
Identity Based Undeniable Signatures

Benôıt Libert Jean-Jacques Quisquater

UCL Crypto Group
Place du Levant, 3. B-1348 Louvain-La-Neuve. Belgium

{libert,jjq}@dice.ucl.ac.be −− http://www.uclcrypto.org/

Abstract. In this paper, we give a first example of identity based undeniable signature using pairings
over elliptic curves. We extend to the identity based setting the security model for the notions of invisi-
bility and anonymity given by Galbraith and Mao in 2003 and we prove that our scheme is existentially
unforgeable under the Bilinear Diffie-Hellman assumption in the random oracle model. We also prove
that it has the invisibility property under the Decisional Bilinear Diffie-Hellman assumption and we
discuss about the efficiency of the scheme.

Keywords. ID-based cryptography, undeniable signatures, pairings, provable security.

1 Introduction

Identity based public key cryptography is a paradigm proposed by Shamir in 1984 ([38]) to simplify
key management and remove the necessity of public key certificates. To achieve this, the trick is
to let the user’s public key be an information identifying him in a non ambiguous way (e-mail
address, IP address, social security number...). The removal of certificates allows avoiding the trust
problems encountered in today’s certificate-based public key infrastructures (PKIs). This kind of
cryptosystem involves trusted authorities called private key generators (PKGs) that have to de-
liver private keys to users after having computed them from their identity information (users do
not generate their key pairs themselves) and from a master secret key. End-users do not have to
enquire for a certificate for their public key. The only things that still have to be certified are the
public keys of trusted authorities (PKGs) since they are involved in every encryption or signature
verification processes. Although, this does not completely remove the need for certificates, this need
is drastically reduced since many users depend on the same authority. Several practical identity
based signature schemes (IBS) have appeared since 1984 ([24],[37]) but a practical identity based
encryption scheme (IBE) was only found in 2001 ([4]) by Boneh and Franklin who took advantage
of the properties of suitable bilinear maps (the Weil or Tate pairing) over supersingular elliptic
curves. Many other identity based primitives based on pairings were proposed after 2001: digital
signatures, authenticated key exchange, non-interactive key agreement, blind and ring signatures,
signcryption,. . . ([7],[9],[16],[26],[33],[39],[40],. . .).

Undeniable signatures are a concept introduced by Chaum and van Antwerpen in 1989 ([11]). It
is a kind of signatures that cannot be verified without interacting with the signer. They are useful
in situations where the validity of a signature must not be universally verifiable. For example, a
software vendor might want to embed signatures into his products and allow only paying customers
to check the authenticity of these products. If the vendor actually signed a message, he must be able
to convince the customer of this fact using a confirmation protocol and, if he did not, he must also
be able to convince the customer that he is not the signer with a denial protocol. These proofs have
to be non-transferable: once a verifier is convinced that the vendor did or did not sign a message,
he should be unable to transmit this conviction to a third party.

In some applications, a signer needs to decide not only when but also by whom his signatures
can be verified. For example a voting center can give a voter a proof that his vote was actually
counted without letting him the opportunity to convince someone else of his vote. That is the

motivation of designated verifier proofs for undeniable signatures. This kind of proof involves the
verifier’s public key in such a way that he is not able to convince a third party that a signer actually
signed a message or not because he is able to produce such a valid proof himself using his private
key. Several proof systems were proposed for undeniable signatures ([19],[27],[34],...). The use of
designated verifier proofs ([27]) can provide non-interactive and non-transferable confirmation and
denial protocols.

Several examples of undeniable signature schemes based on discrete logarithm were proposed
([11],[12],[13]) and the original construction of Chaum and van Antwerpen ([11]) was proven secure
in 2001 by Okamoto and Pointcheval ([32]) thanks to full domain hash techniques and the use of
a new kind of computational problems. Several convertible 1 undeniable signatures were proposed
([6],[17],[30],...). In 1997, Michels and Stadler proposed a convertible undeniable signature support-
ing designated-verifier verification. RSA-based undeniable signatures were designed by Gennaro,
Krawczyk and Rabin ([22]) and Galbraith, Mao and Paterson ([20]). However, no secure identity
based undeniable signature has been proposed so far. A solution was proposed in [25] but it was
shown in [41] to be insecure. In this paper, we show how bilinear maps over elliptic curves can
provide such a provably secure scheme. It is known ([31]) that an undeniable signature can be
built from any public key encryption scheme and a similar result is likely to hold in the ID-based
setting. However, the scheme described here can offer a security that is more tightly related to some
computational problem than a scheme derived from the Boneh-Franklin IBE ([4]).

Chaum, van Heijst and Pfitzmann introduced the notion of ’invisibility’ for undeniable signa-
tures. Intuitively, it corresponds to the inability for a distinguisher to decide whether a message-
signature pair is valid for a given user or not. The RSA-based schemes described in [20] and [22]
do not provide invisibility. In [21], Galbraith and Mao describe a new RSA-based undeniable sig-
nature that provides invisibility under the so-called composite decision Diffie-Hellman assumption
and they show that invisibility and anonymity 2 are essentially equivalent security notions for un-
deniable signature schemes satisfying some particular conditions. In this paper, we extend these
two security notions to the identity based setting and we prove in the random oracle model that
our scheme is both existentially unforgeable and invisible under some reasonable computational as-
sumptions. Invisibility and anonymity can also be shown to be equivalent in the context of identity
based cryptography and we will not do it here.

In section 2, we first recall the properties of pairings over elliptic curves before formally de-
scribing security notions related to identity based undeniable signatures. In section 3, we describe
the different components of our scheme. We then show their correctness and we discuss about their
efficiency. The rest of the paper is made of a security analysis of the scheme in the random oracle
model.

2 Preliminaries

2.1 Overview of pairings and bilinear problems

Let us consider groups G1 and G2 of the same prime order q. We need a bilinear map ê : G1×G1 →
G2 satisfying the following properties:

1. Bilinearity: ∀ P, Q ∈ G1, ∀ a, b ∈ Zq, we have ê(aP, bQ) = ê(P, Q)ab.
2. Non-degeneracy: for any P ∈ G1, ê(P, Q) = 1 for all Q ∈ G1 iff P = O.
3. Computability: some efficient algorithm can compute ê(P, Q) ∀ P, Q ∈ G1.

1 See [6]. Convertible undeniable signatures are undeniable signatures that can be converted by the signer into
universally verifiable signatures.

2 This security notion is related to the inability for an adversary to decide which user generated a particular message-
signature pair in a multi-user setting.

G1 is a subgroup of the additive group of points of a supersingular elliptic curve E(Fp) over a finite
field. G2 is a cyclic subgroup of the multiplicative group associated to a finite extension of Fp. The
original Weil pairing ([29]) is defined over non-cyclic groups. For our purposes, we use pairings
over cyclic groups such as the modified Weil pairing ([4]) or the Tate pairing. The security of the
schemes described in this paper relies on the hardness of the following problems.

Definition 1. Given groups G1 and G2 of prime order q, a bilinear map ê : G1 ×G1 → G2 and a
generator P of G1,

- the Bilinear Diffie-Hellman problem (BDH) in (G1,G2,ê) is to compute ê(P, P)abc given
(P, aP, bP, cP).

