VMPC Stream Cipher

Bartosz Zoltak, bzoltak@vmpcfunction.com; bzoltak@wp.pl

Abstract. The VMPC Strean Cipher is a simple
encryption algorithm, designed as a proposed pradicd
applicaion d the VMPC one-way function. The
genera structure of the Cipher is based onan internal
256-element permutation. The VMPC Cipher, together
with its Key Scheduling Algorithm, were designed in
particular to eliminate some of the known wegknesses
charaderistic of the dleged RC4 keystream generator.

1. Introduction

VMPC isan abbreviation d Variably Modified Permutation Compasiti on.

The VMPC function is a combination d triple permutation compasition and integer
addition. It differs from a simple triple permutation composition with ore integer addition
operation performed onsome of the dements of the permutation. The cnsequence of this
addition ogeration is corruption d cycle structure of the transformed permutation - the
fundamental sourceof the function's resistanceto inverting.

The VMPC function has a simple formal definition and the value of the function can be
computed with 3 ore-clock-cycle instructions of an Intel 80486and rewer or compatible
processor per byte.

Inverting the simplest variant of the function by thefastest known inverting algorithm is
estimated to require an average @mputational effort of about 22°° operations.

The VMPC Stream Cipher is based onthe VMPC function. Becaise the requirement for a
stream cipher isthat its output is undstinguishable from a randam-data-stream, the Cipher
employs two ather medhanisms, apart from the computation o the VMPC function. They
are updates of an internal 8-bit variable (s) and a swap operation onsome dements of the
internal permutation (P).

The Key Scheduling Algorithm (KSA) of the VMPC Strean Cipher transforms a
cryptographic key of length from 128to 512 hts (and an Initialization Vedor (1V)) into a
256-element internal permutation (P).

2. The VMPC function
For a detailled description d the VMPC function, plesse refer to “VMPC One-Way

Function” by Bartosz Zoltak (possble to dovnload from http://www.VMPCfunction.com
or from http://eprint.iaa.org).

2.1.Definition of the VM PC function

Notation:

n,P, Q : Pand Q: n-element permutations. For simpli city of further implementations
P and Q are one-to-one mappingsA — A, where A ={0,1,...,n-1}

k : Levd of thefunction; k<n

+ :addtionmoduo n

Definition;

A k-level VMPC function, referred to as VMPCy, is such transformation o
Pinto Q, where

QIx]=P[Pl Pcal...[P.[P[x]]]...]111],
x [0{0,1,...,n1},
P is an n-element permutation such that P[x] = fi (P[x]), wheref; is any function
suchthat P[x] # P[x] # B[x] foril{1...k}, jO{1...k} /{i}.
For smplicity of further implementationsf; isassumed to be f; (X) =x +1i

For simplicity of future references notation Q=VMPC(P) is assumed to be
equivaent to Q=VMPC,(P)

Example:

Q=VMPC4(P) is such transformation d P into Q, where:
QL x] =P[P.[P[]]],

Pai[x]=P[x]+1.

(QIX]=P[P[P[x]] +1], where “+" denctes addition moduo n)

2.2. The 3-instruction implementation of the VM PC function

Implementation of a 1-level VMPC function, where Q[x] = P[P[P[x]]+1], for 256-element
permutations P and Q in assembly language is described.

Assume that :

- Pa is a 257-byte array indexed by numbers from O to 256, the P permutation is
stored in the array at indexes from 0 to 255 (P4[0...255]=P) and that Pa[256]=Pa[0].

- the EAX 32-hbit register stores value zero. ("AL" denotes 8 least significant bits of EAX)
- the EDX 32-hit register stores an address, where the Pa array is stored in memory

- the ECX 32-bit register specifies which element of the Q permutation to compute

Execute:

Table 1. Implementation of 1-level VMPC function

Instruction Description

MOV AL, [EDX] + ECX Store ECX-th element of Pin AL
MOV AL, [EDX] + EAX Store AL-th element of Pin AL
MOV AL, [EDX] + EAX +1 Store (AL+1)-th element of Pin AL

The 3 MOV instructions in Table 1 store the ECX-th element of permutation Q, where
Q=VMPC,(P), inthe AL (and EAX) register.

2.3. Difficulty of inverting the VM PC function

n-element permutation P has to be recovered given information from n-element
permutation, Q, where Q=VMPCy(P) (e.g. n=256, k=1: Q[x]=P[P[P[x]]+1]).

By definition each element of Q isformed by k+2 (e.g. 3), usualy different, elements of P.
One element of Q (e.g. Q[33]=25) can be formed by many possible configurations of P
elements (e.g. P[33]=10, P[10]=20, P[21]=25 or P[33]=1, P[1]=4, P[5]=25, etc.).

It cannot be said which of the configurations is more probable. One of the configurations
has to be picked (usually k+1 (e.g. 2) elements of P have to be guessed) and the choice
must be verified using all those other Q elements, which use at least one of the P elements
from the picked configuration.

Each element of P is usually used to form k+2 (e.g. 3) different elements of Q. As aresult,
usualy (k+2)*(k+1) (e.g. 6) new elements of Q need to be inverted (all k+2 elements of P

used to form each of those Q elements need to be reveaed) to verify the P elements from
the picked configuration.

This would not be difficult for a simple (e.g. triple) permutation composition, where the
cycle structure of Pisretained by Q (some cycles are only shortened).

In Variably Modified Permutation Composition however the cycle structure of P is
corrupted by the addition operation(s) and cannot be easily recovered from Q.

Due to that it is usually impossible to find two different elements of Q, which use at least
k+1 (eg. 2) exactly the same elements of P. (This can be done easily for a simple
permutation composition)

In fact only such element of Q can usualy be found, name it Q[r], which uses only one of
the k+2 (e.g. 3) elements of P, used to form another Q element. This forces the k remaining
(e.g. 1) elements of P, used to form Q[r], to be guessed to make the verification of the
initial pick possible.

However at each new guessed element of P, there usually occur k+1 (e.g. 2) new elements
of Q which use this element of P and which need to be inverted to verify the guess.

The agorithm falls into a loop, where at every step usualy k (e.g. 1) new elements of P
need to be guessed to verify the previously guessed elements. It quickly occurs that the k+2
(e.g. 3) dements of P picked at the beginning of the process indirectly depend on all n (e.g.
256) elements of Q.

The described scenario is the case usually and it is sometimes possible to benefit from
coincidences (where for example it is possible to find two elements of Q, which use more
than one (e.g. 2) exactly the same P elements (e.g. Q[2]=3: P[2]=4, P[4]=8, P[9]=3 and
Q[5]=8: P[5]=9, P[9]=3, P[4]=8)).

The actua agorithm of inverting VMPC was optimized to benefit from the possible
coincidences. The average number of P elements which need to be guessed - for n=256 -
has been reduced to only about 34 for 1-level VMPC function, to about 57 for 2-level
VMPC, to about 77 for 3-level VMPC and to about 92 for 4-level VMPC function.

Searching through half of the possible states of these P elements takes on average about
2% steps for 1-level VMPC function, about 2*%° for 2-level VMPC, about 2°* for 3-level
VMPC and about 2°%° steps for 4-level VMPC function.

A detailed algorithm of inverting the VMPC function is described in “WMPC One-Way
Function” by Bartosz Zoltak.

3. Design objectivesfor the VM PC Cipher and its KSA

The VMPC Cipher does not generate biased dgraph probabiliti es, charaderistic of RC4, as
described by Fluhrer and McGrew in [5].

The Cipher requires no initial outputs to be discarded. Distributions of values of 300 first
outputs fhow no has, where RC4 has a strongly biased distribution d values of the second
output, as described by Mantin and Shamir in [1].

Construction d the VMPC Cipher alows for no situation similar to the Finney states
described for RC4 in [6].

The KSA is designed to resist related-key attadks and attads against the scheme of using
IV (like the WEP attad), described by Fluhrer, Mantin and Shamir in [4].

The Key Scheduling Algorithm provides randam-like diffusion o changes of one byte of
the key of size upto 512 hits onto the generated permutation and orto ouput generated by
the Cipher.

The dfort required to recver the internal permutation from the Cipher's output is higher
than a brute-forceseach of all possble 512-bit keys.

4. Description of the VM PC Stream Cipher

The Cipher generates a strean of 8-bit values from a 256-element permutation. The initi al
state of the permutationis determined by the VMPC Key Scheduling Algorithm described
insedions 5 and 6.

Notation :

P : 256-byte table storing the permutation
s: 8-bit variableinitialized by the VMPC Key Scheduling Algorithm
n : 8-bit variable

Table 2.1. The VMPC Stream Cipher
1.SetntoO

2. Add modulo 256 n-th element of Pto s

3. Set sto s-th element of P

4. Output s-th element of permutation VM PC,(P)
5. Swap n-th element of P with s-th element of P

6. Increment modulo 256 n

7. Goto step 2 if moreoutput isneeded

Table 2.2. The VMPC Stream Cipher — pseudo code
To generate Len bytes of output, execute:

1. n=20
2. Repeat steps 3-6 Len tines:
3. s =P (s + P[n]) and 255]

4. Qutput = P[(P[P[s]]+1) and 255]

5. Tenmp = P[n]
Pln] = P[s]
P[s] = Tenp

6. n=(n + 1) and 255

5. Description of the VM PC Key Scheduling Algorithm

The VMPC Key Scheduling Algorithm transforms a cryptographic key into a 256-el ement
permutation P.

Notation: asin seaion 4,with:
c : fixed length of the cryptographic key in bytes, ¢ [{ 16...64}

K : c-element table storing the cryptographic key
m : 16-bit variable

Table 3.1. The VMPC Key Scheduling Algorithm

1.Set mtoO
2.Set sto0
3. Set i-th element of P toi for i O{0,1,...,255}

4. Add modulo 256 (m modulo 256)-th element of Pto s

5. Add modulo 256 (m modulo ¢)-th element of K to s

6. Set sto s-th element of P

7. Swap (m modulo 256)-th element of P with s-th element of P

8. Increment m

9. Gotostep 4if mislower than 768

10. Set sto O

Table 3.2. The VMPC Key Scheduling Algorithm — pseudo code

1. s =0
2. for i fromO to 255: P[i]=i

3. for mfromO to 767: execute steps 4-6:
4. n = mand 255
5. s = P[(s + P[n] + KKmnod c]) and 255]

6. Tenp = P[n]
P[n] = P[s]
P[s] = Tenp

7. s =0

6. Description of the VM PC scheme of using an Initialization Vector

The VMPC Key Scheduling Algorithm with Initialization Vector transforms a
cryptographic key and an Initialization Vector into a 256-element permutation P.

Notation: asin sedion 5,with:

z : fixed length of the Initialization Vector in bytes, z U {16...64}
V : z-element table storing the Initialization Vector

Table 4.1. The VMPC Key Scheduling Algorithm with IV

1. Run the VM PC Key Scheduling Algorithm

2.5t mto0

3. Add modulo 256 (m modulo 256)-th element of Pto s

4. Add modulo 256 (m modulo z)-th element of V to s

5. Set sto sth element of P

6. Swap (m modulo 256)-th element of P with s-th element of P

7. Ilncrement m

8. Gotostep 3if mislower than 768

9.Set sto0

Table 4.2. The VMPC Key Scheduling Algorithm with |V — pseudo code

1. s=0
2. for i fromO to 255: P[i]=i

3. for mfromO to 767: execute steps 4-6:
4. n = mand 255
5. s =P (s + P[n] + KKmnod c]) and 255]
6. Tenp = P[n]

Pln] = P[s]
P[s] = Tenp
7. s =0

8. for mfromO to 767: execute steps 9-11:
9. n = mand 255
10. s = P[(s + P[n] + Vfmnod z]) and 255]

11. Tenp = P[n]
Pln] = P[s]
P[s] = Tenp

12. s=0

7. Analysis of the VM PC Cipher

7.1.Remvering the Cipher’sinternal state

Over 2°°° operations are estimated to be required to recover the Cipher'sinternal state from

its output. A method similar in its foundations to the Forward Tradking Algorithm,
propcsed by S. Mister and S.E. Tavares in [7], was applied to bregk the VMPC Stream
Cipher. On average half of al the possble values of abou 102 d the dements of the
Cipher's internal permutation reed to be tested before the whoe permutation can be
recovered, which is approximated to take on average over 2°°° steps.

7.2.Digraph probabili ties

Frequencies of ocaurrence of eah of the possble 2*° pairs of conseautive output bytes of
the VMPC Strean Cipher were measured in a stream of 2*%! output bytes. None of the
measured frequencies howed a statisticdly significant deviation from its expeded value
of 1/65536.

7.3.First outputs probabili ties

Frequencies of occurrence of ead o the possble 2° values on eath of the first 300 tested
positions of the generated keystream were measured. In [1] Mantin and Shamir showed
that the second ouput of the RC4 stream cipher takes on value O with probability 1/128
instead of 1/256. Tests for the VMPC Stream Cipher showed that ead of the posshble 256
values on ead o the 300 paitions is taken onwith probability statisticdly insignificantly
different from its expeded value of 1/256.

7.4.Finney states

No situation being an analogy to the Finney states described by H. Finney in [6] was found
for the VMPC Strean Cipher. In such situation the dement P[x]=1 of the dpher'sinternal
permutation is svapped in every conseautive step and is infinitely caried through the
foll owing indexes of P.

7.5.Equal neighboring autputs probabili ties

Frequencies of occurrence of situations where there occurs a given number (0,1,2,3,4,5%nd
over 5) of dired (generated conseautively) and indired (separated by one more output)
equal neighbaing outputs in the mnseautive 256-byte sub-streans of the Cipher's output
and the average tota number of dired and indired equal neighbas - showed no
statisticaly significant deviation from their expeded valuesin a sample of 2*3* bytes of the
Cipher’soutpuit.

8. Analysis of the VM PC Key Scheduling Algorithm

The VMPC KSA has been tested for diffusion d changes of the ayptographic key onto the
generated permutation and orto the Cipher's output. A change of one byte of the
cryptographic key of size 128, 256and 512 lits dhows to cause arandam-looking change
in the generated permutation and in the VMPC Cipher’s output — acording to tests
described in sedions 8.1, 8.2and 8.3.

The KSA has been designed to provide the diffusion withou the use of the Initialization
Vedor and tests were run withou the 1V. The Initialization Vedor would obvously mix
the generated permutation further, which would improve the diffusion effed.

8.1. Numbers of equal permutation elements probabili ties

Frequencies of occurrence of situations where in two permutations, generated from keys
differing with ore byte, there occurs a given nunber (0,1,2,4,5 of equal elements on the
correspondng positions and the arerage number of equal elements on the @rrespondng
positions - showed no statisticdly significant deviation from their expeded values in
samples of 2°2 pairs of 128, 256and 512bit keys.

8.2.Numbersof equal Cipher’soutputs probabilities

Frequencies of occurrence of situations where in two 256byte streans generated by the
VMPC Stream Cipher diredly after running the VMPC KSA for keys differing with ore
byte, there occurs a given number (0,1,2,4,9 of equal elements on the rrespondng
positions and the average number of equal elements on the crrespondng paositions -
showed nostatisticaly significant deviation from their expeded values in samples of 2332
pairs of 128, 256and 512bit keys.

8.3.Equal corre sponding permutation elements probabili ties

Frequencies of occurrence of situations where the dements on ead o the crrespondng
positions of the permutations, generated from keys differing with ore byte, are equal -
showed no statisticaly significant deviation from their expeded values in samples of 2332
pairs of 128, 256and 512bit keys.

9. Conclusions

A proposition of a stream cipher which employs the VMPC one-way function has been
described together with some analyses of the cipher’'s cryptographic strength, of the
statistical properties of the cipher’s output and of the statistical properties of the cipher’s
Key Scheduling Algorithm.

The analyses performed so far show that the cipher is secure in a sense of difficulty of
recovering its internal state from its output, in a sense of difficulty of distinguishing the
cipher’s output from a random data-stream and from the standpoint of statistical properties
of the cipher's KSA.

More detailed descriptions of the tests outlined in sections 7.5, 8.1, 8.2, 8.3 and the current

developments in the analysis of the VMPC Stream Cipher and its KSA are to be found at
http://www.V M PCfunction.com.

10. References

[1] Itsik Mantin, Adi Shamir, “A Practical Attack on Broadcast RC4”
[2] Alexander L. Grosul, Dan S. Wallach, “A Rel ated-Key Cryptanalysisof RC4”

[3] Lars R. Knudsen, Willi Meer, Bart Prened, Vincent Rijmen, Sven Verdoolaege,
“Anaysis Methods for (Alleged) RC4”

[4] Scott Fluhrer, Itsk Mantin, Adi Shamir, “Weaknesses in the Key Scheduling
Algorithm of RC4”

[5] Scott R. Fluhrer, David A. McGrew, “Statistical Analysis of the Alleged RC4
Keystream Generator”

[6] H. Finney, “An RC4 Cycle That Can't Happen”

[7] S.Mister, S.E. Tavares, “Cryptanalysis of RC4 -like Ciphers’

