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Abstract. At Eurocrypt’91, Chaum and van Heyst introduced the concept of group
signature. In such a scheme, each group member is allowed to sign messages on behalf
of a group anonymously. However, in case of later disputes, a designated group manager
can open a group signature and identify the signer. In recent years, researchers have
proposed a number of new group signature schemes and improvements with different
levels of security. In this paper, we present a security analysis of five group signature
schemes proposed in [25, 27, 18, 29, 10]. By using similar methods, we successfully iden-
tify several universally forging attacks on these schemes. Using our attacks, anyone (not
necessarily a group member) can forge valid group signature on any message such that
the forged signature cannot be opened by the group manager. The linkability of these
schemes is also discussed. At the same time, we not only describe how to attack these
schemes, but also explain why and how we find our attacks.
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1 Introduction

A group signature scheme, first introduced by Chaum and van Heyst in [7], allows each
group member to sign messages on behalf of a group anonymously. However, in case
of later disputes, a designated group manager can open a group signature and then
identify the true signer. A secure group signature scheme must satisfy the following
six properties [1, 2, 4, 7]:

– Unforgeability: Only group members are able to sign messages on behalf of the
group.

– Anonymity: Given a valid signature of some message, identifying the actual signer
is computationally hard for everyone but the group manager.

– Unlinkability: Deciding whether two different valid signatures were computed by
the same group member is computationally hard.

– Exculpability: Neither a group member nor the group manager can sign on behalf
of other group members.

– Traceability: The group manager is always able to open a valid signature and
identify the actual signer.

– Coalition-resistance: A colluding subset of group members (even if comprised of
the entire group) cannot generate a valid signature that the group manager cannot
link to one of the colluding group members.



In general, group signature schemes can be classified into two different types: The
schemes based on signatures of knowledge [4] and the schemes designed by straight-
forward and ad-hoc methods. The schemes in [4, 5, 1, 22] belong to the first type, while
the schemes proposed by [10, 11, 27, 24, 25, 18, 29] belong to the second type. Some of
the first type schemes are provably secure, but all those schemes are not very efficient.
For example, as one of the most efficient schemes belonging this type, the scheme in
[5] sill needs about 13,000 RSA modular multiplications in generation and verification
a group signature (see Section 5.6 of [5]). The second type schemes are very efficient
since generation and verification of a signature only need to compute several standard
signatures. However, no existing scheme of the second type has provable security.

In 1998, Lee and Chang presented an efficient group signature scheme based on
the discrete logarithm [11]. Their scheme is obviously linkable since two same pieces of
information are included in all group signatures generated by the same group member.
To provide unlinkability, Tseng and Jan proposed an improved group signature scheme
in [24]. But Sun pointed out that this improved scheme is still linkable [23]. At the
same time, based on the Shamir’s idea of identity(ID)-based cryptosystems [20], Tseng
and Jan proposed an ID-based group signature scheme in [27]. However, Joye et. al
[8, 9] showed that the schemes proposed in [11, 24, 26] all are universally forgeable, i.e.,
anyone (not necessarily a group member) is able to generate a valid group signature on
any message, which cannot be opened by the GM. After that, Tseng and Jan improved
their group signature schemes in [25] and [27], and Popescu presented a modification
to the Tseng-Jan scheme [26] in [18]. In addition, Xian and You [29] proposed new
group signature scheme with strong separability such that the group manager can be
split into a membership manager and a revocation manager.

In this paper, we present a security analysis of several group signature schemes
proposed in [25, 27, 18, 29, 10]. By using similar methods originated from [3, 8, 9], we
successfully identify different universally forging attacks on these schemes. Using our
attacks, anybody can easily forge valid group signature on an arbitrary message. At
the same time, we point out that the schemes proposed in [26, 27, 18, 29] are linkable.
In our description, we not only describe how to attack these schemes, but also ex-
plain why and how we find our attacks. On the one hand, our attacks show that the
schemes mentioned above are insecure. On the other hand, our attacks also implied
that constructing group signatures by the ad-hoc methods should be terminated. In
other words, from the contrary side of the same problem, the design methodology
employed in [1, 22] are confirmed.

In addition, using our method, the existing attacks on Kim et al.’s convertible
group signature scheme [10] can be unified in a family. Those existing attacks are
pointed out by [12, 19, 28, 6] independently and accidentally. Furthermore, we find a
new problem in Kim et al.’s scheme, that is, a valid group signature signed by one
group member is also a possible valid group signature of other group members for the
same message. Therefore, their group signature scheme is information-theoretically
anonymous even for the group manager, and hence all valid group signatures are
completely untraceable and unlinkable.

The rest of this paper is organized as follows. We review and analyze Tseng-Jan
scheme I [25], Tseng-Jan scheme II [27], Popsecu’s scheme [18], Xia-You scheme [29],



and Kim et al.’s scheme [10] in Sections 2, 3, 4, 5, and 6, respectively. Finally, the
concluding remarks are given in Section 7.

2 Tseng-Jan Group Signature Scheme I

2.1 Review of Tseng-Jan Scheme I

Tseng-Jan group signature scheme I [25] is based on discrete logarithm problem. We
review this scheme in this subsection.

