
SFLASHv3, a fast asymmetric

signature scheme

Revised Specification of SFLASH, version 3.0., 17 October 2003

Nicolas T. Courtois1, Louis Goubin1 and Jacques Patarin2

1Axalto Cryptographic Research & Advanced Security,
36-38 rue de la Princesse, BP 45, 78430 Louveciennes Cedex, France

courtois@minrank.org, LGoubin@slb.com
2 PRISM, University of Versailles, France

Jacques.Patarin@prism.uvsq.fr

Note: SFLASHv2 is one of the three asymmetric signature schemes recommended
by the Nessie European consortium for low-cost smart cards [19, 14]. The latest im-
plementation report shows that SFLASHv2 is the fastest signature scheme known, see
[1].

Recent results on solving random systems of quadratic equations over fields of the
form GF (2k) (see [2]) suggest that the parameters of SFLASH should be increased. We
also improve the hashing procedure, as suggested by Nessie evaluation reports.

The new version is called SFLASHv3 and is fully specified in the present document.
This is therefore the only official version of SFLASH and we do no longer recommend
SFLASHv2. In the appendix of the present document we summarize all the changes in
SFLASH, for readers and developers that are acquainted with the previous version(s).

1 Introduction

In the present document, we describe the updated version SFLASHv3 of the SFLASH
public key signature scheme proposed in [18] and already revised in [19].

SFLASH belongs to the family of “multivariate” public key schemes, i.e. each
signature and each hash of the messages to sign are represented by some elements of
a small finite field K. The SFLASH signature scheme is based on a C∗−− trapdoor
function algorithm introduced in [23], with a special choice of the parameters. Known
attacks on SFLASH, and important results that have a direct impact on its security,
can be found in [23, 8, 7, 11, 22, 2, 20, 17, 25, 24, 9, 10, 5].

SFLASH has been designed for very specific applications where the cost of classical
cryptographic algorithms (RSA, Elliptic Curves, DSA, etc) becomes prohibitive: they
are too slow or/and the signature size if too big. Thus SFLASH have been created to
satisfy an extreme property that no standardized public key scheme have reached so
far: efficiency on low-price smart cards.

SFLASH is a very fast signature scheme, both for signature generation and signa-
ture verification. It is much faster than RSA and much easier to implement on smart
cards without any arithmetic coprocessor. See [1] for implementation report and some
concrete speed results for SFLASHv2 compared to its competitors. These results extend
easily to SFLASHv3.

1

The price to pay for speed, and the main drawback of SFLASH, is the public key
size being noticeably larger than for RSA. In SFLASHv1 and SFLASHv2 (that had
insufficient security level) it was respectively 2.2 and 15.4 Kbytes, see [19, 18, 14] which
could easily fit in low-end smart cards. For the new version SFLASHv3 it is less obvious:
the size of the public key becomes 112 Kbytes. This change seems necessary as our main
motivation is long-term security. SFLASHv3 remains very competitive and it should
remain the fastest signature scheme known, that can only be rivalled by NTRU. Though
SFLASH public key is longer than NTRU, the signatures are shorter. Therefore both
have their advantages.

It seems that SFLASH approaches its maturity. Starting from the previous version
SFLASHv2, there is no method known to distinguish the public key of SFLASH from a
random system of quadratic equations over GF (2k). Solving such a system, is a famous
hard problem MQ, that also underlies the security of other multivariate encryption and
signature schemes. The hardness of this problem is also required for the security of
many block ciphers, see [13, 4, 3], including AES, and for several stream ciphers, see
[5, 6].

SFLASH was designed to have a security level of 280 with the present state of the
art in cryptanalysis, as required in the NESSIE project. A security margin is kept
with respect to this goal: the best currently known attack on SFLASHv3 requires 2100

operations, see [2].

2 Notation

In all the present document, || will denote the “concatenation” operation. More pre-
cisely, if λ = (λ0, . . . , λm) and µ = (µ0, . . . , µn) are two strings of elements (in a given
field), then λ||µ denotes the string of elements (in the given field) defined by:

λ||µ = (λ0, . . . , λm, µ0, . . . , µn).

