
A Timing Attack on Hyperelliptic Curve

Cryptosystems

Masanobu Katagi1, Izuru Kitamura1, Toru Akishita1, and Tsuyoshi Takagi2

1 Sony Corporation, 6-7-35 Kitashinagawa Shinagawa-ku, Tokyo, 141-0001 Japan
{Masanobu.Katagi, Izuru.Kitamura}@jp.sony.com,

akishita@pal.arch.sony.co.jp
2 Technische Universität Darmstadt, Fachbereich Informatik,

Alexanderstr.10, D-64283 Darmstadt, Germany
takagi@informatik.tu-darmstadt.de

Abstract. Recent works show that the performance of hyperelliptic
curve cryptosystem (HECC) is competitive to that of elliptic curve cryp-
tosystem (ECC). However, secure implementation of HECC has been
little discussed as compared with ECC. In this paper, we report an ex-
perimental result of a timing attack on HECC in software. The time
difference for computing the degenerated divisors with smaller degree is
mounted to the timing attack. The proposed attack assumes that the se-
cret key is fixed and the base point can be freely chosen by the attacker.
Therefore, it is applicable to ElGamal-type decryption and single-pass
Diffie-Hellman — SSL using a hyperelliptic curve could be vulnerable to
the proposed attack. From our experimental results on a Xeon processor,
one bit of the secret key for a 160-bit HECC can be recovered by calling
the decryption oracle 1,000 times.

Keywords. hyperelliptic curve cryptosystems, scalar multiplication,
timing attacks, weight of divisor, SSL

1 Introduction

In 1989, Koblitz proposed hyperelliptic curve cryptosystem (HECC) [Kob89].
HECC has the advantage of shorter operand length than elliptic curve cryp-
tosystem (ECC), and it has been expected that HECC attains a faster encryp-
tion comparing with ECC. Recently some efficient addition formulas of HECC
have been proposed (See, for example, [Lan02a-c]), and an implementation re-
sult in hardware shows the performance of HECC is competitive to that of
ECC [PWG+03].

When we implement a cryptosystem in a real security system, we have
to care side channel attacks such as timing attack [Koc96] and power analy-
sis [KJJ99]. A simple timing attack on HECC can detect a hamming weight
of secret scalar by measuring the whole computation time of the scalar mul-
tiplication. The timing attack using the final subtraction of Montgomery mul-
tiplication [Sch00,Sch02,SKQ01] can be also applicable to HECC. Other pos-
sible attacks are to use so-called exceptional procedures of the addition for-
mula [AT03,Ava03,Gou03,IT03]. The addition formula of HECC contains a lot



of exceptional procedures, so that we have many possibilities to mount them to
the timing attack. Note that these attacks assume that the base point D can be
freely chosen by the attacker and the secret scalar d is fixed — we can apply our
attack to HEC ElGamal-type encryption and single-pass HEC Diffie-Hellman
but not HEC DSA.

In this paper, we propose the first experimental result of a timing attack
on HECC using some exceptional procedures. The algorithm of recovering the
secret key follows the previous works [AT03,Ava03,Gou03,IT03]. We mainly
discuss the attack on hyperelliptic curve with genus 2, especially Harley al-
gorithm [Har00a,Har00b] and Cantor algorithm [Can87,Kob89]. Several explicit
exceptional procedures suitable for the timing attack in the setting are investi-
gated. We examine the exceptional procedures arisen from divisors with weight
1, whose computational time is faster than the ordinary one. Then we show how
to apply them to the timing attack. The exceptional procedures appear with neg-
ligible probability in the scalar multiplication for a randomly chosen base point.
Thus the exceptional procedures cause a timing difference in the scalar multi-
plication from the ordinary operation. The proposed timing attack analyses the
timing difference with many sampling number. Our experiment on a Xeon pro-
cessor using a 160-bit HECC shows that the timing difference is about 0.04 ms
for the exceptional case of Harley algorithm. The difference is quite small, so that
we apply the sampling technique proposed by Dhem et al. [DKL+98]. We gather
three different types of timing: the timing with a randomly chosen divisor, the
timing with divisor Db that cause the exceptional procedure if the guessed bit
is b = 0, 1. If the guess b is correct, the timing difference from the random one
becomes larger than the other case. Then our experiment successfully recovered
one bit of secret key with 1,000 samples for a 160-bit HECC.

This paper is organized as follows: In section 2, we describe the basic prop-
erties of HECC. In section 3, we review the side channel attacks. We propose
the new timing attack of HECC in section 4 and show the experimental results
of genus 2 HECC in section 5. Finally we conclude in section 6.

2 Hyperelliptic Curve Cryptosystems

In this section we review hyperelliptic curve cryptosystems related to our attack.

2.1 Hyperelliptic Curve

Let g be a positive integer and let K = F2n be a finite field with 2n elements,
where n is a positive integer. A hyperelliptic curve C of genus g over F2n is
defined by equation y2 + h(x)y = f(x), where f(x) is a monic polynomial over
F2n with degree at most 2g + 1 in x and h(x) ∈ F2n [x] with deg h ≤ g. Let
Pi = (xi, yi) be a rational point on curve C and P∞ be a point at infinity. The
inverse of P = (x, y) is the point −P = (x, y + h(x)). We define a point P
satisfies P = −P as a ramification point.

2



Denote by Jc(F2n) the Jacobian variety of C defined over F2n . It is known
that Jc(F2n) is isomorphic to the ideal class group. A semi-reduced divisor of a
hyperelliptic curve is represented by D =

∑
i miPi − (

∑
i mi)P∞, where mi ≥ 0

and Pi 6= −Pj for i 6= j. The weight of divisor D is defined by
∑

i mi, and
we denote it by w(D). Mumford reported that the semi-reduced divisor can
be expressed by two polynomials (a, b) of F2n [x], which satisfy the following
conditions [Mum84]:

1. a(x) =
∏

i(x + xi)
mi ,

2. b(xi) = yi,
3. deg b < deg a,
4. f + hb + b2 ≡ 0 mod a.