- The Decisional Bilinear Diffie-Hellman problem (DBDH) is, given (P, aP, bP, cP) and
z ∈ G2, to decide whether z = ê(P, P)abc or not. The advantage of a distinguisher D for the
DBDH problem is defined as

Adv(D) =
∣

∣Pr
a,b,c∈RZq,h∈RG2

[1← D(aP, bP, cP, h)]

− Pr
a,b,c∈RZq

[1← D(aP, bP, cP, ê(P, P)abc)]
∣

∣.

- The Gap Bilinear Diffie Hellman problem is to solve a given instance (P, aP, bP, cP)
of the BDH problem with the help of a DBDH oracle that is able to decide whether a tuple
(P, a′P, b′P, c′P, z) is such that z = ê(P, P)a′b′c′ or not. Such tuples will be called DBDH tuples.

The DBDH problem was introduced in [14] where it is shown to be not harder than the decisional
Diffie-Hellman problem in G2. It is not known whether the Bilinear Diffie-Hellman problem is
strictly easier than the computational Diffie-Hellman problem in G1 or not. It is also an open
question whether the DBDH problem is strictly easier than the BDH one (although it is obviously
not harder). Nevertheless, no probabilistic polynomial time algorithm is known to solve any of them
with a non-negligible advantage so far. Their hardness then seems to be a reasonable assumption
for the security of cryptographic protocols.

2.2 Identity based undeniable signatures

An identity based undeniable signature is made of three algorithms and two possibly interactive
protocols.

Setup: the PKG takes as input a security parameter k and produces a public/private key pair
(s, Ppub) and the system’s public parameters params. s is the system’s master key and Ppub is
the PKG’s public key that must be certified.

Keygen: given a user’s identity ID, the PKG uses its master secret key s to compute the corre-
sponding private key dID and transmit it to the user through a secure channel.

Sign: given a message M ∈ {0, 1}∗ and his private key dID, the user generates a signature σ
associated to M for his identity ID.

Confirm: is a protocol between a signer and a (possibly designated) verifier that takes as input
a message M ∈ {0, 1}∗, an identity ID ∈ {0, 1}∗, the associated private key dID and a valid
signature σ for the pair (M, ID). The output of the protocol is a (possibly non-interactive)
non-transferable proof that σ is actually a valid signature on M for the identity ID.

Deny: is a protocol of the same kind as Confirm but its input is an invalid signature σ for a given
pair (M, ID) and the private key dID corresponding to ID. Its output is a proof that σ is not
a valid signature for a message M and an identity ID.

Confirm and Deny may be a single protocol. In our scheme, they are distinct.

2.3 Security notions for identity based undeniable signatures

The first security notion for ID-based undeniable signature is close to the one for other existing
identity based signatures: it is the notion of existential unforgeability under chosen-message attacks.

Definition 2. We say that an identity based undeniable signature scheme is existentially un-

forgeable under chosen-message attacks if no probabilistic polynomial time (PPT) adversary has
a non-negligible advantage in the following game:

1. The challenger runs the setup algorithm to generate the system’s parameters and sends them to
the adversary.

2. The adversary F performs a series of queries:
- Key extraction queries: F produces an identity ID and receives the private key dID corre-

sponding to ID.
- Signature queries: F produces a message M and an identity ID and receives a signature

on M that was generated by the signature oracle using the private key corresponding to the
public key ID.

- Confirmation/denial queries: F produces a pair message-signature (M, σ) and an identity
ID and gives them to the signature oracle that runs the confirmation/denial protocol to
convince F that σ is actually related to M and ID or that it is not (in a non-transferable
way) using the private key dID corresponding to ID.

3. After a polynomial number of queries, F produces a tuple (ID, M, σ) made of an identity ID,
whose corresponding private key was not asked to the challenger during stage 2, and a message-
signature pair (M, σ) that was not issued by the signature oracle during stage 2 for the identity
ID.

The forger F wins the game if it is able to provide a non-transferable proof of validity of the
signature σ for message M and identity ID. Its advantage is defined to be its probability of success
taken over the coin-flippings of the challenger and F .

A second security notion for undeniable signatures was introduced by Chaum, van Heijst and
Pfitzmann ([13]) and is called ’invisibility’. Informally, this notion corresponds to the inability for
a dishonest verifier to decide whether a given signature on a given message was issued by some
signer even after having observed several executions of confirmation/denial protocols by the same
signer for other signatures. Galbraith and Mao ([21]) proposed a general definition for this security
notion. In the identity based setting, we need to strengthen it a little to consider the fact that a
dishonest user might be in possession of private keys associated to other identities before trying
to validate or invalidate an alleged signature on a message for an identity without the help of the
alleged signer.

Definition 3. An identity based undeniable signature scheme is said to satisfy the invisibility

property if no PPT distinguisher D has a non-negligible advantage against a challenger in the
following game:

1. The challenger performs the setup of the scheme and sends the system’s public parameters to
D.

2. The distinguisher D performs a polynomially bounded number of queries: key extraction queries,
signature queries and confirmation/denial queries of the same kind as those of the previous
definition.

3. After a first series of queries, D asks for a challenge: it produces a pair (M, ID) made of a
message and an identity for which the associated private key was not asked in step 2. The
challenger then flips a coin b←R {0, 1}. If b = 0, the challenger sends D a valid signature σ on
M for the identity ID. Otherwise, D receives from the challenger a random element σ ←R S
taken at random from the signature space S.

4. The distinguisher D then performs a second series of queries. This time, it is not allowed to
perform a confirmation/denial query for the challenge (σ, M, ID) nor to ask the private key
associated to ID.

5. At the end of the game, D outputs a bit b′ (that is 0 if D finds that (σ, M, ID) is a valid
message-signature-identity tuple and 1 otherwise) and wins the game if b = b′.

D’s advantage in this game is defined to be Advinv(D) := 2Pr[b = b′]− 1.

The above probability is taken over the coin flippings of the distinguisher D and the challenger.
Similarly to what is done in [21], we also consider the notion of anonymity. This notion is slightly

strengthened in the identity based setting

Definition 4. We say that an identity based undeniable signature scheme satisfies the anonymity

property if no probabilistic polynomial time distinguiser D has a non-negligible advantage in the
following game:

1. The challenger performs the setup of the scheme and sends the system’s public parameters to
D.

2. The distinguisher D performs a polynomially bounded number of queries: key extraction queries,
signature queries and confirmation/denial queries of the same kind as those of definition 2.

3. After a first series of queries, D requests a challenge: it produces a message M and a pair of
identities ID0, ID1 for which it did not ask the associated private keys in the first stage. The
challenger then flips a coin b ←R {0, 1} and computes the signature σ on M with the private
key associated to IDb. σ is sent as a challenge to D.

4. D performs another series of queries. This time, it is not allowed to perform a confirmation or
denial query for the challenge σ on identities ID0, ID1 nor to request the private key associated
to these identities.