For a given string λ = (λ0, . . . , λm) of bits and two integers r, s, such that 0 ≤ r ≤
s ≤ m, we denote by [λ]r→s the string of bits defined by:

[λ]r→s = (λr, λr+1, . . . , λs−1, λs).

3 Parameters of the Algorithm

The SFLASH algorithm uses three finite fields.

• The first one, K = F128 is precisely defined as K = F2[X]/(X7 + X + 1). We
will denote by π the bijection between {0, 1}7 and K defined by:

∀b = (b0, . . . , b6) ∈ {0, 1}7, π(b) = b6X
6 + . . . + b1X + b0 (mod X7 + X + 1).

• The second one is L = K[X]/(X67 +X5 +X2 +X +1). We will denote by ϕ the
bijection between K67 and L defined by:

∀ω = (ω0, . . . , ω66) ∈ K67,

ϕ(ω) = ω66X
66 + . . .+ω1X +ω0 (mod X67 + X5 + X2 + X + 1).

The SFLASH algorithm uses two affine bijections s and t from K67 to K67. Each
of them is composed of a secret linear part SL resp. TL and of a constant part SC resp.
TC .

2

3.1 Secret Parameters

1. A linear secret bijection from K67 to K67 that is represented by a 67× 67 square
matrix with entries in K, written with respect to the canonical basis of K67. We
denote by SL this matrix (“L” means “linear”).

2. Another linear secret bijection from K67 to K67 represented by a 67× 67 square
matrix over K denoted by TL.

3. A 80-bit secret string denoted by ∆.

3.2 Semi-Public Parameters

In addition, constant parts of s and t are specified:

1. A vector in K67 represented by a 67×1 column matrix SC (“C” means “constant”)
with respect to the canonical basis of K67.

2. Another vector in K67 represented by a column matrix TC .

Explanation: It is illusory to make these constant parts of s and t secret, see
Section 7.1 and [21]. They can be made public does not impact the security of SFLASH.
However, we recommend not to publish them. First, because they are not used in
signature verification process, and also in order to save space and transmission time
for the public key. As a consequence, these values are neither secret (as they can be
recovered, see [21]) nor public (as they are not made public). For this reason we call
them semi-public.

3.3 Public Parameters

The public key consists in the function G from K67 to K56 defined by:

G(X) =
[
t
(
ϕ−1

(
F (ϕ(s(X)))

))]
0→391

.

Here the subscript 0→391 allows to pick 56 equations out of 67 (and 56 · 7 = 392).
F is the function from L to L defined by:

∀A ∈ L, F (A) = A12833+1.

By construction of the algorithm, G is a quadratic transformation over K, i.e.
(Y0, . . . , Y55) = G(X0, . . . , X66) can be written, equivalently:

Y0 = P0(X0, . . . , X66)
...

Y55 = P55(X0, . . . , X66)

with each Pi being a quadratic polynomial of the form

Pi(X0, . . . , X66) =
∑

0≤j<k<67

ζi,j,kXjXk +
∑

0≤j<67

νi,jXj + ρi,

all the elements ζi,j,k, νi,j and ρi being in K.
Efficient generation of keys for such multivariate schemes goes beyond the topic of

this paper, see [27].

3

4 Key Generation

In the SFLASH scheme, the public is deduced from the secret key, as explained in
section 3.2. We need only to describe how the secret key is generated. As described in
section 3.1, the following secret elements have to be generated:

• The secret invertible 67 × 67 matrix SL, and the secret 67 × 1 (column) matrix
SC , all the coefficients being in K.

• The secret invertible 67 × 67 matrix TL, and the secret 67 × 1 (column) matrix
TC , all the coefficients being in K.

• The 80-bit secret string ∆.

