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Abstract. At Eurocrypt’91, Chaum and van Heyst introduced the concept of group
signature. In such a scheme, each group member is allowed to sign messages on behalf
of a group anonymously. However, in case of later disputes, a designated group manager
can open a group signature and identify the signer. In recent years, researchers have pro-
posed a number of new group signature schemes and improvements with different levels
of security. In this paper, we present a security analysis of five group signature schemes
proposed in [25, 27, 18, 30, 10]. By using the same method, we successfully identify sev-
eral universally forging attacks on these schemes. In our attacks, anyone (not necessarily
a group member) can forge valid group signatures on any messages such that the forged
signatures cannot be opened by the group manager. We also discuss the linkability of
these schemes, and further explain why and how we find the attacks.
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1 Introduction

A group signature scheme, first introduced by Chaum and van Heyst in [7], allows each
group member to sign messages on behalf of a group anonymously and unlinkably.
However, in case of later disputes, a designated group manager can open a group
signature and then identify the true signer. A secure group signature scheme must
satisfy the following six properties [1, 2, 4, 7] 1:

– Unforgeability: Only group members are able to sign messages on behalf of the
group.

– Anonymity: Given a valid signature of some message, identifying the actual signer
is computationally hard for everyone but the group manager.

– Unlinkability: Deciding whether two different valid signatures were computed by
the same group member is computationally hard.

– Exculpability: Neither a group member nor the group manager can sign on behalf
of other group members.

– Traceability: The group manager is always able to open a valid signature and
identify the actual signer.

In general, group signature schemes can be classified into two different types:
The schemes based on signatures of knowledge [4] and the schemes designed with
1 Note that the property of Coalition-resistance is not listed here since in essence it is implied by

Traceability.



straightforward and ad-hoc methods. The schemes in [4, 5, 1, 22] belong to the first
type, while the schemes proposed by [10, 11, 24–27, 18, 30] belong to the second type.
Some of the first type schemes are provably secure, but all those schemes are not very
efficient. For example, as one of the most efficient schemes belonging this type, the
scheme in [5] still needs about 13,000 RSA modular multiplications in generation and
verification a group signature (see Section 5.6 of [5]). The second type schemes are
very efficient since generation and verification of a signature only need to compute
several standard signatures. However, no existing scheme of this type has provable
security.

In 1998, Lee and Chang presented an efficient group signature scheme based on
the discrete logarithm [11]. Their scheme is obviously linkable since two same pieces of
information are included in all group signatures generated by the same group member.
To provide unlinkability, Tseng and Jan proposed an improved group signature scheme
in [24]. But Sun pointed out that this improvement is still linkable [23]. At the same
time, based on Shamir’s idea of identity(ID)-based cryptosystems [20], Tseng and
Jan proposed an ID-based group signature scheme in [26]. However, Joye et al. [8,
9] showed that the schemes proposed in [11, 24, 26] all are universally forgeable, i.e.,
anyone (not necessarily a group member) is able to generate a valid group signature
on any message, which cannot be opened by the group manager. After that, in [25]
and [27], Tseng and Jan revised their schemes, and Popescu presented a modification
to the Tseng-Jan ID-based scheme [26] in [18]. In addition, Xian and You proposed
a new group signature scheme with strong separability such that the group manager
can be split into a membership manager and a revocation manager [30].

In this paper, we present a security analysis of several group signature schemes
proposed in [25, 27, 18, 30, 10]. By using the same method originated from [3, 8, 9], we
successfully identify different universally forging attacks on these schemes. That is,
anybody can easily forge valid group signatures on arbitrary messages. At the same
time, we point out that the schemes proposed in [26, 27, 18, 30] all are linkable. In our
paper, we not only describe how to attack these schemes, but also explain why and
how we find the attacks. Our attacks also demonstrate that no more group signatures
should be constructed with such ad-hoc methods used by the above mentioned insecure
schemes. In other words, from the contrary side of the same problem, the formal design
methodology employed in [1, 22] are further confirmed.

In addition, using our method, the existing attacks on Kim et al.’s convertible
group signature scheme [10] can be unified in a family. Those existing attacks are
pointed out by [12, 19, 28, 6] independently and accidentally. Furthermore, we find a
new problem in Kim et al.’s scheme, that is, a valid group signature signed by one
group member is also a possible valid signature of other group members for the same
message. Therefore, their scheme is information-theoretically anonymous even for the
group manager, and hence all valid group signatures are completely untraceable and
unlinkable.

The rest of this paper is organized as follows. We review and analyze Tseng-
Jan (DLP-based) scheme [25], Tseng-Jan ID-based scheme [27], Popsecu’s improved



scheme [18], Xia-You scheme [30], and Kim et al.’s scheme [10] in Sections 2, 3, 4, 5,
and 6, respectively. Finally, some concluding remarks are given in Section 7.

2 Tseng-Jan Group Signature Scheme

2.1 Review of Tseng-Jan Scheme

This subsection reviews the Tseng-Jan group signature scheme proposed in [25], which
is based on discrete logarithm problem (DLP).