At the end of the game, D outputs a bit b′ for which it finds that σ is a valid signature on M for
the identity IDb′. It wins the game if b′ = b. Its advantage is defined as the previous definition.

It is shown in [21] that the notions of invisibility and anonymity are essentially equivalent
for undeniable and confirmer signature schemes satisfying some particular properties. It is almost
straightforward (by using the techniques of [21]) to show that this equivalence also holds in the
identity based setting. We will not do it here. In the next section, we describe a first example of
identity based undeniable signature and we just focus on proving its existential unforgeability and
its invisibility in the random oracle model.

3 An identity based undeniable signature

Our ID-based undeniable signature scheme is made of the following five algorithms.

Setup: given security parameters k and l, the PKG chooses groups G1 and G2 of prime order
q > 2k, a generator P of G1, a bilinear map ê : G1 × G1 → G2 and hash functions H1 :
{0, 1}∗ → G1, H2 : {0, 1}∗ × {0, 1}l × {0, 1}∗ → G1, H3 : G

3
2 → Zq and H4 : G

4
2 → Zq. It

chooses a master secret s ←R Zq and computes Ppub = sP ∈ G1 that is made public. The
system’s public parameters are

params := {q, G1, G2, ê, P, Ppub, H1, H2, H3, H4}.

Keygen: given an identity ID, the PKG computes QID = H1(ID) ∈ G1 and the associated private
key dID = sQID ∈ G1 that is transmitted to the user.

Sign: to sign a message M ∈ {0, 1}∗, the signer Alice uses the private key dIDA
associated to her

identity IDA.
1. She picks a random string r ←R {0, 1}

l to compute H2(M, r, IDA) ∈ G1.
2. She then computes γ = ê(H2(M, r, IDA), dIDA

) ∈ G2. The signature on M is given by

σ = (r, γ) = (r, ê(H2(M, r, IDA), dIDA
)) ∈ {0, 1}l ×G2.

Confirm: to verify a signature σ on a message M , a verifier of identity IDB needs the help of
the signer Alice. He sends her the pair (M, σ), where σ =< r, γ >∈ {0, 1}l × G2 is the alleged
signature. Alice then runs the following confirmation protocol to produce a non-interactive
designated-verifier proof that σ is a valid signature on M for her identity IDA:

a. She first computes QIDB
= H1(IDB).

b. She picks U, R←R G1 and v ←R Zq and computes

c = ê(P, U)ê(Ppub, QIDB
)v ∈ G2

g1 = ê(P, R) ∈ G2 and g2 = ê(H2(M, r, IDA), R) ∈ G2.

c. She takes the hash value h = H3(c, g1, g2) ∈ Zq.
d. She computes S = R + (h + v)dIDA

.

The proof is made of (U, v, h, S) and is checked by the verifier like this: he first computes c′ =
ê(P, U)ê(Ppub, QIDB

)v and then g′1 = ê(P, S)ê(Ppub, QIDA
)h+v and g′2 = ê(H2(M, r, IDA), S)γh+v.

He accepts the proof if and only if h = H3(c
′, g′1, g

′

2).

Deny: in order to convince a designated verifier of identity IDB that a given signature σ =< r, γ >
on a message M is not valid for her identity IDA,

a. Alice computes QIDB
= H1(IDB) ∈ G1 and picks random U ←R G1, v ←R Zq to compute

c = ê(P, U)ê(Ppub, QIDB
)v.

b. She computes a commitment C =
(ê(H2(M,r,IDA),dIDA

)

γ

)ω
for a randomly chosen ω ←R Zq.

c. She proves in a zero-knowledge way that she knows a pair (R, α) ∈ G1 × Zq such that

C =
ê(H2(M, r, IDA), R)

γα
and 1 =

ê(P, R)

ê(Ppub, QIDA
)α

(1)

To do this,

1. She picks V ←R G1, v ←R Zq to compute

ρ1 = ê(H2(M, r, IDA), V)γ−v ∈ G2 and ρ2 = ê(P, V)y−v ∈ G2

where y = ê(Ppub, QIDA
).

2. She computes h = H4(C, c, ρ1, ρ2) ∈ Zq.
3. She computes S = V + (h + v)R ∈ G1 and s = v + (h + v)α ∈ Zq.

The proof is made of (C, U, v, h, S, s). It can be verified by the verifier of identity IDB

who rejects the proof if C = 1 and otherwise computes c′ = ê(P, U)ê(Ppub, QIDB
)v, ρ′1 =

ê(H2(M, r, IDA), S)γ−sC−(h+v) and ρ′2 = ê(P, S)y−s where y = ê(Ppub, QIDA
). The verifier

accepts the proof if and only if h = H4(C, c′, ρ′1, ρ
′

2).

The confirmation protocol is a pairing based adaptation of a designated verifier proof ([27]) proposed
by Jakobsson, Sako and Impagliazzo that allows a prover to convince a designated verifier of the
equality of two discrete logarithms. The denial protocol is an adaptation of a protocol proposed by
Camenisch and Shoup ([8]) to prove the inequality of two discrete logarithms. Both adaptations
are non-transferable proofs of respectively equality and inequality of two inverses of the group
isomorphisms fQ : G1 → G2, Q → fQ(U) = ê(Q, U) with Q = P and Q = H2(M, r, IDA). In an
execution of the confirmation protocol, the verifier B takes the signature as valid if he is convinced
that fP (dIDA

) = ê(Ppub, QIDA
) and γ have identical pre-images for isomorphisms fP (.) = ê(P, .)

and fH2(M,r,IDA)(.) = ê(H2(M, r, IDA), .). In the denial protocol, he takes the signature as invalid
on M for identity IDA if he is convinced that these inverses are different.

Completeness and soundness of the confirmation protocol: it is easy to see that a correct
proof is always accepted by the verifier B: if (U, v, h, S) is correctly computed by the prover, we have
ê(P, S) = ê(P, R)ê(P, dIDA

)h+v and ê(P, dIDA
) = ê(Ppub, QIDA

). We also have ê(H2(M, r, IDA), S) =

ê(H2(M, r, IDA), S)ê(H2(M, r, IDA), dIDA
)h+v. In order to show the soundness, we notice that if

a prover is able to provide two correct answers S1, S2 for the same commitment (c, g1, g2) and two
different challenges h1 and h2, we then have the relations

ê(P, (h1 − h2)
−1(S1 − S2)) = ê(Ppub, QIDA

)

ê(H2(M, r, IDA), (h1 − h2)
−1(S1 − S2)) = γ.

This shows that both inverses of f−1
P (ê(Ppub, QIDA

)) and f−1
H2(M,r,IDA)(γ) are equal.

Completeness and soundness of the denial protocol: one easily checks that a honest prover
is always accepted by the designated verifier. To prove the soundness, one notices that if the prover
is able to provide a proof of knowledge of a pair (R, α) satisfying equations (1), then the second of
these equations implies R = αf−1

P (y) with y = ê(Ppub, QIDA
) by the bilinearity of the map. If we

substitute this relation into the first equation of (1), it comes that

C =
(ê(H2(M, r, IDA), f−1

P (y))

γ

)α
.