Setup. Let p and q be two large primes such that q|(p−1), and g a generator with
order q in Zp. Each group member Ui selects his secret key xi ∈R Z∗

q , and computes
his public key yi := gxi mod p. Similarly, the group manager (GM) selects his secret
key x ∈R Z∗

q , and computes his public key y := gx mod p. Furthermore, GM selects
a one-way hash function h(·). To join the group, a group member Ui sends his public
key yi to GM. Then, GM randomly chooses a random number ki ∈R Z∗

q , computes
and sends back the following pair (ri, si) to Ui privately:

ri := g−ki · yki
i mod p, si := ki − rix mod q. (1)

Ui can check the validity of his certificate (xi, ri, si) by

gsiyriri ≡ (gsiyri)xi mod p. (2)

Signing. To sign a message M , Ui first selects four random numbers a, b, d, t ∈R

Z∗
q , then calculates a signature (R,S,A, B, C, D,E) as follows:

A : = ra
i mod p,

B : = asi − b · h(A||C||D||E) mod q,
C : = ria− d mod q,
D : = gb mod p,
E : = yd mod p,

αi : = gByCEDh(A||C||D||E) mod p,
R : = αt

i mod p,
S : = t−1(h(M ||R)−Rxi) mod q.

(3)

Verification. On receiving a signature (R,S,A, B, C,D,E) on a message M , a
verifier first computes αi as above and check the validity of the signature by

α
h(M ||R)
i ≡ (αi ·A)R ·RS mod p. (4)

Note that the above equality holds since we have the following equations:

gsiyri = gki mod p, αi = gaki mod p, and αiA = αxi
i mod p. (5)

Open. To identify the signer of a valid group signature (R,S,A, B, C, D,E) on
a message M , GM first computes the corresponding αi and then find the signer by
searching which pair (ri, si, ki) satisfies αi ≡ (gC · Ex−1

)r−1
i ·ki mod p, where x−1 and

r−1
i · ki all are computed in Zq.



2.2 Security Analysis of Tseng-Jan Scheme I

Forging Signatures. Now we want to forge a group signature on an arbitrary mes-
sage M even though we do not know any certificate, i.e., we need to find a tuple
(R,S,A, B, C, D,E) that satisfies the following two verification equations:{

αi = gByCEDh(A||C||D||E) mod p,

α
h(M ||R)
i = (αi ·A)R ·RS mod p.

(6)

Note that in the generation of a signature, A,D, E and R all are some powers to
the bases g and y. At the same time, C is embedded in the hash value h(A||C||D||E).
Therefore, we can define A,D, E, R as some known powers of g and y, and choose a
value for C. Then, we try to solve B and S from equation (6). Hence, we choose nine
numbers a1, a2, a3, a4, b1, b2, b3, b4, C ∈ Zq to define A,D, E and R as follows (all in
Zp)

A := ga1yb1 , D := ga2yb2 , E := ga3yb3 , R := ga4yb4 .

Then, we evaluate the two hash values h := h(A||C||D||E), h′ := h(M ||R), and replace
the corresponding variables in equation (6) with the above expressions. Therefore, we
get the following two equations for unknown variables of B and S:{

(B + a3 + a2h)h′ = (B + a3 + a2h)R + a1R + a4S mod q,
(C + b3 + b2h)h′ = (C + b3 + b2h)R + b1R + b4S mod q.

(7)

Therefore, if b4 6= 0 and R 6= h′ mod q (i.e., R 6= h(M ||R) mod q.), we get the following
solutions for S and B:{

S = b−1
4 [(C + b3 + b2h)(h′ −R)− b1R] mod q,

B = (a1R + a4S)(h′ −R)−1 − (a3 + a2h) mod q.
(8)

For summary, in the Tseng-Jan group signature scheme I [25], an attacker can
forge a group signature on any message M as follows:

(1) Select nine random numbers a1, a2, a3, a4, b1, b2, b3, b4, C ∈R Zq such that b4 6= 0.
(2) Define A := ga1yb1 , D := ga2yb2 , E := ga3yb3 , and R := ga4yb4 (all in Zp).
(3) Evaluate h := h(A||C||D||E) and h′ := h(m||R).
(4) Determine if R = h′ mod q. If yes, go to step (1); otherwise, continue.
(5) Compute S and B according to equation (8).
(6) Output (R,S,A, B, C, D,E) as a group signature on the message M .

The correctness of the above attack can be verified directly. When one such forged
group signature is given, GM cannot find the signer. At the same time, note that
in the above attack R = h′ mod q occurs only with a negligible probability since
h(·) is a one-way hash function. Therefore, in general, our attack will succeed just
by one try. Furthermore, for simplicity, some of those nine random numbers can be
set as zeroes. For example, if we set a1 = b2 = b3 = a4 = 0, A,D, E and R can be
computed simply: A := yb1 mod p, D := ga2 mod p, E := ga3 mod p, R := yb4 mod p.
In such case, S and B can be computed by S = b−1

4 (Ch′ − CR − b1R) mod q and
B = −(a3 + a2h) mod q.



Forging Certificates. The authors of [11, 24] noted that for any group member
Ui, (ri, si) is a Nyberg-Rueppel signature [15] on message yki

i . However, this does not
imply that only GM can generate a valid certificate. Now, we demonstrate how to
forge a certificate (x̄i, r̄i, s̄i) that satisfies the equation (2). For this sake, we choose
a0, b0 ∈ Z∗

q , and define r̄i := ga0yb0 mod p. Then, from equation (2), we have the
following equation for unknown x̄i and s̄i:

gs̄iyr̄iga0yb0 = (gs̄iyr̄i)x̄i mod p.

From the above equation, we get the following two equations for x̄i and s̄i:

s̄i + a0 = s̄i · x̄i mod q, and r̄i + b0 = r̄i · x̄i mod q.

