
Improved Cryptanalysis of SecurID

Scott Contini

Computing Department

Macquarie University

NSW 2109 Australia

scontini@comp.mq.edu.au

Yiqun Lisa Yin

EE Department

Princeton University

Princeton, NJ 08540

yyin@princeton.edu

September 28, 2003

Abstract

SecurID is a widely used hardware token for strengthening authentica-
tion in a corporate environment. Recently, Biryukov, Lano, and Preneel
presented an attack on the alleged SecurID hash function [1]. They showed
that vanishing differentials – collisions of the hash function – occur quite
frequently, and that such differentials could allow one to recover the secret
key in the token much faster than exhaustive search. Based on simulation
results, they estimated that given one 2-bit vanishing differential, the time
of their attack would be equivalent to about 248 full hash operations.

In this paper, we first give a more detailed analysis of the attack in [1],
and then show how to improve it significantly. The bottleneck in their
attack is one of the filtering steps. Our modifications to the filtering al-
gorithm speed it up to the point that the time complexity becomes domi-
nated by the number of final candidate keys to be tested, which results in
a key recovery attack with time equivalent to about 244 hash operations.
No additional enhancement to the filtering steps can further reduce the
number of candidates with only a single 2-bit vanishing differential.

We then investigate into the use of 4-bit vanishing differentials and
multiple vanishing differentials, both of which do occur in practice. For 4-
bit vanishing differentials, the running time of our attack is estimated to be
equivalent to about 240 hash operations. Multiple vanishing differentials
appear to allow more speedups, but an exact running time is still to be
determined.

1 Introduction

The SecurID is a hardware token developed by RSA Security. Its purpose is to
strengthen authentication when logging in to remote systems, since passwords
by themselves tend to be easily guessable and subject to dictionary attacks.

1



The SecurID adds an “extra factor” of authentication: one must not only prove
themselves by getting their password correct, but also by demonstrating that
they have the SecurID token assigned to them. The latter is done by entering
the 6- or 8-digit code that is being displayed on the token at the time of login.

Each token has within it a 64-bit secret key and an internal clock. Every
minute, or every half-minute in some tokens, the secret key and the current
time are sent through a cryptographic hash function. The output of the hash
function determines the next two authenticator codes, which are displayed on
the LED screen display. The secret key is also held within the “ACE/server”,
so that the same authenticator can independently be computed and verified at
the remote end.

If ever a user loses their token, they must report it so that the current
token can be revoked and replaced with a new one. Thus, the user bears some
responsibility in maintaining the security of the system. On the other hand,
if the user were to temporarily leave his token in a place where it could be
observed by others and then later recover it, then it should not be the case
that the security of the device is entirely breached, assuming the device is well-
designed.

The scenario just described was considered in a recent publication by Biryukov,
Lano, and Preneel [1], where they showed that the hash function that is alleged
to be used by SecurID [3] (AHSF) has weak properties that could allow one
to find the key much faster than exhaustive search. The attack they describe
requires recording all outputs of the SecurID using a PC camera with OCR
software, and then later searching the outputs for indication of a vanishing dif-

ferential – two closely related input times that result in the same output hash.
If one is discovered, the attacker then has a good chance of finding the internal
secret key using a search algorithm that they estimated to be equivalent to 248

hash function operations. On a 2.4 GHz PC, 248 hash operations take about
38 years. It would require about 450 of these PC’s to find the key in a month,
which is attainable by anyone in a typical medium-sized corporation.

The practicality of this attack depends upon how long the attacker must
wait for a vanishing differential to occur - the longer the device is out of a user’s
control, the more likely that the user will recognise it and have it revoked.
Simulations have shown that in any two month period, 10% of the SecurID
cards will have a vanishing differential; in any two week period, 2.5% of the
tokens will have a vanishing differential; and in any two day period, 0.2% of
the tokens will have a vanishing differential. Although the attacker’s success
is not guaranteed, these probabilities are definitely not negligible. The attack
described by Biryukov et al appears to be a real, practical threat to the device.

In this paper, we build upon their results. We first go through a deeper anal-
ysis of their algorithm, giving further justification of their conjectured running
time of 248. We then show speedups that can be applied to reduce the time
complexity down to about 244 hash operations. With these improvements, the
device can be attacked in under a month using only 30 modern PC’s, which is

2



attainable even within a small corporation. We also analyse special cases that
can result in significant speedups to the attack: 4-bit vanishing differentials and
multiple vanishing differentials. Both of these do happen in practice. Our re-
sults combined with those of [1] suggest that the SecurID cannot be relied on
for strong second-factor authentication, assuming the description of the hash
function [3] is correct. Note that RSA Security has begun to upgrade their to-
kens to use an AES based hash. We recommend that all of the older tokens be
replaced with the upgraded AES based tokens.