Since the verifier checks that C 6= 1, it comes that ê(H2(M, r, IDA), f−1
P (y)) 6= γ and the signature

γ is actually invalid. The soundness of the proof of knowledge in step c is easy to verify.

Non-transferability: in order for the proofs to be non-transferable, both protocols need a trap-
door commitment Commit(U, v) = ê(P, U)ê(Ppub, QIDB

)v that allows the owner of the private key
dIDB

to compute commitment collisions: indeed, given a tuple (U, v, Commit(U, v)), B can easily
use dIDB

to find a pair (U ′, v′) such that Commit(U, v) = Commit(U ′, v′). This is essential for the
proof to be non-transferable: the verifier B cannot convince a third party of the validity or of the
invalidity of a signature since his knowledge of the private key dIDB

allows him to produce such a
proof himself. Indeed, given a message-signature pair (M, σ), with σ =< r, γ >∈ {0, 1}l×G2, B can
choose S ←R G1, x ←R Zq and U ′ ←R G1 to compute c = ê(P, U ′), g1 = ê(P, S)ê(Ppub, QIDA

)x,
g2 = ê(H2(M, r, IDA), S)γx and c = H3(c, g1, g2). He can then compute v = x − h mod q and
U = U ′− vdIDB

∈ G1 where dIDB
is the verifier’s private key. (U, v, h, S) is thus a valid proof built

by the verifier with the trapdoor dIDB
. This trapdoor also allows him to produce a false proof of a

given signature’s invalidity using the same technique with the denial protocol.

Efficiency considerations: From an efficiency point of view, the signature generation algorithm
requires one pairing evaluation as a most expensive operation. The confirmation and denial proto-
cols are more expensive: the first one requires 4 pairing evaluations (3 if ê(Ppub, QIDB

) is cached in
memory: this can be done if the verifier often performs verification queries), one exponentiation in
G2 and one computation of the type λ1P + λ2Q in G1. The verifier needs to compute 3 pairings (2
if ê(Ppub, QIDA

) is cached), 3 exponentiations and 3 multiplications in G2. In the denial protocol,
the prover must compute 5 pairings (4 if ê(Ppub, QIDB

) is cached), 4 exponentiations and 4 mul-
tiplications in G2, one computation of the type λ1P + λ2Q and some extra arithmetic operations
in Zq. The verifier must compute 4 pairings (3 if ê(Ppub, QIDB

) is cached), 2 exponentiations, 1
multi-exponentiation and 3 multiplications in G2. To improve the efficiency of the confirmation
and denial algorithms, one can speed up the computation of commitments. Indeed, the prover can
pre-compute ê(P, P) once and for all. To generate a commitment in an execution of the confir-
mation protocol, he then picks u, v, x ←R Zq and computes c = ê(P, P)uê(Ppub, QIDB

)v, R = xP
g1 = ê(P, P)x, g2 = ê(H2(M, r, IDA), R). The answer to the challenge h must then be computed
as S = R + (h + v)dIDA

and the proof is made of (u, v, h, S). This technique can also be applied
in the denial protocol. It allows replacing 2 pairing evaluations by 2 scalar multiplications, one
exponentiation and a multi-exponentiation in G2 (to compute c). A single pairing evaluation is
then required for the prover at each execution of the confirmation and denial protocols.

Globally, it turns out that a signature verification is more expensive than a signature generation
even if a pre-computation is performed. Our ID-based undeniable signature solution is nevertheless
reasonable.

If we consider the length of signatures, the binary representation of a pairing is about 1000 bits
long (1024 if we use the same curve as in [4]) while the length l of the binary string can be of the
order of 100 bits. This provides us with signatures of about 1100 bits. This is roughly one half of
the size of the RSA-based undeniable signature proposed in [21] (this scheme produces signatures
of more than 2048 bits if 1024-bit moduli are used). If we compare our scheme with the origi-
nal undeniable signature proposed by Chaum and van Heijst and proven secure by Okamoto and
Pointcheval ([32]), both lengths are similar if the Chaum-van Heijst scheme is used over a group
like Zp with |p| = 1000 (this is no longer true if this scheme is used over a suitable elliptic curve).
However, it remains an open problem to devise identity based undeniable signature schemes with
shorter signatures than ours.

Convertible signatures It is really easy to notice that issued signatures can be selectively turned
into universally verifiable signatures by the signer. In order to convert a genuine signature σ =<
r, ê(H2(M, r, IDA), dIDA

) >, the signer Alice just has to take a random x ←R Zq and compute
R = xP , g1 = ê(P, P)x, g2 = ê(H2(M, r, IDA), R), the hash value h = H(g1, g2) and the answer S =
R+hdIDA

. The proof, given by (h, S) ∈ Zq×G1, is easily universally verifiable by a method similar
to the verification in the confirmation protocol. Alice can also give a universally verifiable proof
that a given signature is invalid for her identity by using the non-designated verifier counterpart of
the denial protocol.

Removing key escrow In order to prevent a dishonest PKG from issuing a signature on behalf of a
user and from compromising the invisibility and anonymity properties, one can easily use the generic
transformation proposed by Al-Riyami and Paterson ([1]) to turn the scheme into a certificateless
undeniable signature. The obtained scheme is provably secure in the model described in [1] in the
same way as its identity based counterpart in the identity based security model. Unfortunately, the
advantage of easy key management is lost since the resulting scheme no longer supports human-
memorizable public keys. On the other hand, key escrow, which is often an undesirable feature in
signature schemes, is then removed as well as the need for public key certificates.

4 Security proofs for the ID-based undeniable signature

We first give a proof in the random oracle model that our identity based undeniable signature is
existentially unforgeable under adaptive chosen-message attacks. We then provide a proof of its
invisibility.

Theorem 1. In the random oracle model, if there exists an adversary F that is able to succeed
in an existential forgery against the identity based undeniable signature scheme described in the
previous section with an advantage ε within a time t and when performing qE key extraction queries,
qS signature queries, qCD confirmation/denial queries and qHi

queries on hash oracles Hi, for
i = 1, . . . , 4, then there exists an algorithm B that is able to solve the Bilinear Diffie-Hellman
problem with an advantage

ε′ ≥
ε− (2qH3

+ qCD + 1)/2k

e2(qE + 1)(qCD + 1)

in a time t′ ≤ t + 6Tp + (qE + qH1
+ qH2

)Tm + (qS + qCD)Te + 2qCDTme where Tp denotes the time
required for a pairing evaluation, Tm is the time to perform a multiplication in G1, Te is the time
to perform an exponentiation in G2, Tme the time for a multi-exponentiation in G2 and e is the
base for the natural logarithm.

Proof. see the appendix �

In order for the proof to hold, we must have qH2
� 2l, where l is the size of the random salt

r. We then take l = 100. We note that the reduction is not really efficient: if we take qE ≈
qCD ≤ 230 and qH3

< 280, we then have (2qH3
+ qCD + 1)2−k ≈ 1.65 × 10−64. If we assume

ε − (2qH3
+ qCD + 1)2−k > ε/2, we obtain the bound ε′ > ε/264. However, we have a proof with

a tighter bound if the underlying assumption is the hardness of the Gap Bilinear Diffie-Hellman
problem. The use of a DBDH oracle allows algorithm B to perfectly simulate the confirmation/denial
protocols. The advantage of algorithm B is then

ε′ ≥
ε− (2qH3

+ qCD + 1)2−k

e(qE + 1)
> ε/232.