A semi-reduced divisor with deg a ≤ g is called a reduced divisor. Any divisor
class of Jc(F2n) is uniquely represented by a reduced divisor. Hereafter we denote
D ∈ Jc(F2n) by a reduced divisor D = (a, b). The unit element of additive group
Jc(F2n) is (1, 0) and the inverse of an divisor D = (a, b) is −D = (a, a + b + h).

In this paper, we deal with hyperelliptic curves that are suitable for crypto-
graphic purposes, for example, the order of Jacobian has only a small cofactor,
say 2.

2.2 Scalar Multiplication

The inevitable operation for implementing HECC is the scalar multiplication,
which computes dD = D + · · · + D (d times) for a divisor D ∈ Jc(K) and an
integer d. Denote by (dn−1 · · · d1d0)2 the n-bit binary representation of d. The
standard method of computing scalar multiplication dD is the binary method
described as follows:

Algorithm 1 Binary Method
Input: d = (dn−1 · · · d1d0)2, D ∈ Jc(K), (dn−1 = 1)
Output: dD
1. D1 ← D
2. for i from n− 2 to 0 do
3. D1 ← HECDBL(D1)
4. If di = 1 then
5. D1 ← HECADD(D1, D)
6. Return(D1)

We denote by HECDBL and HECADD hyperelliptic doubling and addition,
e.g., HECDBL(D1) = 2D1 and HECADD(D1, D) = D1+D, respectively. The
binary method requires (n− 1) HECDBL and (n− 1)/2 ECADD on average for
randomly chosen d.

2.3 Addition Formula

In order to implement a group operation in Jc(F2n), we deploy addition for-
mulas assembled by the operations of polynomial ring F2n [x]. There are two

3



basic algorithms, namely Cantor algorithm [Can87,Kob89] and Harley algo-
rithm [Har00a,Har00b]. Cantor algorithm is a universal addition formula. It is
used for all hyperelliptic curves with any genus g, and we are able to com-
pute both HECDBL and HECADD with one formula (the computation times
of HECDBL and HECADD are not same). However, Cantor algorithm is quite
slow due to its versatility. Harley algorithm aims at efficiently implementing the
group operations for small genus. The arithmetic of HECDBL and HECADD is
independently optimized based on their explicit operations.

In the following, we describe the Cantor algorithm for even characteris-
tic [Can87,Kob89]. Let Di = (ai(x), bi(x)) ∈ Jc(F2n) be the reduced divisors,
where c is the curve defined by c : y2 + h(x)y = f(x) and i = 1, 2. The reduced
divisor D3 of addition D1 + D2 is computed as follows:

Algorithm 2 Cantor Algorithm
Input: D1 = (a1, b1), D2 = (a2, b2)
Output: D3 = (a3, b3) = D1 + D2

1. d = gcd(a1, a2, b1 + b2 + h) = s1a1 + s2a2 + s3(b1 + b2 + h)
2. a← a1a2/d2

3. b← (s1a1b2 + s2a2b1 + s3(b1b2 + f))/d mod a)
4. while deg(a) > g

a′ ← (f + hb + b2)/a, b′ ← (h + b) mod a′ a← MakeMonic(a′), b← b′

5. a3 ← a, b3 ← b
6. return (a3, b3)

From Step 1 to Step 3 is called a composition part and Step 4 is called a
reduction part. The composition part computes the semi-reduced divisor D =
(a, b) that is equivalent to −D3. The reduction part finds the reduced divisor
D3 = (a3, b3) equivalent to D.

Next, we describe the outline of Harley algorithm [Har00a,Har00b]. We de-
note by HarleyADD and HarleyDBL the addition D3 = D1+D2 and the doubling
D3 = 2D1 of Harley algorithm, respectively. We assume that D1 = (u1, v1), D2 =
(u2, v2) are the reduced divisors of curve defined by equation y2 +h(x)y = f(x).
These formulas are as follows:

HarleyADD HarleyDBL
Input: D1 = (u1, v1), D2 = (u2, v2), Input: D1 = (u1, v1), deg u1 = 2,

deg u1 = deg u2 = 2, gcd(u1, u2) = 1 gcd(u1, h) = 1
Output: D3 = (u3, v3) Output: D3 = (u3, v3)
1. U ← u1u2 1. U ← u2

1

2. S ← (v2 + v1)/u1 mod u2 2. S ← h−1(f + hv1 + v2
1)/u1 mod u1

3. V ← Su1 + v1 mod U 3. V ← Su1 + v1 mod U
4. U ← (f + hV + V 2)/U 4. U ← (f + hV + V 2)/U
5. Make U monic 5. Make U monic
6. V ← V mod U 6. V ← V mod U
7. u3 ← U, v3 ← U + V + h 7. u3 ← U, v3 ← U + V + h
8. return (u3, v3) 8. return (u3, v3)

4



From Step 1 to Step 3 is a composition part and from Step 4 to Step 7 is a
reduction part. The composition part computes the semi-reduced divisor D =
(U, V ) equivalent to −D3. In Step 2 and Step 3, we compute V such that f+hV +
V 2 ≡ 0 mod U , which can be obtained by V ≡ v1 mod u1 and V ≡ v2 mod u2

via the Chinese remainder theorem. The reduction part finds the reduced divisor
D′

3 = (u′3, v
′

3) equivalent to D. We transform u′3 = (f + hV + V 2)/u1u2 to the
monic polynomial, and then we compute v′3 ≡ V mod u′3. Finally, we output a
divisor D3 = −D′

3 as: D3 = (u3, v3) = (u′3, u
′

3 + v′3 + h). HarleyDBL is similar
to HarleyADD, but the Chinese Remainder Theorem is replaced by the Newton
iteration. In these algorithms, the Karatsuba algorithm is used to reduce the
number of multiplications.