Therefore, we obtain the solutions for x̄i and s̄i: x̄i = 1 + b0r̄
−1
i mod q and s̄i =

a0b
−1
0 r̄i mod q. The forged certificate (x̄i, r̄i, s̄i) satisfies equation (2) since gs̄iyr̄i r̄i =

ga0b−1
0 r̄iyr̄iga0yb0 = ga0b−1

0 r̄i(1+b0r̄−1
i )yr̄i(1+b0r̄−1

i ) = (gs̄iyr̄i)x̄i mod p.
Now, an attacker can use the forged certificate (x̄i, r̄i, s̄i) to generate valid group

signature on any message M as a group member does. Firstly, the attacker chooses
a, b, d, t ∈R Z∗

q and computes A := r̄a
i mod p, B := as̄i− b ·h(A||C||D||E) mod q, C :=

r̄ia − d mod q, D := gb mod p and E := yd mod p. Then, he computes ᾱi :=
gByCEDh(A||C||D||E) = (β̄i)a mod p, where β̄i := gs̄iyr̄i mod p. Finally, he gets
R := ᾱt

i mod p and S := t−1[h(M ||R) − Rx̄i] mod q. By using the facts that ᾱi =
(β̄i)a mod p and ᾱiA = (β̄i)ax̄i mod p, it is not difficult to verify that the resulting
tuple (R,S,A, B, C, D,E) satisfies the verification equation (4), i.e., the forged group
signature for the message M is valid.

Remark 1. The schemes proposed in [11, 24, 21] all are subject to similar attacks
due to their similar structures. Especially, the above forged certificate can be directly
used to generate valid group signatures in those schemes since all those schemes use
the same certificate as in Tseng-Jan scheme I [25]. Compared with Joye’s attacks [8]
on the two schemes in [11, 24], our above attacks not only unify in a family, but also
are very simple (especially for the forging certificate attack.). The attack on the Shi
scheme [21], independently specified in [32] by Zhang et al, is a special case of our
attacks. In addition, we notice that there is a design error in the Shi scheme. That is,
all the following equations in [21] should be modified from modulo p to modulo q: eq.
(5), eq. (6), eq. (11), eq. (15), and eq. (17). Otherwise, Shi scheme does not work since
the signatueres generated by honest group members cannot be successfully validated
by verifiers. Furthermore, with the above modification the Shi scheme seems as the
same as the scheme by [24].

3 Tseng-Jan Group Signature Scheme II

3.1 Review of Tseng-Jan Scheme II

Tseng-Jan group signature scheme II [27] involves four parties: a trusted authority
(TA), the group manager (GM), the group members, and the verifiers. TA acts as
a third party to setup the system parameters. GM selects the group public/secret



key pair. He (jointly with TA) issues certificates to new users who wants to join the
group. Then, group members can anonymously sign on behalf of the group by using
their membership certificates and verifiers check the validity of a group signature by
using the group public key. In case of disputes, GM opens the contentious group
signatures to reveal the identity of the actual signer.

System Initialization. In order to set up the system, TA sets a modulus n = p1p2

where p1 and p2 are two large prime numbers (about 120 decimal digits) such that
p1 = 3 mod 8, p2 = 7 mod 8, and (p1 − 1)/2 and (p2 − 1)/2 are smooth, odd and
co-prime. Furthermore, (p1− 1)/2 and (p2− 1)/2 should contain several prime factors
of about 20 decimal digits but no large prime factors. In this case, it is easy for TA
to find the discrete logarithms for p1 and p2 [13, 14, 16, 17]. TA also defines e, d, v, t
satisfying ed = 1 mod φ(n) and vt = 1 mod φ(n). Then, he selects an element g of
large order in Z∗

n, and computes F := gv mod n. TA also chooses a hash function
h(·). The public parameters of TA are (n, e, g, F, h(·)), and the secret parameters of
TA are (p1, p2, d, v, t). To create a group, GM selects a secret key x and computes the
corresponding group public key y := F x mod n.

When a user Ui (with identity information Di) wants to join the group, TA and
GM computes and sends the following si and xi to Ui, respectively.

si := et · logg IDi mod φ(n), and xi := IDi
x mod n. (9)

where

IDi :=
{

Di, if Jacobi symbol (Di|n) = 1;
2Di, if Jacobi symbol (Di|n) = −1.

(10)

The equation (10) guarantees the existence of the discrete logarithm of IDi to the
base g [14]. The membership certificate of the user Ui is (si, xi).

Signing and Verification. To sign a message M , Ui first chooses two random
integers r1 and r2 ∈ Zn. Then, Ui computes his group signature (A,B, C, D) on the
message M as follows:

A : = yr1 mod n
B : = yr2e mod n
C : = si + r1 · h(M ||A||B) + r2e

D : = xi · yr2·h(M ||A||B||C) mod n.

(11)

Upon receiving a signature tuple (A,B, C, D) on message M , a verifier can verify the
validity of this signature by checking whether

DeAh(M ||A||B)B ≡ yCBh(M ||A||B||C) mod n. (12)

Open. GM with the secret key x can identify the signer of a signature by finding
the IDi that satisfies the following equation:

(IDi)xe ≡ De ·B−h(M ||A||B||C) mod n. (13)



3.2 Security Analysis of Tseng-Jan Scheme II

In [27], Tseng and Jan provide detailed security analysis to demonstrate that their
scheme is secure against forgeries and that the anonymity of the signer in their scheme
depends on computing the discrete logarithm modulo for the composite number n.
However, our analysis in this subsection shows that Tseng-Jan scheme [27] is linkable
and universally forgeable.