2 The SecurID hash function

In this section, we provide a high level description of the alleged SecurID hash
function. Detailed descriptions can be found in [1, 3]. We will follow the same
notation as those in [1] wherever possible.

The function can be modeled as a keyed hash function y = H(k, t), where k
is a 64-bit secret key stored on the SecurID token, t is a 32-bit time obtained
from the clock every 30 or 60 seconds, and y is two 6- or 8-digit codes. The
function consists of the following steps:

• an expansion function that expands t into a 64-bit “plaintext”,

• an initial key-dependent permutation,

• four key dependent rounds, each of which has 64 subrounds,

• an exclusive-or of the output of each round onto the key,

• a final key-dependent permutation (same algorithm as the initial one),
and

• a key dependent conversion from hexadecimal to decimal.

Throughout the paper, we use the following notation to represent bits, nib-
bles, and bytes in a word: a 64-bit word b, consisting of bytes B0, ..., B7, nibbles
B0, ..., B15, and bits b0b1...b63. The nibble B0 corresponds to the most significant
nibble of byte 0 and the bit b0 corresponds to the most significant bit. The
other values are as one would expect.

For our analysis, only the key-dependent permutation and the key dependent
rounds are of interest. In the next two sections, we will describe them in more
detail.

2.1 Key dependent permutation

We give a more insightful description of how the ASHF key dependent permu-
tation really works. The original code, obtained by I.C. Wiener [3] (apparently

3



by reverse engineering the ACE/server code), is quite cryptic. Our description
is different, but produces an equivalent output to his code.

The key dependent permutation uses the key nibbles K0 . . .K15 in order to
select bits of the data for output into a permuted data array. The data bits will
be taken 4 at a time, copied to the permuted data array from right to left (i.e.
higher indexes are filled in first), and then removed from the original data array.
Every time 4 bits are removed from the original data array, the size shrinks by
4. Indexes within that array are always modulo the number of bits remaining.

A pointer m is first initialised to the index K0. The first 4 bits that are taken
are those right before the index of m. For example, if K0 is 0xa, then bits 6, 7,
8, and 9 are taken. If K0 is 0x2, then bits 62, 63, 0, and 1 are taken. As these
bits are removed from the array, the index m is adjusted accordingly so that it
continues to point at the same bit it pointed to before the 4 bits were removed.

The pointer m is then increased by a value of K1, and the 4 bits prior to this
are taken, as before. The process is repeated until all bits have been taken.

Note that once the algorithm gets down to the final 3 or less key and data
nibbles, the number of data bits remaining is at most 12 yet the number of
choices for each key nibble is 16. Hence, multiple keys will result in the same
permutation, which we call “redundancy of the key with respect to the permuta-
tion.” This was used in the attack [2], and to a lesser extent in [1]. Interestingly,
[1] mentions that there are 14-bits of redundancy on average, yet the attacks
presented so far have exploited only a few of them.

2.2 Key dependent rounds

Each of the four key dependent rounds takes as inputs a 64-bit key k and a
64-bit value b0, and outputs a 64-bit value b64. The key k is then exclusive-ored
with the output b64 to produce the new key to be used in the next round.

One round consists of 64 subrounds. For i = 1, ..., 64, subround i transforms
bi−1 into bi using a single key bit ki−1. Depending on whether the key bit ki−1 is
equal to bi−1

0 , the value bi−1 is transformed according to two different functions,
denoted by R and S. This particular property causes the hash function to have
many easy-to-find collisions (called vanishing differentials) after a small number
of subrounds within the first round. At the end of each subround, all the bits
are shifted one bit position to the left.

We remark that both the R function and the S function are byte-oriented,
that is, they update each of the 8 bytes in b separately. After the update, only
two of the 8 bytes (B0 and B4) are modified, and the rest of the 6 bytes remain
the same.