4.1 Detailed Step-by-Step Key Generation

Note that, through the π transformation, generating an element of K is equivalent to
generating a 7-bit string. In what follows, we call

next_7bit_random_string

the string of 7 bits obtained by calling 7 times the CSPRBG (we obtain first the first
bit of the string, then the second bit, ..., until the seventh bit).
To generate all these parameters, we apply the following method, which uses a crypto-
graphically secure pseudorandom bit generator (CSPRBG). From a seed whose entropy
is at least 80 bits, this CSPRBG is supposed to produce a new random bit each time
it is asked to.

1. To generate the invertible 67× 67 matrix SL, two methods can be used:

First Method (“Trial and error”): Generate the matrix SL by repeating

for i=0 to 66
for j=0 to 66

S_L[i,j]=pi(next_7bit_random_string)

until we obtain an invertible matrix.

Second Method (with the LU decomposition): Generate a lower trian-
gular 67 × 67 matrix LS and an upper triangular 67 × 67 matrix US , all the
coefficients being in K, as follows:

for i=0 to 66
for j=0 to 66
{

if (i<j) then
{U_S[i,j]=pi(next_7bit_random_string); L_S[i,j]=0;};

if (i>j) then
{L_S[i,j]=pi(next_7bit_random_string); U_S[i,j]=0;};

if (i=j) then
{repeat (z=next_7bit_random_string)

until z!=(0,0,0,0,0,0,0);
U_S[i,j]=pi(z);
L_S[i,j]=1;};

};

4

Define then SL = LS × US .

2. Generate SC by using the CSPRBG to obtain 67 new random elements of K
(from the top to the bottom of the column matrix). Each of these elements of K
is obtained by

pi(next_7bit_random_string)

3. The generation of the invertible 67× 67 matrix TL, is done exactly as for SL.

4. The generation of TC is done exactly as for SC by using the CSPRBG to obtain
67 new random random elements of K.

5. Finally, generate ∆ by using the CSPRBG to obtain 80 random bits.

5 Signing a Message

In the present section, we describe the signature of a message M by the SFLASH
algorithm.

5.1 The Signing Algorithm

The message M is given by a string of bits. Its signature S is obtained by applying
successively the following operations (see figure 1):

1. Let M0, M1, M2 and M3 be the three 160-bit strings defined by:

M0 = SHA-1(M),

M1 = SHA-1(M0||0x00),

M2 = SHA-1(M0||0x01).

M3 = SHA-1(M0||0x02).

With 0x00 through 0x02 denoting one single 8-bit character appended to M0.

2. Let V be the 392-bit string defined by:

V = [M1]0→159||[M2]0→159||[M3]0→71.

3. Let W be the 77-bit string defined by:

W = [SHA-1(V ||∆)]0→76.

4. Let Y be the string of 56 elements of K defined by:

Y =
(
π([V]0→6), π([V]7→13), . . . , π([V]385→391)

)
.

5. Let R be the string of 11 elements of K defined by:

R =
(
π([W]0→6), π([W]7→13), . . . , π([W]70→76)

)
.

6. Let B be the element of L defined by:

B = ϕ
(
t−1(Y ||R)

)
.

5

7. Let A be the element of L defined by:

A = F−1(B),

F being the function from L to L defined by:

∀A ∈ L, F (A) = A12833+1.

8. Let X = (X0, . . . , X66) be the string of 67 elements of K defined by:

X = (X0, . . . , X66) = s−1
(
ϕ−1(A)

)
.

9. The signature S is the 469-bit string given by:

S = π−1(X0)|| . . . ||π−1(X66).

5.2 Computing A = F−1(B)

The function F , from L to L, is defined by:

∀A ∈ L, F (A) = A12833+1.

As a consequence, A = F−1(B) can be obtained by the following formula:

A = Bh,

the value of the exponent h being the inverse of 12833+1 modulo 12867−1. We have h =
76814678895570674984783396402390903192632828313606573593975318888419579839689
6924678452624605588574118228052288763643673842596138395343249344.

Finding a fast method of computing A = Bh is not trivial, and is outside the scope
of this paper. (It can be done more than ten times faster than naive square and multiply
method, and the solution for SFLASHv2 is given in [1].)

