
On a Relation Between Verifiable Secret Sharing
Schemes and a Class of Error-Correcting Codes

Ventzislav Nikov1 and Svetla Nikova2

1 Department of Mathematics and Computing Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
v.nikov@tue.nl

2 Department Electrical Engineering, ESAT/COSIC,
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10,

B-3001 Heverlee-Leuven, Belgium
svetla.nikova@esat.kuleuven.ac.be

Abstract In this paper we try to shed a new insight on Verifiable Secret Shar-
ing Schemes (VSS). We first define a new “metric” (with slightly different prop-
erties than the standard Hamming metric). Using this metric we define a very
particular class of codes that we call error-set codes, based on a set of forbid-
den distances which is a monotone decreasing set. Next we redefine the packing
problem for the new settings and generalize the notion of error-correcting capa-
bility of the error-set codes accordingly (taking into account the new metric and
the new packing). Then we consider burst-error interleaving codes proposing an
efficient burst-error correcting technique, which is in fact the well known VSS
pair-wise checking protocol and we prove the error-correcting capability of the
error-set interleaving codes.
Using the known relationship from [8] between a Monotone Span Program
(MSP) and a generator matrix of the code generated by the suitable set of
vectors, we prove that the error-set codes in fact has the allowed (opposite to
forbidden) distances of the dual access structure of the access structure that the
MSP computes. This relation gives us an efficient construction for them and as
a consequence we establish a link between Secret Sharing Schemes (SSS) and
the error-set codes.
Further we give a necessary and sufficient condition for the existence of linear
SSS (LSSS), to be secure against (∆, ∆A)-adversary expressed in terms of an
error-set code. Finally, we present necessary and sufficient conditions for the
existence of a VSS scheme, based on an error-set code, secure against (∆, ∆A)-
adversary.
Our approach is general and covers all known linear VSS. It allows us to establish
the minimal conditions for security of VSSs. Our main theorem states that the
security of a scheme is equivalent to a pure geometrical (coding) condition on the
linear mappings describing the scheme. Hence the security of all known schemes,
e.g. all known bounds for existence of VSS including the recent result of Fehr
and Maurer [10], can be expressed as certain (geometrical) coding conditions.

1 Preliminaries

The concept of secret sharing was introduced by Shamir [19] as a tool to protect
a secret from getting exposed or from getting lost. It allows a so-called dealer to
share a secret among the members of a set P, which are usually called players or
participants, in such a way that only certain specified subsets of players are able
to reconstruct the secret (if needed) while smaller subsets have no information
about this secret at all (in a strict information theoretic sense).

2

We call the groups who are allowed to reconstruct the secret qualified and the
groups who should not be able to obtain any information about the secret
forbidden. The set of qualified groups is denoted by Γ and the set of forbidden
groups by ∆. Denote the participants by Pi, 1 ≤ i ≤ n and the set of all players
by P = {P1, . . . , Pn}. The set Γ is called monotone increasing if for each set A in
Γ also each set containing A is in Γ. Similarly, Γ is called monotone decreasing,
if for each set A in ∆ also each subset of A is in ∆. A monotone increasing set
Γ can be efficiently described by the set Γ− consisting of the minimal elements
in Γ, i.e. the elements in Γ for which no proper subset is also in Γ. Similarly,
the set ∆+ consists of the maximal sets in ∆. The tuple (Γ,∆) is called an
access structure if Γ ∩∆ = ∅. If the union of Γ and ∆ is equal to 2P (so Γ is
equal to ∆c, the complement of ∆), then we say that access structure (Γ,∆)
is complete and we denote it just by Γ. In the sequel we shall only consider
complete, monotone access structures.

The dual Γ⊥ of an access structure Γ , defined on P, is the collection of sets
A ⊆ P such that P \A = Ac /∈ Γ .

It is common to model cheating by considering an adversary A who may corrupt
some of the players. The adversary is characterized by particular subset ∆A

of ∆, called adversary and privacy structure [12] respectively, which is itself
monotone decreasing structure. The players which belong to ∆ are called also
curious and the players which belong to ∆A are called corrupt or bad.

One can distinguish between passive and active corruption, see Fehr and Maurer
[10] for recent results. Passive corruption means that the adversary obtains
the complete information held by the corrupt players, but the players execute
the protocol correctly. Active corruption means that the adversary takes full
control of the corrupt players. Active corruption is strictly stronger than passive
corruption. Both passive and active adversaries may be static, meaning that the
set of corrupt players is chosen once and for all before the protocol starts, or
adaptive meaning that the adversary can at any time during the protocol choose
to corrupt a new player based on all the information he has at the time, as long
as the total set is in ∆A.

Denote the complement ΓA = 2P \ ∆A = ∆c
A. Its dual access structure Γ⊥

A

should be called the honest (or good) players structure, since for any set A of
corrupt players, i.e. in ∆A, the complement Ac = P \ A is the set of honest
players and vise versa. Note that the set {Ac : A ∈ ∆A} is the dual access
structure Γ⊥

A .

Some authors [11] consider also fail-corrupt players. To fail-corrupt a player
means that the adversary may stop the communication from and to that player
at an arbitrary time during the protocol. Once a player is caused to fail, he
will not recover the communication. However, the adversary is not allowed to
read the internal data of a fail-corrupt player, unless the player is also passively
corrupted at the same time. The collection of fail-corrupt players is denoted by
∆F ⊆ ∆. Generally we will not consider such kind of corruption, so unless it
is exact mentioned we will assume that the adversary cannot fail-corrupt the
players.

