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Abstract. Chameleon hash function is a trapdoor one-way hash func-
tion. The ID-based chameleon hash function was first introduced by Ate-
niese and Medeiros [1]. As discussed by [1], the general advantages of ID-
based cryptography over conventional cryptography with respect to key
distribution are even more pronounced in a chameleon hashing scheme,
because the owner of a public key does not necessarily need to retrieve
the associated secret key. In this paper, we propose two new ID-based
Chameleon hashing schemes from bilinear pairings. Based on these ID-
based chameleon hashes, ID-based chameleon signature schemes can be
designed.
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1 Introduction

Chameleon signature schemes were introduced in [8]. Such signature schemes can
provide an undeniable commitment of the signer to the contents of the signed
document (as regular digital signatures do) but, at the same time, do not allow
the recipient of the signature to disclose the contents of the signed information
to any third party without the signer’s consent. They are closely related to un-
deniable signature [5], but chameleon signatures are non-interactive signatures
based on a hash-and-sign paradigm. The main difference between regular sig-
natures and chameleon signatures is in the type of hash function. Chameleon
signatures use a chameleon hash function. A chameleon hash function is a trap-
door one-way hash function: Without knowledge of the associated trapdoor, the
chameleon hash function is resistant to the computation of pre-images and of
collisions. However, with the knowledge of the trapdoor, collisions are efficiently
computable.

The concept of ID-based cryptosystem was fist introduced by Shamir in [12].
The main idea of such cryptosystem is that the identity information of each user
works as his public key, in other words, the user’s public key can be calculated di-
rectly from his identity rather than being extracted from a certificate issued by a
certificate authority (CA). ID-based public key setting can be a good alternative
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for certificate-based public key setting, especially when efficient key management
and moderate security are required. In [1], Ateniese and Medeiros introduced the
concept of ID-based chameleon hash function. ID-based cryptography in general
has the advantage of easier key distribution when compare to conventional pub-
lic key cryptography. In the case of chameleon hashing these advantages are
multiplied by the fact that the owner of a public key does not necessarily need
to retrieve the associated secret key. Therefore, ID-based chameleon hashing can
support single-use public keys very efficiently. Ateniese and Medeiros’s ID-based
chameleon hash function is based on RSA.

In this paper, we propose two new constructions of ID-based chameleon hash
from bilinear pairings. Based on these ID-based chameleon hashes, ID-based
chameleon signature schemes are proposed.

2 Bilinear Pairing and Some Problems

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order q. A bilinear pairing is a
map e : G1 × G1 → G2 with the following properties:

P1 Bilinearity: e(aP, bQ) = e(P,Q)ab;
P2 Non-degeneracy: There exists P,Q ∈ G1 such that e(P,Q) 6= 1;
P3 Computability: There is an efficient algorithm to compute e(P,Q) for all

P,Q ∈ G1.

When the DDHP (Decision Diffie-Hellman Problem) is easy but the CDHP
(Computational Diffie-Hellman Problem) is hard on the group G, we call G a
Gap Diffie-Hellman (GDH) group. Such groups can be found on supersingular
elliptic curves or hyperelliptic curves over finite field, and the bilinear parings
can be derived from the Weil or Tate pairing.

Throughout this paper, we define the system parameters are as follows: Let
P be a generator of G1 with order q, the bilinear pairing is given by e : G1 ×
G1 → G2. These system parameter can be obtained using a GDH Parameter
Generator IG [2]. Define a cryptographic hash function H0 : {0, 1}∗ → G

∗

1.
Denote params = {G1, G2, e, q, P,H0}.

3 Definitions

We assume that all system users are identifiable by a bit-string easily derivable
from public knowledge about the individual. We call such string an identity
string.

Definition 1 (ID-Based Chameleon Hash [1]). An ID-based chameleon
hashing scheme is defined by a family of efficiently computable algorithms:

– Setup: A trusted party, called Private Key Generator (PKG), runs this
probabilistic algorithm to generate a pair of keys SK and PK defining the
scheme. It publishes PK and keeps SK secret.
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– Extract: A deterministic algorithm that, on inputs SK and an identity
string ID, outputs the trapdoor information SID associated to the identity.