4



3 The attack of Biryukov, Lano, and Preneel

Biryukov, Lano, and Preneel recently presented a full key recovery attack that
uses a single 2-bit vanishing differential. The attacker first guesses the subround
N in which the vanishing differential occurs, and for each N a filtering algorithm
is used to search the set of candidiate keys that make such a vanishing differential
possible. In [1], they only described the attack for N = 1 and stated that the
algorithm would be similar for other N . According to their simulations, one
only needs to do up to N = 12 to have a 50% chance of finding the key.

Here we give a high-level description of the filtering algorithm for N = 1.
At the beginning, a table with entries of the form

(k0, B0, B4, B
′
0, B

′
4)

is precomputed. The entries contain all combinations of key bit k0 and data
bytes B0, B4, B

′
0, and B′

4 going into the first round (i.e. after the initial per-
mutation) that will result in a vanishing differential at the end of the first
subround. Note that none of the other data bytes have any involvement in the
first subround, so whether a vanishing differential can happen or not for N = 1
is completely characterised by this table.

The filtering algorithm proceeds in four steps.

• First Step. For each entry in the precomputed table, try all possible values
of k1, ...k27. Together with k0, 28 key bits are set, which determines 28 bits
of b0 from the initial key-dependent permutation. Since these bits overlap
with the entries in the table by one nibble B9, key values that do not
produce the correct nibble for both plaintexts in the vanishing differential
are filtered out.

• Second Step. An entry that passes the first step is taken as input and the
key bits k28, ...k31 are guessed. Filtering is done based on the overlap in
nibble B8.

• Third Step. Key bits k32, ..., k59 are guessed. Filtering is done based on
the overlap in nibble B1.

• Fourth Step. Key bits k60, ..., k63 are guessed. Filtering is done based on
the overlap in nibble B0.

Finally, each candidate key that passes the filtering steps is tested by per-
forming a full hash function to see if it is the correct key.

As we can see, the running time of the above attack depends on the time
complexity of each filtering step and the number of candidate keys that pass
all four filtering steps. Based on simulation results [1], they estimated that the
dominant factor is the third filtering step, which is equivalent to about 248 full
hash operations for N up to 12.

5



4 Improved analysis of the Biryukov, Lano, and

Preneel attack

Biryukov, Lano, and Preneel only gave simulated results for N = 1. They
suggested that

for higher N , the overlap will be higher (because more bits play a role
in the vanishing differential) and thus the filtering will be stronger.

and

For N > 1, we expect the complexity of the attack to be lower due
to stronger filtering.

Here we show that the results of their simulations can be justified by mathe-
matical arguments, and that the conjecture of the filtering improving for larger
N appears to be correct. We first analyse the case N = 1, and then generalise
the argument to arbitrary N . Our analysis is an average-case analysis. The
actual time complexity will depend upon the particular pair of plaintexts that
is used in the attack.

There is one subtlety that the reader should keep in mind in our analysis.
During the first two filtering steps, only the values (k0, B4, B

′
4) of the precom-

puted table are involved. There may be more than one table entry overlapping
in these values. In this case, we assume that the multiple entries are grouped
together into a single entry until a later filtering step requires testing for the
overlap separately. Since, as we will see, the number of multiple entries is very
small, we assume that this does not incur a noticeable speed penalty.

4.1 Analysis of the attack for N = 1

Their simulations showed that the first step reduced the number of possibilities
to 227, the second step further reduced the count to to 225, the third step
increased the count to 245, and the fourth step resulted in 241 true candidates.
We analyse the second and fourth steps only: the other two can be analysed
similarly.

We note that some properties of the precomputed table are necessary in the
analysis. In [1], it is stated that the size of the precomputed table is 30 for
N = 1, which we agrees with our computation. In Appendix A, we provide an
analytical way of constructing the entries.

Analysis of the second step: We start by examing the precomputed table to
count number of unique entries of the form (k0, B4, B

′
4). In total, there are only

23, which is broken down into 7 with no difference, 16 with a 1-bit difference,
and none with 2-bit differences.

There are a total of 232 possible partial keys (each 32 bits) up to step two.
Among them,

6



• A fraction of
(

56

2

)

/
(

64

2

)

≈ .76 will put no difference in the tuple (B4, B
′
4).

• A fraction of
(

8

1

)

×
(

56

1

)

/
(

64

2

)

≈ .22 will put a 1-bit difference in (B4, B
′
4).

• A fraction of only
(

8

2

)

/
(

64

2

)

≈ .01 will put 2 difference bits in (B4, B
′
4).

