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Abstract. In resent years, Popescu proposed several group signature
schemes based on Okamoto-Shiraishi assumption in [8–11], and claimed
his schemes are secure. However, this paper demonstrate that these
schemes all are insecure by identifying some security flaws. Exploiting
these flaws, an attacker without any secret can mount universally forg-
ing attacks. That is, anybody (not necessarily a group member) can forge
valid group signatures on arbitrary messages of his/her choice.
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1 Introduction

A group signature scheme, first introduced by Chaum and van Heyst in [6],
allows each group member of a given group be able to sign messages anony-
mously on behalf of the group. However, in case of later disputes, the group
manager can open a group signature and then identify the signer of it. Group
signatures have many practical applications, such as e-voting, e-bidding, e-cash
and fingerprinting systems, etc.

Following the first work by Chaum and van Heyst, a number of new group sig-
nature schemes and improvements have been proposed. Camenisch and Stadler
proposed the first group signature scheme for large group, since in their scheme
the lengths of the group public key and signatures are independent of the group
size [3]. In [4, 5], Camenisch and Michels constructed an efficient group signa-
ture scheme Based on the strong RSA assumption. In 1999, Ateniese and Tsudik
pointed out some obstacles that stand in the way of real world applications of
group signatures, such as coalition attacks and member deletion [2]. Later, Ate-
niese et al. presented a practical and provably secure coalition-resistant group
signature scheme [1]. To deal with exposure of group members’ secret keys and
revocation of group members, Song proposed forward-secure group signature
schemes which support member deletion [12].

Based the Okamoto-Shiraishi assumption [7], Popescu recently proposed sev-
eral group signature schemes. He first constructed two standard schemes in [8,



9], and then extended them to a group blind signature [10] and a scheme with
revocation [11]. Contrast to Song’s schemes, Popescu’s scheme in [11] has an
advantage, that is, the system life time does not need to be divided into a pre-
defined number of time periods. In the four schemes [8–11], the authors claimed
that their schemes satisfy all the security requirements on group signatures (see
Section 2 for details). However, this is not true.

In this paper, some serious security flaws in Popescu’s schemes are success-
fully identified. Exploiting these flaws, an attacker can mount universally forging
attacks without any secret. In other words, our attacks allow anybody (not nec-
essarily a group member) to forge valid group signatures on arbitrary messages
of his/her choice. This implies that these schemes all are insecure. Since these
four schemes have similar structures, we only overview and describe the security
flaws on the most recent scheme proposed in [11]. For convenience, we call it
PNBM scheme. Similar attacks also apply to other three schemes [8–10].

The rest of this paper is organized as follows. Section 2 first introduces the
Okamoto-Shiraishi assumption [7], and the security requirements on a group
signature scheme. We then review and analyze the PNBM scheme [11] in Section
3 and 4, respectively. Finally, some concluding remarks are given in Section 5.

2 Assumption and Security Requirements

In this section, we briefly review the Okamoto-Shiraishi assumption which all
Popescu’s schemes based on, and the security requirements on group signatures.

Okamoto-Shiraishi Assumption [7] Let e be an integer, e ≥ 4. Given as
inputs a RSA modulus n = pq and an element C ∈ Z∗

n, it is hard to find two
integers X and δ such that Xe ≡ C + δ mod n and δ ∈ [a, b], where a and b are
two integers satisfying 0 ≤ a < b < n2/3.

A secure group signature scheme must satisfy the following six properties [6,
3, 1, 2]:

1. Unforgeability: Only group members are able to sign messages on behalf
of the group.

2. Anonymity: Given a valid signature of some message, identifying the actual
signer is computationally hard for everyone but the group manager.

3. Unlinkability: Deciding whether two different valid signatures were com-
puted by the same group member is computationally hard.

4. Exculpability: Neither a group member nor the group manager can sign
on behalf of other group members.

5. Traceability: The group manager is always able to open a valid signature
and identify the actual signer.

6. Coalition-resistance: A colluding subset of group members (even if com-
prised of the entire group) cannot generate a valid signature that the group
manager cannot link to one of the colluding group members.