6 Verifying a signature

Given a message M (i.e. a string of bits) and a signature S (a 259-bit string), the
following algorithm is used to decide whether S is a valid signature of M or not:

1. Let M0, M1, M2 and M3 be the three 160-bit strings defined by:

M0 = SHA-1(M),

M1 = SHA-1(M0||0x00),

M2 = SHA-1(M0||0x01).

M3 = SHA-1(M0||0x02).

With 0x00 through 0x02 denoting one single 8-bit character appended to M0.

2. Let V be the 392-bit string defined by:

V = [M1]0→159||[M2]0→159||[M3]0→71.

6

Message M -SHA-1 M0

?� � �

? ? ?
M0 0 M0 1 M0 2

168 bits 168 bits 168 bits

? ? ?
SHA-1 SHA-1 SHA-1

160 bits 160 bits 72 / 160
total 392 bits

?

?

?

? ?

-

-
?

Signature S

A

B

Y ||R

R

Y
SHA-1(·||∆)

F−1

160 bits

s−1

t−1

Figure 1: Signature generation with SFLASH

7

3. Let Y be the string of 56 elements of K defined by:

Y =
(
π([V]0→6), π([V]7→13), . . . , π([V]385→391)

)
.

4. Let Y ′ be the string of 56 elements of K defined by:

Y ′ = G
(
π([S]0→6), π([S]7→13), . . . , π([S]385→391)

)
.

5. • If Y equals Y ′, accept the signature.

• Otherwise reject the signature.

Message M -SHA-1 M0

?� � �

? ? ?
M0 0 M0 1 M0 2

168 bits 168 bits 168 bits

? ? ?
SHA-1 SHA-1 SHA-1

160 bits 160 bits 72 / 160
total 392 bits

-
-

?

?

Signature S

G

Y

Y ′

Y = Y ′: accepted
Y 6= Y ′: rejected

Figure 2: Signature verification with SFLASH

7 Security of SFLASHv3

SFLASH is a signature scheme based on a C∗−− trapdoor function introduced in [23].
There are three levels on which its security should be considered.
1. The security of signature schemes based on multivariate polynomials versus the

security of the underlying trapdoor one-way function. This topic, as well as generic
attacks on signature scheme independent on the trapdoor function, have been studied
in [8].

2. Structural attacks on C∗−− and similar multivariate trapdoor functions have
been studied in [23, 7, 11, 22, 20]. Originally, C∗−− is a product of the research on
repairing the original Matsumoto-Imai cryptosystem [12] with a method of removing
equations introduced independently by Shamir [26] and Patarin [17]. The method itself
of removing equations is analysed in [23, 7, 11, 22]. From the recent paper presented at
Crypto 2003 [11], it is possible to see that, due to he fact that we are over GF (2k), and
unlike the attacks with Gröbner bases shown for C∗−− over GF (2) in [7], it is expected
that for SFLASH schemes, starting from the previous version SFLASHv2, there is no
method known to distinguish them from a random system of quadratic equations over
GF (2k).

3. Then the security of SFLASH will be based mainly on the problem MQ of
solving a system of quadratic equations over GF (2k) (see [8] to see if can be based only

8

on this assumption). This is a very important hard problem known in cryptography.
For example, recently Murphy and Robshaw showed that the security of AES can be
expressed as such a problem, see [13, 4]. It also has implications on the security of
several stream ciphers, see [5, 6].

This problem MQ is however NP-complete, and is expected to be really very hard
in many cases of practical relevance, see [8, 25, 24, 2]. Even though attacks on such
problems have known huge huge progress in the recent years, see [25, 24, 9, 10, 2, 4],
it is possible to see that they are limited by some algebraic properties of the ideal
generated by the public polynomials, that are more or less invariant, whatever is the
method used. They are also limited by the speed of well known fundamental algorithms
such as linear algebra.

Therefore we hope that these schemes arrive at the maturity point, where their
security is fully understood and is not much lower than expected. SFLASH was de-
signed to have a security level of 280 with the present state of the art in Cryptanalysis,
as required in the NESSIE project. The best currently known attack on SFLASHv3

requires 2100 operations, see [2]. This gives still some security margin to resist future
improved attacks.