We note that using the techniques of Katz and Wang ([28]) easily allows replacing the random
salt r by a single bit and then obtaining signatures that are about 100 bits shorter without losing
security guarantees.

The theorem below claims the scheme’s invisibility in the sense of Galbraith and Mao (see [21])
under the Decisional Bilinear Diffie-Hellman assumption.

Theorem 2. In the random oracle model, the identity based undeniable signature presented in
section 3 satisfies the invisibility property provided the Decisional Bilinear Diffie-Hellman problem
is hard. More formally, if we assume that no algorithm is able to forge a signature in the game of
definition 2 with a non-negligible probability and if a distinguisher D is able to distinguish valid
signature from invalid ones for a messages and an identity of its choice with a non-negligible
advantage ε after having asked qE key extraction queries, then there exists a distinguisher B that
has an advantage ε′ ≥ ε

e(qE+1) for the DBDH problem within a time bounded as in theorem 1.

Proof. see the appendix �

It is possible to directly show that the scheme also satisfies the anonymity property in the
random oracle model under the Decisional Bilinear Diffie-Hellman assumption. However, since
anonymity and invisibility are essentially equivalent, the anonymity of our signature derives from
its invisibility property.

5 Another application

Our construction provides an application of independent interest which is the possibility to design
an identity based signature with a ’tighter’ security proof than all other existing provably secure
identity based signatures ([9],[18],[24],[26]) for which the security proofs make use of the forking
lemma ([35],[36]): indeed by concatenating a signature produced by the undeniable scheme with
a non-designated verifier proof of its validity (using the non-designated verifier counterpart of the
confirmation protocol), we obtain a universally verifiable identity based signature for which the
security is the most tightly related to some hard computational problem. Recall that all existing
identity based signatures have a security proof built on the forking lemma of Pointcheval and Stern
that involves a degradation in security during the reduction as pointed out in [23]: if qH denotes
the number of message hash queries and t the forger’s running time, then the upper bound on
the average running time to solve the problem is qHt (if we assume qH < 280, this makes a great
degradation for the bound on the running time). This new ID-based signature may be viewed as an
adaptation of the signature recently proposed by Goh and Jarecki ([23]). It is less efficient than all
the other ones but is more tightly related to a computational assumption than those in ([9],[26]),
which are only loosely related to the computational Diffie-Hellman problem, or the scheme in ([24])
that has a security loosely related to the RSA assumption. As for the proof of unforgeability of
the undeniable signature under the Gap Bilinear Diffie-Hellman assumption, one can show that, if
the forger’s advantage is ε, then the average time to solve the BDH problem is smaller than 232t/ε
where t is the running time of the forger. The corresponding bound for the identity based signature
described in [26] is roughly 2146t/ε if 230 identity hash queries and 280 message hash queries 3 are
allowed to the attacker.

6 Conclusions

In this paper, we showed a first construction for a provably secure identity based undeniable signa-
ture and we extended the panel of primitives for identity based cryptography ([1]). We provided a
proof of existential unforgeability under the Bilinear Diffie-Hellman assumption and we argued that
a ’tighter’ proof can be made under the Gap Bilinear Diffie-Hellman assumption. Our construction
and the underlying assumption for its security are inspired from those of Chaum-van Antwerpen
([11]) and Okamoto-Pointcheval ([32]). We also extended the notions of invisibility and anonymity
of Galbraith and Mao ([21]) to the identity based setting and we proved the invisibility of our
scheme in the random oracle model under the Decisional Bilinear Diffie-Hellman assumption.

As a side effect, our construction allows the design an identity based signature scheme with a
security more tightly related to the hardness of some hard problem than any other existing provably
secure identity based signature.

A direction for future research would be to find an identity based undeniable signature scheme
that satisfies the invisibility property and is tightly related to a weaker assumption than the hard-
ness of the BDH problem.

References

1. S.-S. Al-Riyami , K.G. Paterson, Certificateless Public Key Cryptography, Advances in Cryptology - Asiacrypt’03,
Lecture Notes in Computer Science Series, 2003.

2. P.-S.-L.-M. Barreto, H.-Y. Kim, Fast hashing onto elliptic curves over fields of characteristic 3, eprint available
at http://eprint.iacr.org/2001/098/.

3. M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, Proc. of the
1st ACM Conference on Computer and Communications Security, pp. 62-73, 1993.

3 Hashing onto a finite field may be viewed as an operation of unit cost while hashing onto an elliptic curve requires
some extra computation as explained in [2].

4. D. Boneh, M. Franklin, Identity Based Encryption From the Weil Pairing, Advances in Cryptology - Crypto’01,
Lecture Notes in Computer Science vol. 2139, Springer-Verlag, pp. 213-229, 2001.

5. D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, Advances in Cryptology - Asiacrypt’01,
Lecture Notes in Computer Science vol. 2248, Springer, pp. 514-532, 2001.

6. J. Boyar, D. Chaum, I. Damg̊ard, T. Pedersen, Convertible undeniable signatures, Advances in Cryptology -
Crypto’90, Lecture Notes in Computer Science vol. 537, Springer, pp. 189-208, 1990.

7. X. Boyen, Multipurpose Identity-Based Signcryption. A Swiss Army Knife for Identity-Based Cryptography, Ad-
vances in Cryptology - Crypto’03, Lecture Notes in Computer Science vol. 2729, Springer, pp. 383-399, 2003.

8. J. Camenisch, V. Shoup, Practical Verifiable Encryption and Decryption of Discrete Logarithms, Advances in
Cryptology - Crypto’03, Lecture Notes in Computer Science vol. 2729, Springer, pp. 126-144, 2003.

9. J.C. Cha, J.H. Cheon, An Identity-Based Signature from Gap Diffie-Hellman Groups, proceedings of PKC 2003.
Springer Verlag, Lecture Notes in Computer Science vol. 2567, pp. 18-30, Springer-Verlag, 2003.

10. D. Chaum, T. Pedersen, Wallet databases with observers, Advances in Cryptology - Crypto’92, Lecture Notes in
Computer Science vol. 740, pp. 89-105, Springer-Verlag, 1992.

11. D. Chaum, H. van Antwerpen, Undeniable signatures, Advances in Cryptology - Crypto’89, Lecture Notes in
Computer Science vol. 435, Springer-Verlag, pp. 212-216, 1989.

12. D. Chaum, Zero-knowledge undeniable signatures, Advances in Cryptology - Crypto’90, Lecture Notes in Com-
puter Science vol. 473, Springer-Verlag, pp. 458-464, 1990.

13. D. Chaum, E. van Heijst, B. Pfitzmann, Cryptographically strong undeniable signatures, unconditionally secure
for the signer, Advances in Cryptology - Crypto’91, Lecture Notes in Computer Science vol. 576, Springer-Verlag,
pp. 470-484, 1991.