3 Side Channel Attack

In this section we review side channel attacks related to our attack on HECC.

3.1 Timing Attack

At Crypto’96 Kocher introduced timing attack (TA), which tries to expose the
secret key in cryptographic devices [Koc96]. TA measures the computation times
for many inputs and analyzes the difference of these times. For example, if we
compute a scalar multiplication dD with the binary method (Algorithm 1), then
TA can detect the hamming weight of secret key d. The standard way to resist
this attack is the following double-and-add-always method:

Algorithm 3 Double-and-Add-Always Method
Input: d = (dn−1 · · · d1d0)2, D ∈ Jc(K), (dn−1 = 1)
Output: dD
1. D1[0]← D
2. for i from n− 2 to 0 do
3. D1[0]← HECDBL(D1[0])
4. D1[1]← HECADD(D1[0],D)
5. D1[0]← D1[di]
6. Return(D1[0])

The double-and-add-always method always compute HECADD whether di =
0 or 1. Therefore, the TA cannot guess the bit hamming weight of d.

There is another type of timing attack. For RSA cryptosystem, the attacker
can utilize the existence of the final subtraction in Montgomery multiplica-
tion [Sch00,Sch02,SKQ01]. The same argument can be applied to HECC.

3.2 Power Analysis

At Crypto ’99 Kocher et al. introduced the simple power analysis (SPA) and
differential power analysis (DPA) to expose the secret key by observing power

5



consumption of cryptographic devices [KJJ99]. SPA uses only a single obser-
vation of the power to obtain information, and DPA uses many observations
together with statistical tools.

Algorithm 1 is vulnerable to SPA. The operation HECADD is computed only
if the corresponding bit is 1, although HECDBL is always computed. HECDBL
and HECADD show different features of power consumption curve because they
are different operations as described in section 2. Thus the SPA can detect the
secret bits. In order to resist SPA, we must eliminate the relations between
addition formulae and the bit information. The double-and-add-always method
in the previous section can be used for resisting SPA.

Even if a scheme is secure against SPA, it might be insecure against DPA. The
standard method to resist DPA is randomizing the parameters of the curve [Cor99,JT01].
However, Goubin proposed an extension of DPA to elliptic curve cryptosys-
tem [Gou03]. He pointed out the point (0, y) is not randomized by the standard
countermeasures against DPA. Very recently, Avanzi extended his attack to hy-
perelliptic curve cryptosystems [Ava03]. He noted that the divisors with zero
coefficient could be used for Goubin-type attack, namely one of the coefficient
of a or b for divisor (a, b) is zero.

3.3 Exceptional Procedure Attack

Izu and Takagi proposed the exceptional procedure attack by using the excep-
tional procedure in the addition formula of ECC [IT03].

The standard addition formula of ECC causes the exceptional procedure
only if either input or output is infinity point O. The order of elliptic curve
#E is usually chosen such that #E is the product of a large prime and a very
small integer. When scalar d is smaller than the order of elliptic curve #E, the
exceptional procedure occurs only if the order of the processing point is small.
Thus, we can detect this attack by checking the base point does not belong to
small group before scalar multiplication.

Avanzi also mentioned a possibility of extending this attack to hyperelliptic
curve cryptosystems [Ava03]. However, the details of the extended attack require
further discussions.

4 Timing Attack on HECC

In this section, we propose a new timing attack using exceptional procedures
of addition formulas. Roughly speaking, the timing difference of computing the
exceptional procedure from the ordinary one is mounted to the proposed timing
attack. We assume that the genus of hyperelliptic curve is equal to 2 for the sake
of convenient. However, all discussions can be adapted to hyperelliptic curves
with higher genus.

4.1 Target of Timing Attack

We explain the target system of the proposed timing attack.

6



The proposed attack is categorized to a chosen ciphertext attack on a public-
key cryptosystem. We assume that the secret key d is fixed during the at-
tack and the base point P can be freely chosen by the attacker. This sce-
nario has been used for several attacks, namely exceptional procedure based
attack [AT03,Ava03,Gou03,IT03]. The protocols for which our proposed attack
works are HEC ElGamal-type decryption (e.g. HECIES) and single-pass HEC
Diffie-Hellman.

The typical target of this attack setting is the secure communication of a
client-server model such as SSL. There is a fixed secret key d for the SSL server,
and the client asks a ciphertext including base point D to the server. The server
usually computes the decryption primitive dD on a hyperelliptic curve and then
checks the integrity of padding/hash values. The invalid ciphertexts are rejected
at the integrity check. The computation time of the primitive is quite slow com-
paring with that of computing the padding/hash value, so that the timing of
the primitive part directly reflects that of receiving the rejection. In this sce-
nario, Boneh et al. showed an experimental result of the remote timing attack
on RSA-CRT using OpenSSL [BB03].

Remark 1. As a related research, Manger proposed a reject timing attack on
RSA-OAEP [Man01], and Kim et al. showed a memory dump attack on sev-
eral provably secure cryptosystems [KCJ+01]. The cryptosystem, which checks
the integrity before the primitive operation (e.g., Cramer-Shoup cryptosystem
[CS98]), is not vulnerable to these attacks. In the same reason, our attack is also
infeasible for Cramer-Shoup cryptosystem.