Setup. Let p and q be two large primes such that q|(p− 1), and g a generator of
order q in Zp. A user Ui selects his secret key xi ∈R Z∗

q , and sets his public key as
yi := gxi mod p. Similarly, the group manager (GM) selects his secret key x ∈R Z∗

q ,
and computes his public key y := gx mod p. Furthermore, GM selects a one-way
hash function h(·). To join the group, Ui sends his public key yi to GM. Then, GM
chooses a random number ki ∈R Z∗

q , computes and sends the following pair (ri, si) to
Ui privately:

ri := g−ki · yki
i mod p, si := ki − rix mod q. (1)

Ui can check the validity of his certificate (xi, ri, si) by

gsiyriri ≡ (gsiyri)xi mod p. (2)

Signing. To sign a message M , Ui first selects four random numbers a, b, d, t ∈R

Z∗
q , then calculates a signature (R,S,A, B, C, D,E) as follows:

A : = ra
i mod p,

B : = asi − b · h(A||C||D||E) mod q,
C : = ria− d mod q,
D : = gb mod p,
E : = yd mod p,

αi : = gByCEDh(A||C||D||E) mod p,
R : = αt

i mod p,
S : = t−1(h(M ||R)−Rxi) mod q.

(3)

Verification. On receiving a signature (R,S,A, B, C,D,E) on a message M , a
verifier first computes αi as above and check the validity of the signature by

α
h(M ||R)
i ≡ (αi ·A)R ·RS mod p. (4)

Note that the above equality holds since we have the following equations:

gsiyri = gki mod p, αi = gaki mod p, and αiA = αxi
i mod p. (5)

Open. To identify the signer of a valid group signature (R,S,A, B, C, D,E) on
message M , GM first computes the corresponding αi and then find the signer by
searching which pair (ri, si, ki) satisfies αi ≡ (gC · Ex−1

)r−1
i ·ki mod p, where x−1 and

r−1
i · ki all are computed in Zq.



2.2 Security Analysis of Tseng-Jan Scheme

Forging Signatures. We want to forge a group signature on an arbitrary mes-
sage M even though we do not know any certificate, i.e., we need to find a tuple
(R,S,A, B, C, D,E) that satisfies the following two verification equations:{

αi = gByCEDh(A||C||D||E) mod p,

α
h(M ||R)
i = (αi ·A)R ·RS mod p.

(6)

Note that in the signature generation, A,D, E and R all are some powers to the
bases g and y. At the same time, C is embedded in the hash value h(A||C||D||E).
Therefore, we can define A,D, E, R as some known powers of g and y, and choose a
value for C. Then, we try to solve B and S from equation (6). Hence, we select nine
random numbers a1, a2, a3, a4, b1, b2, b3, b4, C ∈R Zq to define A,D, E and R as follows
(all in Zp)

A := ga1yb1 , D := ga2yb2 , E := ga3yb3 , R := ga4yb4 .

Then, we evaluate the two hash values h := h(A||C||D||E), h′ := h(M ||R), and replace
the corresponding variables in equation (6) with the above expressions. So we get the
following two equations for unknown variables of B and S:{

(B + a3 + a2h)h′ = (B + a3 + a2h)R + a1R + a4S mod q,
(C + b3 + b2h)h′ = (C + b3 + b2h)R + b1R + b4S mod q.

(7)

Therefore, if b4 6= 0 and R 6= h′ mod q (i.e., R 6= h(M ||R) mod q.), we get the following
solutions for S and B:{

S = b−1
4 [(C + b3 + b2h)(h′ −R)− b1R] mod q,

B = (a1R + a4S)(h′ −R)−1 − (a3 + a2h) mod q.
(8)

For summary, in the Tseng-Jan group signature scheme [25], an attacker can forge
a valid group signature on any message M as follows:

(1) Select nine random numbers a1, a2, a3, a4, b1, b2, b3, b4, C ∈R Zq such that b4 6= 0.
(2) Define A := ga1yb1 , D := ga2yb2 , E := ga3yb3 , and R := ga4yb4 (all in Zp).
(3) Evaluate h := h(A||C||D||E) and h′ := h(M ||R).
(4) Determine if R = h′ mod q. If yes, go to step (1); otherwise, continue.
(5) Compute S and B according to equation (8).
(6) Output (R,S,A, B, C, D,E) as a group signature for message M .

The correctness of the above attack can be verified directly. When one such forged
group signature is given, GM cannot find the signer. At the same time, note that
in the above attack R = h′ mod q occurs only with a negligible probability since
h(·) is a one-way hash function. Therefore, in general, our attack will succeed just
by one try. Furthermore, for simplicity, some of those nine random numbers can be
set as zeroes. For example, if we set a1 = b2 = b3 = a4 = 0, A,D, E and R can be
computed simply: A := yb1 mod p, D := ga2 mod p, E := ga3 mod p, R := yb4 mod p.



In such case, S and B can be computed by S = b−1
4 (Ch′ − CR − b1R) mod q and

B = −(a3 + a2h) mod q.

Forging Certificates. The authors of [11, 24, 25] noted that for any group member
Ui, (ri, si) is a Nyberg-Rueppel signature [15] on message yki

i . However, this does not
imply that only GM can generate a valid certificate. Now, we demonstrate how to
forge a certificate (x̄i, r̄i, s̄i) that satisfies equation (2). We first choose a0, b0 ∈ Z∗

q ,
and define r̄i := ga0yb0 mod p. Then, from equation (2), we have the following equation
for unknown x̄i and s̄i:

gs̄iyr̄iga0yb0 = (gs̄iyr̄i)x̄i mod p.

From the above equation, we get the following two equations for x̄i and s̄i:

s̄i + a0 = s̄i · x̄i mod q, and r̄i + b0 = r̄i · x̄i mod q.

Therefore, we obtain the solutions for x̄i and s̄i: x̄i = 1 + b0r̄
−1
i mod q and s̄i =

a0b
−1
0 r̄i mod q. The forged certificate (x̄i, r̄i, s̄i) satisfies equation (2) since gs̄iyr̄i r̄i =

ga0b−1
0 r̄iyr̄iga0yb0 = ga0b−1

0 r̄i(1+b0r̄−1
i )yr̄i(1+b0r̄−1

i ) = (gs̄iyr̄i)x̄i mod p.
Now, an attacker can use the forged certificate (x̄i, r̄i, s̄i) to generate a valid group

signature on any message M as a group member does. Firstly, the attacker chooses
a, b, d, t ∈R Z∗

q and computes A := r̄a
i mod p, B := as̄i − b · h(A||C||D||E) mod q,

C := r̄ia − d mod q, D := gb mod p and E := yd mod p. Then, he computes
ᾱi := gByCEDh(A||C||D||E) = (β̄i)a mod p, where β̄i := gs̄iyr̄i mod p. Finally, he
gets R := ᾱt

i mod p and S := t−1[h(M ||R) − Rx̄i] mod q. By using the facts that
ᾱi = (β̄i)a mod p and ᾱiA = (β̄i)ax̄i mod p, it is not difficult to verify that the re-
sulting tuple (R,S,A, B, C, D,E) satisfies the verification equation (4), i.e., the forged
group signature for message M is valid.

Remark 1. The schemes proposed in [11, 24, 21] all are subject to similar attacks
due to their similar structures. Especially, the above forged certificate can be directly
used to generate valid group signatures in those schemes since all those schemes use
the same certificate. Compared with Joye’s attacks [8] on the two schemes in [11, 24],
our above attacks not only constitute a family, but also are very simple (especially for
the forging certificate attack.). The attack on Shi’s scheme [21] specified independently
by [33] is weaker than ours, because it assumed that a valid signature is known. In
addition, there is a design error in Shi’s scheme. That is, all the following numbered
equations in [21] should be modified from modulo p to modulo q: (5), (6), (11), (15),
and (17). Otherwise, Shi’s scheme does not work since the signatures generated by
honest group members cannot be successfully validated by verifiers. If this modification
is made, however, Shi’s scheme will become the same scheme proposed in [24].

3 Tseng-Jan ID-based Group Signature Scheme

3.1 Review of Tseng-Jan ID-based Scheme

The Tseng-Jan ID-based group signature scheme [27] involves four parties: a trusted
authority (TA), the group manager (GM), the group members, and the verifiers. TA



acts as a third party to setup the system parameters. GM selects the group pub-
lic/secret key pair. He (jointly with TA) issues certificates to new users who want to
join the group. Then, group members can anonymously sign on behalf of the group by
using their membership certificates and verifiers check the validity of a group signature
by using the group public key. In case of disputes, GM opens the contentious group
signature to reveal the identity of the actual signer.

System Initialization. In order to set up the system, TA sets a modulus n = p1p2

where p1 and p2 are two large prime numbers (about 120 decimal digits) such that
p1 = 3 mod 8, p2 = 7 mod 8, and (p1 − 1)/2 and (p2 − 1)/2 are smooth, odd and
co-prime. Furthermore, (p1− 1)/2 and (p2− 1)/2 should contain several prime factors
of about 20 decimal digits but no large prime factors. In this case, it is easy for TA
to find the discrete logarithms for p1 and p2 [13, 14, 16, 17]. TA also defines e, d, v, t
satisfying ed = 1 mod φ(n) and vt = 1 mod φ(n). Then, he selects an element g of
large order in Z∗

n, and computes F := gv mod n. TA also chooses a hash function
h(·). The public parameters of TA are (n, e, g, F, h(·)), and the secret parameters of
TA are (p1, p2, d, v, t). To create a group, GM selects a secret key x and computes the
corresponding group public key y := F x mod n.

When a user Ui (with identity information Di) wants to join the group, TA and
GM computes and sends the following si and xi to Ui, respectively.

si := et · logg IDi mod φ(n), and xi := IDi
x mod n. (9)

where

IDi :=
{

Di, if Jacobi symbol (Di|n) = 1;
2Di, if Jacobi symbol (Di|n) = −1.

(10)

Equation (10) guarantees the existence of the discrete logarithm of IDi to the base g
[14]. The membership certificate of the user Ui is (si, xi).

Signing and Verification. To sign a message M , Ui chooses two random integers
r1, r2 ∈R Z∗

n, and then computes his group signature (A,B, C, D) as

A : = yr1 mod n
B : = yr2e mod n
C : = si + r1 · h(M ||A||B) + r2e

D : = xi · yr2·h(M ||A||B||C) mod n.

(11)

Upon receiving an alleged signature (A,B, C, D) for message M , a verifier can
validate its validity by checking the following equality:

DeAh(M ||A||B)B ≡ yCBh(M ||A||B||C) mod n. (12)

Open. With the secret key x, GM can identify the signer of a valid signature by
finding the IDi that satisfies the following equation:

(IDi)xe ≡ De ·B−h(M ||A||B||C) mod n. (13)



3.2 Security Analysis of Tseng-Jan ID-based Scheme

In [27], Tseng and Jan provide detailed security analysis to demonstrate that their
scheme is secure against forgeries and that the anonymity of the signer in their scheme
depends on computing the discrete logarithm modulo for the composite number n.
However, our analysis in this subsection shows that Tseng-Jan scheme is linkable and
universally forgeable.

Linkability. It is easy to see that the value in the left side of equation (13)
is an invariant for user Ui, since IDi is the related information derived from user
Ui’s real identity, and x, e both are fixed values. Therefore, given two valid group
signatures (A,B, C, D) and (Ā, B̄, C̄, D̄) on messages M and M̄ , respectively, anybody
(not necessarily group member) can determine whether they are signed by the same
group member by checking:

DeB−h(M ||A||B||C) ≡ D̄eB̄−h(M̄ ||Ā||B̄||C̄) mod n.

The above equality shows that the Tseng-Jan ID-based scheme [27] is linkable.
Similarly, the scheme in [26] is also linkable.

Forging Signatures. Note that in [26], the value D in equation (11) is computed
in a different way: D := xi · yr2·h(M ||A||B) mod n. However, this modification does not
improve the security. Similar to what we did in Section 2.2, we want to forge a group
signature for an arbitrary message M without any membership certificate. Note that
the verification equation (12) is about some powers of A,B, D and y. So we first define
A,B, D as some known powers to the base y, and then try to solve C from equation
(12). We pick three random number r1, r2, r4 and define A,B, D as follows (A and B
have the same forms as in equation (11)):

A := yr1 mod n; B := yr2e mod n; D := yr4 mod n.

Then, from the verification equation (12), we get the condition for the value C:

r4e + r1 · h(M ||A||B) + r2e = C + r2e · h(M ||A||B||C) mod φ(n). (14)

We have selected r1, r2 and r4, so A,B, D and then hash value h(M ||A||B) all are
fixed. Therefore, finding a solution for unknown value C from equation (14) seems
difficult because we do not know the modulus φ(n) and the value of C is embedded
in the hash value h(M ||A||B||C). However, we note that solving equation (14) seems
really difficult only if r1, r2 and r4 are truly selected as random numbers. But, we are
attackers. So we have the freedom to choose some special values for r1, r2 and r4. In
other words, to get a solution for the value C, we can let those numbers satisfy some
specific relationships. It is not difficult to find the following solution for equation (14):

C := r1 · h(M ||A||B) + r2e ∈ Z+; r4 := r2 · h(M ||A||B||C) ∈ Z+.

We summary our attack on the Tseng-Jan ID-based scheme [27] as follows:

(1) Select two random numbers r1, r2 ∈R Z∗
n.



(2) Define A := yr1 mod n, and B := yr2e mod n.
(3) Compute C := r1 · h(M ||A||B) + r2e ∈ Z+.
(4) Define r4 := r2 · h(M ||A||B||C) ∈ Z+, and then compute D := yr4 mod n.
(5) Output (A,B, C, D) as a group signature on message M .

It is easy to check that the above attack is correct. At the same time, when such
a forged signature is given, the group manager cannot find any group member to take
responsible for it.

In fact, if we choose a new random number r3, the values of C and D in the above
attack can be randomized by defining C and r4 as follows

C := r1 · h(M ||A||B) + r2e + r3e ∈ Z+; r4 := r2 · h(M ||A||B||C) + r3 ∈ Z+.

Furthermore, we have another idea to solve equation (14): First define A,B and
C, then calculate hash values of h(M ||A||B) and h(M ||A||B||C), and finally solve r4

for D. However, it seems difficult to find the value of r4 from equation (14) since we
do not know the values of modulus φ(n) and e−1 mod φ(n). But we can find the value
of r4 if e can be eliminated from equation (14). Here is the trick. We use r1e to replace
r1 (i.e., A := yr1e mod p) and define C := r3e (in Z) for some random number r3,
then r4 can be attained:

r4 := r3 + r2 · h(M ||A||B||C)− r1 · h(M ||A||B)− r2 ∈ Z.

Forging Certificates. Note that the membership certificates in [26] and [27] are
the same. Therefore, according to equation (9), for any positive integer k there are
two ways to forge valid membership certificates: (1) A group member Ui can generate
a new certificate (ksi, x

k
i mod n) using his certificate (si, xi); (2) Anybody can use

(s̄i = ke, x̄i = yk mod n) as a valid certificate [9].

4 Popescu’s Improved Group Signature Scheme

4.1 Review of Popescu’s Improved Scheme

Key Generation. TA selects two large primes p1, p2 as in [27] (see §3.1) and sets
n := p1p2. Then, TA selects g of large order in Z∗

n, a large integer e (160 bits) such
that gcd(e, φ(n)) = 1, and then computes d satisfying de = 1 mod φ(n). GM chooses
a secret key x and computes the corresponding public key y := gx mod n. GM also
chooses a collision-resistant hash function h(·). The public parameters are (n, e, g, y, h),
TA’s secret key is (p1, p2, d) and GM’s secret key is x.

When a user Ui with identity information IDi ∈ Zn wants to join the group, TA
and GM compute the following si and xi, respectively

si := IDi
d mod n, xi := (IDi + eg)x mod n.

Then, the membership certificate (si, xi) is sent to the user Ui securely.



Signing. To sign a message M , user Ui chooses two random numbers r1, r2, and
then computes his group signature (A,B, C, D) as follows

A : = yr2e mod n
B : = xiy

si+r1 mod n
C : = xiy

r2 mod n
D : = sih(M ||A) + r1h(M ||A).