3 Review of the PNBM Group Signature Scheme

This section review the PNBM group signature scheme proposed by Popescu et
al. in [11]. The whole scheme consists of six components.

3.1 SETTUP

To setup a system, the group manager performs the following steps:

(1) Select two random safe primes p and q, i.e., there exist two primes p′ and
q′ such that p = 2p′ + 1 and q = 2q′ + 1. Then, the group manager sets his
RSA modulus n = pq. Let ln denotes the bit-length of n.

(2) Pick Ḡ = 〈ḡ〉 of order n in which computing discrete logarithms is infeasible.
For example, Ḡ can be a subgroup of Z∗

p̄ for a large prime p̄ such that n|(p̄−1).
(3) Choose a public exponent e satisfying e > 4, and gcd(e, ϕ(n)) = 1.
(4) Select an element g of order 2p′q′ in Z∗

n. Let G = 〈g〉, and lG denotes the
bit-length of the order of G, i.e., |G| = |ord(g)| = lG

1.
(5) Select an element C ∈ Z∗

nand an element h ∈R G whose discrete logarithm
to the base g must not be known.

(6) Pick a secret value x ∈R Z∗
n and computes y = gx mod n.

(7) Publish a collision-resistant hash function H : {0, 1}∗ → {0, 1}k, and set
security parameters ε > 1, l1, l2.

(8) Finally, The public key is PK = (n, e, g, ḡ, y, h, C, ln, l1, l2, k, ε,H) and the
secret key is SK = (p′, q′, x). In practice, components of PK must be veri-
fiable to prevent framing attacks (refer to [4] for more detail).

An example for choosing the parameters is given by (see §5 of [9] or §2.1 of
[11]): ln = 1200, l1 = 350, l2 = 240, k = 160, ε = 5/4, and e = 5.

3.2 JOIN

Suppose now that a user Ui wants to join the group. We assume that communi-
cation between the group member and the group manager is secure, i.e., private
and authentic. A membership certificate in our group signature scheme consists
of a pair of integers (X, δ) satisfying Xe ≡ C+δ mod n and δ ∈ [2l1 , 2l1 +2l2−1].
To obtain his membership certificate, each user Ui must perform the following
protocol with the group manager.

(1) The user Ui selects a random element xi ∈ [2l1 , 2l1 +2l2 − 1], and computes
IDi = gxi mod n.

(2) The user Ui must prove to the group manager that he knows logg IDi and
that this value is in the interval (2l1 − 2ε(l2+k)+1, 2l1 + 2ε(l2+k)+1).

1 In [11], this step is specified as follows: Select g an element of Z∗
n of order n. Let

G = 〈g〉 be a cyclic subgroup of Z∗
n of order lG. We note their specification is

incorrect. Firstly, no element in Z∗
n has an order n, since 2p′q′ is the maximum order

of an element in Z∗
n. Secondly, lG should denote the bit-length of the order of G, not

the order itself. So we correct these errors in our description.



(3) Then, the user Ui chooses a random number r ∈ Z∗
n and computes z =

re(C + xi) mod n. He sends z to the group manager.
(4) The group manager computes v = z1/e mod n = r(C + xi)1/e mod n and

sends v to the user Ui.
(4) The user Ui computes Ai = v/r = (C + xi)1/e mod n. The pair (Ai, xi) is

the membership certificate of the user Ui.

Consequently, at the end of the protocol, the group manager does not know
the membership certificate (Ai, xi) of the user Ui. The group manager creates a
new entry in the group database to store IDi.

3.3 SIGN

With a membership certificate (Ai, xi), a group member Ui can generate his
group signature on any message m ∈ {0, 1}∗ as follows.

(1) Select two random integers w ∈R {0, 1}l2 and r ∈ Z∗
n, and then computes:

A = Aih
w mod n, B = gw mod n, D = gxiyw mod n, E = ḡr, and F =

Eb
xi
s mod n. (Note that bs is called the current revocation base, which is

issued by the group manager in the REVOKE protocol. See detail later.)
(2) Choose five random numbers r1 ∈R {0, 1}ε(l2+k), r2 ∈R {0, 1}ε(lG+l1+k),

r3 ∈R {0, 1}ε(lG+k), r4 ∈R {0, 1}ε(l2+k), r5 ∈R {0, 1}ε(l2+k), and then com-
pute: d1 = Br1/gr2 mod n, d2 = gx2

i Dr4/yr5 mod n, d3 = gr3 mod n, and
d4 = gr1yr3 mod n.