Linkability. It is easy to see that the value in the left side of equation (13)
is an invariant for user Ui since IDi is the identity information derived from user
Ui’s real identity, and x, e both are public information. Therefore, given two valid
group signatures, (A,B, C, D) and (Ā, B̄, C̄, D̄), on messages M and M̄ , respectively,
anybody (not necessarily group member) can determine whether they are signed by
the same group member by checking whether the following equality holds:

DeB−h(M ||A||B||C) ≡ D̄eB̄−h(M̄ ||Ā||B̄||C̄) mod n.

The above equality shows that Tseng-Jan scheme [27] is linkable. Similarly, the
scheme in [27] is also linkable.

Forging Signatures. Note that in [26], the value D in equation (11) is computed
in a different way: D := xi · yr2·h(M ||A||B) mod n. However, this modification does not
improve the security of Tseng-Jan scheme II. Similar to what we did in Section 2.2,
we want to forge a group signature for an arbitrary message M even without any
membership certificate. Note that the verification equation (12) is about some powers
of A,B, D and y. So we first define A,B, D as some known powers to the base y, and
then try to solve C from equation (12). Therefore, we choose three random number
r1, r2, r4 and define A,B, D as follows (A and B have the same forms as in equation
(11)):

A := yr1 mod n; B := yr2e mod n; D := yr4 mod n.

Then, from the verification equation (12), we get the condition for the value C:

r4e + r1 · h(M ||A||B) + r2e = C + r2e · h(M ||A||B||C) mod φ(n). (14)

We have selected r1, r2 and r4, so A,B, D and then hash value h(M ||A||B) all are
fixed. Therefore, finding a solution for unknown value C from equation (14) seems
difficult because we do not know the modulus φ(n) and the value of C is embedded
in the hash value h(M ||A||B||C). However, we note that solving equation (14) seems
really difficult only if r1, r2 and r4 are truly selected as random numbers. But, we are
attackers. So we have the freedom to choose some special values for r1, r2 and r4. In
other words, to get a solution for the value C, we can let those numbers satisfy some
specific relationships. it is not difficult to find the following solution for equation (14):

C := r1 · h(M ||A||B) + r2e ∈ Z+; r4 := r2 · h(M ||A||B||C) ∈ Z+.

Now, we summary our attack on the Tseng-Jan scheme II [27] as follows:

(1) Firstly, select two random numbers r1, r2.
(2) Then define A := yr1 mod n, and B := yr2e mod n.



(3) Compute C := r1 · h(M ||A||B) + r2e ∈ Z+.
(4) Define r4 := r2 · h(M ||A||B||C) ∈ Z+, and then compute D := yr4 mod n.
(5) Output (A,B, C, D) as a group signature on the message M .

It is easy to check that the above attack is correct. At the same time, when such
a forged signature is given, the group manager cannot find any group member to take
responsible for it.

In fact, if we choose a new random number r3, the values of C and D in the above
attack can be randomized by defining C and r4 as follows

C := r1 · h(M ||A||B) + r2e + r3e ∈ Z+; r4 := r2 · h(M ||A||B||C) + r3 ∈ Z+.

Furthermore, we have another idea to solve equation (14): First define A,B and
C, then calculate hash values of h(M ||A||B) and h(M ||A||B||C), and finally solve r4

for D. However, it seems difficult to find the value of r4 from equation (14) since we
do not know the values of modulus φ(n) and e−1 mod φ(n). But we notice that we
can find a value for r4 if e can be eliminated from equation (14). Here is the trick.
We use r1e to replace r1 (i.e., A := yr1e mod p) and define C := r3e (in Z) for some
random number r3, then r4 can be attained:

r4 := r3 + r2 · h(M ||A||B||C)− r1 · h(M ||A||B)− r2 ∈ Z.

Forging Certificates. Note that the membership certificates in [26] and [27]
are the same. Therefore, according to equation (9), for any positive random integer
k there are two ways to forge valid membership certificates: (1) A group member
Ui can generate a new certificate (ksi, x

k
i mod n) using his certificate (si, xi); (2)

Anybody (not necessarily a group member) can use (s̄i = ke, x̄i = yk mod n) as
a valid certificate [9]. Given a valid group signature generated by using such forged
certificates, GM cannot identify the signer.

Later, Popescu proposed a modification of the Tseng-Jan scheme II in [18]. How-
ever, in the next section, we will show that Popescu’s scheme is still insecure.

4 Popescu’s Group Signature Scheme

4.1 Review of Popescu’s Scheme

Key Generation. The TA selects two large primes p1, p2 as in [27] (see §3.1) and
sets n := p1p2. Then, the TA selects g of large order in Z∗

n, a large integer e (160 bits)
such that gcd(e, φ(n)) = 1, and then computes d satisfying de = 1 mod φ(n). The GM
chooses a secret key x and computes the corresponding public key y := gx mod n.
The GM also chooses a collision-resistant hash function h(·). The public parameters
are (n, e, g, y, h), the TA’s secret key is (p1, p2, d) and GM’s secret key is x.

When a user Ui with identity information IDi ∈ Zn wants to join the group, the
TA and GM compute the following si and xi, respectively

si := IDi
d mod n, xi := (IDi + eg)x mod n.

Then, the membership certificate (si, xi) is sent to the user Ui securely.



Signing. To sign a message M , the user Ui chooses two random numbers r1, r2,
and then computes his group signature (A,B, C, D) as follows

A : = yr2e mod n
B : = xiy

si+r1 mod n
C : = xiy

r2 mod n
D : = sih(M ||A) + r1h(M ||A).