3

Definition 1. [10] An (∆,∆A,∆F)-adversary is an adversary who can (adap-
tively) corrupt some players passively and some players actively, as long as the
set A of actively corrupt players and the set B of passively corrupt players
satisfy both

A ∈ ∆A and (A ∪B) ∈ ∆

Additionally the adversary could fail-corrupt some players in ∆F . When ∆F = ∅
we will denote it by (∆,∆A), in case ∆A = ∆ we will simply say ∆A-adversary.

This model is known as mixed adversary model. Note that in case of Secret Shar-
ing Schemes we have ∆A = ∅, while for Verifiable Secret Sharing Schemes we
have ∆A 6= ∅. In the threshold case we write instead of (∆,∆A,∆F)-adversary
simply (k, ka, kf)-adversary. Recently Hirt and Maurer [12] introduced the no-
tion of Q2(Q3) adversary structure.

Definition 2. [12] For a given set of players P and an adversary structure
∆A, we say that the adversary structure is Q` if no ` sets in ∆A cover the full
set P of players.

Definition 3. [17] For any two monotone decreasing sets ∆1,∆2 operation],
called element-wise union, is defined as follows: ∆1]∆2 = {A = A1 ∪A2;A1 ∈
∆1, A2 ∈ ∆2}. For any two monotone increasing sets Γ1, Γ2 operation] is
defined as follows: Γ1] Γ2 = {A = A1 ∪A2;A1 /∈ Γ1, A2 /∈ Γ2}c.

Definition 4. A secret sharing scheme based on an access structure (Γ,∆) is a
pair (Share and Reconstruct) of protocols (phases) namely, the sharing phase,
where the players share a secret s ∈ K, and the reconstruction phase, where the
players try to reconstruct s, such that the following two properties hold:

– Privacy: The players of any set B ∈ ∆ learn nothing about the secret s as a
result of the sharing phase.

– Correctness: The secret s could be computed by any set of players A ∈ Γ .

Recall that the SSS is called perfect if and only if ∆c = Γ .

2 A class of Error-Correcting “Codes”

Let F be a finite field and let the set of secrets for the dealer D be K = Fp0 .
We will only consider the case p0 = 1, even though many of the considerations
remain valid in the general case too. Associate with each player Pi (1 ≤ i ≤ n)
a positive integer pi such that the sets of possible shares for player Pi is given
by Fpi . Denote by p =

∑n
i=1 pi and by N = p0 + p. For the sake of simplicity

one could assume that pi = 1 for 0 ≤ i ≤ n in that case p = n and N = n + 1
hold.
Now we will recall some definitions from the theory of error-correcting codes.
Any non-empty subset C of FN is called a code, the parameter N is called the
length of the code. Each vector in C is called codeword of C.
The Hamming sphere (or ball) Be(x) of radius e around a vector x in FN is
defined by Be(x) = {y ∈ FN : d(x,y) ≤ e}.

4

One of the basic coding theory problems is the so-called Sphere Packing Prob-
lem: given N and e, what is the maximum number of non-intersecting spheres
of radius e that can be placed in FN , the N -dimensional Hamming space?
Sphere packing is related to error correction. The centers of these spheres are
at distance at least 2e + 1 apart from each other and constitute a code; these
centers are called codewords and each corresponds to a possible message that one
may want to transmit. Assume now that one of these messages is transmitted
and that at most e coordinates are corrupt during the transmission. To decode,
i.e., to decide which of the messages was actually sent, compute the Hamming
distance between the received vector and all the centers. Since at most e errors
occurred, the transmitted word will still be the nearest center, and all errors
can be corrected.
Define the minimum distance of a code C ⊆ FN as the smallest of all distances
between different codewords in C, i.e.

dmin = min
a,b∈C, a 6=b

d(a,b) (1)

It follows from this definition that a code with minimum distance dmin can
correct b(dmin−1)/2c errors, since spheres with this radius are disjoint (see [16,
p.10, Theorem 2]). If dmin is even the code can detect dmin/2 errors, meaning
that a received word can not have distance dmin/2 to one codeword and distance
less that dmin/2 to another one. However it may have distance dmin/2 to more
codewords.
Something more actually can be said. Code C can decode errors and erasures
simultaneously. An erasure is an ambiguously received coordinate (the value is
not 0 or 1 but undecided). Let C be a code of length N with minimum distance
dmin and let e = b(dmin − 1)/2c. Then the code can correct b errors and c
erasures as long as 2b+ c < dmin (for more details see [6]). In other words, we
should be able to retrieve the transmitted codeword if during the transmission
at most c of the symbols in the word are erased and at most b received symbols
are incorrect.
If C is a T -dimensional subspace of FN , then the code C is linear and is denoted
by [N,T, dmin]. Set C⊥ = {y | 〈y,x〉 = 0 for all x ∈ C}. The set C⊥ is an
(N − T)-dimensional linear subspace of FN and is called the dual code of C.
There are two methods to determine a linear code C: a generator matrix and a
parity check matrix. A generator matrix of a linear code C is any T ×N matrix
G whose rows form a basis for C. A generator matrix H of C⊥ is called a parity
check matrix for C. Clearly, the matrix H is of size (N − T)×N . Hence x ∈ C
if and only if HxT = 0, or in other words HGT = GHT = 0 holds.
When a sender want to send a message (sometimes called information vector)
say x to the receiver he calculates a codeword of the code by multiplying the
information vector with the generator matrix, e.g. y = xG. The codeword y
is transmitted to the receiver. The receiver decodes the word z he received,
which is the codeword plus errors, i.e. z = y + err, if the number of errors is
less than a certain number (the error-correcting capabilities of the code). Recall
that for each codeword y the equality HyT = 0 holds, hence HzT = err (called
syndrome) hold.