(15)

Verification. (A,B, C, D) is a valid group signature for message M iff the follow-
ing equality holds:

Ceh(M ||A)yeD ≡ Beh(M ||A)Ah(M ||A) mod n. (16)

Open. GM can reveal the signer of a valid signature (A,B, C, D) for message M
by searching which identity IDi satisfies

(IDi + eg)xe ≡ CeA−1 mod n. (17)

4.2 Security Analysis of Popescu’s Improved Scheme

In [18], Popescu claimed that his scheme is unforgeable and unlinkable, since a non-
group member (including TA and GM) does not have a valid membership certificate
(si, xi) and deciding the linkability of two group signatures is computationally hard
under decisional Diffie-Hellman assumption.

However, these claims are not true. In this subsection, we will show that in
Popescu’s scheme, (1) Deciding the linkability of two group signatures and forging
a valid group signature on any message are easy even for a non-group member;
(2) Any two random numbers can be used as a valid membership certificate; and
(3) GM can forge valid group signatures on behalf of any group member. In other
words, Popescu’s scheme is linkable, universal forgery and does not satisfy traceablil-
ity, coalition-resistance and exculpability.

Linkability. First of all, it is easy to see that the left side of equation (17) is
an invariant for user Ui. Therefore, given two valid group signatures (A,B, C, D) and
(Ā, B̄, C̄, D̄), by checking the following equality, anybody can determine whether they
are signed by the same group member:

CeA−1 ≡ C̄eĀ−1 mod n.

Forging Signatures. Now, we want to forge a group signature on an arbitrary
given message by using similar method as we used in previous sections, even if we do
not know any member certificate (si, xi). Since the verification equation (16) is about
some powers of A,B, C and y, we choose three random numbers r1, r2, r3 and define
A,B, C as follows (A has the same form as in equation (15)):

A := yr2e mod n, B := yr1 mod n, C := yr3 mod n.

Let h = h(M ||A). Then, from the verification equation (16), we get the condition for
the value D: r3eh + De = r1eh + r2eh mod φ(n), i.e:

r3h + D = r1h + r2h mod φ(n). (18)



Though we do not know the modulus φ(n), equation (18) has a trivial solution D :=
(r1 + r2 − r3)h ∈ Z+ if we choose r1, r2, r3 such that r1 + r2 > r3. This shows that
Popsecu’s scheme is universally forgeable. That is, an attacker can forge a valid group
signature for any message M as follows:

(1) Select three random numbers r1, r2, r3 such that r1 + r2 > r3.
(2) Define A := yr2e mod n, B := yr1 mod n, and C := yr3 mod n.
(3) Compute h := h(M ||A), and D := (r1 + r2 − r3)h ∈ Z+.
(4) Output (A,B, C, D) as a group signature for message M .

Forging Certificates. We now want to derive the determining equation for a
valid membership certificate. Let (s̄i, x̄i) be a pair of two random numbers. We select
two random numbers r1, r2 and compute (A,B, C, D) according to equation (15), as
if we have a valid member certificate. Let h = h(M ||A). Then, we calculate the both
sides of the verification equation (16) as follows:

CehyeD : = (x̄iy
r2)eh · yeh(s̄i+r1) = (x̄i)eh · y(s̄i+r1+r2)eh mod n,

BehAh : = (x̄iy
s̄i+r1)eh · (yr2e)h = (x̄i)eh · y(s̄i+r1+r2)eh mod n.

Obviously, they are identical. Therefore, we reveal an unbelievable fact: In Popsecu’s
modified scheme [18], any random number pair (s̄i, x̄i) is a valid membership certifi-
cate!

No Exculpablility. Above fact not only strengthens the conclusion that Popsecu’s
scheme is universally forgeable, but also reveals another fact that Popsecu’s scheme
has no exculpablility: The group manager, who knows the secret value xi for user
Ui, can generate a valid group signature for any message on behalf of Ui by using
(xi, s̄i) as a membership certificate, where s̄i is a chosen random number. If such a
valid group signature (A,B, C, D) is opened, user Ui will be identified as the signer
because xe

i = (IDi + eg)xe = CeA−1 mod n.

5 Xia-You Group Signature Scheme

5.1 Review of Xia-You Scheme

Setup of Trusted Authority (TA). TA generates two prime numbers p1 and p2

satisfying the same conditions listed in the Setup of Tseng-Jan ID-based scheme and
sets m := p1p2. In this case, it is easy for TA to find the discrete logarithms modulo
p1 and p2. An integer g is chosen such that g < min{p1, p2}. Finally, TA publishes
(m, g) but keeps the prime factors p1 and p2 as his secret.

Generating Private Keys. Since a signer Ui’s identity information Di (which is
smaller than m) is not guaranteed to have a discrete logarithm modulo the composite
number m, TA computes IDi by equation (10) (respect to modulus m). Now TA
computes the private key xi for Ui as the discrete logarithm of IDi to the base g:

IDi = gxi mod m. (19)

Finally, TA sends xi to Ui in a secure way and Ui can check the validity of xi by
verifying equation (19). The reader can refer to [30] for details.



Setup of Group Manager (GM). GM chooses two large primes p3 and p4 such
that p3−1 and p4−1 are not smooth, and sets n = p3p4 such that n > m. Let e be an
integer satisfying gcd(e, φ(n)) = 1, and computes d such that ed = 1 mod φ(n). Then,
GM chooses two integers x ∈ Zm, h ∈ Z∗

m, and then computes y := hx mod m as the
group public key. Let H(·) be a collision-resistant hash function that maps {0, 1}∗ to
Zm. The group public key is (n, e, h, y,H) and GM’s secret key is (x, d, p3, p4).

Generating Membership Keys. When a signer Ui wants to join the group, GM
computes the membership key zi of Ui as follows

zi = IDd
i mod n. (20)

zi is then sent to Ui in a secure way and Ui checks its validity by IDi ≡ ze
i mod n.

Signing. To sign a message M , Ui first chooses five random numbers α, β, θ, ω ∈
Zm and δ ∈ Zn, and then computes the signature (A,B, C, D, E, F,G) as follows:

A : = yα · zi mod n,
B : = yω · IDi,
C : = hω mod m,

D : = H(y||g||h||A||B||B̂||C||v||t1||t2||t3||M),
E : = δ −D(αe− ω),
F : = β −Dω,
G : = θ −Dxi,

(21)

where
B̂ := B mod m, v := (Ae/B) mod n;
t1 := yδ mod n, t2 := yβ · gθ mod m, t3 := hβ mod m.

Verification. A verifier accepts a signature (A,B, C, D, E, F,G) on a message M
if and only if

D ≡ H(y||g||h||A||B||B̂||C||v||t1′||t2′||t3′||M), (22)

where B̂ and v are computed as in signing equation, i.e., B̂ = B mod m, v =
(Ae/B) mod n, but t1

′, t2
′ and t3

′ are given by the following equations

t1
′ := vDyE mod n, t2

′ := B̂DyF gG mod m, t3
′ := CDhF mod m. (23)

Open. Given a valid group signature (A,B, C, D, E, F,G) for a message M , the
group manager can identify the signer by finding the IDi such that

IDi ≡ B · C−x mod m.

5.2 Security Analysis of Xia-You Scheme

Xia and You claimed that their scheme [30] satisfies all the security properties listed in
Section 1. However, this subsection presents two attacks to show that Xia-You scheme
[30] is insecure.

Linkability. From signing equation (21), we know that E,F, G are three integers
(may be negative), and B is a non-negative integer. Since B = yw · IDi, we know



IDi|B if Ui is the signer of a valid group signature (A,B, C, D, E, F,G). Therefore,
for anyone who knows the identities of group members, he can identify the signer
with a high probability. Usually, IDi, a large integer (e.g. 160 bits), is computed as a
hash value of Ui’s real-world identity (e.g., name, network address, etc.). So it seems
unlikely that there are two identities IDi and IDj such that IDi|B and IDj |B. Hence,
Xia-You scheme only satisfies a weak anonymity and unlinability. In addition, even
without knowledge of the identities of group members, it is also possible to break the
linkability by using the great common divisors of the values of B’s in several valid
signatures.

Forging Signatures. Using similar method used in the previous sections, we can
forge a group signature on an arbitrary given message M even without any membership
certificate (IDi, xi, zi). Note that to satisfy the verification equations (22) and (23), we
can first choose A,B, C and t1, t2, t3, then we get D by evaluating the corresponding
hash value, and finally try to solve the values of E,F and G from equation (23).
Observing equations (21)-(23) carefully, we will know that a good strategy is to choose
A,B, t1 and t2 as some known representations of bases y and g, but C and t3 as powers
of h. Therefore, we can choose ten random numbers a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 to
define A,B, C and t1, t2, t3 as follows:

A : = ya1 · ga2 mod n,
B : = ya3 · ga4 ,
C : = ha5 mod m.

and
t1 : = yb1 · gb5 mod n,
t2 : = yb2 · gb3 mod m,
t3 : = hb4 mod m.

Then, we compute B̂ := B mod m, v := (Ae/B) mod n = ya1e−a3 · ga2e−a4 mod n and
evaluate the hash value D = H(y||g||h||A||B||B̂||C||v||t1||t2||t3||M). At last, to get
the values of E,F and G, we replace the occurrences of t′1, t

′
2, t

′
3, B̂ and v in equations

(23) by t1, t2, t3, B and ya1e−a3 · ga2e−a4 mod n, respectively, and then we have

b1 = (a1e− a3)D + E mod φ(n),
b5 = (a2e− a4)D mod φ(n),
b2 = a3D + F mod φ(m),
b3 = a4D + G mod φ(m),
b4 = a5D + F mod φ(m).

In general, we cannot find a solution for (E,F, G) from the above equation system.
However, we can set the ten numbers, i.e., a1, · · · , b5, satisfying specific relationships
such that the above equation system has one solution. Firstly, we should set b5 =
0. Because D is determined by those ten numbers, we cannot require b5 = (a2e −
a4)D mod φ(n) again. b5 = 0 also implies that a2e − a4 = 0, i.e., a4 = a2e (in Z).
Secondly, note that F has to satisfy the third and the fifth equations at the same time,
so we should set these two equations as the same one. This means that a5 = a3 and
b4 = b2. Therefore, under the conditions of b5 = 0, a4 = a2e, a5 = a3 and b4 = b2,
we get the following solution for (E,F, G) even though we do not know the values of
φ(m) and φ(n):

E := b1 + (a3 − a1e)D ∈ Z, F := b2 − a3D ∈ Z, G := b3 − a2eD ∈ Z.

So an attacker can forge a valid group signature on any message M as follows:



(1) Select six random numbers: a1, a2, a3, b1, b2, b3.
(2) Define A := ya1 · ga2 mod n, B := ya3 · ga2e, C := ha3 mod m, t1 := yb1 mod n,

t2 := yb2 · gb3 mod m, and t3 := hb2 mod m.
(3) Compute B̂ := B mod m and v := (Ae/B) mod n = ya1e−a3 mod n, and then

evaluate D := H(y||g||h||A||B||B̂||C||v||t1||t2||t3||M).
(4) Compute E := b1 +(a3−a1e)D ∈ Z, F := b2−a3D ∈ Z, and G := b3−a2eD ∈ Z.
(5) Output (A,B, C, D, E, F,G) as a group signature for message M .

Forging Certificates. Similarly, we can get the following conditions for a valid
membership certificate (IDi, x̄i, z̄i):

z̄e
i = IDi mod n, and IDi = gx̄i mod m.

These two conditions are the exact equations (19) and (20). So, it seems that valid
membership certificates can only be generated jointly by TA and GM. However, for any
positive integer k, it is not difficult to see that (1) A group member Ui with certificate
(IDi, xi, zi) can generate a valid membership certificates (IDk

i , kxi, z
k
i mod n), and

(2) anyone can use (ID := gke, x̄ := ke, z̄ := gk mod n) as a valid certificate to forge
group signatures on any messages.

Remarks 2. Different attacks on Xia-You scheme are also identified independently
by Zhang and Kim [31], and Zhang et al. [32]. The attack in [31] is a special case of
our forging signatures, and the two attacks in [32] are weaker than our (universally)
forging certificate attack since their attacks can only be mounted by colluding group
members.

6 Kim-Park-Won Convertible Group Signature Scheme

6.1 Review of Kim-Park-Won Scheme

Setup. To set up a system, the GM first chooses three primes p′, q′, f such that
p := 2fp′ + 1 and q := 2fq′ + 1 are also primes. Then, the GM sets n = p q and
selects an element g ∈ Z∗

n of order f , i.e., gf = 1 mod n. Furthermore, the GM
chooses γ ∈ Z∗

φ(n) and computes d such that γd = 1 mod φ(n). Let IDG be the
identity information of the group, h(·) a secure hash function. Finally, the GM makes
(n, γ, f, g, h(·), IDG) as public information, (d, p′, q′) as his private key.

Join. To joint the group, a user Ui with identity information IDi chooses a random
secret number si ∈ (0, f), then computes yi := gsi and sends (IDi, yi) to the GM .
Then, the GM computes and sends following xi to Ui securely:

xi := (IDG · yi)−d mod n. (24)

At the same time, to identify signers in case of disputes, the GM stores (IDi, yi, xi)
into a complete list for all registered group members.



Sign. To generate a group signature (e, z1, z2) on message M , user Ui first chooses
two random numbers r1 ∈R [0, f), r2 ∈R [0, n) and then computes:

V : = gr1rγ
2 mod n

e : = h(V ||M)
z1 : = r1 + sie mod f
z2 : = r2xi

e mod n.

(25)

Verify. To verify a group signature (e, z1, z2), a verifier checks whether

e ≡ h(V̄ ||M), where V̄ := (IDG)egz1z2
γ mod n. (26)

Open. To open a valid group signature (e, z1, z2) for message M , the GM first
calculates V̄ := (IDG)egz1z2

γ mod n, and then searches his list of all (IDj , yj , xj) to
find the signer Ui if Ui’s (xi, yi) satisfies the following equality

gz1 ≡ V̄ · z−γ
2 · xeγ

i · ye
i mod n. (27)

6.2 Security Analysis of Kim-Park-Won Scheme

Forging Signatures. Now, we first try to forge a valid group signature on any given
message M under the assumption that we do not know any valid membership cer-
tificate. Note that the verification equation is to evaluate a hash value, and we have
assumed that h(·) is a secure hash function. Therefore, if we first choose value for
e, it seems difficult to find a tuple (V, z1, z2) such that both relations in verification
equation (26) are satisfied. So we go in the other direction, i.e., we first choose a value
for V and calculate e := h(V ||M), then we try to find a pair (z1, z2) satisfying the
following equality:

V ≡ (IDG)egz1z2
γ mod n.

Note that the above equation is about several powers of IDG, g and z2, so we choose
four numbers, a1, a2, b1, b2, and then define V and z2 as follows

V := (IDG)a1gb1 mod n, z2 := (IDG)a2gb2 mod n.

Replacing all occurrences of V and z2 in equation (26) with the above two expressions,
respectively, we get the following equation:

(IDG)a1gb1 ≡ (IDG)e+a2γgz1+b2γ mod n.

Then, we have{
a1 = e + a2γ mod ord(IDG)
b1 = z1 + b2γ mod f

, or
{

a1 = e + a2γ mod φ(n)
b1 = z1 + b2γ mod f

. (28)

Where ord(IDG) denotes the multiplicative order of element IDG ∈ Z∗
n, and e :=

h(V ||M) = h(IDa1
G gb1 mod n||M).

In the above two equation systems, given a1, b1 (and then V, e), finding solutions
for b2 and z1 are very easy since modulus f is known. However, finding a solution for



a2 seems difficult since we do not know any value of ord(IDG), φ(n), γ−1 mod φ(n)
or γ−1 mod ord(IDG). But, in the following three special settings, some solutions can
be found.

(1) ID2f
G = 1 mod n, i.e., ord(IDG) = 2, f, or 2f . In this case, an attacker can

forge valid group signature by setting a2 := (a1 − e)γ−1 mod ord(IDG). This is the
attack pointed out in [19]. However, if the suggested parameters in [10] are used, i.e.,
|p′| = |q′| ≈ 234 and |f | ≈ 160, this case occurs only with a negligible probability
(4f2 − 1)/n < 1/2466.