Of the 232×0.76 keys that result in no difference in (B4, B
′
4), only a fraction

of 7

256
will match one of the 7 unique entries in the table for B4 (which is the

same as B′
4). Of those, only half will have the right key bit corresponding to

what is stored for that entry of the table. Thus, the expected number of 32-bit
keys resulting in no difference in B4 that pass the second filtering step is

232 × 0.76×
7

256
×

1

2
≈ 225.4.

For 1-bit differences, the calculation is similar, except we have 16 unique ta-
ble entries, and there are 256×8 possible tuples (B4, B

′
4) with B4

⊕

B′
4 differing

in 1-bit. The expected number here is

232 × 0.22×
16

256× 8
×

1

2
≈ 221.8.

For 2-bit differences, there are 0 in the table, so none of those will get through.
Combining these results, the expected number of 32-bit keys that pass

through step 2 is
225.4 + 221.8 ≈ 225.5

which closely agrees with the 225 observed by simulation in [1].

Analysis of the fourth step: Without considering outcomes of previous steps,
we can directly analyse the fourth step. This is because anything that matches
an entry in the precomputed table will result in a vanishing differential for
N = 1. In other words, the entries in the table are not only a necessary set
of cases for a vanishing differential to occur at N = 1, but also sufficient. So,
analysing the outcome of the fourth step is equivalent to determining the true
number of candidates that need to be tested with the full SecurID hash function.

For each of the 30 table entries, we have:

• Only a portion of about 1

216 of the 264 keys will permute the bits of the
first plaintext so that the bytes (B0, B4) match the table entry.

• Of those keys, only a portion of 1/
(

64

2

)

will permute the 2 difference bits
in the right locations to match the (B′

0, B
′
4) of that table entry.

• Only half of those keys will have the right key bit k0 corresponding to
what is in that entry of the table.

7



Thus, the expected number of final candidate keys is

30 × 264 ×
1

216
×

1
(

64

2

) ×
1

2
≈ 240.9

which is approximately 241 that was observed in [1].
Another way of interpreting this result is that the probability of a randomly

chosen 2-bit differential disappearing in subround 1 is 2
40.9

264 ≈ 2−23.1. This
property will be useful in our later analysis.

4.2 Analysis of the attack for N > 1

Here we derive general formulas for the number of candidate keys that will pass
the second and fourth steps, respectively, as well as the time complexity for
the third step. As we discussed before, these are the dominating factors in
estimating the running time of the attack. Similar to the case of N = 1, the
formulas depend upon properties of the precomputed tables.

In the general case, the precomputed tables consist of the following entries:

• legal values for the key bits in indices 0, . . . , N − 1,

• legal values for the plaintext pairs after the initial permutation in bit
indices 32, 33, . . . , 38 + N which we label as (W4, W

′
4), and

• legal values for the plaintext pairs after the initial permutation in bit
indices 0, 1, . . . , 6 + N which we label as (W0, W

′
0).

By legal values we mean that the combination of key bits and plaintext bits will
cause the difference to vanish in subround N . The words W0, W

′
0, W4, W

′
4 each

consist of 7 + N bits and the number of key bits is N . Using this notation, ob-
serve that when N = 1 we have (W4, W

′
4) = (B4, B

′
4) and (W0, W

′
0) = (B0, B

′
0).

Analysis of the second step: Of the of 232 key bits considered up to step 2,

• A fraction of
(

57−N

2

)

/
(

64

2

)

will put no difference in the tuple (W4, W
′
4).

• A fraction of
(

7+N

1

)

×
(

57−N

1

)

/
(

64

2

)

will put a 1-bit difference in (W4, W
′
4).

• A fraction of only
(

7+N

2

)

/
(

64

2

)

will put a 2-bit difference in (W4, W
′
4).

Define C0 to be the number of unique table entries of the form (k0, . . . , kN−1, W4, W
′
4)

where W4 = W ′
4, C1 similarly except W4

⊕

W ′
4 having hamming weight 1, and

C2 similarly except W4

⊕

W ′
4 having hamming weight 2. The expected number

of keys causing no bit difference in (W4, W
′
4) that will pass the filter in step two

is:

232 ×

(

57−N

2

)

(

64

2

) ×
C0

27+N
×

1

2N

8



= 219−2N ×
3192− 113N + N2

63
× C0.

For 1-bit differences, the equation is

232 ×

(

7+N

1

)

×
(

57−N

1

)

(

64

2

) ×
C1

27+N ×
(

7+N

1

) ×
1

2N

= 220−2N ×
57− N

63
× C1.

For 2-bit differences, the equation is

232 ×

(

7+N

2

)

(

64

2

) ×
C2

27+N ×
(

7+N

2

) ×
1

2N

= 220−2N ×
C2

63
.

Hence, the expected number of candidates to pass the second step is then

T =
219−2N

63
×

[

(3192− 113N + N2)C0 + (114− 2N)C1 + 2C2

]

. (1)

In [1], the third step is the most time consuming. For each candidate that
passes the second step, they must guess 28 bits of key and then perform a
fraction of 28

64
of the permutation for both plaintexts. Under the assumption

that the permutation is 5% of the time required to do the full SecurID hash,
the running time is equivalent to

T × 228 ×
28

64
× 2× 0.05

full hash operations.
Note that when deriving the above formula, we assumed that for larger N ,

exactly four filtering steps (same as what was done when N = 1) were used.
The filtering algorithm was not completely described for N > 1 in [1], but it is
likely that they imagined that the number of filtering steps would increase. In
particular, one may presume that the third step would involve guessing enough
key bits so that the resulting permuted data bits just begin to overlap with W0

and W ′
0, and an additional layer of filtering would be added for each key nibble

guessed beyond that1. This speeds up the third step, which we will assume
is still the most time consuming of the remaining filtering steps2. We proceed
under this assumption.

1The same idea should be applied to the first filtering step as well, but for the sake of
brevity, we avoid making the description too complex.

2Omitting details, the third step will be the most time consuming if the fraction of values

that remain is less than
b
29−N

4
c

16
of the values considered. This is usually the case. In the

rare exceptions, the fourth step will be slightly more time consuming. One should allow for a
very small error (example: half a bit) in our final run time estimate because of this short-cut
in the analysis.

9



N table C0 C1 C2 T Time for Time for Total
size third step last step time

1 30 7 16 0 225.5 247.6 240.9 247.6

2 350 24 128 84 225.4 244.2 241.5 244.4

3 2366 171 660 248 226.1 245.0 241.2 245.1

4 16784 1047 3778 1392 226.7 245.5 241.0 245.6

5 116184 6349 22700 8264 227.2 246.1 240.8 246.1

6 729236 37257 125824 42836 227.7 242.7 240.5 243.0

Table 1: Computing the running time estimates of algorithm [1] for N = 1..6.

In this way, the exact number of key bits guessed in the third step is 4 ×
b 29−N

4
c, and its running time is

T × 24×b 29−N

4
c ×

4 × b 29−N
4

c

64
× 2 × 0.05× s (2)

full hash operations, where s is the speedup factor that can be obtained by
taking advantage of the redundancy in the key with respect to the permutation.
The value of s is 96

256
for N = 1, 12

16
for N = 2..5, and 1 for all other values.

Analysis of the fourth step: Following section 4.1, the general formula for
the number of final candidates is:

table size × 264 ×
1

22N+14
×

1
(

64

2

) ×
1

2N
≈ 239.0−3N × table size. (3)

Combined analysis: The running time of algorithm [1] for a particular value
of N is expected to be the approximately the sum of equations 2 and 3. For
N = 1..6, these running times are given in Table 1.

Notice that even though the number of candidates T after the second filter
steps are approximately the same as N goes from 1 to 2 and also from 5 to
6, the running times of the third steps drop greatly. This is because one less
nibble of the key is being guessed, and an extra filtering step is being added.
In general, we see the pattern that larger values of N are contributing less and
less to the sum of the running times, which agrees with the conjecture from [1].
The total running time for N = 1 to 6 is 248.5 and larger values of N would
appear to add minimally to this total.

5 Faster filtering

As illustrated in the previous section, the trick to speeding up the key recovery
attack in [1] is faster filtering. We have found three ways in which their filtering

10



can be sped up:

1. In the original filter, a separate permutation is computed for each trial
key. This is inefficient, since most of the permuted bits from one particular
permutation will overlap with those from many other permutations. Thus,
we can amortize the cost of the permutation computations.

2. We can detect ahead of time when a large portion of keys will result in
“bad” permutations in steps 1 and 3, and the filtering process can skip
past chunks of these bad permutations.

3. For N = 1, we can further speed up the third step of filtering by using a
table-lookup to determine what the legal choices are for K14 (this would
apply to other steps as well, but the memory requirements quickly become
quite large). Each table lookup replaces trying 8 choices for the nibble K14.

In what follows, we describe each of the above techniques in more detail.

The first technique is aimed at reducing the numerator of the factor
4×b 29−N

4
c

64
=

b 29−N

4
c

16
in equation 2. To do this, we view the key as a 64-bit counter, where

k0 is the most significant bit and k63 is the least. In step three of the filter,
the bits k0, . . . , k31 are fixed and so are some of the least significant bits (the
exact number depends upon N), so we can exclude these for now. The keys
are tried in order via a recursive procedure that handles one key nibble at a

time. At the jth recursive branch, each of the possibilities for nibble K7+j are
tried. The part of the permutation for that nibble is computed, and then the
j + 1st recursive branch is taken. The level of recursion stops when key nibble
K
7+b 29−N

4
c is reached. Thus, the b 29−N

4
c from equation 2 gets replaced with the

average cost per permutation trial, which is

b 29−N

4
c−1

∑

i=0

2−4i ≈ 1.07.

Observe that when N = 1, this results in a factor of 7

1.07
≈ 6.5 speedup. This

trick alone knocks more than 2 bits off the running time.
The second speedup is dependent upon the first. It will apply to both the

first and third filtering steps. During the process of trying a permutation, there
will be large chunks of bad trial keys that can be identified immediately, and
skipped. For example, consider N = 1 in the first filtering step. Whenever one
of the difference bits is put into any of the bit indices 40..63 of the permuted
data array, it can be skipped because the difference is not in a legal position.
More generally, in the recursive procedure for key trials, we check during each
trial key nibble whether it will result in a difference bit being put in an illegal
place. If affirmative, then any key having the same most significant bits will
also result in misplacing the difference bit, so the recursive branch for that key

11



N Time for Time for Total
third step last step time

1 237.8 240.9 241.0

2 238.0 241.5 241.6

3 239.0 241.2 241.5

4 239.9 241.0 241.6

5 240.7 240.8 241.8

6 237.8 240.5 240.7

Table 2: Running times using our improved filter, for N = 1..6.

nibble can be skipped. This substantially reduces the number of trial keys. In
the first step, this will skip past all but a fraction

(

39+N

2

)

/
(

64

2

)

of the candidates.
More importantly, between the first and third steps the amount of keys looked
at in the search becomes a fraction

(

14+2N

2

)

/
(

64

2

)

of the amount for the attack
in [1].

These two strategies combined result in the following running time for the
third filtering step:

T ×

(

14+2N

2

)

(

64

2

) × 24×b 29−N

4
c ×

1.07

16
× 2 × 0.05× s (4)

where T is still the T from equation 1 (though it no longer represents the number
of candidates from step one) and s is 96

256
for N = 1, 12

16
for N = 2..5, and 1 for

all other values.
We only apply the third speedup for N = 1, due to increasing memory

requirements. When we arrive at a leaf to try K14, there are only 8 data bits
remaining to choose from. Let x represent the final 8 bits for the first plaintext,
and x′ for the second. We could precompute the legal choices for K14 for each
possible (k0, B4, B

′
4, x, x′) where (k0, B4, B

′
4) are from the 23 unique choices in

the main filtering precomputation table. Thus the legal choices for K14 are
obtained from a single table lookup, which replaces trying all possibilities. For
N = 1, this gives a time of approximately:

T ×

(

16

2

)

(

64

2

) × 224 ×
1.07

16
× 2 × 0.05×

12

16
.

The combined speedups give the run times in Table 2. In all cases, the third
filtering step has become faster than the time for the last step.

The total time for N = 1..6 is 244.0, and larger values of N are expected to
add minimally to it since all steps are getting faster.

12



N table size run time
1 910 237.5

2 9202 237.9

3 53358 237.4

4 311566 237.0

Table 3: Cost of the final step using a 4-bit differential for N = 1..4.

6 Vanishing differentials with four-bit difference

For both the attacks in [1] and our improved attack presented in Section 5, only
a single vanishing differential with a two-bit difference were used. Although
such differential provides sufficient information to derive the entire secret key, it
also limits us in terms of the efficiency of a search algorithm since the number of
final candidates is always on the order of 241 for the N of interest. By allowing
other forms of vanishing differentials, we have a chance of further reducing the
complexity.

According to our simulations, about 25% of the first collisions (first occur-
rence of a vanishing differential for a give key) are actually from a 4-bit differ-
ence. We would expect that our filtering algorithm performs exceptionally well
in this circumstance. For example, when N = 1 we expect our second filtering
speedup to skip all except a fraction of

(

16

4

)

/
(

64

4

)

≈ 2−8.4 of the incorrect keys
between filter steps one through three. Without going through the analysis,
it seems reasonable to assume that the final testing of candidates is still the
bottleneck.

The formula for number of final candidate keys can be derived similar to
that of equation 3:

table size × 264 ×
1

22N+14
×

1
(

64

4

) ×
1

2N
.

The formula is the same as that for 2-bit differences, except that term
(

64

2

)

has been replaced by
(

64

4

)

, giving a factor of 28.3 reduction in the number. There-
fore, as long as the table size does not increase significantly, it is conceivable
that 4-bit differentials could result in a faster attack than 2-bit differentials. In
Table 3 we see that this is indeed the case for N = 1..4. The table size for
N = 1 can also be verified analytically as described in Appendix A. We there-
fore conjecture that the total run time for an attack using one 4-bit vanishing
differentials is equivalent to about 240 hash operations.

Note that for N = 1, we have a probability of 2
37.5

264 = 2−26.5 for a 4-bit
vanishing differential to occur, and the corresponding probability for a 2-bit
vanishing differential is 2−23.1. It may then seem hard to believe that 25% of the

13



vanishing differentials are 4-bits, as claimed above. However, one should keep
in mind that there are more input 4-bit differences because the least significant
byte of the time is replicated 4 times in the time expansion function.

7 Multiple vanishing differentials

According to simulation results in [1], a 2-bit vanishing differential occurs with
probability 2−19. This translates to the fact that 10% of the tokens will have at
least one vanishing differential in a two-month period. If vanishing differentials
do occur consistently with the above probability, then we expect that 10% of
the tokens will have at least two vanishing differentials in a four-month period.
Experiments are being performed to determine more accurate numbers.

Now we show how to reduce the number of candidate keys significantly given
two vanishing differentials by constructing more effective filters in each step. We
denote the two pairs of vanishing differentials V1 and V2, and their N values N1

and N2.
We first make a guess of (N1, N2). The number of guesses will be quadratic

in the number of subrounds tested up to. The following is a sketch for the new
filtering algorithm when N1 = N2 = 1. Other cases can be handled similarly.

• First Stage. Take V1 and guess the first 32 bits of the key. For each 32-
bit key that produces a valid (B4, B

′
4), test it against V2 to see if it also

produces a valid (B4, B
′
4). (This is the first and the second filtering steps

in the original attack.)

• Second Stage. For 32-bit keys that pass the above stage, do the same thing
to guess the second 32 bits of the key. (This is the third and the fourth
filtering steps in the original attack.)

The main idea here is to do double filtering within each stage so that the
number of candidate keys is further reduced in comparison to when only a single
vanishing differential is used.

Based on early analysis (in Section 4), we know that the probability that
a 32-bit key passes the first stage is 225.5/232 = 2−6.5 (assuming using the
original filter of [1] - it is even more reduced using our improved filter), and the
probability that a 64-bit key passes both stages is 240.9/265 = 2−23.1. If the two
vanishing differentials are indeed independent, we would expect the number of
keys to pass the first filtering to be

232 × 2−6.5 × 2−6.5 = 219, and

and the number of keys to pass both filterings to be

264 × 2−23.1 × 2−23.1 = 217.8.

14



Preliminary experiments show that vanishing differentials often occur, but
usually the same difference appears throughout. There are some occasions,
however, where different difference pairs happen. We are still in the process of
testing whether the figures above are attainable in practice.

We should also mention the caveat that the chances of success using multiple
vanishing differentials are lower, since we need both difference pairs to disappear
within N subrounds. On the other hand, the cost of trying this algorithm for
two difference pairs is expected to be substantially cheaper than trying the other
algorithm for only one. Therefore, the double filtering should add negligible
overhead to the search in the cases that it fails, and would greatly speedup the
search when it is successful.

8 Conclusion

The design of the alleged SecurID hash function appears to have several prob-
lems. The most serious appears to be collisions that happen far too frequently
and very early within the computation. The amount to which such collisions
can be taken advantage of is exacerbated by subrounds that only involve a
small fraction of data bits. Moreover, the redundancy of the key with respect
to the initial permutation adds an extra avenue of attack. Altogether, ASHF is
substantially weaker than one would expect from a modern day hash function.

Our research has shown that the key recovery attack in [1] can be sped up by
a factor of 16, giving an improved attack with time complexity about 244 hash
operations. We have also illustrated special data cases that can be attacked
significantly faster, and such cases do happen in practice. For example, 25% of
the collisions involve 4-bit vanishing differentials, which seem to allow one to
recover the key in 240 hash operations.

The attacks in this paper and in [1] are real. The main obstacle in mounting
them is waiting for an internal collision. If the user’s token is out of his control
for a matter of a few days, then the chances of the collision happening are
small, but not negligible. This means that most attackers will not have the
opportunity for success, but some will. On the other hand, an AES-based
hash function ought to prevent any attacker from having a realistic chance of
success. We therefore recommend that all SecurID cards containing the alleged
hash function be replaced with RSA Security’s newer, AES-based hash.

References

[1] A. Biryukov, J. Lano, and B. Preneel. Cryptanalysis of the Alleged SecurID

Hash Function, http://eprint.iacr.org/2003/162/, 12 Sep, 2003.

[2] S. Contini, The Effect of a Single Vanishing Differential in ASHF, sci.crypt
post, 6 Sep, 2003.

15



[3] I.C. Wiener, Sample SecurID Token Emulator with Token Secret Import,
post to BugTraq, http://archives.neohapsis.com/archives/bugtraq/2000-
12/0428.html , 21 Dec, 2000.

A Analysing precomputed tables

Using computer experiments, we were able to exhaustively search for valid en-
tries in the precomputed table up to N = 6 for 2-bit vanishing differentials and
up to N = 4 for 4-bit differentials at this point. It was predicted in [1] that the
size of the table gets larger by a factor of 8 as N grows and it may take up to
244 steps and 500GB memory to precompute the table for N = 12.

Here we make an attempt to derive the entries in the table analytically when
N = 1. If we could extend the method to N > 1, we may be able to enumerate
the entries analytically without expensive precomputation and storage.

We start with Equation (6) in [1]. Note that we are trying to find constraints
for the values in the subround i−1. So for simplicity, we will omit the superscript
i − 1 from now on, and Equation (6) becames the following.

B′
4 = ((((B0 >>> 1) − 1) >>> 1) − 1) ⊕ B4, (5)

B′
0 = 100− B4.

We first note that B0 and B′
0 have to be different in the msb. Therefore,

there is at least one bit difference in (B0, B
′
0). The other bit difference can be

placed either in the remaining 7 bits of (B0, B
′
0) or any of the 8 bits in (B4, B

′
4).

Rewrite Equation 5, we have

B0 = (((B4 ⊕ B′
4) + 1) <<< 1) + 1) <<< 1.

Since there are at most one bit difference in (B4, B
′
4), it can only take on 9

possible values: 0 (for no bit difference) or 2i (for one bit difference in bit i).
For each possible value of (B4, B

′
4), we enumerate the possible values of (B0, B

′
0)

as follows.

• If B4⊕B′
4 = 0, then B0 =0x06. Since there is no bit difference in (B4, B

′
4),

we know that B0 and B′
0 differ in two bits – one of them must be the msb,

and the other can be any of the remaining 7 bits.

B4 ⊕ B′
4 B0 B′

0 k0

0x00 0x06 0x87, 84, 82, 8e, 96, a6, c6 0

• If B4 ⊕B′
4 = 2i, then there is only one bit difference in (B0, B

′
0), which is

the msb. In this case, there are only one choice for B′
0 for each B0.

16



B4 ⊕ B′
4 B0 B′

0 k0

0x01 0x0a 0x8a 0
0x02 0x0e 0x8e 0
0x04 0x16 0x96 0
0x08 0x26 0xa6 0
0x10 0x46 0xc6 0
0x20 0x86 0x06 1
0x40 0x07 0x87 0
0x80 0x08 0x88 0

Combining the above two cases, we have 8 + 7 = 15 pairs of (B0, B
′
0), each

of which giving a valid tuple (k0, B0, B4, B
′
0, B

′
4), where k0 is the msb of B0.

Finally, note that if (k0, a, b, c, d) is a valid tuple, than (k0, c, d, a, b) is also a
valid typle. For example, if (0, 0x06, 0xdd, 0x87, 0xdd) is valid, then (0, 0x87, 0xdd, 0x06, 0xdd)
is also valid. Therefore, the table consists of a total of 2×15 = 30 entries. These
entries match the results from our simulation.

Similar analysis also confirms that the size of the table for 4-bit vanishing
differentials when N = 1 is 910.

17


