rare
that a Decryption Oracle is available that provides such favors to an adversary. For example if a harmless
bit is appended, a CCA-secure cipher S is no longer secure in the sense of CCA. It seems this should be
easily judged and have “no significant difference” in most of cases. In fact, when the Decryption Oracle
encounters such queries, it should easily determine whether this is really a “new” ciphertext, by just looking
at the ciphertext.

6.1 A relaxed definition

We introduce a relation function RF to eliminate this definitional blemish. A relation function is such a
function that if RF(C, C ′) = TRUE ⇒ Dec(C) = Dec(C ′). We call (C ′, C) a qualified pair according to
RF . RF is called decryption respective, which will be part of the public key. The opposite direction does
not hold otherwise the relation function can be used as an oracle breaking the indistinguishability. There
must be ∃ (C, C ′), such that RF(C,C ′) = FALSE, with Dec(C) = Dec(C ′).
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Definition 3 (IND-ME-gCCA) In the beginning the of setup, the key generation algorithm MEnc-Gen is run,
and with the input {1k}, generating every underlying encryption scheme’s public-secret key pair (pki, ski), n
pairs in total. pk = (pk1, . . . , pkn) is the public key and sk = (sk1, . . . , skn) is the secret key of ME. Then
MEnc-Gen gives the public key pk to the Encryption Oracle and the adversary, the secret key sk to Key
Exposure Oracle KE and Decryption Oracle DO with a Relation Function RF inside, which is computable
in polynomial time. The Exposure Oracle with the choice of the adversary, gives at most n − 1 secret keys
to the adversary. The adversary chooses two messages {M0,M1} and sends them to the Encryption Oracle.
The Encryption Oracle chooses b

R← {0, 1} and encrypts Mb ∈ {M0,M1} with some internal coin flipping
using pk to get Cb. The adversary is allowed to submit any queries C to the Decryption Oracle. The
Decryption Oracle returns the decryption result unless RF(C,Cb) does not output TRUE. The adversary
may query the oracles adaptively, in any order he wants, subject to the restriction that he makes only one
query to the Encryption Oracle. The adversary succeeds by guessing the value b, and a scheme is secure if
any probabilistic polynomial time adversary has success negligibly close to 1/2.

Pr

[
b = b̃

(pk, sk) ← MEnc-Gen(1k), (M0,M1, α) ← AKE,DO¬RF
find (pk),

b
R← {0, 1}, Cb ← Enc(Mb), b̃ ← AKE,DO¬RF

guess (Cb, α)

]
≤ 1

2
+ neg(k)

IND-ME-gCCA scheme can be easily acquired from IND-gCCA component ciphers. Generally, we have
the following lemma:

Lemma 3 A multiple encryption scheme is IND-ME-gCCA secure with respect to RF if all n component
ciphers are IND-gCCA secure, where letting ci and c′i 1 ≤ i ≤ n denote the ciphertexts corresponding to
component cryptosystem Ei for cihpertests C and C ′, respectively, RF is defined as RF(C,C ′) = TRUE
once ∃ RF i(ci, c

′
i) = TRUE for some i 1 ≤ i ≤ n, and RF i is done gradually inside DO.

Proof. Without loss of generality, we assume AONT is secure. It is easy to see within our definition of
relation function, RF and RF i are computable in polynomial time. If a ME scheme constructed from
IND-gCCA components by above three construction methods is not IND-ME-gCCA secure, then we can use
the IND-ME-gCCA adversary as an oracle to break the underlying IND-gCCA secure encryption schemes. For
multiple encryption scheme, we denote “RF i” as equivalence relation w.r.t. any internal IND-gCCA secure
component cipher Ei. Now assume that ME is not IND-ME-gCCA secure w.r.t. RF , we show that the same
holds for Ei is not secure w.r.t. RF i, either. To do this, we take any adversary D for ME which contains
Ei as internal component cipher and construct adversary Di for Ei.