(15)

Verification. (A,B, C, D) is a valid group signature on message M iff the following
equality holds:

Ceh(M ||A)yeD ≡ Beh(M ||A)Ah(M ||A) mod n. (16)

Open. Finally, the GM can recover the signer of a signature (A,B, C, D) on mes-
sage M by checking which identity IDi satisfies

(IDi + eg)xe ≡ CeA−1 mod n. (17)

4.2 Security Analysis of Popescu’s Scheme

In [18], Popescu claimed that his scheme is unforgeable and unlinkable since a non-
group member (including the TA and the GM) does not have a valid membership
certificate (si, xi) and deciding the linkability of two group signatures is computation-
ally hard under decisional Diffie-Hellman assumption.

However, these claims are not true. In this subsection, we will show that in
Popescu’s scheme, (1) Deciding the linkability of two group signatures and forging
a valid group signature on any message are easy even for a non-group member;
(2) Any two random numbers can be used as a valid membership certificate; and
(3) GM can forge valid group signatures on behalf of any group member. In other
words, Popescu’s scheme is linkable, universal forgery and does not satisfy traceablil-
ity, coalition-resistance and exculpability.

Linkability. First of all, it is easy to see that the left side of equation (17) is
an invariant for user Ui. Therefore, given two valid group signatures (A,B, C, D) and
(Ā, B̄, C̄, D̄), by checking the following equality, anybody can determine whether they
are signed by the same group member:

CeA−1 ≡ C̄eĀ−1 mod n.

Forging Signatures. Now, we want to forge a group signature on an arbitrary
given message by using similar method as we used in previous sections, even if we do
not know any member certificate (si, xi). Since the verification equation (16) is about
some powers of A,B, C and y, we choose three random numbers r1, r2, r3 and define
A,B, C as follows (A has the same form as in equation (15)):

A := yr2e mod n, B := yr1 mod n, C := yr3 mod n.

Let h = h(M ||A). Then, from the verification equation (16), we get the condition for
the value D: r3eh + De = r1eh + r2eh mod φ(n), i.e:

r3h + D = r1h + r2h mod φ(n). (18)



Of course, we do not know the modulus φ(n), but equation (18) has a trivial solution
D := (r1 + r2 − r3)h ∈ Z+ if we choose r1, r2, r3 such that r1 + r2 > r3. This shows
that Popsecu’s scheme is universally forgeable. In summary, an attacker can forge a
Popescu’s ID-based group signature [18] on any message M as follows:

(1) First select three random numbers r1, r2, r3 such that r1 + r2 > r3.
(2) Then define A := yr2e mod n, B := yr1 mod n, and C := yr3 mod n.
(3) Compute h := h(M ||A), and D := (r1 + r2 − r3)h ∈ Z+.
(4) Output (A,B, C, D) as a valid group signature on message M .

Forging Certificates. We now want to derive the determining equation for a
valid membership certificate. Let (s̄i, x̄i) be a pair of two random numbers. We select
two random numbers r1, r2 and compute (A,B, C, D) according to equation (15), as
if we have a valid member certificate. Let h = h(M ||A). Then, we calculate the both
sides of the verification equation as follows:

CehyeD = (x̄iy
r2)eh · yeh(s̄i+r1) = (x̄i)eh · y(s̄i+r1+r2)eh mod n,

BehAh = (x̄iy
s̄i+r1)eh · (yr2e)h = (x̄i)eh · y(s̄i+r1+r2)eh mod n.

Obviously, they are identical. Therefore, we reveal an unbelievable fact: In Popsecu’s
modified scheme [18], any random number pair (s̄i, x̄i) is a valid membership certifi-
cate!

No Exculpablility. Above fact not only strengthens the conclusion that Popsecu’s
scheme is universally forgeable, but also reveals another fact that Popsecu’s scheme
has no exculpablility: The group manager, who knows the secret value xi for user
Ui, can generate a valid group signature for any message on behalf of Ui by using
(xi, s̄i) as a membership certificate, where s̄i is chosen as a random number. If such a
valid group signature (A,B, C, D) is opened, user Ui will be identified because xe

i =
(IDi + eg)xe = CeA−1 mod n.

5 Xia-You Group Signature Scheme

5.1 Review of Xia-You Scheme

Setup of Trusted Authority (TA). TA generates two prime numbers p1 and p2

satisfying the same conditions listed in the Setup of Tseng-Jan scheme II and sets
m := p1p2. In this case, it is easy for TA to find the discrete logarithms modulo p1

and p2. An integer g is chosen such that g < min{p1, p2}. Finally, TA publishes (m, g)
but keeps the prime factors p1 and p2 as his secret.

Generating Private Keys. Since a signer Ui’s identity information Di (which is
smaller than m) is not guaranteed to have a discrete logarithm modulo the composite
number m, TA computes IDi by equation (10) (respect to modulus m). Now TA
computes the private key xi for Ui as the discrete logarithm of IDi to the base g:

IDi = gxi mod m. (19)

Finally, TA sends xi to Ui in a secure way and Ui can check the validity of xi by
verifying equation (19). The reader can refer to [13, 14] for details.



Setup of Group Manager (GM). GM chooses two large primes p3 and p4 such
that p3−1 and p4−1 are not smooth, and sets n = p3p4 such that n > m. Let e be an
integer satisfying gcd(e, φ(n)) = 1, and computes d such that ed = 1 mod φ(n). Then,
GM chooses two integers x ∈ Zm, h ∈ Z∗

m, and then computes y := hx mod m as the
group public key. Let H(·) be a collision-resistant hash function that maps {0, 1}∗ to
Zm. The group public key is (n, e, h, y,H) and GM’s secret key is (x, d, p3, p4).

Generating Membership Keys. When a signer Ui wants to join the group, GM
computes the membership key zi of Ui as follows

zi = IDd
i mod n. (20)

Then, zi is sent to Ui in a secure way and Ui checks the validity of zi by verifying
IDi = ze

i mod n.
Signing. To sign a message M , Ui first chooses five random numbers α, β, θ, ω ∈

Zm and δ ∈ Zn, and then computes the signature (A,B, C, D, E, F,G) as follows:

A : = yα · zi mod n,
B : = yω · IDi,
C : = hω mod m,

D : = H(y||g||h||A||B||B̂||C||v||t1||t2||t3||M),
E : = δ −D(αe− ω),
F : = β −Dω,
G : = θ −Dxi,

(21)

where
B̂ := B mod m, v := (Ae/B) mod n;
t1 := yδ mod n, t2 := yβ · gθ mod m, t3 := hβ mod m.

Verification. A verifier accepts a signature (A,B, C, D, E, F,G) on a message M
if and only if

D ≡ H(y||g||h||A||B||B̂||C||v||t1′||t2′||t3′||M), (22)

where B̂ and v are computed as in signing equation, i.e., B̂ = B mod m, v =
(Ae/B) mod n, but t1

′, t2
′ and t3

′ are given by the following equations

t1
′ := vDyE mod n, t2

′ := B̂DyF gG mod m, t3
′ := CDhF mod m. (23)

Open. Given a valid group signature (A,B, C, D, E, F,G) on a message M , the
group manager can identify the signer by finding the IDi such that

IDi = B · C−x mod m.

5.2 Security Analysis of Xia-You Scheme

Xia and You claimed that their scheme [29] satisfies all the security properties listed in
Section 1. However, in this subsection presents several attacks to show that Xia-You
scheme [29] is insecure.

Linkability. From signing equation (21), we know that E,F, G are three integers
(may be negative), and B is a non-negative integer. Since B = yw · IDi, we know



IDi|B if Ui is the signer of a valid group signature (A,B, C, D, E, F,G). Therefore, for
anyone who knows the identities of group members, he can find the signer with a high
probability. Usually, IDi, a large integer (e.g. 160 bits), is computed as a hash value
of Ui’s real-world identity (e.g., names, network address, etc.). So it seems unlikely
that there are two IDi and IDj such that IDi|B ∈ Z and IDj |B ∈ Z. Hence, we
can say that Xia-You scheme only satisfy weak anonymity and unlinability. Because,
for anyone (especially group members) who know the identities of all group members,
Xia-You scheme does not satisfy the anonymity and unlinability. In addition, in the
situation without knowledge of the identities of group members, it is also possible to
break the linkability by using the great common divisor of several values of B’s.

Forging Signatures. Using similar method used in the previous sections, we can
forge a group signature on an arbitrary given message M even without any membership
certificate (IDi, xi, zi). Note that to satisfy the verification equations (22) and (23), we
can first choose A,B, C and t1, t2, t3, then we get D by evaluating the corresponding
hash value, and finally try to solve the values of E,F and G from equation (23). If we
observe equations (21)-(23) carefully, we will know that a good strategy is to choose
A,B, t1 and t2 as some known representations of bases y and g, but C and t3 as powers
of h. Therefore, we can choose ten random numbers a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 to
define A,B, C and t1, t2, t3 as follows:

A : = ya1 · ga2 mod n,
B : = ya3 · ga4 ,
C : = ha5 mod m.

and
t1 : = yb1 · gb5 mod n,
t2 : = yb2 · gb3 mod m,
t3 : = hb4 mod m.

Then, we compute B̂ := B mod m, v := (Ae/B) mod n = ya1e−a3 · ga2e−a4 mod n and
evaluate the hash value D = H(y||g||h||A||B||B̂||C||v||t1||t2||t3||M). At last, to get
the values of E,F and G, we replace the occurrences of t′1, t

′
2, t

′
3, B̂ and v in equations

(23) by t1, t2, t3, B and ya1e−a3 · ga2e−a4 mod n, respectively, and then we have

b1 = (a1e− a3)D + E mod φ(n),
b5 = (a2e− a4)D mod φ(n),
b2 = a3D + F mod φ(m),
b3 = a4D + G mod φ(m),
b4 = a5D + F mod φ(m).

In general, we cannot find a solution for (E,F, G) from the above equation system.
However, we can set the ten numbers, i.e., a1, · · · , b5, satisfying specific relationships
such that the above equation system has one solution. First, please note that we
should set b5 = 0. Because D is determined by those ten numbers, we cannot require
b5 = (a2e− a4)D mod φ(n) again. b5 = 0 also implies that a2e− a4 = 0, i.e., a4 = a2e
(in Z). Secondly, we notice that F has to satisfy the third and the fifth equations at
the same time, so we should set these two equations as the same one. This means that
a5 = a3 and b4 = b2. Therefore, under the conditions of b5 = 0, a4 = a2e, a5 = a3 and
b4 = b2, we get the following solution for (E,F, G) even though we do not know the
values of φ(m) and φ(n):

E := b1 + (a3 − a1e)D ∈ Z, F := b2 − a3D ∈ Z, G := b3 − a2eD ∈ Z.



In summary, an attacker can forge a valid group signature on a message M as follows:

(1) First of all, select six random numbers a1, a2, a3, b1, b2, b3.
(2) Then, define A := ya1 · ga2 mod n, B := ya3 · ga2e, C := ha3 mod m, t1 :=

yb1 mod n, t2 := yb2 · gb3 mod m, t3 := hb2 mod m.
(3) Compute B̂ := B mod m and v := (Ae/B) mod n = ya1e−a3 mod n, and then

D := H(y||g||h||A||B||B̂||C||v||t1||t2||t3||M).
(3) Compute E := b1 +(a3−a1e)D ∈ Z, F := b2−a3D ∈ Z, and G := b3−a2eD ∈ Z.
(3) Output (A,B, C, D, E, F,G) as a group signature on the message M .

Again, it is not difficult to verify that the above attack is successful.
Forging Certificates. Similarly, we can get the following conditions for a valid

membership certificate (IDi, x̄i, z̄i):

z̄e
i = IDi mod n, and IDi = gx̄i mod m.

These two conditions are the exact equations (19) and (20). So, it seems that valid
membership certificates can only be generated jointly by TA and GM. However, for
any non-negative integer k, it is not difficult to see that (1) A group member Ui

with membership certificate (IDi, xi, zi) can generate a valid membership certificates
(IDk

i , kxi, z
k
i mod n), and (2) anyone (not necessarily a group member) can use (ID :=

gke, x̄ := ke, z̄ := gk mod n) as a valid certificate to generate group signature on
any message. Given a valid signature generated by using such forged membership
certificate, of course, GM cannot identify the signer.

Remarks 2. Different attacks on Xia-You scheme are also identified independently
by Zhang et al. in [30], and Zhang et al. [31]. The attack in [30] is a special case of
our forging signatures, and the two attacks in [31] are weaker than our (universally)
forging certificate attack since their attacks can only be mounted by colluding group
members.

6 Kim-Park-Won Convertible Group Signature Scheme

6.1 Review of Kim-Park-Won Scheme

To set up a system, the GM first chooses three primes p′, q′, f such that p := 2fp′ + 1
and q := 2fq′ + 1 are also primes. Then, the GM sets n = p q and selects an element
g ∈ Z∗

n of order f , i.e., gf = 1 mod n. Furthermore, the GM chooses γ ∈ Z∗
φ(n) and

computes d such that γd = 1 mod φ(n). Let IDG be the identity information of the
group, h(·) a secure hash function. Finally, the GM makes (n, γ, f, g, h(·), IDG) as
public information, (d, p′, q′) as his private key.

To joint the group, a user Ui with identity information IDi chooses a random
secret number si ∈ (0, f), then computes yi := gsi and sends (IDi, yi) to the GM .
Then, the GM computes and sends following xi to Ui securely:

xi := (IDG · yi)−d mod n. (24)

At the same time, to identify signers in case of disputes, the GM stores (IDi, yi, xi)
into a complete list for all registered group members.



To generate a group signature (e, z1, z2) on message M , user Ui first chooses two
random numbers r1 ∈R [0, f), r2 ∈R [0, n) and then computes:

V : = gr1rγ
2 mod n

e : = h(V ||M)
z1 : = r1 + sie mod f
z2 : = r2xi

e mod n.

(25)

To verify a group signature (e, z1, z2), a verifier checks whether

e ≡ h(V̄ ||M), where V̄ := (IDG)egz1z2
γ mod n. (26)

To open a valid group signature (e, z1, z2) for message M , the GM first calculates
V̄ := (IDG)egz1z2

γ mod n, and then searches his list of all (IDj , yj , xj) to find the
signer Ui if Ui’s (xi, yi) satisfies the following equality

gz1 ≡ V̄ · z−γ
2 · xeγ

i · ye
i mod n. (27)

6.2 Security Analysis of Kim-Park-Won Scheme

Forging Signatures. Now, we first try to forge a valid group signature on any given
message M under the assumption that we do not know any valid membership cer-
tificate. Note that the verification equation is to evaluate a hash value, and we have
assumed that h(·) is a secure hash function. Therefore, if we first choose value for
e, it seems difficult to find a tuple (V, z1, z2) such that both relations in verification
equation (26) are satisfied. So we go in the other direction, i.e., we first choose a value
for V and calculate e := h(V ||M), then we try to find a pair (z1, z2) satisfying the
following equality:

V ≡ (IDG)egz1z2
γ mod n.

Note that the above equation is about several powers of IDG, g and z2, so we choose
four numbers, a1, a2, b1, b2, and then define V and z2 as follows

V := (IDG)a1gb1 mod n, z2 := (IDG)a2gb2 mod n.

Replacing all occurrences of V and z2 in equation (26) with the above two expressions,
respectively, we get the following equation:

(IDG)a1gb1 ≡ (IDG)e+a2γgz1+b2γ mod n.

Then, we have{
a1 = e + a2γ mod ord(IDG)
b1 = z1 + b2γ mod f

, or
{

a1 = e + a2γ mod φ(n)
b1 = z1 + b2γ mod f

. (28)

Where ord(IDG) denotes the multiplicative order of element IDG ∈ Z∗
n, and e :=

h(V ||M) = h(IDa1
G gb1 mod n||M).

In the above two equation systems, given a1, b1 (and then V, e), finding solutions
for b2 and z1 are very easy since modulus f is known. However, finding a solution for



a2 seems difficult since we do not know any value of ord(IDG), φ(n), γ−1 mod φ(n)
or γ−1 mod ord(IDG). But, in the following three special settings, we can find some
solutions.

(1) ID2f
G = 1 mod n, i.e., ord(IDG) = 2, f, or 2f . In this case, an attacker can forge

valid group signature by setting a2 := (a1 − e)γ−1 mod ord(IDG). This is the attack
pointed out in [19]. However, if the suggested parameters are used, i.e., |p′| = |q′| ≈ 234
and |f | ≈ 160 [10], we note that this case occurs only with a negligible probability
(4f2 − 1)/n < 1/2466.

(2) Since the GM knows the value of φ(n), he can generate a valid group signature
by setting a2 := (a1 − e)γ−1 mod φ(n). In fact, this is a trivial result. Because in
general group signature schemes, including Kim-Park-Won scheme, GM always can
create nonexistent membership certificate and generate group signature.

(3) IDd
G mod n is known. In this case, if we define z2 := (IDd

G)ā2gb2 mod n, then
the equation for ā2 will become:

a1 = e + ā2 · dγ mod φ(n).

Since dγ = 1 mod φ(n), one trivial solution is attained ā2 := a1−e ∈ Z+ if a1−e > 0.
If we assume h(·) ≤ l and choose a1 such that a1 ≥ 2l, we will always have a1− e > 0.
However, how to get the value of IDd

G mod n? The methods are given in the next
part.

Forging Certificates. A valid membership certificate is defined by equation (24),
which is a RSA signature of GM on the message (IDG · yi)−1. However, this does not
imply that valid membership certificates can only be generated by the GM. It is easy
to know that the following equation defines a valid membership certificate (s̄i, x̄i) too,
since it is a variant of equation (24):

IDG · gs̄i · x̄γ
i = 1 mod n. (29)

Let Ui and Uj , with certificates (si, xi) and (sj , xj) respectively, be two colluding
group members, then they have several ways to forge a valid membership certificate
(s̄, x̄).

(a) For any integer k > 1, define s̄ := ksi − (k − 1)sj mod f and x̄ := xk
i ·

x
−(k−1)
j mod n. This method works since x̄ := xk

i · x
−(k−1)
j = (IDG · gksi−(k−1)sj )−d =

(IDG · gs̄)−d mod n.
(b) If they choose an integer δ > 0 and define sj := si + δ mod f , they can

get the value of gδd by gδd := xi · x−1
j mod n. Then, for any integer k > 1, define

s̄ := si + kδ mod f and x̄ := xi · (gδd)−k mod n. (s̄, x̄) is a valid certificate because
x̄ = xi · (gδd)−k = (IDG · gsi)−d(gδk)−d = (IDG · gsi+kδ)−d = (IDG · gs̄)−d mod n.
Specifically, if δ = 1, then we get gd = xi ·x−1

j mod n and (IDG)−d = xi ·(gd)si mod n;
if δ = si, i.e., sj = 2si mod f , we get (IDG)−d = (xi)2 · x−1

j mod n. Therefore,
IDd

G mod n is available.
(c) If they set si := ab and sj := ab + b for two known positive integers a and

b, gbd can be attained by computing xi · x−1
j mod n, and then ID−d

G can be attained
by computing xi · (gbd)a mod n. When gbd and ID−d

G are known, they can generate a



valid certificate (s̄, x̄) by defining s̄ := bk mod f and x̄ := ID−d
G · (gbd)−k mod n, for

any integer k > 1. This attack was first found by Lim and Lee [12].
In the above three cases, two colluding group members are needed. However, if the

system allows a user own two certificates at the same time or an old group member
can get a new certificate when he joins the same system for the second time, a group
member alone can mount above attacks successfully.

Signer Identification. For a valid group signature (e, z1, z2) on message M , if
replacing the occurrence of V̄ in equation (27) by IDe

Ggz1zγ
2 mod n, we have

gz1 ≡ IDe
G · gz1 · zγ

2 · z
−γ
2 · xeγ

i · gsie mod n,

i.e., 1 = (IDG · gsi · xγ
i )e mod n. However, according to equation (29), we know 1 ≡

IDG ·gsi ·xγ
i for every certificate (si, xi). This shows that given a valid group signature,

equation (27) is an equality for all certificates (si, xi). In other words, equation (27)
cannot be used to identify the signer because all certificates (si, xi) satisfy it. Wang
et. al first pointed out this problem [28], but they have no explanations for it. Now
we point out the reason: If (e, z1, z2) is Ui’s valid group signature on message M , it
is also Uj ’s valid group signature on message M . More specifically, we denote δ :=
sj − si mod f and assume that Ui chooses two random numbers r1 and r2 to generate
his signature (e, z1, z2) as in equation (25). Then, it is easy to check that (e, z1, z2) is
also a valid signature of Uj for the same message if Uj chooses r̄1 := r1−δe mod f and
r̄2 := r2g

δde mod n as his own two random numbers and then generates his signature.
Therefore, for the same message, the signature spaces of any two group member are the
same. So, it is impossible (in information theoretic sense) to trace the signer even for
the GM. Therefore, Kim-Park-Won scheme [10] is totally anonymous and unlinkable
even for the GM.

7 Concluding Remarks

In this paper, by using similar methods, we successfully identified different universally
forging attacks on several group signature schemes proposed in [25, 27, 18, 29, 10]. Us-
ing our attacks, anybody (not necessarily a group member) can forge valid group
signature on any message. Therefore, all these group signature schemes are insecure.
At the same time, our attacks also implied that constructing group signatures by the
ad-hoc methods should be terminated. Our attacking method described in this paper
might be used as a security test in the future design of group signatures (and other
possible signature schemes).
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