– Hash: A probabilistic algorithm that, on inputs PK, an identity string ID,
and a message m, outputs a hash value h.

– Forge: An algorithm that, on inputs PK, an identity string ID, the trapdoor
information SID associated with ID, a message m′, and a hash value h of
a message m, outputs a sequence of random bits that correspond to a valid
computation of Hash(PK, ID,m′) yielding the target value h.

In practice, the Forge algorithm needs as input the randomness r leading to a
valid computation of h = Hash(ID,m, r) and then can output a second r′ 6= r

such that also h = Hash(ID,m′, r). We denote the deterministic algorithm by
Forge(ID, SID,m, r, h,m′), where SID = Extract(SK, ID).

The security of an ID-based chameleon hashing scheme consists of two re-
quirements: Resistance to collision forgery by active attacks and Seman-
tic security.

4 New Constructions of ID-Based Chameleon Hash from

Pairings

In the last couple of years, bilinear pairings have been found various applications
in cryptography, they can be used to realize some cryptographic primitives that
were previously unknown or impractical. More precisely, they are basic tools for
construction of ID-based cryptographic schemes [2, 4, 7, 9, 10]. In this section, we
propose two ID-based chameleon hash functions from bilinear pairings.

4.1 Scheme 1

– Setup: PKG chooses a random number s ∈ Z∗

q and sets Ppub = sP. Define
another cryptographic hash function: H1 : {0, 1}∗ → Z∗

q . PKG publishes
{G1, G2, e, q, λ, P , Ppub,H0,H1} and keeps s as the master-key, which is
known only by itself.

– Extract: A user submits his identity information ID to PKG. PKG com-
putes the user’s public key as QID = H0(ID), and returns SID = sQID to
the user as his private key.

– Hash: Given a message m, choose a random element R from G1, define the
hash as

Hash(ID,m,R) = e(R, P )e(H1(m)H0(ID), Ppub).

– Forge:

Forge(ID, SID,m,R,m′) = R′ = (H1(m) − H1(m
′))SID + R.



4

The forgery is right because of the following equation.

Hash(ID,m′, R′)

= e(R′, P )e(H1(m
′)H0(ID), Ppub)

= e((H1(m) − H1(m
′))SID + R, P )e(H1(m

′)H0(ID), Ppub)

= e((H1(m) − H1(m
′))SID, P )e(R, P )e(H1(m

′)H0(ID), Ppub)

= e((H1(m) − H1(m
′))H0(ID), Ppub)e(R, P )e(H1(m

′)H0(ID), Ppub)

= e(R, P )e(H1(m)H0(ID), Ppub)

= Hash(ID,m,R)

4.2 Scheme 2

– Setup: PKG chooses a random number s ∈ Z∗

q and sets Ppub = sP. Define
another cryptographic hash function: H1 : {0, 1}∗ → Z∗

q . PKG publishes
{G1, G2, e, q, λ, P , Ppub,H0,H1} and keeps s as the master-key, which is
known only by itself.

– Extract: A user submits his identity information ID to PKG. PKG returns
SID = 1

s+H1(ID)P to the user as his private key.

– Hash: Given a message m, choose a random element R from G1, define the
hash as

Hash(ID,m,R) = e(P, P )H1(m)e(H1(ID) + Ppub, R)H1(m).

– Forge:

Forge(ID, SID,m,R,m′) = R′ = H1(m
′)−1((H1(m)−H1(m

′))SID+H1(m)R).

The forgery is right because of the following equation.

Hash(ID,m′, R′)

= e(P, P )H1(m
′)e(H1(ID) + Ppub, R′)H1(m

′)

= e(P, H1(m
′)P )e(H1(ID) + Ppub, H1(m

′) · H1(m
′)−1((H1(m) − H1(m

′))SID + H1(m)R))

= e(P, H1(m
′)P )e(H1(ID) + Ppub, ((H1(m) − H1(m

′))SID)e(H1(ID) + Ppub, H1(m)R))

= e(P, H1(m
′)P )e(P, ((H1(m) − H1(m

′))P )e(H1(ID) + Ppub, H1(m)R))

= e(P, P )H1(m)e(H1(ID) + Ppub, R)H1(m)

= Hash(ID,m,R)