(3) Evaluate the hash value c = H(m||g||h||y||A||B||D||E||F ||d1||d2||d3||d4).
(4) Calculate s1 = r1−c(xi−2l1), s2 = r2−cxiw, s3 = r3−cw, s4 = r4+xi+c2l1 ,

s5 = r5 + xiw + c2l1 (all in Z).
(5) Send the group signature (c, s1, s2, s3, s4, s5, A, B,D) to verifier.
(6) The user Ui proves in zero-knowledge that the double discrete logarithm of

F with bases E and bs, respectively is the same as the discrete logarithm of
D’s representation to the bases g and h respectively 2.

Since D is computed as D = gxiyw mod n, the resulting proof of knowledge
is verifiable if and only if the same xi is used in the construction of both F and
D.

3.4 VERIFY

Upon receiving an alleged group signature (c, s1, s2, s3, s4, s5, A, B, D) on a mes-
sage m, a verifier can check its validity as follows:

(1) Compute d′1 = Bs1−c2l1
/gs2 mod n, d′2 = Ds4−c2l1

/ys5−c2l1 mod n, d′3 =
Bcgs3 mod n, and d′4 = Dcgs1−c2l1

ys3 mod n.
(2) Evaluate the hash value c′ = H(m||g||h||y||A||B||D||E||F ||d′1||d′2||d′3||d′4).
2 Note that there exist such protocols though not very efficient. For example, the one

proposed in [3].



(3) Check whether c ≡ c′ and s1 × s2 × s3 × s4 × s5 ∈
{
−2l2+k, ..., 2ε(l2+k)

}
×{

−2lG+l1+k, ..., 2ε(lG+l1+k)
}
×

{
−2lG+k, ..., 2ε(lG+k)

}
×

{
−2l2+k, ..., 2ε(l2+k)

}
×{

−2l2+k, ..., 2ε(l2+k)
}
.

(4) For each Vs,j ∈ CRL, check if F 6= EVs,j mod n.
(5) Check the proof of equality of double discrete logarithm fo F and the discrete

logarithm of D’s representation to the bases g and h.
(6) Accept the group signature (c, s1, s2, s3, s4, s5, A, B,D) if only if all the

above three checks hold.

3.5 OPEN

When a group signature (c, s1, s2, s3, s4, s5, A, B, D) on a message m is given, the
group manager can find out which one of the group members issued this signature
by first checking its correctness via the VERIFY protocol. If the signature is not
correct, he stops. Otherwise, the group manager performs the following steps to
identify the signer.

(1) Recover IDi = D/Bx mod n, and use the identity information IDi to find
the true singer Ui.

(2) Prove in zero-knowledge that logg y = logB(D/IDi mod n) [3, 9].

3.6 REVOKE

We begin by assuming, as usual, that a Certificate Revocation List (CRL) is a
structure available at all time from a number of well-known public repositories or
severs. A CRL is also assumed to be signed and timestamped by its issuer which
can be a universally trusted CA, or the group manager. In addition, revocability
means that a group signature produced using the SIGN algorithm be a revoked
member must be rejected using the VERIFY algorithm.

We use s to denote the index of the current CRL issue where there are l
group members to be revoked. The REVOKE algorithm show below is executed by
the group manager whenever a member or a collection of members leaves or is
expelled.

(1) Choose a random number bs ∈R QR(n) of order p′q′. This value bs becomes
the current revocation base.

(2) For each Uj (1 ≤ j ≤ l), compute Vs,j = b
xj
s mod n.

(3) The actual revocation list is then published CRL = {bs, Vs,j |1 ≤ j ≤ l}.

4 Security Flaws in the PNBM Scheme

The Popescu et al. claimed that their above scheme (and other schemes) satisfies
all the security requirements listed in Section 2. However, this is not the fact.