5

Let for two vectors x = (x0,x1, . . . ,xn) and y = (y0,y1, . . . ,yn) in FN , where
xi,yi ∈ Fpi , the set δp(x,y) is defined by δp(x,y) = {i : xi 6= yi}. The p-support
of vector x, denoted by supp(x), is defined by supp(v) = {i : vi 6= 0}. Hence
δp(x,y) = supp(x−y) ⊆ {0, . . . , n}. Considering the properties of the p-support
of a vector, we notice some similarities to the properties of the norm.

(1). supp(x) = ∅ if and only if x = 0,
(2). supp(jx) = supp(x) if j 6= 0, and
(3). supp(x + z) ⊆ supp(x) ∪ supp(y).

In his paper [10] Fehr and Maurer pointed out that δp(x,y) behaves like a
metric, as for all vectors x,y, z ∈ FN one has that

(1). δp(x,x) = ∅,
(2). δp(x,y) = δp(y,x) (symmetry), and
(3). δp(x, z) ⊆ δp(x,y) ∪ δp(y, z),

but actually they do not explore this property. Our first step is to use δp(x,y)
instead of the Hamming distance and to explore the properties of the so defined
space.
Let ∆ be a monotone decreasing collection of subsets of players. Then B∆(x),
the ∆-neighborhood of pseudo-radii in ∆ centered around the vector x ∈ FN , is
defined as follows:

B∆(x) = {y ∈ FN : δp(x,y) ∈ ∆}

In the special case when Γ is an e-threshold access structure (∆ = {A : |A| ≤
e}), the ∆-neighborhood B∆(x) is in fact the Hamming sphere Be(x). Now we
can generalize the classical sphere packing problem:
Generalized Sphere Packing Problem: Given N and ∆, what is the maximum
number of non-intersecting ∆-neighborhoods that can be placed in the N -
dimensional space?
As usual we will call any non-empty subset C of FN a code. For a code C the
set of possible (allowed) distances is defined by

Γ (C) = {A : there exist a,b in C, a 6= b such that δp(a,b) ⊆ A} (2)

and the set of forbidden distances is defined by

∆(C) = Γ (C)c. (3)

It is easy to see that ∆(C) is monotone decreasing and that Γ (C) is monotone
increasing. Let us call the so-defined codes “error-set codes”. For the classical
error-correcting codes we have ∆(C) = {A : |A| < dmin}. In fact we can define
the set of minimal codeword support differences as

Γ (C)− = {A : there exist a,b in C, a 6= b such that δp(a,b) = A (4)
but, there is no c,d ∈ C, c 6= d, δp(c,d) $ A}.

We will focus our attention only on linear codes, even though many of the
considerations remain valid in non-linear settings too. Hence using the relation

6

between δp and supp we could redefine the notion minimal codeword (introduced
by Massey [14] and generalized by Van Dijk [8]) as follows: The codeword x in C
is minimal if supp(x) in Γ (C)−.
As noted before, the packing problem is fundamental in error correction. The
natural question that arises now is how the new packing problem is related to
the theory of error-correcting codes?
In coding theory, any subset of coordinates is equally likely to be in error (and/or
erasure). In the model we consider here some subsets of coordinates (those in
∆(C)) are assumed to be more likely in error than others (those in Γ (C)). A
well-studied model where this situation arises is the so-called bursty channel,
in which errors occur in clusters. Another related approach are the so-called
D-codes [9] which have restricted (to some interval) inner distance distribution.
Now we will prove that the error-set codes have similar error-correcting capa-
bilities as the classical codes have.

Theorem 1. An error-set code C with set of forbidden distances ∆(C) can cor-
rect all errors in ∆ if and only if ∆]∆ ⊆ ∆(C).

Proof. First we will prove that the centers of a new sphere packing constitute
a code C with set of possible distances Γ (C) ⊆ Γ]Γ (and thus ∆]∆ ⊆ ∆(C)).
Indeed, let a,b be any two distinct centers of C. Any two sets A,B ∈ ∆ are
in the ∆-neighborhoods of say a, resp. b. Since these neighborhoods are non-
intersecting we have that A∪B ⊂ δp(a,b). Hence δp(a,b) /∈ ∆]∆. Conversely,
suppose that δp(a,b) ∈ ∆]∆. Then there exist A,B ∈ ∆, such that A ∪B =
δp(a,b). By the “triangle inequality” we have that δp(a,b) ⊆ δp(a,x)∪δp(x,b),
and equality holds if δp(a,x) ∩ δp(b,x) = ∅. Now it is easy to see that there
exists x such that A ∪ B = δp(a,b) = δp(a,x) ∪ δp(b,x) and δp(a,x) ⊆ A,
δp(b,x) ⊆ B. This contradicts the fact that any ∆-neighborhoods of a and b
are non-intersecting. ut

Example 1. Consider the special case with threshold access structure, so ∆ =
{A : |A| ≤ e}. Write as above B∆(x) = Be(x) (the usual Hamming sphere).
Now ∆] ∆ = {A : |A| ≤ 2e} = ∆(C) and so Γ (C) = {A : |A| ≥ 2e + 1}.
Hence the minimum distance of C is dmin = 2e+ 1. In this case, Theorem 1 is
equivalent to the classical error-correcting theorem [16, 6].