When Di views the public key pki of Ei, it generates some key pairs (pkj , skj) ← Enc-Genj(1k) (j 6= i)
by itself, so that the inputs and outs are compatible. Without loss of generality, we denote the resulting
cryptosystem as ME with Ei as one component cipher. The public key of ME is (pk1, · · · , pki, · · · , pkn), and
the secret key is (sk1, · · · , ski, · · · , skn). Only ski is unknown to D. To simulate the decryption query Qi

made by Di, D checks that the respective Q is a valid query (or it will outputs ⊥), and relation function
outputs FALSE, then make query Q to his Decryption Oracle to decrypt Q. Next Di outputs a pair (M0,M1)
and also generate the corresponding pair (mi0 ,mi1) of proper intermediate output by those secret keys in
hand. Then when EOi generates a random challenge cib = Enci(mib) for b ∈R {0, 1}, Di hands cib to D, who
by itself complete a ciphertext Cb corresponding to the public key (pk1, ..., pkn). By definition of the RF
we know that Ei is forbidden to decrypt any RF i(ci, c

′
i) = TRUE, i.e., RF(c1, c2) = TRUE, but this is the

only limit that Di is forbidden to ask its Decryption Oracle. So D can still feed the Decryption Oracle every
single legal query. Finally, Di outputs the same guess as D outputs, which enables Di to succeed exactly
with the same advantage as D.

Since IND-CCA implies IND-gCCA, we further have the following theorem:

Theorem 6.1 If all component ciphers are IND-CCA secure and chosen independently, then the resulting
multiple encryption is IND-ME-gCCA secure.
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In fact, each attack per theorem 4.1 can construct an attack of malleable adversary to produce a new
ciphertext with the same plaintext. Non-malleability is an arduous goal for all schemes of such kind, although
the single component each is NM-CCA secure. For practical scheme usability, we also define gNM-ME-CCA
analogously:

Definition 4 (gNM-ME-CCA) A multiple encryption scheme is generalized-non-malleable against ME-CCA
attack if for any PPT adversary, which is assisted by Decryption Oracle DO, and a Key Exposure Oracle
KE, it cannot produce a new ciphertext with relation other than what the Relation Function RF specifies
to the random challenge ciphertext generated by EO with non-negligible probability. Denote M,C as sets of
plaintexts and ciphertexts respectively.

Pr


b = 1

(pk, sk) ← MEnc-Gen(1k), (M0,M1, α) ← AKE,DO
1 (pk),

Cb ← MEnc(M1), (R,C) ← AKE,DO
2 (Cb, α, M0,M1),

M← MDec(C), (Cb /∈ C) ∧ (⊥ /∈M) ∧R(Mb,M) ∧ (R 6= RF)


 ≤ 1

2
+ neg(k)

gNM-ME-CCA is a relaxed notion to NM-ME-CCA security (cf. IND-ME-gCCA to IND-ME-CCA). Such
We shall continue to discuss the relation between these security notions in next section.

7 Relations among security definitions for multiple encryption

In this section, we discuss the relation among security definitions of multiple encryptions. The good news is
in multiple encryption scenario indistinguishability and non-malleability are still equivalent in most of the
cases, namely under ME-CCA and ME-gCCA attacks.

Theorem 7.1 IND-ME-CCA ⇔ NM-ME-CCA

Proof Idea. The idea is that one can construct an IND-ME-CCA adversary A who upon a challenge
ciphertext C chosen randomly from two possible messages by using a NM-ME-CCA adversary B as an oracle
to output another ciphertext C ′ and a relation of plaintexts of C ′ and C. Since A is executed in a CCA mode,
then the new ciphertext can be submitted to the Decryption Oracle, who will return to A the corresponding
plaintext M ′, with which and the relation A can recover the plaintext, and get correct guess on b. Denote
x̄ as bit-wise complement of x. On the other hand, if an IND-ME-CCA adversary can distinguish two chosen
messages (M0,M1) with M1 = M̄1, then we can always have the NM-ME-CCA adversary outputs a new
ciphertext C ′

b given Cb = MEnc(Mb) where b
R← {0, 1}, then it can output with Mb̄ = M̄b = MDec(C ′

b)
satisfying relation complement R.
Proof. Without loss of generality, we assume the two challenge messages M0 6= M1.

Lemma 4 NM-ME-CCA ⇒ IND-ME-CCA.

Consider a NM-ME-CCA adversary A = (A1,A2) and IND-ME-CCA adversary B = (Bfind,Bguess), which
Bfind chooses a pair of messages M0,M1 where M0 = M̄1 and passes on to Bguess:

Adversary AKE,DO
1 Adversary ADO2 (Mb, s

′) where s′ = (M0,M1, pk, s)
(M0,M1, s) ← BKE,DO

find (pk) Cb ← BDOguess(Mb, s)

b
R← {0, 1} (C ′

b, R) ← MEnc(M̄b)
s′ ← (M0,M1, pk, s) return C ′

b, R
return Mb, s

′

It is obvious such adversary A succeeds in attacking IND-ME-CCA schemes at least the probability of an
adversary B attacking NM-ME-CCA schemes, which contradicts our assumption.
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Lemma 5 IND-ME-CCA ⇒ NM-ME-CCA.

Consider a NM-ME-CCA adversary A and an IND-ME-CCA adversary B:

Adversary AKE,DO
find Adversary ADOguess(M, s′) where s′ = (M0,M1, pk, s)

(M0,M1, s) ← BKE,DO
1 (pk) C ′

b ← BDO2 (M0, M1, s)

M
R← {0, 1} (M ′

b, R) ← MDec(C ′
b)

s′ ← (M0, M1, pk, s) if R(M ′
b,M0) = TRUE then d ← 0

return M, s′ else d ← 1
return d

Then A succeeds with exactly the probability of B, that means any scheme satisfying NM-ME-CCA
security will satisfy IND-ME-CCA security. Combining above two lemmas, we complete the proof.

Theorem 7.2 IND-ME-gCCA ⇒ IND-ME-CPA, however, IND-ME-CPA; IND-ME-gCCA.

Proof Idea. It is trivial of the former part, for a ME-CCA adversary is strictly stronger. On proof of
the latter part, we just need to construct a counterexample. Suppose we have a multiple encryption scheme
from a IND-ME-CCA secure multiple encryption schemes. If we append a special string to the public key. If
special string is queried, Decryption Oracle returns the the secret key. However, this scheme still remains
ME-CPA secure.
Proof. It is trivial to have: IND-ME-gCCA ⇒ IND-ME-CPA. What left is to prove the following lemma:

Lemma 6 IND-ME-CPA; IND-ME-gCCA.

Suppose ME ′ = (MEnc-Gen′, MEnc′, MDec′) is a IND-ME-CCA encryption scheme, we can modify it and
build an new multiple encryption ME as follows:

MGen-Enc MEnc(M) MDec(C)
(pk′i, sk

′
i) ←MGen-Enc′, for 1 ≤ i ≤ n; c′ ← MEnc′(M) v||c̄′ ← C

pk′ ← (pk′1, ..., pk′n), sk′ ← (sk′1, ..., sk
′
n) C = 0||c′ if v = 0

u ← {0, 1}k Return C Return MDec′sk′(c̄
′)

pk = u||pk′, sk = sk′ else if c̄′ = u
Return (pk, sk) Return sk

We can see ME is not ME-gCCA secure. For a challenge ciphertext C, the adversary can query the
Decryption Oracle at 1||u to get sk then it can decrypt the challenge ciphertext by itself. Note that the
relation function will fail to check this malicious query forRF(c′, u) = FALSE with overwhelming probability.

Claim 6 Above encryption scheme ME is secure in the sense of IND-ME-CPA.

Let Cb be the challenge ciphertext generated outside the adversary by an Encryption Oracle from one of a
pair of messages (M0,M1), the adversary outputs its guess on b. Then denote the probability of following
events as:

1 := [v = 0, (pk, sk) ← MGen− Gen, b ← {0, 1}, MEnc(Mb) ← MEnc(Mb) : b = b̄];
2 := [v = 1, (pk, sk) ← MGen− Gen, b ← {0, 1}, MEnc(Mb) ← MEnc(Mb), c′b 6= u : b = b̄];
3 := [v = 1, (pk, sk) ← MGen− Gen, b ← {0, 1}, MEnc(Mb) ← MEnc(Mb), c′b = u : b = b̄]

Let the advantage of B attacking ME ′ be p0, denote k = |c′| as the length of c′, the following holds:

Pr[AdvB] = Pr[AdvB|1] · Pr[1] + Pr[AdvB|2] · Pr[2] + Pr[AdvB|3] · Pr[3]
≤ Pr[AdvB|1] + Pr[AdvB|2] + Pr[AdvB|3]
≤ p0 + p0 + 2−k

It is easy to see Pr[AdvB] is negligible. Proof completes.
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Theorem 7.3 ME-CCA ⇒ ME-gCCA, however, ME-gCCA; ME-CCA

Theorem 7.4 IND-ME-gCCA ⇔ gNM-ME-CCA

Proof Idea. Since we have already proved IND-ME-CCA ⇔ NM-ME-CCA, with the fact that the rela-
tion function in defining these two notions are the same, it is sufficient to show that a scheme meeting
IND-ME-gCCA also meets gNM-ME-CCA while a scheme meet gNM-ME-CCA also meets IND-ME-gCCA se-
curity.
Proof. Denote two Relation Function in IND-ME-gCCA definition and gNM-ME-CCA definition as RFgIND

and RFgNM respectively. SIND and SNM are the sets of schemes satisfy IND-ME-CCA and NM-ME-CCA
respectively. Then if any scheme si ∈ SIND then si ∈ SNM. Denote SgIND and SgNM as the sets of schemes
satisfying IND-ME-gCCA and gNM-ME-CCA security respectively. Then it sufficessj ∈ SgNM\SNM, if ∀sj ∈
SgIND\SIND, and at the same time, s′j ∈ SgIND\SIND, if ∀s′j ∈ SgNM\SNM. We claim in these conditions, the
adversary’s power doesn’t increase, that is, ∀ sj and s′j , we have an adversary that succeeds in attacking
sj will always succeeds in attacking s′j and vice versa. Then denote adversary’s query ciphertexts cj and
c′j in gIND and gNM attacks respectively. Let ci be the challenge ciphertext. RFgIND(ci, cj) = FALSE ⇒
RFgNM(ci, c

′
j) = FALSE and vice versa. All left is then the same as proving equivalence of this pair of

notions in ME-CCA model, we can easily have: if ∃ sj ∈ SgIND\SIND, there is always sj ∈ SgIND\SIND and if
∃ s′j ∈ SgNM\SNM there is always s′j ∈ SgIND\SIND.

Let’s make the proof more easier to understand. Suppose an adversary B attacking scheme sj in the
sense of IND-ME-gCCA succeed with non-negligible advantage, then we can create an adversary A using B
as oracle to attack the sj with non-negligible advantage. Defining the generalized relation R is the same as
the relation function RF in the ME-gCCA model. Now, let A run B in the first stage. If B asks for any
decryption query, A passes it on to its Decryption Oracle. If there is any key exposure query questioned
by B, A also passes it to its Key Exposure Oracle. Specially, A can simulate the Encryption Oracle when
B asks for encryption queries. After some steps B ends with side information and a pair of message. A
outputs the same pair. Then outsides A a random bit b is chosen from {0, 1} and Mb is encrypted by the
Encryption Oracle. At the second stage, A runs B to get a new ciphertext C ′

b with relation other than the
relation specified in RF which is sj ’s relation function. B may continue to ask encryption, decryption or
key exposure queries according to the basic rule of a gNM-ME-CCA game. At last B outputs C ′

b, A submit
it to its Decryption Oracle, at the same advantage as B, the Decryption Oracle will return it the plaintext.
Thus it can get to know Mb.

From analogous discussion, we can also construct a gNM-ME-CCA adversary with exactly the same
advantage as an IND-ME-gCCA adversary. This completes the proof.

8 Applications to key-insulated cryptosystem

8.1 Key-insulated cryptosystem

Key-insulated cryptosystem is recently proposed by [10] against partial key exposure. Computation is done
in an insecure user device assuming the existence of physically secure server, which stores a master key. With
the help of this server, user keys are updated periodically so that compromise of user keys in some periods
does not affect the system in other periods. In [10], a generic construction based on arbitrary semantically
secure public key encryption against chosen plaintext attack and cover-free family is proposed.

Generic Construction of [10]. The definition of cover-free family is given in Appendix A. First the key
generation algorithm is run and u public key/secret key pairs of underlying semantically secure cryptosystems
are generated, where S1, ..., SN ⊂ [u]def={1, ..., u} is {t, 1/2}-cover-free family of n element sets. Any t subsets
of secret keys do not contain other subsets. The underlying encryption scheme is semantic secure against
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chosen plaintext attack. The lifetime of the whole system is divided into N periods. Then the public
key is pk = (pk1, ..., pku), and secret key of period i is ski = {skr : r ∈ Si}, where Si = {r1, ..., rn}.
Specially the master key stored in a physically secure device will be sk∗ = {sk1, ..., sku}. We define the
encryption of M ∈ {0, 1}L at time period i as C = Epk(i,M) = (i,Encpkr1

(m1), ...,Encpkrn
(mn)) where,

(m1, ..., mn) ← T (M) is generated from the real message M by a AONT T . Decryption is done as: decrypt
all the sub-messages (m1, ...,mn) by skr1 , ..., skrn and synthesize the messages: M = I(m1, ..., mn).

The authors then claim that such system has key-insulated security with assumption of physically secure
device holding sk∗ and an adversary can at most obtain secret keys of t distinct periods. The authors define
the security of the system in such a way that if no PPT adversary can break the indistinguishability of the
any period i that is not compromised if it cannot obtain user secret keys for no more than t other periods
even with the help of Key Exposure Oracle. In their proof, they show the whole system has indistinguisha-
bility of message in any period that is not compromised with at most t other periods compromised under
chosen plaintext attack. However, their definition states the chosen ciphertext security of each period, the
construction and analysis do not follow adaptive chosen ciphertext attack.

8.2 Chosen ciphertext attack on generic construction in [10]

One then may naturally think their construction is also secure against chosen ciphertext attacks if the
underlying cryptosystems are IND-CCA secure. However, actually, we can show that their construction is
insecure against chosen ciphertext attack which is defined by authors of [10].

At the fist look, because of the property of cover-free family even if adversary get t periods compromised,
it can at most get t− 1 secret keys of a new period that it doesn’t compromise. Since the message is split
into shares by AONT, we know it is still computationally infeasible to break the indistinguishability even
after viewing part of the sub-messages generated by AONT. An adversary in fact can bypass the hard task
of attacking the encryption and just needs to get the help of the Decryption Oracle. Typically an adversary
is able to have any secret key skj by sending adaptive query to Key Exposure Oracle KE for skj other
than i with j ∈ Si. Then it can decrypt cj = Encj(mj), and re-encrypt it. It can always succeed to
produce c′j = Encj(mj) with c′j 6= cj , since according to the system settings, since all component ciphers are
semantically secure. Now the adversary can replace cj with c′j and submit this “new” ciphertext C ′ to the
Decryption Oracle, which will return the corresponding message M . We can see their construction is no
longer secure then!

Though their original generic construction does not satisfy chosen ciphertext attack security, actually
by choosing every component IND-CCA secure, their generic construction is IND-ME-gCCA secure, which
we believe is a very practical security definition. It can be proven easily using our analysis above: since
natural construction of multiple encryption combined from any IND-gCCA components must be IND-ME-
gCCA secure, and IND-CCA implies IND-gCCA unconditionally. We have all multiple encryption schemes
combined from IND-CCA components are in fact IND-ME-gCCA secure (theorem 3). We evaluate that their
scheme is still of practical meaning for conciseness.

8.3 A patch for generic construction of [10]

We are also fascinated at whether the construction in [10] can be turned IND-ME-CCA secure with minimum
cost. In fact, using the technique given in section 5, it is possible. However, since their original construction
requires IND-CCA components as building blocks versus CCA adversary, then their scheme is already IND-
ME-gCCA secure referring to corollary 3, we can further have more efficient construction by applying a patch
to their scheme. As the gap between IND-ME-CCA and IND-ME-gCCA is just that the adversary can lay
a trap when asking the decryption queries, this can be immediately bridged once such attack is ruled out.
For a secure multiple encryption must be probabilistic, i.e., there must be auxiliary randomness used in the
encryption, to get multiple valid ciphertexts. If the Decryption Oracle can extract all randomness and verify
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it before out put a ciphertext, then the Decryption Oracle should be able to immune itself from such partial
re-encryption attacks. We call such procession randomness check. If a ciphertext passes randomness check,
then with overwhelming probability, the Decryption Oracle can assure that the sender of this ciphertext
knows the corresponding plaintext, because for a public key multiple encryption MEncpk(M ; COIN) scheme,
where COIN stands for internal random coins, it should hold with probability 1 that MEncpk(M1; coin1) 6=
MEncpk(M2; coin1), when M1 6= M2.

Again we consider the random oracle model, where a hash function is treated like a real random func-
tion. While keeping the unique mapping of input to the output, the output can also be regarded hav-
ing uniform distribution. We are then considering adding such transforms into their scheme [10]: sup-
pose the coini is the auxiliary random input by internal coin flipping for encryption component Ei, let
coini = h(COIN||Indexi), where COIN is a random number, Indexi is the description of ith component
and h is random oracle. The Encryption is C = MEnc(M ||COIN; coin1, ..., coinn), especially for IND-CCA
component Ei, Enci(mi||coini; coini) where mi is generated from AONT. Decryption process becomes: for
a ciphertext C ′, M ′||COIN′ = MDec(C ′), output M ′ if C ′ = MEnc(M ′||COIN′; coin′1, ..., coin′n), where
(coin′1, ..., coin′n) are generated from COIN′ as defined.

We shall only give the sketch of proof here. From above discussions, it is easy to see the modified
scheme satisfying security definition of [10] under CCA attack. We point out this is actually the first generic
construction of key-insulated cryptosystem enjoying CCA security. As pointed out, [10] contains no real proof
on CCA security and in fact insecure for CCA. We also indicate that in [13], similar technique has been used
to transform an IND-CPA encryption scheme into an IND-CCA scheme, with just Enc(M ||COIN; h(M ||COIN)).
In fact, our transform states the transform of turning IND-ME-CPA to IND-ME-CCA.
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Appendix A: Figures

M

↙ ↓ ↘ } AONT

m1 . . . . . . . . . mn

⇓
m1 . . . . . . . . . mn

↓ ↓ ↓
E1 ← pk1 En ← pkn

↓ ↓ ↓
c1 . . . . . . . . . cn

Figure 1: Parallel construction of multiple encryption

pk1 pkn

↓ ↓
M → E1 → c1 → . . . → cn−1 → En → cn

Figure 2: Serial construction of multiple encryption
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