14. J.H. Cheon, D. H. Lee, Diffie-Hellman Problems and Bilinear Maps, eprint available at
http://eprint.iacr.org/2002/117/.

15. C. Cocks, An Identity Based Encryption Scheme Based on Quadratic Residues, Proc. of Cryptography and
Coding, Lecture Notes in Computer Science 2260, Springer, pp. 360-363, 2001.

16. R. Dupont, A. Enge, Practical Non-Interactive Key Distribution Based on Pairings, available at
http://eprint.iacr.org/2002/136.

17. I. Damg̊ard, T. Pedersen, New convertible undeniable signature schemes, Advances in Cryptology - Eurocrypt’96,
Lecture Notes in Computer Science vol. 1070, pp. 372-386, Springer-Verlag, 1996.

18. A. Fiat, A. Shamir, How to Prove Yourself: Practical Solutions to Identification and Signature Problems , Ad-
vances in Cryptology - Crypto’86, Lecture Notes in Computer Science 0263, Springer-Verlag, pp. 186-194, 1986.

19. A. Fujioka, T. Okamoto, K. Ohta, Interactive Bi-Proof Systems and undeniable signature schemes, Advances in
Cryptology - Eurocrypt’91, Lecture Notes in Computer Science vol. 547, pp. 243-256, Springer-Verlag, 1991.

20. S. Galbraith, W. Mao, K.G. Paterson, RSA-based undeniable signatures for general moduli, Topics in Cryptology
- CT-RSA 2002. Lecture Notes in Computer Science vol. 2271, Springer Verlag, pp. 200-217.

21. S. Galbraith, W. Mao, Invisibility and Anonymity of Undeniable and Confirmer Signatures., proceedings of CT-
RSA 2003. Springer Verlag, Lecture Notes in Computer Science series.

22. R. Gennaro, H. Krawczyk, T. Rabin, RSA-based undeniable signatures, Advances in Cryptology - Crypto’97,
Lecture Notes in Computer Science vol. 1294, Springer-Verlag, pp. 132-149, 1997.

23. E.-J. Goh, S. Jarecki, A Signature Scheme as Secure as the Diffie-Hellman Problem, Advances in Cryptology -
Eurocrypt’03, Lecture Notes in Computer Science vol. 2656, Springer-Verlag, pp. 401-415, 2003.

24. L. Guillou, J-J. Quisquater, A “Paradoxical” Identity-Based Signature Scheme Resulting From Zero-Knowledge
, Advances in Cryptology - Crypto’88, Lecture Notes in Computer Science vol. 403, Springer-Verlag, pp. 216-231,
1988.

25. S. Han, K.Y. Yeung, J. Wang, Identity based confirmer signatures from pairings over elliptic curves, proceedings
of ACM conference on Electronic commerce, pp. 262-263, 2003.

26. F. Hess, Efficient identity based signature schemes based on pairings, proceedings of SAC’02. Springer Verlag,
Lecture Notes in Computer Science series.

27. M. Jakobsson, K. Sako, R. Impagliazzo, Designated Verifier Proofs and Their Applications, Advances in Cryp-
tology - Eurocrypt’96, Lecture Notes in Computer Science vol. 1070, Springer-Verlag, pp. 143-154, 1996.

28. J. Katz, N. Wang, Efficiency Improvements for Signature Schemes with Tight Security Reductions, to appear at
ACM Conference on Computer and Communications Security 2003.

29. A.J. Menezes, Elliptic curve public key cryptosystems, Kluwer Academic Publishers, 2nd printing, 1995.
30. M. Michels, M. Stadler, Efficient Convertible Undeniable Signature Schemes. Proceedings of SAC’97
31. T. Okamoto, Designated Confirmer Signatures and Public Key Encryption are Equivalent, Advances in Cryptol-

ogy - Crypto’94, Lecture Notes in Computer Science vol. 0839, Springer-Verlag, pp. 61-74, 1994.
32. T. Okamoto, D. Pointcheval The Gap-Problems: A New Class of Problems for the Security of Cryptographic

Schemes, Proc. of of PKC’01, LNCS 1992, Springer, pp.104-118, 2001.
33. K.G. Paterson, ID-based signatures from pairings on elliptic curves, available at http://eprint.iacr.org/2002/004/.
34. D. Pointcheval, Self-Scrambling Anonymizers, Proceedings of Financial Cryptography 2002, Lecture Notes in

Computer Science vol. 1962, Springer-Verlag, pp. 259-275, 2001.
35. D. Pointcheval, J. Stern, Security proofs for signature schemes, Advances in Cryptology - Eurocrypt’96, Lecture

Notes in Computer Science vol. 1070, Springer-Verlag, pp. 387-398, 1996.

36. D. Pointcheval, J. Stern, Security arguments for digital signatures and blind signatures, Journal of Cryptology,
vol. 13-Number 3, pp. 361-396, 2000.

37. R. Sakai, K. Ohgishi, M. Kasahara, Cryptosystems based on pairing, In The 2000 Sympoium on Cryptography
and Information Security, Okinawa, Japan, January 2000.

38. A. Shamir, Identity Based Cryptosystems and Signature Schemes, Advances in Cryptology - Crypto’ 84, Lecture
Notes in Computer Science 0196, Springer, 1984.

39. N.P. Smart, An identity based authenticated key agreement protocol based on the Weil pairing, Electronic Letters,
38(13): 630-632, 2002.

40. F. Zhang, K. Kim, ID-Based Blind Signature and Ring Signature from Pairings. Advances in Cryptology -
Asiacrypt’02, Lecture Notes in Computer Science vol. 2501, Springer-Verlag, 2002.

41. F. Zhang, R. Safavi-Naini, W. Susilo, Attack on Han et al.’s ID-based Confirmer (Undeniable) Signature at
ACM-EC’03, eprint available at http://eprint.iacr.org/2003/129/

Appendix

Proof of theorem 1

We show that one can build an algorithm B that can solve a random instance (P, aP, bP, cP)
of the Bilinear Diffie-Hellman problem using the adversary F . B will play the role of F ’s chal-
lenger in the game described in section 3. It first provides F with system parameters params =
{q, G1, G2, ê, P, Ppub, H1, H2, H3, H4} such that Ppub = cP (where c is unknown to B) and where
H1, H2, H3 and H4 are random oracles.
F now performs a series of queries as described in defintion 2.3. Let us see how B can simulate

the oracles that answer to these queries. It uses a list LH1
to keep track of answers to hash queries

on H1, a list LH2
for hash queries on H2 and lists LH3

and LH4
for queries on H3 and H4. Without

loss of generality, we can assume that hash queries on H1 are distinct and that every key extraction
on an identity ID is preceded by a random oracle query H1(ID) on that identity. The queries made
by F are handled like this:

- queries on oracle H1: to handle such a query on an identity IDi ∈ {0, 1}
∗, B first picks µi ←R Zq.