7.1 Remark - Possibility of Making the Affine Parts Public

This remark has been added after publication of this specification on e-print server, on
October 2nd 2003. We received some criticism from W. Geiselmann, R. Steinwandt and
Th. Beth about the possibility of recovering the affine parts of SFLASHv3. This result
is interesting, except it is not new, see [20, 21]. We were aware of this fact at the time
of specifying SFLASHv3. Yet, we claim that it does not matter at all for the security
of SFLASHv3. In SFLASH, the parts SC and TC may, or may not be made public.
Anyone that implements SFLASHv3 is free to publish them. However for efficiency
reasons, in Section 3.2 we recommended not to publish them.

In general, the current state of knowledge makes us think that, unlike what is
suggested in [20, 21], not only the affine parts are not a weakness of SFLASHv3 but
they in fact probably do improve the strength of SFLASHv3. One should not think
that since they can be recovered they should be removed (equal to 0). We claim that
they should remain random non-zero vectors: indeed, this makes some attacks more
difficult, see for example [17].

To summarize:

� In SFLASHv1 and SFLASHv2 the parts SC and TC were random secrets, and it
was discovered that they could have been made public, see [20, 21].

� In SFLASHv3 the parts SC and TC are not published either. In fact, they are
neither secret, as they can be recovered (see [21]), nor public, as they are not
made public. We call them “semi-public”.

9

8 Summary of the characteristics of SFLASHv3

• Length of the signature: 469 bits.

• Length of the public key: 112.3 Kbytes.

• Length of the secret key: the secret key (7.8 Kbytes) can be generated from a
small seed of 128 bits or more.

• Time to sign a message1: less than 1 ms.
We expect that it should take less than 200 ms on a Infineon SLE66 component
without cryptoprocessor.

• Time to verify a signature1: less than 1 ms: (i.e. approximately 67 × 67 × 56
multiplications and additions in K).

• Time to generate a pair of public key/secret key: less than 1 s. (cf. [27]).

• Best known attack: more than 290 TDES computations.

SFLASHv3 is the only official version of SFLASH and we do no longer recommend
SFLASHv2.

Acknowledgements We would like to thank Louis Granboulan, Bart Preneel,
Gwenaëlle Martinet and all the other members of the Nessie project that by quality of
their work contributed to maturing of several important branches of cryptography.

1On a PC computer. Pessimistic estimation.

10

References

[1] Mehdi-Laurent Akkar, Nicolas Courtois, Louis Goubin, Romain Duteuil: A Fast
and Secure Implementation of Slash, PKC 2003, LNCS 2567, Springer, pp. 267-
278.

[2] Anonymous Communication: Algebraic Attacks over GF (2k) and Cryptanalysis
of Sflash-v2, September 2003.

[3] Alex Biryukov and Christophe De Canniere: Block Ciphers and Systems of
Quadratic Equations. FSE 2003, to appear in LNCS, Springer, 2003.

[4] Nicolas Courtois and Josef Pieprzyk, Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations, Asiacrypt 2002, LNCS 2501, pp.267-287,
Springer, a preprint with a different version of the attack is available at
http://eprint.iacr.org/2002/044/.

[5] Nicolas Courtois: Higher Order Correlation Attacks, XL algorithm and Crypt-
analysis of Toyocrypt, LNCS 2587, pp. 182-199, Springer. An updated version is
available at http://eprint.iacr.org/2002/087/.

[6] Nicolas Courtois and Willi Meier: Algebraic Attacks on Stream Ci-
phers with Linear Feedback, Eurocrypt 2003, Warsaw, Poland, LNCS
2656, pp. 345-359, Springer. An extended version is available at
http://www.minrank.org/toyolili.pdf

[7] Nicolas Courtois, Magnus Daum and Patrick Felke: On the Security of HFE,
HFEv- and Quartz, PKC 2003, LNCS 2567, Springer, pp. 337-350.