4.2 Basic Observation

We explain which exceptional procedure is used for the proposed timing attack.
There are several different exceptional procedures in the explicit addition

formulas (See, for example, [Lan02a-c]). These exceptional cases occurs, if the
divisor for inputting or outputting to the addition formula is not ordinary, e.g.
the weight of the divisor is 1, the gcd of two input divisors is not one, the constant
term of the divisor is zero, divisors including a ramification point, etc.

Note that the probability, which a randomly chosen divisor in Jacobian
Jc(F2n) causes an exceptional procedure in the addition formula, isO(1/2n) [Nag00].
Therefore, the exceptional procedure appears with negligible probability during
the scalar multiplication for a randomly chosen base point. The attacker has to
carefully choose appropriate divisors in order to achieve the timing attack.

In this paper we deal with the divisor with weight 1, and we define it as the
degenerated divisor.

Definition 2. Let C be a hyperelliptic curve cryptosystem over F2n , let Jc(F2n)
be the Jacobian of curve C. We call a reduced divisor D = (a, b) ∈ Jc(F2n) is
degenerated, if the degree of D is smaller than g, namely deg a < g.

The degenerated divisor can easily be generated using a point P over C
because any divisor with weight 1 is represented as D = P − P∞. We only
choose a random point Pr and check the order of Dr = Pr − P∞.

7



Let D1 = (a1, b1), D2 = (a2, b2) be the reduced divisors of Jacobian Jc(F2n).
Denote by D3 the addition of D1 + D2. There is the following possible group
operation with degenerated divisors:

ExHarADD2+2→1: w(D1) = 2, w(D2) = 2, w(D3) = 1, D1 6= D2, gcd(a1, a2) = 1,

ExHarADD1+2→2: w(D1) = 1, w(D2) = 2, w(D3) = 2, D1 6= D2, gcd(a1, a2) = 1,

ExHarDBL1→2: w(D1) = 1, w(D3) = 2, D1 = D2, gcd(h, D1) = 1,

ExHarDBL2→1: w(D1) = 2, w(D3) = 1, D1 = D2, gcd(h, D1) = 1.

Similarly, there could exist other exceptional procedures using degenerated
divisors, for instances, ExHarADD1+2→1 and ExHarADD1+1→2. However,
these cases are not suitable for the proposed attack, because the combination of
divisors D1, D2, D3 are not freely chosen. In this paper we exclude them from
our attack.

The computational cost of these exceptional procedures strongly depend how
to explicitly implement the addition formula. Table 1 shows the cost of Haley
algorithm and its degenerated algorithms improved by Sugizaki et al. [SMC+02].
The explicit algorithms for HarleyDBL and its degenerated variation are shown
in the appendix. We evaluate the computational cost according to the time of one
multiplication M and one inversion I . The exceptional cases are clearly faster
than the ordinary cases. The difference of their computational costs is a crucial
point of the proposed attack.

Table 1. Number of multiplication and inversion of Harley Algorithm

Addition Formula Cost

HarleyADD 1I + 25M
HarleyDBL 1I + 27M

ExHarADD2+2→1 1I + 14M
ExHarADD1+2→2 1I + 11M
ExHarDBL2→1 1I + 17M
ExHarDBL1→2 1I + 7M

For ExHarDBL2→1 shown in the Alg. 5, the same algorithm requires a less
computation amount compared to HarleyDBL because the weight of the output
divisor is 1. When the weight of the output divisor is 1, t1 is always 0; therefore
after Step 3, Step 5’ is executed. The algorithm in Step 6 and after can be ex-
pressed by equations with less computation amounts as shown in Step 6’ and af-
ter. For the same reason as ExHarDBL2→1, ExHarADD2+2→1 requires a less
computation amount than HarleyADD. The computation of ExHarADD1+2→2

can be performed using the algorithm of HarleyADD. Because the weight of one
of the input divisors is 1 for ExHarADD1+2→2, however, the degrees of the
polynomials dealt with in each step are smaller than those for HarleyADD, thus
saving the computational cost. The computation amount of ExHarDBL1→2 is

8



smaller than that of HarleyDBL because the divisor of weight 1, D = P − P∞,
can reduce to a simple algorithm that gives the tangent to the curve C at the
point P .

The total cost for computing the scalar multiplication with the double-and-
add-always method is 318I + 8268M on average for a 160-bit HECC, if there is
no exceptional procedure during the computation. For example, it is 9540M for
1I = 4M .

4.3 Recovering Secret Scalar

We describe how to recover the secret key d by observing the whole timing of the
scalar multiplication dD using the exceptional procedures, where D is a divisor
of J = Jc(F2n). The recovering technique follows the algorithm proposed by
Goubin [Gou03] and Izu et al. [IT03]. However, we have to consider where the
exceptional procedure occurs and how to compare them with ordinary case.

Denote by (dn−1dn−2 · · · d1d0)2 the binary representation of d with dn−1 = 1.
We assume the scalar multiplication is calculated by the double-and-add-always
method (Algorithm 3). The attacker tries to cause the exceptional procedure
during the scalar multiplication using the degenerated divisor aD for the base
point D and some integer a. We can easily choose the base point, e.g., divisor
D = ((a−1) mod #J

2
)D̄ for any degenerated divisor D̄, where #J is the order

of Jc(F2n). We calculate the whole time of the scalar multiplication dD and
compare it with that of the scalar multiplication with random base point.

We exactly describe how to guess the second bit dn−2. First, we guess the
second most significant bit dn−2. If dn−2 = 0, addition chain generates the fol-
lowing sequence D, 2D, 3D(dummy), 4D, 5D(dummy), 8D for dn−3 = 0, and
D, 2D, 3D(dummy), 4D, 5D for dn−3 = 1. If divisor 4D is degenerated, the
exceptional procedures ExHarDBL2→1(2D) → 4D and ExHarADD1+2→2

(4D) → 5D appears. In this case we have additional exceptional procedure
ExHarDBL1→2(4D) → 8D only for if dn−3 = 0.

dn−2 = 0 : 2D
HarleyDBL

−−−−→ 3D
ExHarDBL

2→1

−−−−→ 4D
ExHarADD

1+2→2

−−−−→ 5D
ExHarDBL

1→2

−−−−→ 8D (dn−3 = 0)

Therefore the timing difference ∆T0 for dn−2 = 0 is as follows:

∆T0 = (HarleyDBL−ExHarDBL2→1) + (HarleyADD−ExHarADD1+2→2)

+1/2(HarleyDBL−ExHarDBL1→2) = 34M.

Similarly, If dn−2 = 1, addition chain generates the following sequence D, 2D,
3D, 6D, 7D or D, 2D, 3D, 6D, 7D(dummy), 12D. If divisor 6D is degenerated,
we have the following exceptional procedures:

dn−2 = 1 : 2D
HarleyADD

−−−−→ 3D
ExHarDBL

2→1

−−−−→ 6D
ExHarADD

1+2→2

−−−−→ 7D
ExHarDBL

1→2

−−−−→ 12D (dn−3 = 0)

9



Therefore the timing difference ∆T1 for dn−2 = 1 is as follows:

∆T1 = (HarleyDBL−ExHarDBL2→1) + (HarleyADD−ExHarADD1+2→2)

+1/2(HarleyDBL−ExHarDBL1→2) = 34M.

The timing differences for dni−2
= 0, 1 are exactly same for this attack. For a 160-

bit HECC, the timing difference is about 0.36% of the whole scalar multiplication
under 1I = 4M .

From the observation above, the attacker is able to guess the bit by comparing
the whole computation time of the scalar multiplication for ((4−1) mod #J

2
)D̄

or ((6−1) mod #J
2

)D̄, where D̄ is any divisor with weight 1.
The lower bits can be recursively recovered using the above method. We ex-

plain how to guess di after knowing the highest bits (dn−1dn−2 · · · di+1). The at-

tacker chooses D0 = ((
∑n−1

j=i dj2
j−i)−1 mod #J

2
)D̄ or D1 = ((

∑n−1

j=i+1dj2
j−i)−1

mod#J
2

)D̄ as the base point, where D̄ is any divisor with weight 1. The base
point D0, D1 occurs the exceptional procedure if and only of di = 0, 1, respec-
tively.

We cannot apply this observation to the least bits, because the exceptional
procedures that appear before the termination of the scalar multiplication are
different. However, the last few bits can be easily guessed by the exhaustive
search.

Remark 3. Other exceptional procedures can be used for the timing attack. For
example, we can use the base point D that satisfies (3−1 mod #J

2
)D0 with a

weight-1 divisor D0. This divisor D causes the exception of HECADD from 2D
to 3D when the second most significant bit is 1, namely ExHarADD2+2→1 is
used.

4.4 Implementing with Cantor Algorithm

We discuss the implementation with Cantor algorithm.
If we implement a hyperelliptic curve cryptosystem with Harley algorithm,

we have to treat the exceptional cases. For genus 2 there are more than 10
exceptional cases, so that it is a complicated task for implementers. Although
the exceptional cases appear with negligible probability for a randomly chosen
divisor, the implementer should implement them in order to avoid the error
at the exceptional case. Some implementations employ Cantor algorithm for
the exceptional cases. If genus is more than 2, there are plenty of exceptional
procedure cases, and it is better to implement them using Cantor algorithm.

A draw back of using Cantor algorithm is its efficiency. This overhead of
computation can be also mounted to the timing attack. We have investigated the
similar analysis of the timing for original Cantor algorithm with characteristic
2 [Kob89]. Denote by CantorDBL and CantorADD the doubling and addition of
Cantor algorithm. We write with bold face the exceptional cases corresponding
to Harley algorithm in Section 4.2, e.g. ExCanADD2+2→1. It is not obvious to
count the number of M, I for Cantor algorithm because of the gcd operation.

10



We present the maximum value in term of an experiment with randomly chosen
curves. The faster variant of Cantor algorithm [Nag00] is not optimized for the
degenerated case, so that we evaluated the cost of the original one [Kob89]. The
estimated timings are shown in Table 2.

Table 2. Number of multiplication and inversion of Cantor Algorithm

Addition Formula Cost

CantorADD 4I + 72M
CantorDBL 4I + 68M

ExCanADD2+2→1 3I + 62M
ExCanADD1+2→2 2I + 41M
ExCanDBL2→1 3I + 60M
ExCanDBL1→2 2I + 28M

In the four exceptional cases, the computation amounts of the reduction part,
Step 4, shown in Algorithm 2 are smaller than that in the ordinary case. Among
them, ExCanDBL1→2 has the smallest computation amount due to the absence
of the computation of Step 4. Because the weight of one of the input divisors for
ExCanADD1+2→2 is 1, the degrees of the polynomials computed in Algorithm
2 are smaller; therefore, ExCanADD1+2→2 has less computation amount than
ExCanADD2+2→1 or ExCanDBL2→1.

We estimate the timing differences for the case that uses Cantor algorithm for
the exceptional cases. Note that the exceptional case ExCanDBL2→1 switches
from Harley algorithm to Cantor algorithm only after starting to compute the
first several steps of Harley algorithm — the overhead is 12M . Therefore, we
obtain the following timing differences that were defined in the previous section:

∆Tb = |(HarleyDBL−ExCanDBL2→1) + (HarleyADD−ExCanADD1+2→2)

+1/2(HarleyDBL−ExCanDBL1→2)|+ 12M = 3.5I + 61.5M,

where b = 0, 1. For a 160-bit HECC, the timing difference is about 0.79% of
the whole scalar multiplication under 1I = 4M . The timing difference of Can-
tor algorithm is much larger than that of Harley algorithm. The timing attack
becomes easier.

Remark 4. Note that even if we implement the addition formula only using Can-
tor algorithm, the timing attack is feasible.

5 Experiments

We show an experiment of the timing attack based on the exceptional procedure
in the previous section. In the experiment, we successfully recovered the secret

11



scalar d by attacking the test code of scalar multiplication dD implemented on
a PC. This experimental result shows that the Harley algorithm is vulnerable to
the proposed timing attack.

5.1 Target Curve and Experiment Environment

For our experiment we chose the following hyperelliptic curve with genus 2 from
[HSS00]:

y2 + h(x)y = f(x) over F283 ,

h(x) = x2 + 2b770d0d26724d479105fx + 540efb4e1010a0fc69f23,
f(x) = x5 + 2cc2f2131681e8fe80246x3 + 53b00bad6fbb8f6ea5538x

+54f5f3b4f4fc25898ee4.

The order of the Jacobian is:

2× 46768052394588893382517909320120991667183740867853.

The experiment was implemented on an Intel Xeon Processor 2.80GHz using
operation system Linux 2.4 (RedHat). We employed compiler gcc 3.3 and num-
ber theoretic library NTL5.3 with GMP4.0 [NTL]. Precise measurement of the
timing difference of scalar multiplication on PC is relatively difficult due to many
other processes running on PC, so that we use a CPU clock as the measurement
of timing for the test codes.

In this computational environment, the timing ratio of an inversion by a mul-
tiplication is estimated as I/M = 4.10 from 10 million random samples. We have
measured the average timings of the scalar multiplication for ordinarily Harley
algorithm (Harley), ordinarily Harley algorithm with one exceptional procedure
(Harley + ExHarley), and ordinarily Harley algorithm with one exceptional
procedure of Cantor algorithm (Harley + ExCantor). Table 3 shows the results
with 1000 random samples.

Table 3. Timings of scalar multiplication

Addition Formula Timing

Harley 15.12 ms
Harley + ExHarley 15.08 ms
Harley + ExCantor 15.29 ms

The arithmetic of HECC was programmed only using the operations of finite
field F283 . The common commands of NTL library were used for both the ex-
ceptional procedure and the ordinary one. The timing of the branch condition,
which switches the ordinary case to the exceptional ones, is negligible comparing
to that of operations of F283 .

12



The timing difference using one exceptional case ExHarley or ExCantor

is 0.26% or 1.12%, respectively. These timings are comparable to the results
in Section 4.2 and Section 4.4. The exceptional procedure of Cantor algorithm
causes a larger difference than that of Harley algorithm.

Although there is a timing difference of exceptional cases from the ordinary
one, the difference is quite small. In the next section we explain how to improve
the success probability of guessing the secret bit.

5.2 The Detail of Experiment

We explain our experimental technique of distinguishing the timing difference of
the exceptional procedures from the ordinary process. The test codes calculate
scalar multiplication dD for the base point D and n-bit secret scalar d.

This technique of measurement is similar to that used in [DKL+98]. Let T
be the average time of N scalar multiplications. The attacker aims at guessing
di that is i-th bit of the secret scalar d. From Section 4.3 we are able to generate
a divisor that causes the exception procedure with di = 0 or di = 1, we denote
by Dex0

i or Dex1
i these divisors, respectively. He/she gathers the following three

different timings:

T rand: the average time with a randomly chosen divisor,
T ex0

i : the average time with divisor Dex0
i ,

T ex1
i : the average time with divisor Dex1

i .

The sample number for obtaining T ex0
i or T ex1

i is N for each bit i. Timing T rand

is measured only once with N samples during the whole attack. The minimum
number N for succeeding the attack depends on the computational environment,
and we show minimum N for our setting in the next section.

Then we compute the differences from the random instance, more precisely
∆T 0

i = |T rand−T ex0
i | and ∆T 1

i = |T rand−T ex1
i |. If di = b holds for b = 0, 1, then

∆T b̄
i is nearly zero due to random distribution T exb̄

i , that is T exb̄
i ≈ T rand, where

b̄ = 1− b. Recall that the scalar multiplication causes an exceptional procedure
with negligible probability for a randomly chosen base point. Therefore, we can
guess di = b if ∆T b

i > ∆T b̄
i holds for b = 0, 1.

We summarize the experiment as follows:

Algorithm 4 Experiment for Guessing di

1. Calculate T rand, T ex0
i , T ex1

i

2. Calculate ∆T 0
i = |T rand − T ex0

i | and ∆T 1
i = |T rand − T ex1

i |

3. Return di = b if ∆T b
i > ∆T b̄

i for b = 0, 1

The whole bits of the secret key can be recovered by recursively applying this
attack from the most significant bits (See Section 4.3).

13



���

���

���

���

���

���

�����

� ����� ������� ������� ������� ������� 	������


 �
��
��
� �� 
��
��
�

��������� ��� ����!���"#�

$#%�&(' �$#%�&(' �

Fig. 1. Success rate of recovering 2nd most significant bit

5.3 Experimental Results

We assume that the scalar multiplication is computed by the double-and-add-
always method (Algorithm 3). Harley algorithm with its degenerated variations
in Section 4.2 (Type 1) and Harley algorithm with degenerated Cantor algorithm
in Section 4.4 (Type 2) are examined.

We have performed our experiment with the sample number N < 3000 in the
computational environment described in Section 5.1. We define the success rate
as the number of correct guesses divided by the total number of experiments.
Fig. 1 shows the relation between the success rate for recovering the 2nd most
significant bit and the sample number N . If we have more than 1000 samples
(N > 1000), we achieve 100% success rate for Type 1 and Type 2, namely no
error in our attack. It means that we are able to break the bit by calling the
decryption oracle 1000 times. The sample number N required to achieve high
success rates is small for Type 2 compared to Type 1 because ∆T b

i of Type 2 is
larger than that of Type1.

In order to reveal all 160 bits of the secret scalar, we recursively performed
the proposed attack from the 2nd most significant bit to the 2nd least significant
bit. The least significant bit could be easily revealed by the exhaustive search.
In this case, we required 1000× 158 = 158000 samples.

This experiment did not perform an error correction similar to the one
adopted in [DKL+98]. With an error correction implemented, the time required
for recovery would decrease dramatically because fewer samples (for example,
N = 100) are needed for successful recovery.

14



6 Concluding Remarks

We demonstrated the first experimental result of the timing attack on hyperellip-
tic curve cryptosystems. The attack focuses on the exceptional procedures arisen
from the divisor with weight 1, and tries to distinguish the exceptional procedure
from the ordinary one. About 1,000 samples of the scalar multiplication enable
us to break one bit of the secret key.

We have not examined all possible exceptional procedures. It is a further
work to investigate the timing attack using other exceptional procedures.

Possible countermeasures against the proposed attack are Coron’s 1st or
2nd countermeasure [Cor99]. However, it requires additional treatments, e.g. the
randomization of the secret key, the security management of ephemeral random
divisors.

References

[AT03] T. Akishita and T. Takagi, “Zero-Value Point Attacks on Elliptic Curve Cryp-
tosystem,” ISC 2002, LNCS 2851, Springer-Verlag, 2003, to appear.

[Ava03] R. Avanzi, “Countermeasures against Differential Power Analysis for Hyper-
elliptic Curve Cryptosystems,” CHES 2003, LNCS 2779, Springer-Verlag, pp.366-
381, 2003.

[BB03] D. Boneh and D. Brumley, “Remote Timing Attacks are Practical,” 12th
Usenix Security Symposium, USENIX, pp.1-14, 2003.

[Can87] D. Cantor, “Computing in the Jacobian of a Hyperelliptic Curve,” Mathemat-
ics of Computation, 48, 177, pp.95-101, 1987,

[Cor99] J.-S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems,” CHES ’99, LNCS 1717, Springer-Verlag, pp.292-302, 1999.

[CS98] R. Cramer and V. Shoup, “A Practical Public-Key Cryptosystem Provably
Secure against Adaptive Chosen Ciphertext Attacks,” CRYPTO’98, LNCS 1462,
pp.13-25, 1998.

[DKL+98] J.F. Dhem, F. Koeune, P.A. Leroux, P. Mestré, J.J Quisquater and
J.L. Willems, “A Practical Implementation of the Timing Attack,” UCL Crypto
Group Technical Report CG–1998/1, 1998.

[GMP] GMP, GNU MP Library GMP. http://www.swox.com/gmp
[Gou03] L. Goubin, “A Refined Power-Analysis Attack on Elliptic Curve Cryptosys-

tem,” PKC2003, LNCS 2567, Springer-Verlag, pp.199-211, 2003.
[Har00a] R. Harley, “Adding.text,” 2000. http://cristal.inria.fr/˜harley/hyper/
[Har00b] R. Harley, “Doubling.c,” 2000. http://cristal.inria.fr/˜harley/hyper/
[HSS00] F. Hess, G. Seroussi and N. Smart, “Two Topics in Hyperelliptic Cryptogra-

phy,” Technical Report CSTR-00-008, Department of Computer Science, Univer-
sity of Bristol, 2000.

[IT03] T. Izu and T. Takagi, “Exceptional Procedure Attack on Elliptic Curve Cryp-
tosystems,” PKC2003, LNCS 2567, Springer-Verlag, pp.224-239, 2003.

[JT01] M. Joye and C. Tymen, “Protection against Differential Analysis for Elliptic
Curve Cryptography,” CHES 2001, LNCS 2162, Springer-Verlag, pp.377-390, 2001.

[KCJ+01] S. Kim, J. Cheon, M. Joye, S. Lim, M. Mambo, D. Won, and Y. Zheng,
“Strong Adaptive Chosen-Ciphertext Attacks with Memory Dump (or: The Im-
portance of the Order of Decryption and Validation),” Cryptography and Coding,
8th IMA Int. Conf., LNCS 2260, pp.114-127, 2001.

15



[Kob89] N. Koblitz, “Hyperelliptic Cryptosystems,” Journal of Cryptology, Vol.1,
Springer-Verlag, pp.139-150, 1989.

[Koc96] C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems,” CRYPTO ’96, LNCS 1109, pp.104-113, 1996.

[KJJ99] C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” CRYPTO ’99,
LNCS 1666, pp.388-397, 1999.

[KGM+02] J. Kuroki, M. Gonda, K. Masuo, J. Chao and S. Tsujii, “Fast Genus Three
Hyperelliptic Curve Cryptosystems,” Proc. of SCIS2002, 2002.

[Lan02a] T. Lange, “Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite
Fields via Explicit Formulae,” Cryptology ePrint Archive, 2002/121, IACR, 2002.

[Lan02b] T. Lange, “Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves,”
Cryptology ePrint Archive, 2002/147, IACR, 2002.