It then flips a coin X that is a random variable taking the value 0 with probability δ1 and the
value 1 with probability 1 − δ1 (the optimal value of δ1 will be determined further). B then
inserts the tuple (IDi, µi, X) into the list LH1

. If X = 1, B returns H1(IDi) = µi(bP) ∈ G1 to
F (recall that b is unknown to B). Otherwise, B returns H1(IDi) = µiP ∈ G1 as an answer to
F .

- queries on oracle H2: when receiving a query H2(Mi, ri, IDi), B first scans LH2
to check if it

contains a tuple (Mi, ri, IDi, d, Y). In this case, if Y = 1, B then answers H2(Mi, ri, IDi) =
d(aP) to F . If Y = 0, B then answers H2(Mi, ri, IDi) = dP . If no tuple (Mi, ri, IDi, ., .) is found
in LH2

, then B picks a random di ←R Zq and flips a coin Y that is a random variable taking
the value 0 with probability δ2 and the value 1 with probability 1− δ2. B then inserts the tuple
(Mi, ri, IDi, di, Y) into LH2

. If Y = 1, B returns H2(Mi, ri, IDi) = di(aP) (where aP ∈ G1 is
unknown to B) to F . Otherwise, it returns H2(Mi, ri, IDi) = diP

- key extraction queries: when F asks the private key associated to an identity IDi, B scans LH1

for a tuple (IDi, µ, X) (such a tuple must be in LH1
because of the assumption made above).

If X = 1, then B outputs ”failure” and stops since it is unable to answer the query. Otherwise,
B returns µPpub to F as the private key associated to IDi.

- signature queries: for a signature query on a message Mi and an identity IDi, B first chooses a
random binary string r ←R {0, 1}

l and checks if LH2
already contains a tuple (Mi, r, IDi, ., .).

If it does, B picks another random bitstring r ←R {0, 1}
l until finding one for which no tuple

(Mi, r, IDi, ., .) exists in LH2
. Once it has an admissible r, B takes a random d ←R Zq and

inserts (Mi, r, IDi, d, 0) into LH2
(in such a way that a subsequent H2(Mi, r, IDi) query will

receive dP as an answer). Because of the assumptions made above, LH1
must contain an entry

(IDi, ., .) indicating what value was returned to F on its previously issued H1(IDi) query. Let
QIDi

the answer given by B to this query (this answer is easily recovered from LH1
by B). B

then returns σ =< r, ê(dPpub, QIDi
) > as an answer to F ’s signature request.

- confirmation/denial queries: at any time, F can produce a message-signature pair (M, σ) and
identities IDA (the one of the alleged signer) and IDB (the one of the designated verifier) and
request an execution of the confirmation/denial protocol. To handle such a query, B first parses
σ into (r, γ) ∈ {0, 1}l ×G2. The success of the simulation depends on whether LH2

contains an
entry (M, r, IDA, ., .) or not. We can distinguish three cases. First, if no such query is found,
B can proceed as in the signature oracle simulation to generate a valid signature (r, γ ′) for the
identity IDA. After that, if γ′ = γ, B simulates the confirmation protocol to convince F of the
signature’s validity. If γ 6= γ ′, it simulates the denial protocol to convince F of the signature’s
invalidity.

A second possible case is that LH2
already contains an entry (M, r, IDA, d, 0) for some

d ∈ Zq (that means that a previous query H2(M, r, IDA) received dP as an answer). B can then
recover QIDA

= H1(IDA) from LH1
and check whether γ = ê(dPpub, QIDA

). B simulates the
confirmation protocol if the latter condition holds and the denial protocol otherwise.

The last possible case is the one where LH2
already contains a tuple (M, r, IDA, d, 1) for some

d ∈ Zq (indicating the H2(M, r, IDA) was answered to be d(aP)). In this case, B scans LH1

to find a tuple (IDA, µ, X) (such a tuple must exist because of the assumptions made above).
If X = 1, B outputs ”failure” and stops since it is unable to compare γ with the legitimate
signature on M with the random string r for the identity IDA. If X = 0, B knows that H1(IDA)
was defined to be µP ∈ G1 (and that the associated private key should be µPpub) and this allows
it to compare the γ of the alleged signature with ê(d(aP), µPpub). If both quantities are equal,
B simulates the validation of the alleged signature σ and its invalidation otherwise.

The non-interactive proofs provided by the confirmation and denial protocols are very easy
to simulate in the random oracle model. We do not give the details here but we notice that
B can fail to simulate the confirmation and denial protocols with a probability smaller than
qH3

2−k (we assume qH3
≈ qH4

). This occurs if B has to fix the value of H3 or H4 on a point
where the oracle was previously defined.

At the end of the game, F produces a tuple (M, ID, σ) where σ =< r, γ >∈ {0, 1}∗ × G2 is an
alleged signature of a signer of identity ID on the message M . To win the game, F must not have
queried the private key associated to ID and it must be able to produce a non-transferable proof of
validity of σ. For the outputted tuple, B scans LH1

and LH2
for entries (ID, µ, X) (such an entry

must exist because of the assumptions made above) and (M, r, ID, d, Y). If X = 0 or Y = 0, then B
outputs ”failure” and stops. If no entry (M, r, ID, d, Y) exists in LH2

, then B also fails. Otherwise,
if (r, γ) is a valid signature on M for the identity ID and if both inverses f−1

P (ê(Ppub, QIDA
)) and

f−1
H2(M,r,ID)(γ) are actually equal, then B can compute γ

1

µd which is equal to the solution ê(P, P)abc

of the Bilinear Diffie-Hellman problem (P, aP, bP, cP).
We still have to assess B’s probability of success. The first way for B to reach a failure state is to

receive a key extraction query on an identity IDi for which it fixed H1(IDi) = µi(bP) for some µi ∈
Zq. A failure of B can also occur when F performs a confirmation/denial query (M, ID, < r, γ >)
for which H2(M, r, ID) was defined to be d(aP), for some d ∈ Zq, and H1(ID) to µ(bP) for some
µ ∈ Zq. B also fails if the forgery (M, ID, < r, γ >) produced by F is such that H1(ID) was set to
µP for some µ ∈ Zq or H2(M, r, ID) was defined as dP for some d ∈ Zq. If qE denotes the number
of key extraction queries and qCD the number of confirmation/denial queries made by F , it easily
comes that the probability for B to avoid these failure cases is at least δqE

1 (1 − δ1)δ
qCD

2 (1 − δ2).
If B uses the optimal values δ1,opt = qE/(qE + 1) and δ2,opt = qCD/(qCD + 1), this probability
is greater than 1

e2(qE+1)(qCD+1)
. It is also possible that F does not query H2(M, r, ID), where

(M, r, ID) is a part of its forgery, during the simulation. One easily sees that the probability for
this to happen is smaller than 1/2k. Finally, the attacker F can also produce a forgery (M, ID, <
r, γ >) for which it is able to give a valid proof of validity but for which y = ê(Ppub, QID) =
ê(P, dID), γ = ê(H2(M, r, ID), d′ID) with dID 6= dID′ . Since F can provide a proof (U, v, h, S) that
(M, ID, < r, γ >) is valid, we have g1 = ê(P, R) = ê(P, S)ê(P, dID)h+v, g2 = ê(H2(M, r, ID), R′) =
ê(H2(M, r, ID), S)ê(H2(M, r, ID), d′ID)h+v and then h = logdID−d′ID

(R −R′)− v. Such a case can

only happen if a hash value H3(c, ê(P, R), ê(H2(M, r), R′)) is defined to be logdID−d′ID
(R−R′)− v

by B. The probability for this to happen is not greater than qH3
2−k. Finally, the probability for B

to fail in the simulation of a confirmation/denial is less than (qH3
+ qCD)2−k (since LH3

contains
at most qH3

+ qCD entries). This gives us the announced bound

ε− (2qH3
+ qCD + 1)/2k

e2(qE + 1)(qCD + 1)
.