Remark 1. Assume that a codeword from C was sent and that some subset
of errors A ∈ ∆ occurred during the transmission. To decode the received
vector z, we compute the ∆-neighborhood B∆(z) and check which codeword
is in this ∆-neighborhood. In fact, since the error-pattern is a set A in ∆ and
∆] ∆ ⊆ ∆(C), there will be only one codeword in the ∆-neighborhood of z
and so we can correct the errors.
Something more actually is true: we can decode errors and erasures simultane-
ously in the generalized setting too.
Let C be a code of length N with set of forbidden distances ∆(C). Suppose
that ∆] ∆ ⊆ ∆(C). Then C can correct all errors in ∆. Moreover, for any
∆c,∆b ⊆ ∆ such that ∆c]∆c]∆b ⊆ ∆(C), the code C can correct all errors in
∆c and erasures in ∆b. In fact, the decoding method coincides with the classical
method of decoding errors and erasures, see [6] for example.

7

3 A Burst-Correcting Technique

We will call a burst any error pattern consisting of several sub-vectors xi of
x = (x0,x1, . . . ,xn), which are not necessarily consequtively ordered.
First, we will present a standard burst-error correcting technique, which uses
error-correcting codes. The idea is to change the order of the coordinates of
several consecutive codewords in such a way that a burst is spread out over
the various codewords. Let C be a code of length n and let ` be some positive
integer. Consider an `×n matrix which has codewords in C as their rows. Read
this matrix column-wise from top to bottom starting with the leftmost column.
The resulting codewords have length n` and form a so-called interleaved code
derived from C at depth `. If C can correct e-errors then the interlieved code
can correct bursts of length e`.
Let C be an error-set code of length N , with a set of forbidden distances ∆(C)
and generator d×N matrix G. The sender wants to send an information matrix
X ∈ Fd×d (assume for the sake of simplicity that X is symmetric). Note that X
could be asymmetric too, in which case X and XT are encoded. Thus the sender
calculates the (array) codeword Y as Y = XG, (Y ∈ FN×N). Then applying
the interleaving approach the sender reads the matrix column-wise. From now
on we will consider only intelieved codes at depth d.

Theorem 2. Let C be an error-set code of length N , with set of forbidden
distances ∆(C). Then the interleaving error-set code derived from C of length
N can efficiently correct all burst-errors in ∆ if and only if ∆]∆ ⊆ ∆(C).

Proof. Since every row in the array codeword is a codeword of the error-set
code C and the errors are spread we can correct them row by row (see Theorem
1). On the other hand we will show that the known VSS technique called “pair-
wise” checking, provides efficient detection of inconsistency in cases with excess
of information. Moreover this technique has an additional advantage that all
checks can be performed privately (which is of great importance in SSS).
The “pair-wise” technique is applied as follows. The receiver calculates a sym-
metric consistency n×n matrix, verifying the equation GTY = GTXG = Y TG.
In other words he puts on entry (i, j) - 1 if GTi Yj = Y T

i Gj and 0 otherwise.
Using the consistency matrix (as in the VSS protocols, e.g. [5]) and assuming
an error pattern in ∆ occurs it is easy to find a set in Γ (C) which is consistent,
therefore uniquely define the codeword. ut

Remark 2. The interleaving error-set code derived from C of length N can effi-
ciently correct the burst-error patterns in ∆c and burst-erasure patterns ∆b if
and only if ∆c]∆c]∆b ⊆ ∆(C).

4 SSS as an Example of a Particular Class of “Codes”

First we give a formal definition of a Monotone Span Program.

Definition 5. [13] A Monotone Span Program (MSP) M is a quadruple
(F,M, ε, ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m

8

columns) over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function and ε is a
fixed non-zero vector, called target vector, e.g. column vector (1, 0, . . . , 0) ∈ F d.
The size of M is the number m of rows and is denoted as size(M).

As ψ labels each row with a number i from [1, . . . ,m] that corresponds to player
Pψ(i), we can think of each player as being the “owner” of one or more rows.
Also consider a “function” ϕ from [P1, . . . , Pn] to [1, . . . ,m] which gives for
every player Pi the set of rows owned by him (denoted by ϕ(Pi)). In some sense
ϕ is “inverse” of ψ. For any set of players B ⊆ P consider the matrix consisting
of rows these players own in M , i.e. Mϕ(B). As is common, we shall shorten
the notation Mϕ(B) to just MB. The reader should stay aware of the difference
between MB for B ⊆ P and for B ⊆ {1, . . . ,m}.
An MSP is said to compute a (complete) access structure Γ when ε ∈ im(MT

A)
if and only if A is a member of Γ . In other words, the players in A can recon-
struct the secret precisely if the rows they own contain in their linear span the
target vector of M, and otherwise they get no information about the secret. In
other words there exists a so-called recombination vector (column) λ such that
MT
Aλ = ε hence 〈λ,MA(s,ρ)T 〉 = 〈MT

Aλ, (s,ρ)T 〉 = 〈ε, (s,ρ)T 〉 = s for any se-
cret s and any random vector ρ. It is easy to check that the vector ε /∈ im(MT

B)
if and only if there exists a k ∈ Fd such that MBk = 0 and k1 = 1.
We stress here that

A ∈ Γ ⇐⇒ ∃ λ ∈ F|ϕ(A)| such that MT
Aλ = ε (5)

B /∈ Γ ⇐⇒ ∃ k ∈ Fd such that MBk = 0 and k1 = 1.

The first property guaranties correctness and the second privacy of the SSS.
Technically the property (5) means that when we consider the restricted matrix
MA for some subset A of P, the first column is linearly dependent to the other
columns if and only if A /∈ Γ . Sometimes we will slightly change the first
property rewriting it in the following way:

A ∈ Γ ⇐⇒ ∃ λ ∈ Fm such that MT
Aλ = ε and supp(λ) ⊆ A. (6)

The latest in fact is the same vector λ as in (5), but expanded with zeroes.

Definition 6. ([8, Definition 3.2.2]) Let Γ− = {X1, . . . , Xr}. Then the set of
vectors C = {ci ∈ Fm : 1 ≤ i ≤ r} is said to be suitable for the access structure
Γ if C satisfies the following properties called g(Γ) respectively d−(∆).

– supp(ci) = Xi for 1 ≤ i ≤ r;
– For any vector (µ1, . . . , µr) in Fr, such that

∑r
i=1 µi 6= 0, there exists a set

X ∈ Γ = ∆c satisfying X ⊆ supp(
∑r

i=1 µic
i).

It is easy to verify that the minimal codewords defined by Massey [14] are
particular case of the more general notion suitable set.
In the next theorem Van Dijk provides an important link between a parity check
matrix of a code generated as a span of suitable vectors and an MSP matrix.

Theorem 3. ([8, Theorem 3.2.5, Theorem 3.2.6]) Let Γ− = {X1, . . . , Xr}.
Consider a set of vectors C = {ci : 1 ≤ i ≤ r}. Let H be a parity check matrix

9

of the code generated by the linear span of the vectors (1, ci) 1 ≤ i ≤ r and let H
be of the form H = (ε | H ′) (This can be assumed without loss of generality).
Then the MSP with the matrix M defined by MT = H ′ computes the access
structure Γ if and only if the set of vectors C is suitable for Γ .

There is a tight connection between an access structure and its dual. It turns
out that the codes generated by the corresponding sets of suitable vectors are
orthogonal.

Theorem 4. ([8, Theorem 3.5.4]) Let Γ− = {X1, . . . , Xr} be an access struc-
ture and (Γ⊥)− = {Z1, . . . , Zt} be its dual. Then there exists a suitable set
C = {ci : 1 ≤ i ≤ r} for Γ if and only if there exists a suitable set C⊥ = {hj :
1 ≤ j ≤ t} for Γ⊥.
Suppose there exists a suitable set C for Γ and a suitable set C⊥ for Γ⊥. Let C
be the code defined by the linear span of vectors {(1, ci) : 1 ≤ i ≤ r} and let C⊥
be the code defined by the linear span of vectors of {(1,hj) : 1 ≤ j ≤ t}. Then
the codes C and C⊥ are orthogonal to each another.

Lemma 1. Let Γ− = {X1, . . . , Xr} be the access structure computed by MSP
M. Also let λi ∈ Fm be the recombination vectors that corresponds to Xi see
(5) and (6). Then the set of vectors C = {λi : 1 ≤ i ≤ r} defines a suitable set
of vectors for the complete access structure Γ .

Theorem 5. [18] Let M be an MSP program computing Γ , and M⊥ be an
MSP computing the dual access structure Γ⊥. Let code C⊥ has the parity check
matrix H⊥ = (ε | (M⊥)T) and code C has the parity check matrix H =
(ε | MT). Then for any MSP M there exists an MSP M⊥ such that C and
C⊥ are dual.

McEliece and Sarwate [15] reformulated the Shamir’s scheme in terms of Reed-
Solomon codes instead of in terms of polynomials, adding in this way error-
correcting properties. The general relationship between linear codes and secret
sharing schemes was established by Massey [14], Blakley and Kabatianskii [2].
In fact, the coding theoretic approach can be reformulated as the vector space
construction, which was introduced by Brickel in [3]. This approach was gen-
eralized to the so-called generalized vector space construction by Van Dijk [8].
Two approaches of constructing secret sharing schemes based on linear codes
could be distinguished.
The first one uses an [n, k+1, dmin] linear code C. Let G be a generator matrix
of C, so it is (k + 1) × n matrix. The dealer D chooses a random information
vector x ∈ Fk+1, subject to x1 = s - the secret. Then he calculates the codeword
y corresponding to this information vector as y = xG, (y ∈ Fn). Then D gives
yj to player Pj to be his share.
The second approach uses an [N = n + 1, k + 1, dmin] linear code C̃. Let G̃ be
a generator matrix of C̃, so it is (k + 1)× (n+ 1). The dealer D calculates the
codeword y as y = xG̃, (y ∈ FN), from a random information vector x ∈ Fk+1,
subject to y0 = s - the secret. Then D gives yj to player Pj to be his share.
The two kinds of approaches seem different but are related. In the first approach
all the shares form a complete codeword of the code, while in the second one

10

all the shares form only part of a codeword. But as Van Dijk [8] proved one
can simply transform the matrices of the codes, setting G̃ = (ε | G). Hence one
can consider the code C to be obtained from the code C̃ by puncturing i.e. by
deleting a coordinate [16].
Now we will generalize these approaches to our error-set codes. We will denote
the codes and their generator matrices for the first (and the second) approaches
by C and G (C̃ and G̃, respectively). Let C be a code of length p, with set of
forbidden distances ∆(C) and with d × p generator matrix G. Analogously let
C̃ be a code of length N , with set of forbidden distances ∆(C̃) and with d×N
generator matrix G̃. Recall that G̃ = (ε | G) holds.

Lemma 2. Let M = (F,M, ε, ψ) be an MSP computing an access structure
Γ . Let C̃ be an error-set code of length N , with a set of forbidden distances
∆(C̃) and with d × N generator matrix G̃ of the form G̃ = (ε | MT). Then
∆(C̃) = ∆⊥] {D}.

Proof. Let M be an MSP computing an access structure Γ and M⊥ be its dual
MSP. Using G = MT and G⊥ = (M⊥)T compute the codes C̃ and C̃⊥. Van Dijk
[8] proved that codes C̃ and C̃⊥ are orthogonal to each other. Moreover Van Dijk
showed (see Definition 6 and Theorems 3 and 4) that matrix G̃ = (ε | MT) is
generated by vectors (1,hj) where hj are suitable vectors for the dual access
structure Γ⊥. It turns out that the codes C̃ and C̃⊥ are even dual (see Theorem
5). Thus by Lemma 1 and Definition 6 we have that supp(hj) ∈ (Γ⊥)−. In other
words the suitable vectors for Γ⊥ are the minimal codewords for the code C̃,
see definition (4). Hence we have ∆(C̃) = ∆⊥] {D} to be the set of forbidden
distances for the code generated by G̃. ut

Example 2. In the threshold case G̃ can be the generator matrix of the ex-
tended Reed-Solomon MDS code [n+ 1, k + 1, n− k + 1], since GT can be the
Vandermonde matrix with rows (1, α, α2, . . . , αk). In other words the extended
Reed-Solomon code can be used to generate an (k, n) threshold scheme

Note 1. Lemma 2 gives an efficient way to construct error-set codes using MSPs.
Note that we do not require any relation between ∆ and ∆A (or for k and ka).

Now using the results of Theorem 1 and Lemma 2 we obtain the following
corollary.

Corollary 1. An error-set code C̃ corrects ∆A (ka in the threshold case) errors
and one erasure (e.g. {D}) if and only if ∆A]∆A ⊆ ∆⊥ (analogously 2ka <
n− k).

Remark 3. The main difference between error-set codes and SSS is that the SSS
provides privacy, meaning that ∆ k ∆A (or k ≥ ka).

5 VSS as an Example of a Particular Class of burst “Codes”

A formal definition of VSS is as follows.

11

Definition 7. A Verifiable Secret Sharing scheme secure against (∆,∆A)-adversary
A, is a pair (Share-Detect, Reconstruct) of protocols (phases). At the beginning
of the Share phase the dealer inputs a secret s ∈ K, at the end of Share phase
each participant Pi is instructed to output a Boolean value veri. At the end of
Reconstruct phase each participant is instructed to output a value in K. The
protocol is unconditionally secure if the following properties hold:

– Termination (Acceptance of good players): If a good player Pi outputs veri =
0 at the end of Share then every good player outputs veri = 0; Moreover if
the dealer D is good, then veri = 1 for every good player Pi;

– Correctness (Verifiability): If a group of good players Pi output veri = 1 at
the end of Share, then at this time a value s′ ∈ K has been fixed and and
the end of Reconstruct all good players will output the same value s′ and
moreover if the dealer is not corrupt s′ = s.

– Privacy (Unpredictability): If |K| = q, the secret s is chosen randomly from
K, and the dealer is good, then any forbidden coalition cannot guess at the
end of Share the value s with probability better than 1/q.

Note that an SSS with error-correcting capabilities could be considered as an
VSS with honest dealer, since the robustness is guaranteed using the interleaving
technique.
Therefore we will first revisit the standard approaches described in the literature
used to build SSS from codes employing the interleaving technique.
The first approach uses an [n, k + 1, dmin] linear code C. Let G be a generator
matrix of C, so its size is (k + 1) × n. Now the dealer D chooses a random
information matrix X ∈ F(k+1)×(k+1), except that s (the secret) is in its upper-
left corner. Then D calculates the (array) codeword Y corresponding to this
information matrix Y = XG, (Y ∈ Fn×n). Note that the rows in Y are the usual
codewords of C. Using the interleaving approach the dealer D gives columns Y(j)

to the player Pj as his share. Note that the first coordinate in Y(j) corresponds
to the first codeword which encodes the secret.
The second approach is very similar. Now C̃ is an [N = n+1, k+1, dmin] linear
code. Let G̃ be a generator matrix of C̃, so it is a (k+ 1)× (n+ 1) matrix. The
dealer D calculates the (array) codeword Y as Y = XG̃, (Y ∈ FN×N), from a
random information matrix X ∈ F(k+1)×(k+1), except that s (the secret) is in
the upper-left corner of Y . Again applying the interleaving approach the dealer
D gives columns Y(j) to player Pj as his share. Note that the first coordinate
in Y(j) corresponds to the first codeword which encodes the secret. The zero
column Y(0) is the dealer’s share.
It is straightforward to generalize these two approaches to error-set codes. In
this case C is a code of length p, with a set of forbidden distances ∆(C) and G
is a d× p matrix. Analogously C̃ is a code of length N , with a set of forbidden
distances ∆(C̃) and G̃ is a d×N matrix. Recall that G̃ = (ε | G) holds. Then
X ∈ Fd×d and Y ∈ Fp×p for the first approach and Y ∈ FN×N for the second.
Note that X could be symmetric or asymmetric.
The sharing procedure we have just described coincides with the sharing pro-
cedures of the standard VSS protocols [1, 5]. Note that the shares in these

12

protocols are distributed in exactly the same way using the interleaving tech-
nique.
We will say that the VSS (with honest dealer) is based on code C̃. Now we will
translate the results of Lemma 2 and Corollary 1 into the VSS language.

Proposition 1. Let C̃ be an error-set code of length N , with a set of forbidden
distances ∆(C̃). Let consider VSS (with honest dealer) based on this code and
(∆,∆A,∆F)-adversary ((k, ka, kf)-adversary).

– Correctness:
Then VSS (with honest dealer) based on this code satisfy the correctness
property in Definition 7 if and only if the code C̃ is able to correct burst-error
pattern in ∆A (ka in threshold case) and burst-erasure pattern in ∆F]{D}
(kf + 1), i.e. ∆A]∆A] {D}]∆F ⊆ ∆(C̃) (2ka + kf + 1 < dmin).

– Privacy:
Then VSS (with honest dealer) based on this code satisfy the correctness
property in Definition 7 if and only if the code C̃ has ∆(C̃) as the set of
forbidden distances, i.e. ∆(C̃) = ∆⊥] {D} (dmin = n− k + 1).

Proof. The result for a (∆,∆A)-adversary follows directly from Lemma 2 and
Corollary 1.
It is straightforward to extend the model considering also fail-corrupt players.
Recall that to fail-corrupt a player means that the adversary may stop the
communication from and to that player at an arbitrary moment during the
protocol. From a coding point of view these players are erasures, so the bounds
are extended naturally to P /∈ ∆A]∆A]∆]∆F (2ka + k + kf < n). ut

In coding theory the Sender is always assumed to be honest, while in VSS the
Dealer could be corrupt. We could simulate the inproper behavior of the dealer
in the following way.
Let C̃ be a code of length N , with set of forbidden distances ∆(C̃) and G̃ be a
d × N generator matrix for the code. The sender chooses information matrix
X ∈ Fd×d (using the first approach). Then he computes the array codeword Y ∈
FN×N by Y = XG̃. But instead of distributing the columns of Y to the players
as their shares, the dealer introduces a burst-error pattern (not necessarily in
∆A) obtaining matrix Z from Y in this way. Then he distributes Z as shares.
Since after receiving their shares the corrupt players could handle wrong ones
(i.e. introducing another burst-error pattern in ∆A) in the reconstruction phase
we simulate this behavior as retransmitting Z to Z̃. Since we are able to correct
only the error-patterns in ∆A, we need to apply twice the decoding algorithm
(pair-wise checking protocol) in order to correct the errors. But even then we
have the problem that the sender could introduce errors not from ∆A and
that the errors he introduced together with the errors that the corrupt players
introduced could be not from ∆A. What the share-detection phase in the VSS
protocols (e.g. [5]) achieves more is that the dealer is forced (by the accusation-
broadcast mechanism) to defend himself if inconsistent information (not in ∆A)
is found. Thus the honest players have (maybe after being broadcasted by the
dealer) consistent shares. This could be simulated by the assumption that Z and

13

Y differ in an error pattern which is a subset of the error pattern between Z and
Z̃. Therefore the difference between Y and Z̃ is a error pattern from ∆A. This
immediately gives the following requirements for the code in this retransmitting
scenario.

Theorem 6. Let C̃ be an error-set code of length N , with a set of forbidden
distances ∆(C̃). Let consider VSS based on this code and (∆,∆A,∆F)-adversary
((k, ka, kf)-adversary).

– Correctness:
Then VSS based on this code satisfy the correctness property in Definition
7 if and only if the code C̃ is able to correct burst-error pattern in ∆A

(ka in threshold case) and burst-erasure pattern in ∆F] {D} (kf + 1), i.e.
∆A]∆A] {D}]∆F ⊆ ∆(C̃) (2ka + kf + 1 < dmin).

– Privacy:
Then VSS based on this code satisfy the correctness property in Definition
7 if and only if the code C̃ has ∆(C̃) as the set of forbidden distances, i.e.
∆(C̃) = ∆⊥] {D} (dmin = n− k + 1).

The last bounds coincide with the well known bounds in [1, 11, 5, 10], namely,
∆A]∆A]∆F ⊆ ∆⊥ or equivalently P /∈ ∆A]∆A]∆F]∆ (in the threshold
case the bound becomes 2ka + kf + k < n).

We recall the following notations from [16].

Definition 8. [16]

– Code C is called weakly self-dual if and only if C $ C⊥,
– Code C is called self-dual if and only if C = C⊥.

Remark 4. How are dual codes and dual access structures linked?

– From Definition 8 for weakly self-dual codes it follows that there exists
a non-invertible matrix D such that DH = G, where G and H are the
generator and parity check matrices of the code C.

– When C̃ (C) is weakly self-dual code, i.e. C̃ $ C̃⊥, we have Γ (C̃) $ Γ (C̃⊥),
but from Theorems 3 and 4, it follows that Γ (C̃) = Γ⊥ and Γ (C̃⊥) = Γ .
Hence we have Γ⊥ $ Γ , i.e. Γ is a Q2 access structure.

– Taking again into account Theorems 3 and 4, i.e. that H = (M⊥)T , and
G = MT we obtain that D(M⊥)T = MT , for some non-invertible matrix
D. This implies that Γ⊥ $ Γ , i.e. Γ is a Q2 access structure. Note that
G H

T = 0 implies that MTM⊥ = E, where E is a zero matrix except for
the entry in the upper left corner which is 1.

On the other hand for dual-codes we obtain Γ = Γ⊥, i.e. the access structure
is self-dual, and D(M⊥)T = MT for some invertible matrix D (MTM⊥ = E
holds).

Several interesting open questions arise:

– Whether for any Q2 access structure Γ there exists a weakly self-dual error-
set code with set of allowed distances Γ .

14

– Whether for any self-dual access structure Γ there exists a self-dual error-set
code with set of allowed distances Γ .

– One could define the weight/distance distribution of an error-set code, as
well as its weight enumerator (see [16]). It is interesting to check wether
Mac Williams theorem [16] for the weight enumerators of a code and its
dual hold in this setting.

– It is well known that for a given access structure Γ (and correspondingly
MSP M) the numbers p0, p1, . . . , pn are the players individual information
rate. Appling the powerful invariant theory to the weight enumerator of self-
dual error-set codes (access structures) it would be interesting to investigate
which numbers are suitable and which are not.

References

1. M. Ben-Or, S. Goldwasser and A. Wigderson, Completeness theorems for Non- Crypto-
graphic Fault-Tolerant Distributed Computation, Proc. ACM STOC’88, 1988, 1-10.

2. G. Blakley, G. Kabatianskii. Linear Algebra Aproach to Secret Sharing Schemes, LNCS
829, 1994, pp. 33-40.

3. E. Brickell. Some ideal secret sharing schemes, J. of Comb. Math. and Comb. Computing
9, 1989, pp. 105-113.

4. D.Chaum, C.Crepeau and I.Damgard, Multi-Party Unconditionally Secure Protokols,
Proc. ACM STOC’88, 1988, 11-19.

5. R. Cramer, I. Damgard, U. Maurer. General Secure Multi-Party Computation from any
Linear Secret Sharing Scheme, EUROCRYPT’2000, LNCS 1807, 2000, pp. 316-334.

6. G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering Codes, Elsevier Science, Amster-
dam, 1997.

7. B. Chor, S. Goldwasser, S. Micali and B. Awerbuch, Verifiable secret sharing and achieving
simultaneity in the presence of faults, Proc. of the IEEE 26th Annual Symp. on Founda-
tions of Computer Science 1985, pp. 383-395.

8. M. van Dijk, Secret Key Sharing and Secret Key Generation, Ph.D. Thesis, 1997, TU
Eindhoven.

9. P. Delsarte. The Hamming space viewed as an association scheme, Proc. of the 23rd
Symposium on Information Theory in the Benelux, 2002, pp. 329-380.

10. S. Fehr, U. Maurer, Linear VSS and Distributed Commitments Based on Secret Sharing
and Pairwise Checks, Proc. CRYPTO 2002, LNCS, Springer-Verlag, vol. 2442, pp. 565-
580.

11. M. Fitzi, M. Hirt and U. Maurer, Trading Correctness for Privacy in Unconditional Multi-
Party Computation, CRYPTO 98, LNCS, Springer-Verlag, vol. 1462, 1998, pp. 121-136.

12. M. Hirt, U. Maurer. Player Simulation and General Adversary Structures in Perfect Mul-
tiparty Computation, J. of Cryptology 13, 2000, pp. 31-60.

13. M. Karchmer, A. Wigderson, On Span Programs, Proc. of 8-th Annual Structure in Com-
plexity Theory Conference, San Diego, California, 18-21 May 1993. IEEE Computer So-
ciety Press, pp. 102-111.

14. J. L. Massey, Minimal codewords and secret sharing, Proc. 6-th Joint Swedish-Russian
Int. Workshop on Inform. Theory 1993, 276-279.

15. R. J. McEliece, D. V. Sarwate, On Sharing secrets and Reed-Solomon codes, Commun.
ACM 24, 1981, pp. 583-584.

16. F. J. Mac Williams, N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier
Science, Amsterdam, 1988.

17. V. Nikov, S. Nikova, B. Preneel, J. Vandewalle, Applying General Access Structure to
Proactive Secret Sharing Schemes, Proc. of the 23rd Symposium on Information Theory
in the Benelux, May 29-31, 2002, Universite Catholique de Lovain (UCL), Lovain-la-Neuve,
Belgium, pp. 197-206, Cryptology ePrint Archive: Report 2002/141.

18. V. Nikov, S. Nikova, B. Preneel. Upper Bound for the Size of Monotone Span Programs,
ISIT 2003, 2003, pp. 284.

19. A. Shamir, How to share a secret, Commun. ACM 22, 1979, pp. 612-613.