4.1 REVOKE Algorithm

First of all, we note that the REVOKE proposed in the PNBM scheme does not
work in normal group signature framework.

The reason is that to issue each Vs,j for all group members to be revoked, the
group manager needs to know the value of xi. However, xi is Ui’ member secret
which cannot be revealed to anyone including the group manager. If this is not
the fact, using the value of xi the group manager can recover the certificate Ai

by computing Ai = (C + xi)1/e mod n. In this condition, the group manager
can mount a framing attack, i.e., he can use the membership certificate (Ai, xi)
to generate valid signatures on behalf of the group member Ui. Of course, this
is not tolerable in setting of group signatures since exculpability is not satisfied
any more. This is a design error.

According to the analysis presented as below, the PNBM scheme [11] (and
the other three schemes) is not secure even in setting where member revocation
is not supported.

4.2 Security Parameters

Note that in the Camenisch-Michels scheme [4], the security parameters l1 and
l2 are set as l1 = 860, and l2 = 600. But, in the PNBM scheme, the authors
suggested to set the security parameters l1 = 350, and l2 = 240 (see Section
2.1 of [11]). With much shorter exponents, the PNBM scheme may be more
efficient 3. However, the security parameters l1 and l2 should select much larger.
Especially, the difference between these two parameters should be guaranteed
big enough. Otherwise, the schemes are vulnerable to some forging membership
certificate attacks. In general, the following condition is required

l1 > ε(l2 + k) + 2.

4.3 Cheating in the JOIN Protocol

In third step of the JOIN protocol, user Ui is not required to prove that z and
IDi committed the same secret value of xi. Therefore, a dishonest user Ui can
replace xi in z with a random number x̄i ∈R [2l1 , 2l1 + 2l2 − 1]. That is, by
choosing a random number r ∈R Z∗

n, Ui prepares a value of z̄ as

z̄ = re(C + x̄i) mod n,

and sends z̄ to the group manager. Then, according to the JOIN protocol, the
group manager will sends back Ui the value of v̄ which satisfies v̄ = z̄1/e mod n.
Finally, Ui gets a valid membership certificates (Āi, x̄i) by computing

Āi = v̄/r mod n.

3 We do not say that the PNBM scheme will become more efficient, since the singer
has to execute a zero-knowledge protocol to show that he knows a double discrete
logarithm. As we mentioned above, this is time-costing.



Using this valid certificate, Ui can generate valid group signatures normally.
In later possible disputes, however, the group manager cannot open the signa-
tures generated by such certificates. Because Ui uses x̄i in stead of xi in the SIGN
protocol, and x̄i has no any relationship with IDi, the Ui’s identity.

4.4 Universal Forgery

We note that in the SIGN protocol, the value of A = Aih
w mod n is not used in

essence (except it is embedded in the hash value of c). In other words, what the
SIGN protocol proves is that the signer knows some secrets such that the values
of B and D are prepared properly. But whether A and D commits the same
secret xi is not proved. Therefore, anybody (not necessarily a group member)
can generate a valid group signature for any message m of his choice as group
member does.

To this end, an attacker first picks two random numbers Āi ∈R Z∗
n, and

x̄i ∈R [2l1 , 2l1 +2l2−1]. Then, he can generate group signatures on any messages
according to the procedures described in the SIGN protocol. It is easy to check
that the resulting signatures are valid, i.e., they satisfies the VERIFY protocol.

5 Concluding Remarks

In this paper, we identified four security flaws in the group signature scheme
with revocation by Popescu et al. [11]. Except the problem in the REVOKE, other
security flaws can also be used to break the three schemes proposed in [8–10] by
Popescu. The reason is that these group signature schemes have similar structure
frameworks. Therefore, our results showed that these schemes all are completely
insecure, and that the scheme in [11] does not support member revocation in
essence. From our discussions presented above, we know that these flaws mainly
results from the insecurity of the JION and SIGN protocols, i.e., they are not
designed securely. To improve these schemes, the JION and SIGN protocols should
be carefully re-designed. Naturally, provably secure protocols are preferable and
convincing. If the function of member deletion is necessary in the system, a new
REVOKE algorithm has to be proposed.
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