The bound on the computation time derives from the fact that every request on H1, H2 and every
signing request or key extraction request requires B to compute a scalar multiplication in G1. To
handle confirmation/denial and signature queries, B can avoid pairing evaluations by pre-computing
ê(P, aP), ê(P, bP), ê(P, cP), ê(aP, cP), ê(aP, bP) and ê(bP, cP) and performing exponentiations in
G2. Every signature query requires thus an exponentiation in G2 while each confirmation/denial
queries requires one exponentiation to be able to check the validity of the alleged signature and 2
multi-exponentiation in G2 to simulate the confirmation/denial protocol. This gives us the bound
on B’s running time.

�

Proof of theorem 2

We assume there exists a distinguisher D that is able to decide whether a signature on a message
was actually issued by a signer without the help of the latter. We show that such a distinguisher
allows building a probabilistic polynomial time algorithm B that is able to solve the Decisional
Bilinear Diffie-Hellman problem with a non-negligible advantage by using D as a subroutine.

Let (P, aP, bP, cP, z) be a random instance of the problem. B’s goal is to decide whether z =
ê(P, P)abc or not. B plays the role of D’s challenger in the game of definition 3. At the beginning
of this game, B fixes the system’s parameters as in the proof of theorem 1 with Ppub = cP ∈ G1.
These system parameters are given to D that then performs a polynomially bounded number of
queries as explained in definition 3. As in the proof of theorem 1, we assume that any signature
query or confirmation/denial query on an identity is preceded by a H1 oracle query on that identity.
We now detail how B dealt with queries made by D. As in the previous theorem, B maintains lists
LH1

, LH2
and LH3

to keep track of the answers given to hash oracle queries.

- H1 oracle queries: are treated by B exactly as in the proof of theorem 1.
- H2 oracle queries: at any time D can ask the hash value of a tuple (M, r, ID) ∈ {0, 1}∗×{0, 1}l×
{0, 1}∗. When receiving such a query, B first checks if LH2

contains a tuple (M, r, ID, d, Y) for
some d ∈ Zq. If it does, B returns dP ∈ G1 as an answer to D if Y = 0 and d(aP) if Y = 1.
Otherwise, B picks a random d ←R Zq, inserts the tuple (M, r, ID, d, 0) into LH2

and returns
dP ∈ G1 as an answer to the query.

- H3 oracle queries are treated in the simplest way: B first checks if list LH3
contains an entry

indicating that a same query was previously issued. In this case, B returns the same answer
as for the previous query. Otherwise, it answers by a uniformly chosen random element of the
appropriate range, namely Zq.

- key extraction queries are handled by B exactly as in the proof of theorem 1.
- signature queries are handled by B exactly as in the proof of theorem 1. As in the latter, B can

always provide a consistent answer to this kind of query.
- confirmation/denial queries: at any time, D can produce a tuple (M, ID, σ), where σ = (r, γ) ∈
{0, 1}l × G2, and ask for a proof that σ is a valid or invalid signature on M for the signer of
identity ID. Unlike what happens in the proof of theorem 1, B is able to provide D with a con-
sistent view with overwhelming probability. Most of the time, it can reconstruct the legitimate
signature (r, γ′) on M for the signer of identity ID with the random string r (this is due to the
way that H2 oracle queries are handled). The confirmation/denial protocol is simulated exactly
as in the proof of theorem 1.

After a first series of queries, D produces a message M an identity ID of its choice on which it
wishes to be challenged and requests a challenge for that identity. Recall that it is not allowed to
chose an identity for which it asked the corresponding private key at the first stage. B then builds
the challenge like this: it takes a random binary string r ∈ {0, 1}l and checks if an entry (M, r, ID, .)
exists in LH2

. If such an entry exists, B picks another binary string r and repeats the process until

finding one such that no entry (M, r, ID, .) is in LH2
. Once an acceptable r is found, B defines the

hash value H2(M, r, ID) to be d(aP) for a randomly chosen d ←R Zq. The entry (M, r, ID, d, 1)
is then inserted into LH2

. Because of the assumptions made above, an entry (ID, µ, X) must exist
in LH1

for some µ ∈ Zq. If X = 0, then B stops and outputs ”failure”. Otherwise, B computes
γ = zdµ ∈ G2 and sets the challenge signature as < r, γ >. It is easy to see that, if D is a good
distinguisher and if z actually equals ê(P, P)abc, then < r, γ > must appear as a valid signature for
the pair (M, ID) chosen by D in its challenge request.

At the second stage of the game, D performs a second series of queries as in the first stage with
the restriction that it is now disallowed to ask the private key associated to ID nor to perform
a confirmation/denial query for the challenge (M, ID, < r, γ >). Because of this fact, B is able
to handle confirmation or denial queries with overwhelming probability: any signature (M, ID, <
r, γ′ >) with γ 6= γ′ is declared to be invalid and the denial protocol is then simulated. The only
case where F is provided with an inconsistent view on a confirmation/denial query is the situation
where (P, aP, bP, cP, z) is not a DBDH tuple and where F queries the confirmation/denial oracle
on a tuple (M, ID, < r, γ′ >) for which < r, γ′ > is a legitimate signature on M for the identity
ID. This event only occurs with negligible probability, since according to theorem 1, we assumed
that no algorithm is able to produce a valid signature for a chosen message on a chosen identity
with a non-negligible advantage without knowing the private key.

At the end of the game, D outputs a bit b′ that is 0 if it finds that (M, ID, < r, γ >) is a valid
tuple message-identity-signature and 1 if it finds that < r, γ > is a random element of the signature
space. If b′ = 0, then B outputs 1 as a result to indicate that (P, aP, bP, cP, z) is a valid DBDH
tuple. If b′ = 1, it outputs 0 to indicate that z is a random element of G2. One can easily verify
that, if D succeeds in distinguishing whether the challenge was a valid or an invalid signature, then
B succeeds in distinguishing DBDH tuples.

It remains to assess B’s probability not to achieve a state of failure. Since a failure of B can only
happen if B issues a ’bad’ key extraction query during the game or if D chooses to be challenged on
a ’bad’ identity, the probability for B not to fail is at least δqE

1 (1− δ) which is at least 1/e(qe +1) if
the optimal value of δ1 is used by B in its strategy to handle H1 queries. From this, it comes that
if ε denotes D’s advantage as a distinguisher, then B’s advantage in distinguishing DBDH tuples is
at least ε/e(qE + 1).

�

