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Abstract

We show how to construct a CCA-secure public-key encryption scheme from any
CPA-secure identity-based encryption (IBE) scheme. Our conversion from an IBE
scheme to a CCA-secure scheme is simple, efficient, and provably secure in the standard
model (i.e., security of the resulting scheme does not rely on the random oracle model).
In addition, the resulting scheme achieves CCA security even if the underlying IBE
scheme satisfies only a “weak” notion of security which is known to be achievable in the
standard model based on the bilinear Diffie-Hellman assumption. Thus, our results yield
a new construction of CCA-secure public-key encryption in the standard model. Inter-
estingly, the resulting scheme avoids any non-interactive proofs of “well-formedness”
which were shown to underlie all previously-known constructions.

We also extend our technique to obtain a simple and reasonably efficient method
for securing any BTE scheme against adaptive chosen-ciphertext attacks. This, in
turn, yields more efficient constructions of CCA-secure (hierarchical) identity-based
and forward-secure encryption schemes in the standard model.

Our results — building on previous black-box separations — also rule out black-box
constructions of IBE from CPA-secure public-key encryption.
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1 Introduction

Security against adaptive chosen-ciphertext attacks (i.e., “CCA security”) [22, 10, 1] is a
strong and very useful notion of security for public-key encryption schemes. This notion
is known to suffice for many applications of encryption in the presence of active attackers,
including secure communication, auctions, voting schemes, and many others. Indeed, CCA
security is commonly accepted as the security notion of choice for encryption schemes that
are to be “plugged in” to a protocol running in an arbitrary setting; see, e.g., [25, 26].

However, there are only a handful of known public-key encryption schemes that can be
proven to be CCA-secure in the standard model (i.e., without the use of heuristics such as
random oracles). In fact, only two main techniques have been proposed for constructing
such cryptosystems. The first follows the paradigm of Naor and Yung [21], as extended
by Dolev, Dwork, and Naor [10] and later simplified by Sahai [23] and Lindell [19]. This
technique uses as building blocks any CPA-secure public-key encryption scheme (i.e., any
scheme that is secure against chosen-plaintext attacks [16]) as well as any non-interactive
zero-knowledge (NIZK) proof system [3, 12] (which can be constructed using any family
of trapdoor permutations). The resulting encryption scheme, however, is highly inefficient
precisely because it employs an NIZK proof, which in turn uses a generic Karp reduction
from an instance of the encryption scheme to an instance of some NP-complete problem; note
further that there are currently no known efficient NIZK proof systems even under specific
assumptions and for particular cryptosystems of interest. Thus, given current techniques,
this general methodology for constructing CCA-secure cryptosystems should be viewed more
as a “proof of feasibility” than as a practical construction.

The second technique is due to Cramer and Shoup [7, 8], and is based on algebraic
constructs with particular homomorphic properties (namely, those which admit “smooth
hash proof systems”; see [8]). Algebraic constructs of the appropriate type are known to
exist based on some specific assumptions: namely, the hardness of the decisional Diffie-
Hellman problem [7] or the hardness of deciding quadratic residuosity or N th residuosity
in certain groups [8]. More efficient schemes following the same basic technique have been
given recently [13, 9], and the technique leads to a number of possible instantiations which
are efficient enough to be used in practice.

Interestingly, as observed by Elkind and Sahai [11], both of these techniques for con-
structing CCA-secure encryption schemes can be viewed as special cases of a single paradigm.
In this more general paradigm (informally), one starts with a CPA-secure cryptosystem in
which certain “ill-formed” ciphertexts are indistinguishable from “well-formed” ones. A
CCA-secure cryptosystem is then obtained by having the sender include a “proof of well-
formedness” for the transmitted ciphertext. Both NIZK proofs and smooth hash proof
systems were shown to meet the requirements for these proofs of well-formedness.

1.1 Our contributions

We present here a new construction of CCA-secure public-key encryption schemes based on
any identity-based encryption (IBE) scheme satisfying a relatively “weak” notion of security.
An IBE scheme meeting this notion of security in the standard model was recently proposed
(see below); thus, our technique yields a new construction of CCA-secure encryption in the
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standard model. The resulting construction is very simple and reasonably efficient; in
particular, it avoids “proofs of well-formedness” of any sort, hence it seems not to follow
the methodology of Elkind and Sahai.

Before sketching our construction, we first recall the notion of IBE. The concept of
identity-based encryption was introduced by Shamir [24], and provably-secure IBE schemes
(in the random oracle model) were recently demonstrated by Boneh and Franklin [4] and
Cocks [6]. An IBE scheme is a public-key encryption scheme in which, informally, any string
(i.e., identity) can serve as a public key. In more detail, a trusted private-key generator
(PKG) initializes the system by running a key-generation algorithm to generate “master”
public and secret keys. The public key is published, while the PKG stores the secret key.
Given any string id ∈ {0, 1}∗ (which can be viewed as a receiver’s identity), the PKG can
derive a “personal secret key” SKid. Any sender can encrypt a message for this receiver
using only the master public key and the string id. The resulting ciphertext can be decrypted
using the derived secret key SKid, but the message remains hidden from an adversary who
does not know SKid even if that adversary is given SKid′ for various identities id′ 6= id.

In the definition of security for IBE given by Boneh and Franklin [4], the adversary is
allowed to choose the “target identity” (id in the above discussion) in an adaptive manner,
possibly based on the master public key and any keys SKid′ the adversary has obtained
thus far. Boneh and Franklin construct a scheme meeting this definition of security based
on the bilinear Diffie-Hellman (BDH) assumption in the random oracle model. A weaker
notion of security for IBE, proposed by Canetti, Halevi and Katz [5], requires the adversary
to specify the target identity before the public-key is published; we will refer to this notion
of security as “weak” IBE. It has been shown [5] (building on earlier work of Gentry and
Silverberg [14]) that a weak IBE scheme can be constructed based on the BDH assumption
in the standard model.

Our construction of CCA-secure encryption requires only an IBE scheme satisfying this
weaker notion of security. The conversion of any such IBE scheme to a CCA-secure public-
key encryption scheme proceeds as follows: The public key of the new scheme is simply the
master public key of the IBE scheme, and the secret key is the corresponding master secret
key. To encrypt a message, the sender first generates a key-pair (vk, sk) for some one-time
signature scheme, and then encrypts the message with respect to the “identity” vk. The
resulting ciphertext c is then signed using sk to obtain a signature σ. The final ciphertext
consists of the verification key vk, the IBE ciphertext c, and the signature σ. To decrypt
a ciphertext 〈vk, c, σ〉, the receiver first verifies the signature on c with respect to vk (and
outputs ⊥ if the signature is not correct). The receiver then derives the secret key SKvk

corresponding to the “identity” vk, and uses SKvk to decrypt the ciphertext c as per the
underlying IBE scheme.

Security of the above scheme against adaptive chosen-ciphertext attacks can be infor-
mally understood as follows. Say a ciphertext 〈vk, c, σ〉 is valid if σ is a valid signature on
c with respect to vk. Now consider a “challenge ciphertext” C = 〈vk, c, σ〉 given to the ad-
versary. Any valid ciphertext C ′ = 〈vk′, c′, σ′〉 submitted by the adversary to a decryption
oracle (implying C ′ 6= C), must have vk′ 6= vk by the security of the one-time signature
scheme. But then the crux of the security proof reduces to showing that (weak) security
of the IBE scheme implies that decrypting C ′ does not give the adversary any further ad-
vantage in decrypting the challenge ciphertext. Intuitively, this is because the adversary
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would be unable to decrypt the underlying ciphertext c even if it had the secret key SKvk′

corresponding to vk′ (since vk′ 6= vk, and c was formed using an IBE scheme).

Further extensions and applications. Canetti, Halevi, and Katz [5] also propose the
notion of binary tree encryption (BTE), and show how to construct a secure BTE scheme
in the standard model. They also show how to construct both hierarchical IBE (HIBE)
schemes [17, 14] and forward-secure encryption (FSE) schemes starting from any BTE
scheme, again in the standard model. To handle security against chosen-ciphertext attacks
for each of these constructions, they suggest using the general technique of Naor and Yung
[21] as adapted by Sahai and Lindell [23, 19]. This involves the use of NIZK proofs, as
noted above, which makes the resulting CCA-secure schemes highly inefficient.

Here, we extend our technique to obtain a simple conversion from any semantically-
secure BTE scheme to a CCA-secure BTE scheme. The resulting BTE scheme is consid-
erably more efficient than a BTE scheme derived using the previously-suggested approach
(based on NIZK); furthermore, the efficiency gain carries over immediately to yield improved
constructions of CCA-secure HIBE and FSE schemes as well.

A “black-box separation” between CPA-secure encryption and weak IBE. Our
construction of a CCA-secure encryption scheme from any IBE scheme is black box in the
sense that it only uses the underlying IBE scheme by invoking its prescribed interface (and
not, for example, by using the circuit which implements the IBE scheme). Recently, Gertner,
Malkin, and Myers [15] have shown (among other results) that there do not exist black-
box constructions of CCA-secure public-key encryption schemes from CPA-secure ones.
Combined with their result, the results in the current work give a black-box separation
between CPA-secure encryption and (even weak) IBE; in other words, there are no black-
box constructions of the latter from the former.

Although a result of this sort should not be viewed as a strict impossibility result
(after all, the known constructions of CCA-secure encryption schemes based on trapdoor
permutations [10, 23] rely on NIZK and are therefore non-black box), it does rule out certain
techniques for constructing IBE schemes based on general assumptions.

Related work. In recent and independent work, MacKenzie, Reiter, and Yang [20] intro-
duce the notion of tag-based non-malleability (tnm), give efficient constructions of “tnm-cca-
secure” cryptosystems in the random oracle model, and show how to construct a CCA-secure
cryptosystem from any tnm-cca-secure scheme. Interestingly, their conversion from tnm-cca

security to (full) CCA security uses a one-time signature scheme in essentially the same
way that we do. Viewed in the context of their results, our results of Section 3 give an
efficient construction of a tnm-cca-secure scheme from any weak IBE scheme, and hence
show an efficient and novel construction of a tnm-cca-secure scheme in the standard model.
Our results of Section 4 have no counterpart in [20].

2 Definitions

We review the standard definitions of public-key encryption schemes and their security
against adaptive chosen-ciphertext attacks [1]. This is followed by a definition of identity-
based encryption (IBE) schemes [4] and binary tree encryption (BTE) schemes [5] and their
security against chosen-plaintext attacks (following [4, 5]).
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2.1 Public-Key Encryption

Definition 1 A public-key encryption scheme PKE is a triple of ppt algorithms (Gen, E ,D):

• The randomized key generation algorithm Gen takes as input a security parameter 1k

and outputs a public key PK and a secret key SK. We write (PK,SK)← Gen(1k).

• The randomized encryption algorithm E takes as input a public key PK and a message
m ∈ {0, 1}∗, and outputs a ciphertext C. We write C ← EPK(m).

• The decryption algorithm D takes as input a ciphertext C and a secret key SK. It
returns a message m ∈ {0, 1}∗ or the distinguished symbol ⊥. We write m← DSK(C).

We require that for all (PK,SK) output by Gen, all m ∈ {0, 1}∗, and all C output by
EPK(m) we have DSK(C) = m.

We recall the standard definition of security for public-key encryption schemes against
adaptive chosen-ciphertext attacks.

Definition 2 A PKE scheme is secure against adaptive chosen-ciphertext attacks (i.e.,
“CCA-secure”) if the advantage of any ppt adversary A in the following game is negli-
gible in the security parameter k:

1. Gen(1k) outputs (PK,SK). Adversary A is given 1k and PK.

2. The adversary may make polynomially-many queries to a decryption oracle DSK(·).

3. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit b is randomly
chosen and the adversary is given a “challenge ciphertext” C ∗ ← EPK(mb).

4. A may continue to query its decryption oracle DSK(·) except that it may not request
the decryption of C∗.

5. Finally, A outputs a guess b′.

We say A succeeds if b′ = b, and denote the probability of this event by PrA,PKE[Succ]. The
adversary’s advantage is defined as |PrA,PKE[Succ]− 1/2|.

2.2 Identity-Based Encryption

In an IBE scheme, an arbitrary identity (i.e., bit string) can serve as a public key once some
master parameters have been established by a (trusted) private key generator (PKG). We
review the definition of Boneh and Franklin [4].

Definition 3 An identity-based encryption scheme IBE is a 4-tuple of ppt algorithms
(Setup,Der, E ,D) such that:

• The randomized setup algorithm Setup takes as input a security parameter 1k and a
value ` for the identity length. It outputs some system-wide parameters PK along
with a master secret key msk. (We assume that k and ` are implicit in PK.)
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• The (possibly randomized) key derivation algorithm Der takes as input the master
key msk and an identity ID ∈ {0, 1}`. It returns the corresponding decryption key
SKID. We write SKID ← Dermsk(ID).

• The randomized encryption algorithm E takes as input the system-wide public key
PK, an identity ID ∈ {0, 1}`, and a message m ∈ {0, 1}∗, and outputs a ciphertext
C. We write C ← EPK(ID,m).

• The decryption algorithm D takes as input an identity ID, its associated decryption
key SKID, and a ciphertext C. It outputs a message m ∈ {0, 1}∗ or the distinguished
symbol ⊥. We write m← DSKID

(ID,C).

We require that for all (PK,msk) output by Setup, all ID ∈ {0, 1}`, all SKID output by
Dermsk(ID), all m ∈ {0, 1}∗, and all C output by EPK(ID,m) we have DSKID

(ID,C) = m.

We now give a definition of security for IBE. As mentioned earlier, this definition is
weaker than that given by Boneh and Franklin and conforms to the “selective-node” attack
considered by Canetti, et al. [5]. Under this definition, the identity for which the challenge
ciphertext is encrypted is selected by the adversary in advance (i.e., “non-adaptively”)
before the public key is generated. Since an IBE scheme satisfying this definition suffices
for our purposes, this only makes our results stronger. Furthermore, a scheme satisfying
this definition of security in the standard model is known [5]. (For the case of the original
definition of Boneh and Franklin, only constructions in the random oracle model are known.)

Definition 4 An IBE scheme is secure against selective-identity, chosen-plaintext attacks
if for all polynomially-bounded functions `(·), the advantage of any ppt adversary A in the
following game is negligible in the security parameter k:

1. A(1k, `(k)) outputs a target identity ID∗ ∈ {0, 1}`(k).

2. Setup(1k, `(k)) outputs (PK,msk). The adversary is given PK.

3. The adversary A may make polynomially-many queries to an oracle Dermsk(·), except
that it may not request the secret key corresponding to the target identity ID∗.

4. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit b is randomly
chosen and the adversary is given a “challenge ciphertext” C ∗ ← EPK(ID∗,mb).

5. A may continue to query its oracle Dermsk(·), but still may not request the secret
key corresponding to the identity ID∗.

6. Finally, A outputs a guess b′.

We say A succeeds if b′ = b, and denote the probability of this event by PrA,IBE[Succ]. The
adversary’s advantage is defined as |PrA,IBE[Succ]− 1/2|.

One may extend the above definition to consider security against selective-identity,
(adaptive) chosen-ciphertext attacks. In this case, the above definition is extended largely
as one might expect: in addition to the game as outlined above, the adversary now ad-
ditionally has access to an oracle D̂(·) such that D̂(C) returns DSKID∗ (C), where SKID∗
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is the secret key associated with the target identity ID∗ (computed using Dermsk(ID∗)).1

As usual, the adversary has access to this oracle throughout the entire game, but cannot
submit the challenge ciphertext C∗ to D̂.

2.3 Binary Tree Encryption

Binary tree encryption (BTE) was defined in Canetti, Halevi, and Katz [5], and may be
viewed as a relaxed variant of hierarchical identity-based encryption (HIBE) [17, 14] in the
following sense: in a BTE scheme, each node has two children labeled “0” and “1”, while
in a HIBE scheme, each node has arbitrarily-many children labeled with arbitrary strings.
Although BTE is therefore a weaker primitive, it is known [5] that a BTE scheme supporting
a binary tree of depth polynomial in the security parameter may be used to construct a
full-fledged HIBE scheme (and thus, in particular, an ID-based encryption scheme).

Definition 5 A binary tree encryption scheme BTE is a 4-tuple of ppt algorithms
(Setup,Der, E ,D) such that:

• The randomized setup algorithm Setup takes as input a security parameter 1k and a
value ` representing the maximum tree depth. It outputs some system-wide param-
eters PK along with a master (root) secret key SKε. (We assume that k and ` are
implicit in PK and all secret keys.)

• The (possibly randomized) key derivation algorithm Der takes as input the name
of a node w ∈ {0, 1}<` and its associated secret key SKw. It returns secret keys
SKw0, SKw1 for the two children of w.

• The randomized encryption algorithm E takes as input PK, the name of a node w ∈
{0, 1}≤`, and a message m, and returns a ciphertext C. We write C ← EPK(w,m).

• The decryption algorithm D takes as input the name of a node w ∈ {0, 1}≤`, its associ-
ated secret key SKw, and a ciphertext C. It returns a message m or the distinguished
symbol ⊥. We write m← DSKw

(w,C).

We require that for all (PK,SKε) output by Setup, any w ∈ {0, 1}≤` and any correctly-
generated secret key SKw for this node, any message m, and all C output by EPK(w,m)
we have DSKw

(w,C) = m.

The following definition of security for BTE, due to [5], is weaker than the corresponding
notion of security for HIBE given by Gentry and Silverberg [14]. As in the definition of
security for ID-based encryption given previously, the following definition refers to a “non-
adaptive” selection of the node for which the challenge ciphertext is encrypted. Again,
however, this definition suffices for our application; furthermore, a construction meeting
this definition of security in the standard model is known [5] (in contrast, a construction
meeting the stronger security definition of [14] is known only in the random oracle model
and only for trees of constant depth).

1Note that decryption queries for identities ID
′ 6= ID

∗ are superfluous, as A may make the corresponding

Der query itself and thereby obtain SKID′ .
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Definition 6 A BTE scheme is secure against selective-node, chosen-plaintext attacks if
for all polynomially-bounded functions `(·), the advantage of any ppt adversary A in the
following game is negligible in the security parameter k:

1. A(1k, `(k)) outputs a node label w∗ ∈ {0, 1}≤`(k).

2. Setup(1k, `(k)) outputs (PK,SKε). In addition, algorithm Der(· · ·) is used to gen-
erate the secret keys of all the nodes on the path from the root to w∗, and also the
secret keys for the two children of w∗ (if |w∗| < `). The adversary is given PK and
the secret keys {SKw} for all nodes w of the following form:

– w = w′b, where w′b is a prefix of w∗ and b ∈ {0, 1} (i.e., w is a sibling of some node
in P );

– w = w∗0 or w = w∗1 (i.e., w is a child of w∗; this is only when |w∗| < `).

Note that this allows the adversary to compute SKw′ for any node w′ ∈ {0, 1}≤`(k)

that is not a prefix of w∗.

3. At some point, A outputs two messages m0,m1 with |m0| = |m1|. A bit b is randomly
chosen and the adversary is given a “challenge ciphertext” C ∗ ← EPK(w∗,mb).

4. Finally, A outputs a guess b′.

We say that A succeeds if b′ = b, and denote the probability of this event by PrA,BTE[Succ].
The adversary’s advantage is defined as |PrA,BTE[Succ]− 1/2|.

A BTE scheme meeting the above definition of security will be termed “secure in the
sense of SN-CPA”. We may also define the stronger notion of security against selective-node,
adaptive chosen-ciphertext attacks. (We refer to scheme meeting this definition of security
as “secure in the sense of SN-CCA”.) Such a definition can be found in [5], and we describe
it informally here: the above game is modified so that the adversary additionally has access
to an oracle D̂ such that D̂(w,C) first computes the secret key SKw for node w (using SKε

and repeated calls to to Der); the oracle then outputs m ← DSKw
(w,C). The adversary

has access to this oracle throughout the entire game, but may not query D̂(w∗, C∗) after
receiving the challenge ciphertext C∗ (we stress that the adversary is allowed to query
D̂(w,C∗) for w 6= w∗, as well as D̂(w∗, C) for C 6= C∗).

3 Chosen-Ciphertext Security from ID-Based Encryption

Given an ID-based encryption scheme Π′ = (Setup,Der, E ′,D′) secure against selective-
identity chosen-plaintext attacks, we construct a (standard) public-key encryption scheme
Π = (Gen, E ,D) secure against chosen-ciphertext attacks. In the construction, we use a one-
time signature scheme Sig = (G,Sign,Vrfy), in which the verification key output by G(1k)
has length `s(k). We need this scheme to be secure in the sense of strong unforgeability (i.e.,
an adversary is unable to forge even a new signature on the previously-signed message). We
note that such a scheme may be based on any one-way function [18] so, in particular, such
a scheme exists given the existence of Π′. The construction of Π proceeds as follows:

• Gen(1k) runs Setup(1k, `s(k)) to obtain (PK,msk). The public key is PK and the
secret key is msk.
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• To encrypt message m using public key PK, the sender first runs G(1k) to obtain
verification key vk and signing key sk (with |vk| = `s(k)). The sender then computes
C ← E ′PK(vk,m) (i.e., the sender encrypts m with respect to “identity” vk) and
σ ← Signsk(C). The final ciphertext is 〈vk,C, σ〉.

• To decrypt ciphertext 〈vk,C, σ〉 using secret key msk, the receiver first checks whether

Vrfyvk(C, σ)
?
= 1. If not, the receiver simply outputs ⊥. Otherwise, the receiver

computes SKvk ← Dermsk(vk) and outputs m← D′
SKvk

(ID,C).

We first give some intuition as to why Π is secure against chosen-ciphertext attacks. Let
〈vk∗, C∗, σ∗〉 be the challenge ciphertext (cf. Definition 2). It should be clear that, without
any decryption oracle queries, the value of the bit b remains hidden to the adversary; this
is so because C∗ is output by Π′ which is CPA-secure, vk∗ is independent of the message,
and σ∗ is merely the result of applying the signing algorithm to C ∗.

We claim that decryption oracle queries cannot further help the adversary is guessing
the value of b. On one hand, if the adversary submits ciphertext 〈vk ′, C ′, σ′〉 different from
the challenge ciphertext but with vk ′ = vk∗ then the decryption oracle will reply with ⊥
since the adversary is unable to forge new, valid signatures with respect to vk. On the other
hand, if vk′ 6= vk∗ then (informally) the decryption query will not help the adversary since
the eventual decryption using D′ (in the underlying scheme Π′) will be done with respect
to a different “identity” vk′. Below, we formally prove that this cannot help an adversary.

Theorem 1 If Π′ is an IBE scheme which is secure against selective-identity, chosen-
plaintext attacks and Sig is a strongly unforgeable one-time signature scheme, then Π is
a PKE scheme which is secure against adaptive chosen-ciphertext attack.

Proof Given any ppt adversary A attacking Π in an adaptive chosen-ciphertext attack,
we construct a ppt adversary A′ attacking Π′ in a selective-identity, chosen-plaintext attack.
Relating the success probabilities of these adversaries gives the desired result.

Before specifying A′, we first define event Forge and bound the probability of its occur-
rence. Let 〈vk∗, C∗, σ∗〉 be the challenge ciphertext received by A, and let Forge denote the
event that A submits to its decryption oracle a ciphertext 〈vk∗, C, σ〉 with (C, σ) 6= (C∗, σ∗)
but for which Vrfyvk∗(C, σ) = 1. (We include in this event the case when A submits such a
query to its decryption oracle before receiving the challenge ciphertext; in this case, we do
not require (C, σ) 6= (C∗, σ∗).) It is easy to see that we can use A to break the underlying
one-time signature scheme Sig with probability exactly PrA[Forge]; since Sig is a strongly
unforgeable one-time signature scheme, it must be the case that PrA[Forge] is negligible (in
the security parameter k).

We now define adversary A′ as follows:

1. A′(1k, `s(k)) runs G(1k) to generate (vk∗, sk∗). It then outputs the “target identity”
ID∗ = vk∗.

2. Setup(1k, `s(k)) outputs (PK,msk) and A′ is given PK. Adversary A′, in turn, runs
A on input 1k and PK.

3. When A makes decryption oracle query D(〈vk,C, σ〉), adversary A′ proceeds as fol-
lows:
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(a) If Vrfyvk(C, σ) 6= 1, then A′ simply returns ⊥.

(b) If Vrfyvk(C, σ) = 1 and vk = vk∗ (i.e., event Forge occurs), then A′ halts and
outputs a random bit.

(c) If Vrfyvk(C, σ) = 1 and vk 6= vk∗, then A′ makes the oracle query Dermsk(vk) to
obtain SKvk. It then computes m← D′

SKvk
(vk,C) and returns m.

4. At some point, A outputs two equal-length messages m0,m1. These same messages
are output by A′. In return, A′ is given a challenge ciphertext C∗; adversary A′ then
computes σ∗ ← Signvk∗(C∗) and returns 〈vk∗, C∗, σ∗〉 to A.

5. A may continue to make decryption oracle queries, and these are answered as before.
(Recall, we assume that A does not query the decryption oracle on the challenge
ciphertext itself.)

6. Finally, A outputs a guess b′; this same guess is output by A′.

Note that A′ represents a legal adversarial strategy for attacking Π′ in a selective-identity,
chosen-plaintext attack; in particular, A′ never requests the secret key corresponding to
“target identity” vk∗. Furthermore, A′ provides a perfect simulation for A (and thus A′

succeeds whenever A succeeds) unless event Forge occurs. We therefore have:

PrA′,Π′ [Succ] ≥ PrA,Π[Succ]− 1
2 · PrA[Forge].

Since PrA′,Π′ [Succ] is negligibly close to 1/2 (because Π′ is assumed to be secure in against
selective-identity, chosen-plaintext attacks), it must be the case that PrA,Π[Succ] is negligi-
bly close to 1/2 as well.

4 Chosen-Ciphertext Security for BTE Schemes

The techniques of the previous section may also be used to construct a BTE scheme secure
in the sense of SN-CCA from any BTE scheme secure in the sense of SN-CPA. Roughly, we
view the subtree of each node as a (hierarchical) IBE scheme, and use the scheme from the
previous section for that subtree. We first give a high-level overview for the simpler case of
a BTE scheme which only allows encryption to nodes at a single depth ` (as opposed to a
full-fledged BTE scheme which allows encryption to nodes at all depths ≤ `). To encrypt a
message for node w, the sender generates keys (vk, sk) for a one-time signature scheme (as
in the previous section) and encrypts the message m for “node” w|vk to obtain ciphertext C;
the sender additionally signs C using sk resulting in signature σ. The complete ciphertext is
〈vk,C, σ〉. When node w, holding secret key SKw, receives a ciphertext of this form, it first
verifies that the signature is correct with respect to vk. If so, the receiver computes secret
key SKw|vk on its own (using repeated applications of the Der algorithm) and then uses this
key to recover m from C. As for the scheme from the previous section, the intuition here
is that encryption to “node” w|vk is secure even if an adversary can obtain secret keys for
“nodes” w′|vk′ (with (w′, vk′) 6= (w, vk)). Thus, even more so, encryption to “node” w|vk
remains secure if the adversary can obtain (only) decryptions of ciphertexts intended for
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“nodes” w′|vk′ of this sort. And of course, the adversary is unable to obtain any decryptions
for “node” w|vk itself unless it can forge a new signature with respect to vk.

The construction is a bit more involved for the case of general BTE (i.e., when encryption
is allowed to nodes at arbitrary depth rather than at a single depth). The issue that we must
resolve is the encoding of node names (for example, we must ensure w|vk is not mapped to
the same node as some other w′). A simple way of resolving this issue is to encode each
node name w = w1w2 . . . wt as 1w11w2 . . . 1wt, and then encode w|vk as 1w11w2 . . . 1wt0|vk.
We describe the full construction in detail below.

Let Π′ = (Setup′,Der′, E ′,D′) be a BTE scheme and let Sig = (G,Sign,Vrfy) be a one-
time signature scheme in which the verification key output by G(1k) has length `s(k). As in
the previous section, we require this scheme to be secure in the sense of strong unforgeability.
Next, define a function Encode on strings w such that:

Encode(w) =

{
ε if w = ε
1w11w2 · · · 1wt if w = w1 · · ·wt with wi ∈ {0, 1}.

(Note that |Encode(w)| = 2|w|.) The construction of BTE scheme Π = (Setup,Der, E ,D)
proceeds as follows:

• Setup(1k, `) runs Setup′(1k, 2` + `s(k) + 1) to obtain (PK,SKε). The system-wide
public key is PK and the root secret key is SKε.

• Der(w,SKw) proceeds as follows. First, set w′ = Encode(w). Next, compute SK ′
w′1

using Der′SKw
(w′) followed by (SKw′10, SKw′11) ← DerSK′

w′1
(w′1). Set SKw0 =

SK ′
w′10 and SKw1 = SK ′

w′11 and output (SKw0, SKw1). (Note that w′10 = Encode(w0)
and analogously for w′11.)

Intuitively, any node w in scheme Π is mapped to a node w ′ = Encode(w) in Π′. Thus,
secret key SKw for node w (in Π) corresponds to secret key SK ′

w′ for node w′ (in Π′).
So, to derive the secret keys for the children of w (i.e., w0, w1) in Π, we must derive
the keys for the (right) grandchildren of node w′ in Π′.

• To encrypt message m for a particular node w ∈ {0, 1}≤` using public parameters PK,
the sender first runs G(1k) to obtain verification key vk and signing key sk. Next, the
sender sets w′ = Encode(w). The sender then computes C ← E ′PK(w′|0|vk,m) (i.e.,
the sender encrypts m with respect to “node” w′|0|vk using Π′) and σ ← Signsk(C).
The final ciphertext is 〈vk,C, σ〉.

• Node w, with secret key SKw, decrypts a ciphertext 〈vk,C, σ〉 as follows. First, check

whether Vrfyvk(C, σ)
?
= 1. If not, simply output ⊥. Otherwise, let w′ = Encode(w).

The receiver then computes the secret key SK ′
w′|0|vk

using repeated applications of

Der′, and outputs m← D′
SK′

w′|0|vk

(w′|0|vk,C).

We now state the main result of this section:

Theorem 2 If Π′ is a BTE scheme which is secure in the sense of SN-CPA and Sig is a
strongly unforgeable one-time signature scheme, then Π is a BTE scheme which is secure in
the sense of SN-CCA.
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Proof The proof is largely similar to that of Theorem 1. Given any ppt adversary A
attacking Π in a selective node, (adaptive) chosen ciphertext attack, we construct a ppt

adversary A′ attacking Π′ in a selective node, chosen-plaintext attack. Relating the success
probabilities of these adversaries gives the desired result.

We first define an event Forge; because we are working in the context of BTE, the defi-
nition is slightly different from the definition used in the proof of Theorem 1. Specifically,
let w∗ denote the node initially output by A, and let 〈vk∗, C∗, σ∗〉 be the challenge cipher-
text received by A. Now, let Forge denote the event that A makes a decryption query
D̂(w∗, 〈vk∗, C ′, σ′〉) with (C ′, σ′) 6= (C∗, σ∗) but for which Vrfyvk∗(C ′, σ′) = 1. (We include
in this event the case when A submits such a query to its decryption oracle before receiving
the challenge ciphertext; in this case, we do not require (C ′, σ′) 6= (C∗, σ∗).) It is easy to see
that we can use A to break the underlying one-time signature scheme Sig with probability
exactly PrA[Forge]; since Sig is a strongly unforgeable one-time signature scheme, it must
be the case that PrA[Forge] is negligible (in the security parameter k).

We now define adversary A′ as follows:

1. A′(1k, `′) sets ` = (`′ − `s(k) − 1)/2 and runs A(1k, `) who, in turn, outputs a node
w∗ ∈ {0, 1}≤`. Adversary A′ sets w′ = Encode(w∗), and runs G(1k) to generate
(vk∗, sk∗). Finally, A′ outputs the node w∗′ = w′|0|vk∗.

2. A′ is given PK as well as a set of secret keys {SK ′
w} for all nodes w of the following

form:

– w = vb, where vb is a prefix of w∗′ and b ∈ {0, 1};

– w = w∗′0 or w = w∗′1 (in case |w∗′| < `′).

Using these, A′ can compute and give to A all the relevant secret keys that A expects.

3. When A makes decryption query D̂(w, 〈vk,C, σ〉), adversary A′ proceeds as follows:

(a) If Vrfyvk(C, σ) 6= 1, then A′ simply returns ⊥.

(b) If w = w′, Vrfyvk(C, σ) = 1, and vk = vk∗ (i.e., event Forge occurs), then A′

halts and outputs a random bit.

(c) Otherwise, set w̃ = Encode(w). Note that A′ is able to derive the secret key
corresponding to the “node” w̃|0|vk using the secret keys it obtained in step 2
(this follows since w̃|0|vk cannot be a prefix of w∗′). So, A′ simply computes the
necessary key, performs the decryption of C, and returns the result to A.

4. When A outputs its two messages m0,m1, these same messages are output by A′. In
return, A′ receives a ciphertext C∗. Adversary A′ computes σ∗ ← Signsk∗(C∗) and
returns ciphertext 〈vk∗, C∗, σ∗〉 to A.

5. Any subsequent decryption queries of A are answered as before.

6. Finally, A outputs a guess b′; this same guess is output by A′.

Note that A′ represents a legal adversarial strategy for attacking Π′. Furthermore, A′

provides a perfect simulation for A (and thus A′ succeeds whenever A succeeds) unless
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event Forge occurs. An analysis as in the proof of Theorem 1 shows that PrA,Π[Succ] must
be negligibly close to 1/2.

The above construction requires (in addition to some underlying BTE scheme) only a
one-time signature scheme, and the latter (which may be constructed from any one-way
function) are implied by the existence of any BTE scheme secure in the sense of SN-CPA.
Putting these observations together shows:

Theorem 3 If there exists a BTE scheme secure in the sense of SN-CPA, then there exists
a BTE scheme secure in the sense of SN-CCA.

Applications to FSE and HIBE. In [5] it is shown that any BTE scheme can be used
to construct both a forward-secure public-key encryption scheme as well as a “full-fledged”
hierarchical ID-based encryption scheme (and, as a special case, an ID-based encryption
scheme). Furthermore, if the original BTE scheme is secure against (adaptive) chosen-
ciphertext attacks, then so are the derived schemes. Canetti, et al. further suggest [5]
that a BTE scheme secure in the sense of SN-CCA can be derived using the Naor-Yung
paradigm [21] along with 1-time, simulation-sound NIZK proofs [23]. As mentioned in the
Introduction, the use of NIZK proofs results in a completely impractical scheme (at least
using currently-known techniques). Thus, the approach of this section provides a more
efficient way of achieving CCA security for any BTE scheme (as well as CCA security for
forward-secure encryption or HIBE) in the standard model.
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