[Lan02c] T. Lange, “Weighed Coordinate on Genus 2 Hyperellipitc Curve,” Cryptology
ePrint Archive, 2002/153, IACR, 2002.

[Man01] J. Manger, “A Chosen Ciphertext Attack on RSA Optimal Asymmetric En-
cryption Padding (OAEP) as Standardized in PKCS #1 v2.0,” CRYPTO 2001,
LNCS 2139, Springer-Verlag, pp.230-238, 2001.

[Mum84] D. Mumford, Tata Lectures on Theta II, Progress in Mathematics 43,
Birkhäuser, 1984.

[MCT01] K. Matsuo, J. Chao and S. Tsuji, “Fast Genus Two Hyperelliptic Curve
Cryptosystems,” Technical Report ISEC2001-31, IEICE Japan, pp.89-96, 2001.

[Nag00] N. Nagao, “Improving Group Law Algorithms for Jacobians of Hyperelliptic
Curves,” ANTS-IV, LNCS 1838, Springer-Verlag, pp.439-448, 2000.

[NTL] NTL: A Library for Doing Number Theory. http://www.shoup.net/ntl
[Pel02] J. Pelzl, “Hyperelliptic Cryptosystems on Embedded Microprocessors,”

Diploma Thesis, Rühr-Universität Bochum, 2002.
[PWG+03] J. Pelzl, T. Wollinger, J. Guajardo and C. Paar, “Hyperelliptic Curve Cryp-

tosystems: Closing the Performance Gap to Elliptic Curves,” CHES 2003, LNCS
2779, Springer-Verlag, pp.351-365, 2003.

[SMC+02] T. Sugizaki, K. Matsuo, J. Chao, and S. Tsujii, “An Extension of Harley
Addition Algorithm for Hyperelliptic Curves over Finite Fields of Characteristic
Two,” Technical Report ISEC2002-9, IEICE Japan, pp.49-56, 2002.

[Sch00] W. Schindler, “A Timing Attack against RSA with the Chinese Remainder
Theorem,” CHES 2000, LNCS 1965, pp.109-124, 2000.

[Sch02] W. Schindler, “A Combined Timing and Power Attack,” PKC 2002, LNCS
2274, pp.263-279, 2002.

[SKQ01] W. Schindler, F. Koeune, J.-J. Quisquater, “Improving Divide and Conquer
Attacks against Cryptosystems by Better Error Detection/Correction Strategies,”
Cryptography and Coding, 8th IMA Int. Conf., LNCS 2260, pp.245-267, 2001.

16



Appendix

In this appendix we show the explicit description of HarleyDBL and its degen-
erated variations, namely HarleyDBL, ExHarDBL2→1, and ExHarDBL1→2.

Algorithm 5 HarleyDBL, ExHarDBL2→1

Input: D1 = (u1, v1), deg u1 = 2
Output: D3 = (u3, v3) = 2D1

1 Compute r = res(u1, h) :
w1 ← h1 + u11, w0 ← h0 + u10 + u11w1, r← u10(u10 + h0 + h1w1) + h0w0; 4M

2 Compute I = i1x + i0 ≡ rh−1 mod u1

i1 ← w1, i0 ← w0;
3 Compute T = t1x + t0 ≡ I(f + hv1 + v2

1)/u1 mod u1 :
w2 ← f3 + v11 + v2

11, w3 ← v10 + v11(v11 + h1),
t1 ← w0w2 + w1w3, t0 ← (u11w0 + u10w1)w2 + w0w3; 8M

4 If t1 = 0 then goto 5’.
5 Compute S = s1x + s0 :

w0 ← (rt1)
−1, w2 ← w0r, w3 ← w0t1, w4 ← w2r, s1 ← w3t1, s0 ← w3t0;

6 Compute u3 = x2 + u31x + u30 = s−2

1 (f + h(Su1 + v1) + (Su1 + v1)
2)/u2

1 : 1I+6M
u31 ← w4(1 + w4), u30 ← w4(w4(s0(1 + s0)) + w1);

7 Compute v3 = v31x + v30 ≡ Su1 + v1 + h mod u3 : 4M
w1 ← u11 + u13, w0 ← u10 + u30, w2 ← s1w1, w3 ← s0w0,
w4 ← (s1 + s0)(w1 + w0) + w2 + w3, w2 ← w2 + 1, w1 ← w4 + w2u31,
w0 ← w3 + w2u30, v31 ← w1 + v11 + h1, v30 ← w0 + v10 + h0; 5M

total HarleyDBL 1I+27M

5’ Compute S = s0 :
s0 ← t0/r; 1I+1M

6’ Compute u3 = x + u30 = (f + h(Su1 + v1) + (Su1 + v1)
2)/u2

1 :
u30 ← f4 + s0 + s2

0; 1M
7’ Compute v3 = v30 ≡ Su1 + v1 + h mod u3 :

v30 ← u30((s0u11 + v11 + h1) + (s0 + 1)u30) + (s0u10 + v10 + h0)); 4M

total ExHarDBL2→1 1I+17M

Algorithm 6 ExHarDBL1→2

Input: D1 = (u1, v1), deg u1 = 1
Output: D3 = (u3, v3) = 2D1

1 Compute u2
1 = x2 + u2

10:

w0 ← u2
10 1M

2 Compute v31 = (f ′(u10) + h′(u10)v10)/h(u10):
w1 ← w2

0, w2 ← f3w0, w3 ← h1v10, w1 ← w1 + w2 + f1 + w3,

w4 ← h1u10, w2 ← w0 + w4 + h0, v31 ← w1/w2; 1I+5M
3 Compute v30 = U10v31 + v10:

w0 ← u10v21, v30 ← w0 + v10; 1M

total ExHarDBL1→2 1I+7M

17


