VMPC Stream Cipher

Bartosz Zoltak, bzoltak@vmpcfunction.com; bzoltak@wp.pl

Abstract

The VMPC Stream Cipher is a simple encryption algorithm, designed as a proposed practical application of the VMPC one-way function. The general structure of the Cipher is based on an internal 256 -element permutation. The VMPC Cipher, together with its Key Scheduling Algorithm, were designed in particular to eliminate some of the known weaknesses characteristic of the alleged RC4 keystream generator.

1. Introduction

VMPC is an abbreviation of Variably Modified Permutation Composition.
The VMPC function is a combination of triple permutation composition and integer addition. It differs from a simple triple permutation composition with one integer addition operation performed on some of the elements of the permutation. The consequence of this addition operation is corruption of cycle structure of the transformed permutation - the fundamental source of the function's resistance to inverting.

The VMPC function has a simple formal definition and the value of the function can be computed with 3 one-clock-cycle instructions of an Intel 80486 and newer or compatible processor per byte.

Inverting the simplest variant of the function by the fastest known inverting algorithm is estimated to require an average computational effort of about 2^{260} operations.

The VMPC Stream Cipher is based on the VMPC function. Because the requirement for a stream cipher is that its output is undistinguishable from a random-data-stream, the Cipher employs two other mechanisms, apart from the computation of the VMPC function. They are updates of an internal 8-bit variable (s) and a swap operation on some elements of the internal permutation (P).

The Key Scheduling Algorithm (KSA) of the VMPC Stream Cipher transforms a cryptographic key of length from 128 to 512 bits (and an Initialization Vector (IV)) into a 256-element internal permutation (P).

2. The VMPC function

For a detailed description of the VMPC function, please refer to "VMPC One-Way Function" by Bartosz Zoltak (possible to download from http://www.VMPCfunction.com or from http://eprint.iacr.org).

2.1. Definition of the VMPC function

Notation:

$\mathrm{n}, \mathrm{P}, \mathrm{Q}: \mathrm{P}$ and $\mathrm{Q}: n$-element permutations. For simplicity of further implementations P and Q are one-to-one mappings $A \rightarrow A$, where $A=\{0,1, \ldots, n-1\}$
k : Level of the function; $\mathrm{k}<\mathrm{n}$

+ : addition modulo n

Definition:

A k-level VMPC function, referred to as $\mathrm{VMPC}_{\mathrm{k}}$, is such transformation of P into Q, where

$$
\mathbf{Q}[\mathbf{x}]=\mathbf{P}\left[\mathbf{P}_{\mathrm{k}}\left[\mathbf{P}_{\mathrm{k}-1}\left[\ldots\left[\mathbf{P}_{1}[\mathbf{P}[\mathbf{x}]]\right] \ldots\right]\right]\right],
$$

$x \in\{0,1, \ldots, n-1\}$,
P_{i} is an n-element permutation such that $P_{i}[x]=f_{i}(P[x])$, where f_{i} is any function such that $P_{i}[x] \neq P[x] \neq P_{j}[x]$ for $i \in\{1 \ldots k\}, j \in\{1 \ldots k\} /\{i\}$.

For simplicity of further implementations f_{i} is assumed to be $f_{i}(x)=x+i$
For simplicity of future references notation $\mathrm{Q}=\mathrm{VMPC}(\mathrm{P})$ is assumed to be equivalent to $\mathrm{Q}=\mathrm{VMPC}_{1}(\mathrm{P})$

Example:

$\mathrm{Q}=\mathrm{VMPC}_{1}(\mathrm{P})$ is such transformation of P into Q , where:
$\mathrm{Q}[\mathrm{x}]=\mathrm{P}\left[\mathrm{P}_{1}[\mathrm{P}[\mathrm{x}]]\right]$,
$\mathrm{P}_{1}[\mathrm{x}]=\mathrm{P}[\mathrm{x}]+1$.
$(\mathrm{Q}[\mathrm{x}]=\mathrm{P}[\mathrm{P}[\mathrm{P}[\mathrm{x}]]+1]$, where " + " denotes addition modulo n$)$

2.2. The 3-instruction implementation of the VMPC function

Implementation of a 1-level VMPC function, where $\mathrm{Q}[\mathrm{x}]=\mathrm{P}[\mathrm{P}[\mathrm{P}[\mathrm{x}]]+1]$, for 256 -element permutations P and Q in assembly language is described.