5 Analysis of the ID-Based Chameleon Hash

5.1 Security

In the ID-based public key setting of scheme 1, we use Boneh, Lynn, and
Shacham’s [3] short signature scheme (BLS scheme) as the private key extract
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process. BLS scheme is secure against existential forgery under a chosen-message
attack (in the random oracle model) assuming the CDH problem is hard. In the
scheme 2, the private key extract process is same as in Sakai-Kasahara’s ID-
based encryption scheme [11]. It can be a signature scheme, and in [14], the
authors proved that this signature scheme (ZSS scheme) was secure against
existential forgery on adaptive chosen-message attacks (in the random oracle
model) assuming the “k + 1 Exponent Problem” is hard in G1.

For the security against collision forgery by active attacks of proposed chameleon
hash fuctions, we have the following claims.

Claim 1. The chameleon hashing scheme 1 is resistant to collision forgery under
active attacks, provided that the BLS signature scheme is similarly resistant.
Proof. Given a collision, Hash(ID,m,R) = Hash(ID,m′, R′), it is possible to
extract the secret key SID associated to the public key QID = H0(ID).

From Hash(ID,m,R) = Hash(ID,m′, R′), we have

e(R, P )e(H1(m)H0(ID), Ppub) = e(R′, P )e(H1(m
′)H0(ID), Ppub),

so

e(R−R′, P ) = e((H1(m
′)−H1(m))H0(ID), Ppub) = e((H1(m

′)−H1(m))SID, P ).

Hence

SID = ((H1(m
′) − H1(m))−1(R − R′).

�

Claim 2. The chameleon hashing scheme 2 is resistant to collision forgery under
active attacks, provided that the ZSS signature scheme is similarly resistant.
Proof. Given a collision, Hash(ID,m,R) = Hash(ID,m′, R′), it is possible to
extract the secret key SID associated to the public key H1(ID).

From Hash(ID,m,R) = Hash(ID,m′, R′), we have

e(P, P )H1(m)e(H1(ID)+Ppub, R)H1(m) = e(P, P )H1(m
′)e(H1(ID)+Ppub, R′)H1(m

′),

so

e(P, P )H1(m)−H1(m
′) = e(H1(ID) + Ppub, H1(m

′)R′ − H1(m))R)

e(P, P ) = e(H1(ID) + Ppub, (H1(m) − H1(m
′))−1H1(m

′)R′ − H1(m))R).

Hence

SID = (H1(m) − H1(m
′))−1H1(m

′)R′ − H1(m))R).

�

For the semantic security, we have the following claim:
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Claim 3. The two chameleon hashing schemes are semantically secure.
Proof. The chameleon hashing scheme is said to be semantically secure if, for
all identity strings ID, and all pairs of messages m and m′, the probability dis-
tributions of the random variables Hash(ID,m,R) and Hash(ID,m′, R) are
computationally indistinguishable, i.e., given m,m′, z = Hash(ID,m,R) and
z′ = Hash(ID,m′, R), an adversary cannot distinguish in polynomial time be-
tween (z, z′) of any pair of messages m and m′. The proposed hashing schemes
satisfies the semantic security. This is because given a hash value z, any identity
string ID and any message m, there is exactly one random element R ∈ G1,
such that Hash(ID,m,R) equals z (Because of the non-degeneracy of bilinear
pairing). Due to the randomness of R, the semantic security follows. �

5.2 Efficiency

For scheme 1, to give the chameleon hash of a message m, the sender needs
to compute one point scalar multiplication of G1 and two pairing operations.
The computation of pairing requires high cost compared with the computation
cost for power operation over the finite fields or on the elliptic curve when the
parameters are provided. Using the pre-computation, there will be no pairing
computation in the chameleon hash. We pre-compute a = e(P, P ) and b =
e(H0(ID), Ppub), then to compute the chameleon hash of a message m, the
sender only need to compute one point scalar multiplication of G1 and two
exponentiations in G2, i.e., R = rP , Hash(ID,m,R) = arbH1(m).

Similar discussion can be used to scheme 2, we pre-compute a = e(P, P )
and b = e(H1(ID)+Ppub, P ), then to compute the chameleon hash of a message
m, the sender only need to compute one point scalar multiplication of G1 and
two exponentiations in G2, i.e., R = rP , Hash(ID,m,R) = (abr)H1(m).