[8] Nicolas Courtois: Generic Attacks and the Security of Quartz, PKC 2003, , LNCS
2567, pp. 351-364. A preliminary version was presented at the second Nessie work-
shop, Royal Holloway, University of London, September 2001.

[9] Jean-Charles Faugère: A new efficient algorithm for computing Gröbner
bases (F4), Journal of Pure and Applied Algebra 139 (1999) pp. 61-88. See
www.elsevier.com/locate/jpaa

[10] Jean-Charles Faugère: A new efficient algorithm for computing Gröbner bases
without reduction to zero (F5), Workshop on Applications of Commutative Alge-
bra, Catania, Italy, 3-6 April 2002, ACM Press.

[11] Antoine Joux, Jean-Charles Faugère: Algebraic Cryptanalysis of Hidden Field
Equation (HFE) Cryptosystems Using Gröbner Bases, Crypto 2003, LNCS 2729,
pp. 44-60, Springer.

[12] Tsutomu Matsumoto, Hideki Imai: Public Quadratic Polynomial-tuples for effi-
cient signature-verification and message-encryption, Eurocrypt’88, Springer 1998,
pp. 419-453.

[13] S. Murphy, M. Robshaw: Essential Algebraic Structure within the AES, Crypto
2002, LNCS 2442, Springer.

[14] NESSIE Portfolio of recommended cryptographic primitives, available at
https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/
decision-final.pdf

[15] NESSIE Security Report, revised final version 2.0, available at
https://www.cosic.esat.kuleuven.ac.be/nessie/deliverables/D20-v2.pdf

11

[16] Jacques Patarin: Cryptanalysis of the Matsumoto and Imai Public Key Scheme
of Eurocrypt’88, In Crypto’95, Springer, LNCS 963, pp. 248-261, 1995.

[17] Jacques Patarin: Hidden Fields Equations (HFE) and Isomorphisms of Polynomi-
als (IP): two new families of Asymmetric Algorithms, Eurocrypt’96, Springer, pp.
33-48. The extended version can be found at http://www.minrank.org/hfe.ps

[18] Jacques Patarin, Louis Goubin, Nicolas Courtois: Flash, a fast multivariate sig-
nature algorithm; Cryptographers’ Track Rsa Conference 2001, LNCS 2020, pp.
298-307, Springer.
This paper introduces FLASH and SFLASHv1.

[19] The specification of Sflashv2. Available from:
http://www.cryptosystem.net/sflash/.

[20] W. Geiselmann, R. Steinwandt, Th. Beth, Attacking the Affine Parts of SFLASH ,
Initially presented at the second NESSIE Workshop, 12-13 September 2001,
Egham, UK. Published in IMA Int. Conf. 2001, LNCS 2260, Springer, pp. 355-359,
2001.

[21] W. Geiselmann, R. Steinwandt, and Th. Beth: Revealing the Ane Parts of
SFLASHv1, SFLASHv2, and FLASH. In Santos Gonzalez Jimenez and Consuelo
Martnez Lopez, editors, Actas de la VII Reunion Española de Criptologa y Se-
guridad de la Informacion. Tomo I, pages 305-314, 2002.

[22] Henri Gilbert, Marine Minier: Cryptanalysis of SFLASH. Eurocrypt 2002, LNCS
2232, Springer, pp. 288-298, 2002.

[23] J. Patarin, L. Goubin, N. Courtois, C∗−+ and HM: Variations around two schemes
of T. Matsumoto and H. Imai, in Advances in Cryptology, Proceedings of ASI-
ACRYPT’98, LNCS n◦ 1514, Springer, 1998, pp. 35-49.

[24] Jacques Patarin and Nicolas Courtois About the XL Algorithm over GF (2), Cryp-
tographers’ Track RSA 2003, LNCS 2612, pages 141-157, Springer 2003.

[25] Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov, Efficient Al-
gorithms for solving Overdefined Systems of Multivariate Polynomial Equations,
Eurocrypt’2000, LNCS 1807, Springer, pp. 392-407.

[26] Adi Shamir: Efficient signature schemes based on birational permutations;
Crypto’93, Springer, pp. 1-12.

[27] Christopher Wolf: Efficient Public Key Generation for Multivariate Cryptosys-
tems, http://eprint.iacr.org/2003/089/

12

A Appendix - Summary of Modifications in SFLASH

In this section we explain the difference between the updated version SFLASHv3 and
the previous versions SFLASHv1 and SFLASHv2. A complete history of changes is
given.

A.1 Increasing the Number of Variables/Equations

� In SFLASHv1 and SFLASHv2 the “big” field is L = K[X]/(X37 + X12 + X10 +
X2 + 1) with K = F2[X]/(X7 + X + 1).
As a consequence, in the public key there are 37 variables.
The number of public equations is 37-11=26, as 11 equations have been removed.

� In SFLASHv3 the big field is L = K[X]/(X67 + X5 + X2 + X + 1). The “small”
field K = F2[X]/(X7 + X + 1) remains the same.
As a consequence, in the public key there are 67 variables.
The number of public equations is 67-11=56, as again exactly 11 equations have
been removed.

A.2 Changing the Way the Message is Hashed

� In SFLASHv1 and SFLASHv2 the first two steps in computing the signature (and
also in verifying it) were:

1 Let M1 and M2 be the three 160-bit strings defined by:

M1 = SHA-1(M),

M2 = SHA-1(M1).

2 Let V be the 182-bit
∗

string defined by:

V = [M1]0→159||[M2]0→21.

* Note that 182 = (37− 11) · 7.

� In SFLASHv3 it is a bit more complicated:

1 Let M0, M1, M2 and M3 be the three 160-bit strings defined by:

M0 = SHA-1(M),

M1 = SHA-1(M0||0x00),

M2 = SHA-1(M0||0x01).

M3 = SHA-1(M0||0x02).

With 0x00 through 0x02 denoting one single 8-bit character appended to
M0.

2 Let V be the 392-bit
∗∗

string defined by:

V = [M1]0→159||[M2]0→159||[M3]0→71.

** Note that 392 = (67− 11) · 7.

This modification allows the whole value V to be modelised by a random oracle,
and allows to apply to SFLASHv3 the partial provable security results of [8].

13

A.3 Increasing the Degree of the Internal Polynomial

� In SFLASHv1 and SFLASHv2 the internal polynomial is F : L → L defined by:

∀A ∈ L, F (A) = A12811+1.

� In SFLASHv3 the internal polynomial is F : L → L defined by:

∀A ∈ L, F (A) = A12833+1.

This change has, as far as we know, no incidence on the security of SFLASHv3. It
has been done to speed-up the signature computation by using less multiplications in
L.

A.4 Choosing the coefficients of s and t in GF(128) instead of
GF(2)

This change does not concern the current version and was done between the old versions
SFLASHv1 and SFLASHv2. We recall it to make our SFLASH history complete.

� In SFLASHv1 the coefficients of the secret affine transformations s and t were
chosen in the subfield K ′ = GF(2) instead of the field K = GF(128). This
very special property allowed to substantially decrease the size of the public key.
Unfortunately it also allowed Gilbert and Minier to break SFLASHv1, see [22] for
details.

� In SFLASHv2 and SFLASHv3 the coefficients of the secret affine transformations
s and t are chosen in K = GF(128). This makes the public key bigger, but also
makes attacks such as described in [22] impractical.

This change also prevents the attack of Geiselmann, Steinwandt and Beth from
[20], that can after all be done also in this case, see [21]. However, we claim that
this attack is not a threat to the security of SFLASH, see Section 7.1.

A.5 Resulting Changes in Signature Size and in Public Key
Size

These are a straight consequence of all the changes described above. We summarize
them here:

� In SFLASHv1 the public key had 2.2 Kbytes.
The signature length was 259 bits.

� In SFLASHv2 the public key had 15.4 Kbytes.
The signature length was 259 bits.

� In SFLASHv3 the public key has 112.3 Kbytes.
The signature length is 469 bits.

14