(2) Since GM knows the value of φ(n), he can generate a valid group signature
by setting a2 := (a1 − e)γ−1 mod φ(n). In fact, this is a trivial result. Because in
all group signature schemes, including Kim-Park-Won scheme, GM always can create
nonexistent membership certificate and then generate group signatures.

(3) IDd
G mod n is known. In this case, if we define z2 := (IDd

G)ā2gb2 mod n, then
the equation for ā2 will become:

a1 = e + ā2 · dγ mod φ(n).

Since dγ = 1 mod φ(n), one trivial solution is attained ā2 := a1−e ∈ Z+ if a1−e > 0.
If we assume h(·) ≤ l and choose a1 such that a1 ≥ 2l, we will always have a1− e > 0.
However, how to get the value of IDd

G mod n? The methods are given in the next
part.

Forging Certificates. A valid membership certificate is defined by equation (24),
which is a RSA signature of GM on the message (IDG · yi)−1. However, this does not
imply that valid membership certificates can only be generated by the GM. It is easy
to know that the following equation defines a valid membership certificate (s̄i, x̄i) too,
since it is a variant of equation (24):

IDG · gs̄i · x̄γ
i = 1 mod n. (29)

Let Ui and Uj , with certificates (si, xi) and (sj , xj) respectively, be two colluding
group members, then they have several ways to forge a valid membership certificate
(s̄, x̄).

(a) For any integer k > 1, define s̄ := ksi − (k − 1)sj mod f and x̄ := xk
i ·

x
−(k−1)
j mod n. This method works since x̄ := xk

i · x
−(k−1)
j = (IDG · gksi−(k−1)sj )−d =

(IDG · gs̄)−d mod n.
(b) If they choose an integer δ > 0 and define sj := si + δ mod f , they can

get the value of gδd by gδd := xi · x−1
j mod n. Then, for any integer k > 1, define

s̄ := si + kδ mod f and x̄ := xi · (gδd)−k mod n. (s̄, x̄) is a valid certificate because
x̄ = xi · (gδd)−k = (IDG · gsi)−d(gδk)−d = (IDG · gsi+kδ)−d = (IDG · gs̄)−d mod n.
Specifically, if δ = 1, then we get gd = xi ·x−1

j mod n and (IDG)−d = xi ·(gd)si mod n;
if δ = si, i.e., sj = 2si mod f , we get (IDG)−d = (xi)2 · x−1

j mod n. Therefore,
IDd

G mod n is available.
(c) If they set si := ab and sj := ab + b for two known positive integers a and

b, gbd can be attained by computing xi · x−1
j mod n, and then ID−d

G can be attained
by computing xi · (gbd)a mod n. When gbd and ID−d

G are known, they can generate a



valid certificate (s̄, x̄) by defining s̄ := bk mod f and x̄ := ID−d
G · (gbd)−k mod n, for

any integer k > 1. This attack was first found by Lim and Lee [12].
In the above three cases, two colluding group members are needed. However, if the

system allows a user own two certificates at the same time or an old group member
can get a new certificate when he joins the same system for the second time, a group
member alone can mount above attacks successfully.

Signer Identification. For a valid group signature (e, z1, z2) on message M , if
replacing the occurrence of V̄ in equation (27) by IDe

Ggz1zγ
2 mod n, we have

gz1 ≡ IDe
G · gz1 · zγ

2 · z
−γ
2 · xeγ

i · gsie mod n,

i.e., 1 = (IDG · gsi · xγ
i )e mod n. However, according to equation (29), we know 1 ≡

IDG ·gsi ·xγ
i for every certificate (si, xi). This shows that given a valid group signature,

equation (27) is an equality for all certificates (si, xi). In other words, equation (27)
cannot be used to identify the signer because all certificates (si, xi) satisfy it. Wang
et. al first pointed out this problem [28], but they have no explanations for it. Now
we point out the reason: If (e, z1, z2) is Ui’s valid group signature on message M , it
is also Uj ’s valid group signature on message M . More specifically, we denote δ :=
sj − si mod f and assume that Ui chooses two random numbers r1 and r2 to generate
his signature (e, z1, z2) as in equation (25). Then, it is easy to check that (e, z1, z2) is
also a valid signature of Uj for the same message if Uj chooses r̄1 := r1−δe mod f and
r̄2 := r2g

δde mod n as his own two random numbers and then generates his signature.
Therefore, for the same message, the signature spaces of any two group member are the
same. So, it is impossible (in information theoretic sense) to trace the signer even for
the GM. Therefore, Kim-Park-Won scheme [10] is totally anonymous and unlinkable
even for the GM.

7 Concluding Remarks

In this paper, by using the same method, we successfully identified different universally
forging attacks on several group signature schemes proposed in [25, 27, 18, 30, 10]. That
is, our attacks allow anybody (not necessarily a group member) can forge valid group
signatures on any messages of his/her choice. Therefore, all these group signature
schemes are insecure. Our attacks also implied that no more group signatures should
be constructed with such ad-hoc methods used by these insecure schemes. From the
contrary side of the same problem, the formal design methodology employed in [1, 4,
5, 22] are further confirmed. In addition, the attacking method described in this paper
can be used to test or analyze the security of group signatures in future design, and
other signature schemes, such as proxy signatures [29], etc.
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