6 New ID-Based Chameleon Signature Scheme

ID-based undeniable signatures can provide non-repudiation and non-transferability,
but usually, they are interactive protocols. In [6], Han, Yeung and Wang pro-
posed an ID-based undeniable signature scheme using pairings. However, in [13],
we have shown that their scheme is not secure.

ID-based chameleon signature can achieve the same goals of ID-based unde-
niable signature and is non-interactive. An ID-based chameleon signature scheme
is an ID-based signature computed over the ID chameleon hash of m under the
identity of the intended recipient. The recipient can verify that the signature of
a certain message m is valid but cannot prove to others that the signer actually
signed m and not another message. Indeed, the recipient can find collisions of the
chameleon hash function, thus finding a message different from m which would
pass the signature verification procedure.

Combining the existed ID-based signature schemes [4, 7, 9, 10] and our ID-
based chameleon hashes, we can construct some ID-based chameleon signature
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schemes. Now, we only give a new ID-based chameleon signature scheme based
on Cha-Cheon’s [4] ID-based signature and ID-based chameleon hash scheme
1.

1. Setup: Define another cryptographic hash function: H2 : G2×G1 → Z∗

q . The
system parameters params = {G1, G2, e, q, P,H0,H1,H2}, PKG chooses a
random number s ∈ Z∗

q and sets Ppub = sP.

2. Extract: Let Alice be the signer with identity public key QA = H0(IDA)
and private key SA, and Bob be the recipient with identity public key QB =
H0(IDB) and private key SB .

3. Signing: For a message m, Alice chooses a random number r ∈R Z∗

q , and a
random element R ∈R G1, computes U = rQA and

z = Hash(IDB ,m,R) = e(R, P )e(H1(m)QB , Ppub).

Then, computes h = H2(z||U) and V = (h + r)SA. The message-signature
pair is {m,U, V,R}.

4. Verification: Verify that

e(V, P ) = e(U + H2(Hash(IDB ,m,R)||U)QA, Ppub).

Because Bob can find a message different from m which would pass the signature
verification procedure using the forge algorithm of our chameleon hash function,
Bob cannot prove to others that the signer Alice actually signed m and not
another message. So, this ID-based chameleon signature scheme satisfies the
non-transferability.

This ID-based chameleon signature scheme can provide the non-repudiation
(so, it can be regarded as an non-interactive ID-based undeniable signature).
In case of a dispute on the validity of a chameleon signature {m′, U ′, V ′, R′},
Bob can sends {m′, U ′, V ′, R′} to a judge. The judge first checks that whether
this {m′, U ′, V ′, R′} satisfies the verification equation, if it’s true, then sends
them to Alice. If Alice wants to accept this signature, he simply confirms to
the judge this fact. If Alice wants to claim that this signature is invalid, he will
need to provide a message-signature pair {m,U, V,R}, here U = U ′, V = V ′, i.e.,
Alice need to provide a collision in the chameleon hash function. Notice that if
{m′, U ′, V ′, R′} is invalid, Alice can always provide such collision (m,R), since
{m,U, V,R} was originally generated by Alice with some (m,R) different then
(m′, R′). If {m′, U ′, V ′, R′} is valid, Alice cannot find collisions of the chameleon
hash function and the signature cannot be repudiated.

The unforgeability (for any third party) of this ID-based chameleon signature
scheme (even under the adaptive chosen-message attacks) is based on the security
of Cha-Cheon’s [4] ID-based signature scheme and our ID-based chameleon hash
function.

7 Conclusion

ID-based chameleon hash can be used to construct ID-based chameleon signature
scheme which can provide non-repudiation and non-transferability, at the same
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time, it is non-interactive. We proposed two new ID-based Chameleon hashes
from bilinear pairings in this paper. Based on these ID-based chameleon hashes,
we constructed some ID-based chameleon signature schemes.

ID-based chameleon signature can be used to construct sealed-bid auction
scheme [1] or electronic voting scheme. For the further works, we try to find
some new applications of the proposed ID-based chameleon hash scheme and
ID-based chameleon signature scheme.
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