Assume that :

- Pa is a 257 -byte array indexed by numbers from 0 to 256 , the P permutation is stored in the array at indexes from 0 to $255(\mathrm{~Pa}[0 \ldots 255]=\mathrm{P})$ and that $\mathrm{Pa}[256]=\mathrm{Pa}[0]$.
- the EAX 32-bit register stores value zero. ("AL" denotes 8 least significant bits of EAX)
- the EDX 32-bit register stores an address, where the Pa array is stored in memory
- the ECX 32-bit register specifies which element of the Q permutation to compute

Execute:

Table 1. Implementation of 1-level VMPC function

Instruction	Description
MOV AL, $[E D X]+$ ECX	Store ECX-th element of P in AL
MOV AL, $[E D X]+$ EAX	Store AL-th element of P in AL
MOV AL, $[E D X]+$ EAX + 1	Store (AL+1)-th element of P in AL

The 3 MOV instructions in Table 1 store the ECX-th element of permutation Q, where $\mathrm{Q}=\mathrm{VMPC}_{1}(\mathrm{P})$, in the AL (and EAX) register.

2.3. Difficulty of inverting the VMPC function

n-element permutation P has to be recovered given information from n-element permutation, Q , where $\mathrm{Q}=\mathrm{VMPC}_{\mathrm{k}}(\mathrm{P})(\mathrm{e} . \mathrm{g} . \mathrm{n}=256, \mathrm{k}=1: \mathrm{Q}[\mathrm{x}]=\mathrm{P}[\mathrm{P}[\mathrm{P}[\mathrm{x}]]+1])$.

By definition each element of Q is formed by $\mathrm{k}+2$ (e.g. 3), usually different, elements of P . One element of Q (e.g. $\mathrm{Q}[33]=25$) can be formed by many possible configurations of P elements (e.g. $\mathrm{P}[33]=10, \mathrm{P}[10]=20, \mathrm{P}[21]=25$ or $\mathrm{P}[33]=1, \mathrm{P}[1]=4, \mathrm{P}[5]=25$, etc.).

It cannot be said which of the configurations is more probable. One of the configurations has to be picked (usually $\mathrm{k}+1$ (e.g. 2) elements of P have to be guessed) and the choice must be verified using all those other Q elements, which use at least one of the P elements from the picked configuration.

Each element of P is usually used to form $\mathrm{k}+2$ (e.g. 3) different elements of Q . As a result, usually $(\mathrm{k}+2) *(\mathrm{k}+1)$ (e.g. 6) new elements of Q need to be inverted (all $\mathrm{k}+2$ elements of P
used to form each of those Q elements need to be revealed) to verify the P elements from the picked configuration.

This would not be difficult for a simple (e.g. triple) permutation composition, where the cycle structure of P is retained by Q (some cycles are only shortened).

In Variably Modified Permutation Composition however the cycle structure of P is corrupted by the addition operation(s) and cannot be easily recovered from Q .

Due to that it is usually impossible to find two different elements of Q , which use at least $\mathrm{k}+1$ (e.g. 2) exactly the same elements of P . (This can be done easily for a simple permutation composition)

In fact only such element of Q can usually be found, name it $\mathrm{Q}[\mathrm{r}]$, which uses only one of the $\mathrm{k}+2$ (e.g. 3) elements of P , used to form another Q element. This forces the k remaining (e.g. 1) elements of P , used to form $\mathrm{Q}[r]$, to be guessed to make the verification of the initial pick possible.

However at each new guessed element of P , there usually occur $\mathrm{k}+1$ (e.g. 2) new elements of Q which use this element of P and which need to be inverted to verify the guess.

The algorithm falls into a loop, where at every step usually k (e.g. 1) new elements of P need to be guessed to verify the previously guessed elements. It quickly occurs that the $\mathrm{k}+2$ (e.g. 3) elements of P picked at the beginning of the process indirectly depend on all n (e.g. 256) elements of Q .

The described scenario is the case usually and it is sometimes possible to benefit from coincidences (where for example it is possible to find two elements of Q , which use more than one (e.g. 2) exactly the same P elements (e.g. $Q[2]=3: ~ P[2]=4, P[4]=8, P[9]=3$ and $\mathrm{Q}[5]=8: \mathrm{P}[5]=9, \mathrm{P}[9]=3, \mathrm{P}[4]=8)$).

The actual algorithm of inverting VMPC was optimized to benefit from the possible coincidences. The average number of P elements which need to be guessed - for $\mathrm{n}=256$ has been reduced to only about 34 for 1-level VMPC function, to about 57 for 2-level VMPC, to about 77 for 3-level VMPC and to about 92 for 4-level VMPC function.

Searching through half of the possible states of these P elements takes on average about 2^{260} steps for 1-level VMPC function, about 2^{420} for 2-level VMPC, about 2^{550} for 3-level VMPC and about 2^{660} steps for 4-level VMPC function.

A detailed algorithm of inverting the VMPC function is described in "VMPC One-Way Function" by Bartosz Zoltak.

3. Design objectives for the VMPC Cipher and its KSA

The VMPC Cipher does not generate biased digraph probabilities, characteristic of RC4, as described by Fluhrer and McGrew in [5].

The Cipher requires no initial outputs to be discarded. Distributions of values of 300 first outputs show no bias, where RC4 has a strongly biased distribution of values of the second output, as described by Mantin and Shamir in [1].

Construction of the VMPC Cipher allows for no situation similar to the Finney states described for RC4 in [6].

The KSA is designed to resist related-key attacks and attacks against the scheme of using IV (like the WEP attack), described by Fluhrer, Mantin and Shamir in [4].

The Key Scheduling Algorithm provides random-like diffusion of changes of one byte of the key of size up to 512 bits onto the generated permutation and onto output generated by the Cipher.

The effort required to recover the internal permutation from the Cipher's output is higher than a brute-force search of all possible 512-bit keys.

4. Description of the VMPC Stream Cipher

The Cipher generates a stream of 8 -bit values from a 256 -element permutation. The initial state of the permutation is determined by the VMPC Key Scheduling Algorithm described in sections 5 and 6 .

Notation :

P : 256-byte table storing the permutation
$\mathrm{s}: 8$-bit variable initialized by the VMPC Key Scheduling Algorithm
n : 8-bit variable

Table 2.1. The VMPC Stream Cipher

1. Set n to 0
2. Add modulo 256 n-th element of P to s
3. Set s to s-th element of P
4. Output s-th element of permutation $\mathrm{VMPC}_{1}(P)$
5. Swap n-th element of P with s-th element of P
6. Increment modulo 256 n
7. Go to step 2 if more output is needed

Table 2.2. The VMPC Stream Cipher - pseudo code
To generate Len bytes of output, execute:

1. $\mathrm{n}=0$
2. Repeat steps 3-6 Len times:
3. $s=P[(s+P[n])$ and 255$]$
4. Output $=P[(P[P[s]]+1)$ and 255$]$
5. Temp $=P[n]$
$P[n]=P[s]$
$P[s]=$ Temp
6. $\mathrm{n}=(\mathrm{n}+1)$ and 255

5. Description of the VMPC Key Scheduling Algorithm

The VMPC Key Scheduling Algorithm transforms a cryptographic key into a 256-element permutation P.

Notation: as in section 4, with:
c : fixed length of the cryptographic key in bytes, $\mathrm{c} \in\{16 \ldots 64\}$
K : c-element table storing the cryptographic key
m : 16-bit variable

Table 3.1. The VMPC Key Scheduling Algorithm

1. Set m to 0
2. Set s to 0
3. Set i-th element of P to ifor $i \in\{0,1, \ldots, 255\}$
4. Add modulo 256 (m modulo 256)-th element of P to s
5. Add modulo 256 (m modulo c)-th element of K to s
6. Set s to s-th element of P
7. Swap (m modulo 256)-th element of P with s-th element of P
8. Increment m
9. Go to step 4 if \mathbf{m} is lower than 768
10. Set s to 0

Table 3.2. The VMPC Key Scheduling Algorithm - pseudo code

```
1. s = 0
2. for i from O to 255: P[i]=i
3. for m from 0 to 767: execute steps 4-6:
    4. n =m and 255
    5. s = P[ (s + P[n] + K[m mod c]) and 255 ]
    6. Temp = P[n]
    P[n] = P[s]
    P[s] = Temp
```

7. $s=0$

6. Description of the VMPC scheme of using an Initialization Vector

The VMPC Key Scheduling Algorithm with Initialization Vector transforms a cryptographic key and an Initialization Vector into a 256 -element permutation P.

Notation: as in section 5, with:
z : fixed length of the Initialization Vector in bytes, $\mathrm{z} \in\{16 \ldots 64\}$
V : z-element table storing the Initialization Vector

Table 4.1. The VMPC Key Scheduling Algorithm with IV

1. Run the VMPC Key Scheduling Algorithm
2. Set m to 0
3. Add modulo 256 (m modulo 256)-th element of \mathbf{P} to s
4. Add modulo 256 (m modulo z)-th element of V to s
5. Set s to s-th element of P
6. Swap (m modulo 256)-th element of P with s-th element of P
7. Increment m
8. Go to step 3 if \mathbf{m} is lower than 768
9. Set sto 0

Table 4.2. The VMPC Key Scheduling Algorithm with IV - pseudo code

1. $s=0$
2. for i from 0 to 255: P[i]=i
3. for m from 0 to 767: execute steps 4-6:
4. $\mathrm{n}=\mathrm{m}$ and 255
5. $s=P[(s+P[n]+K[m \bmod c])$ and 255$]$
6. Temp $=P[n]$
$P[n]=P[s]$
P[s] = Temp
7. $s=0$
8. for m from 0 to 767: execute steps 9-11:
9. $\mathrm{n}=\mathrm{m}$ and 255
10. $s=P[(s+P[n]+V[m \bmod z])$ and 255$]$
11. Temp $=P[n]$
$P[n]=P[s]$
P[s] = Temp
12. $s=0$

7. Analysis of the VMPC Cipher

7.1. Recovering the Cipher's internal state

Over 2^{900} operations are estimated to be required to recover the Cipher's internal state from its output. A method similar in its foundations to the Forward Tracking Algorithm, proposed by S. Mister and S.E. Tavares in [7], was applied to break the VMPC Stream Cipher. On average half of all the possible values of about 102 of the elements of the Cipher's internal permutation need to be tested before the whole permutation can be recovered, which is approximated to take on average over 2^{900} steps.

7.2. Digraph probabilities

Frequencies of occurrence of each of the possible 2^{16} pairs of consecutive output bytes of the VMPC Stream Cipher were measured in a stream of $2^{40.1}$ output bytes. None of the measured frequencies showed a statistically significant deviation from its expected value of $1 / 65536$.

7.3. First outputs probabilities

Frequencies of occurrence of each of the possible 2^{8} values on each of the first 300 tested positions of the generated keystream were measured. In [1] Mantin and Shamir showed that the second output of the RC4 stream cipher takes on value 0 with probability $1 / 128$ instead of $1 / 256$. Tests for the VMPC Stream Cipher showed that each of the possible 256 values on each of the 300 positions is taken on with probability statistically insignificantly different from its expected value of $1 / 256$.

7.4. Finney states

No situation being an analogy to the Finney states described by H. Finney in [6] was found for the VMPC Stream Cipher. In such situation the element $P[x]=1$ of the cipher's internal permutation is swapped in every consecutive step and is infinitely carried through the following indexes of P .

7.5. Equal neighboring outputs probabilities

Frequencies of occurrence of situations where there occurs a given number ($0,1,2,3,4,5$ and over 5) of direct (generated consecutively) and indirect (separated by one more output) equal neighboring outputs in the consecutive 256 -byte sub-streams of the Cipher's output and the average total number of direct and indirect equal neighbors - showed no statistically significant deviation from their expected values in a sample of $2^{43.1}$ bytes of the Cipher's output.

8. Analysis of the VMPC Key Scheduling Algorithm

The VMPC KSA has been tested for diffusion of changes of the cryptographic key onto the generated permutation and onto the Cipher's output. A change of one byte of the cryptographic key of size 128, 256 and 512 bits shows to cause a random-looking change in the generated permutation and in the VMPC Cipher's output - according to tests described in sections 8.1, 8.2 and 8.3.

The KSA has been designed to provide the diffusion without the use of the Initialization Vector and tests were run without the IV. The Initialization Vector would obviously mix the generated permutation further, which would improve the diffusion effect.

8.1. Numbers of equal permutation elements probabilities

Frequencies of occurrence of situations where in two permutations, generated from keys differing with one byte, there occurs a given number ($0,1,2,4,5$) of equal elements on the corresponding positions and the average number of equal elements on the corresponding positions - showed no statistically significant deviation from their expected values in samples of $2^{33.2}$ pairs of 128, 256 and 512-bit keys.

8.2. Numbers of equal Cipher's outputs probabilities

Frequencies of occurrence of situations where in two 256-byte streams generated by the VMPC Stream Cipher directly after running the VMPC KSA for keys differing with one byte, there occurs a given number $(0,1,2,4,5)$ of equal elements on the corresponding positions and the average number of equal elements on the corresponding positions showed no statistically significant deviation from their expected values in samples of $2^{33.2}$ pairs of 128, 256 and 512-bit keys.

8.3. Equal corresponding permutation elements probabilities

Frequencies of occurrence of situations where the elements on each of the corresponding positions of the permutations, generated from keys differing with one byte, are equal showed no statistically significant deviation from their expected values in samples of $2^{33.2}$ pairs of 128, 256 and 512-bit keys.

9. Conclusions

A proposition of a stream cipher which employs the VMPC one-way function has been described together with some analyses of the cipher's cryptographic strength, of the statistical properties of the cipher's output and of the statistical properties of the cipher's Key Scheduling Algorithm.

The analyses performed so far show that the cipher is secure in a sense of difficulty of recovering its internal state from its output, in a sense of difficulty of distinguishing the cipher's output from a random data-stream and from the standpoint of statistical properties of the cipher's KSA.

More detailed descriptions of the tests outlined in sections 7.5, 8.1, 8.2, 8.3 and the current developments in the analysis of the VMPC Stream Cipher and its KSA are to be found at http://www.VMPCfunction.com.

10. References

[1] Itsik Mantin, Adi Shamir, "A Practical Attack on Broadcast RC4"
[2] Alexander L. Grosul, Dan S. Wallach, "A Rel ated-Key Cryptanalysis of RC4"
[3] Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, Sven Verdoolaege, "Analysis Methods for (Alleged) RC4"
[4] Scott Fluhrer, Itsik Mantin, Adi Shamir, 'Weaknesses in the Key Scheduling Algorithm of RC4"
[5] Scott R. Fluhrer, David A. McGrew, 'Statistical Analysis of the Alleged RC4 Keystream Generator"
[6] H. Finney, "An RC4 Cycle That Can't Happen"
[7] S.Mister, S.E. Tavares, 'Cryptanalysis of RC4-like Ciphers"

