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Abstract
This paper focusses on building secure keyword indexes that allow efficient search on en-

crypted compressed documents. Our indexes are constructed using Bloom filters and pseudo-
random functions. Our construction requires only O(1) search time per document, and can,
without any modification, handle both variable length keywords, and boolean and certain regu-
lar expression queries. Unlike previous index schemes, index updates in our scheme are provably
secure. Key management is simple with only one key. Furthermore, our scheme, being index-
based, is indifferent to the compression and encryption algorithm used on the documents. Our
security model for indexes, called semantically security against against adaptive chosen keyword
attack, is of independent interest because it provides very strong security guarantees in a realis-
tic setting. We prove that our index satisfies this model. Apart from the application to keyword
search, our Bloom filter construction can also be used for accumulated hashing, and also in any
application that requires a security preserving test of set membership.

1 Introduction

Keyword indexes let us search in constant time for documents containing specified keywords. Unfor-
tunately, standard index constructions such as those using hash tables are unsuitable for indexing
encrypted (and presumably sensitive) documents because they leak information about the doc-
ument contents. Previous attempts at building secure indexes [26] are incomplete because their
indexes cannot securely handle updates. In this paper, we focus on the problem of building indexes
that are semantically secure against adaptive chosen keyword attack. Our interest in secure indexes
is primarily motivated by the application of searching on encrypted data, but as we will see later,
our construction can also be used for accumulated hashing and secure set membership tests.

Searching on Encrypted Data. Increasingly, organizations and users are storing their data on
servers outside their direct control. Backups and remote data storage are commonly outsourced to
data warehousing companies. Even when data is stored locally, organizations hire system adminis-
trators (sysadmins) to run backup and storage servers. In either case, sysadmins typically have full
administrator access to storage systems, and can read confidential data. Therefore, it is prudent
to either use untrusted storage systems [16, 19] that encrypt data on before remote storage, or to
manually encrypt sensitive documents before placing them on remote servers.

With files encrypted on a remote server, it is difficult to retrieve files based on their content. For
example, consider a user Alice who stores her work documents on a untrusted file system. Suppose
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Alice wishes to retrieve all documents containing the word “aardvark”. Since the document files
are encrypted and the server cannot be trusted with the document keys or their contents, Alice has
to download all the document files, decrypt them, and then search the decrypted documents on her
local machine; This naive solution is inefficient. The ideal solution is to let the server search the
encrypted documents and return only relevant ones, while ensuring that it learns nothing about
the keyword or document contents. We discuss these design and security goals in Section 3.

Overview. Our construction requires only O(1) search time per document, and can, without
any modification, handle both variable length words, and boolean and certain regular expression
queries. Furthermore, index updates in our scheme are provably secure. Key management is simple
with only one key. Our scheme, being index-based, is indifferent to the compression and encryption
algorithm used on the documents. We defer a discussion of related work to Section 9.

Of separate interest is the development of our security model of semantically security against
adaptive chosen keyword attack for indexes. An index that satisfies our security model provides
very strong security in the following sense — Consider a document P containing n words, of which
an adversary already knows m words and wants information about the n−m unknown words. We
call the set of n−m unknown words W . Even when the adversary is given plain text access to all
other documents except on W , and is also allowed to make arbitrary queries of its choice on any
word except those in W , the adversary still cannot obtain any information about any word in W
from P ’s index. Our model captures the intuitive notion that an adversary learns nothing about
a document from its index other than what it already knows from previous query results or other
channels.

2 Background

In our construction, Bloom filters are used with pseudo-random functions for security. We spend
the rest of this section describing both Bloom filters and pseudo-random functions. Readers familiar
with the material can skip to the next section.

2.1 Bloom Filters

Historical Overview. Bloom filters [8] were introduced by Burton Bloom in 1970 as a data
structure for efficiently testing set membership. Knuth mentions that Bloom filters are an applica-
tion of “superimposed coding” [17] to search problems. Bloom filters have been used in the database
community for efficiently implementing semi-join operations [21], and in the caching community
for web cache sharing [14].

Description. A Bloom filter represents a set of S = {s1, . . . , sn} of n elements and is represented
by an array of m bits. All array bits are initially set to 0. The filter uses r independent hash
functions f1, . . . , fr, where fi : {0, 1}∗ → [1,m] for 1 ≤ i ≤ r. For each element s ∈ S, the array
bits at positions f1(s), . . . , fr(s) are set to 1. A location can be set to 1 multiple times, but only
the first is noted.

To determine if an element a belongs to the set S, we check the bits at positions f1(a), . . . , fr(a).
If all the checked bits are 1’s, then a is considered a member of the set. There is, however, some
probability of a false positive, in which a appears to be in S but actually is not. False positives
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occur because each location may have also been set by some element other than a. On the other
hand, if any of the checked bits is 0, then a is definitely not a member of S.

Analysis. We quantify the probability of a false positive occurring. Assume that the hash func-
tions map each element uniformly over the range [1,m]. After using the r hash functions to insert
n distinct elements into the array of size m, the probability that bit i in the array is 0 is(

1− 1
m

)rn
≈ e−rn/m.

Therefore, the probability of a false positive is(
1−

(
1− 1

m

)rn
)r
≈ (1− e−rn/m)r.

Since m and n typically are fixed parameters, we compute the value of r that minimizes the false
positive rate. The derivative of the right hand side of the equation with respect to r gives a global
minimum of r = (ln 2)(m/n), with a false positive rate of (1/2)r. In practice, r is rounded to the
nearest integer.

2.2 Pseudo-Random Functions

Intuitively, a pseudo-random function is indistinguishable from a random function — given x1, . . . , xm

and Fk(x1), . . . , Fk(xm), an adversary cannot predict Fk(xm+1) for any xm+1. We formalize this
intuition with the following definition.

Definition 2.1 (Pseudo-Random Function). A function f : {0, 1}n × {0, 1}s → {0, 1}m is a
(t, ε, q)-pseudo-random function if

1. given input x ∈ {0, 1}n and key k ∈ {0, 1}s, there is an efficient algorithm to compute

fk(x) def= f(x, k).

2. for any t time oracle algorithm A,∣∣∣ Pr
k←{0,1}s

[Afk = rand]− Pr
g←F

[Ag = rand]
∣∣∣ < ε

where F = {g : {0, 1}n → {0, 1}m} and A makes at most q queries to the oracle adaptively.

In practice, we use HMAC-SHA1 [4, 5] as a pseudo-random function.

3 Design and Security Goals.

We first give a high level outline of our goals before describing our construction.

Minimize Communication and Computational Overhead. When searching for documents
containing a keyword, Alice sends only a small codeword representing the word, and the server
returns only those documents containing the keyword. In addition, we want to minimize the
amount of computation the client and server performs on a search.
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Multi-user Setting. If we are interested only in a single user setting, an obvious solution is to
build a local index. For example, the local index can be a hash table where each bucket contains all
documents with a particular keyword. In this case, when Alice searches for documents containing
a keyword, she first searches her local index and then retrieves the relevant documents.

Solutions using local indexes do not work well in multi-user scenarios where many users share
a group of document files. When documents are added or deleted from the group, or if documents
are altered, the set of words contained in the document set change. When these changes occur, all
indexes must be updated. If the indexes are local, it is hard to propagate the updates to all users.
In this paper, we only consider solutions that can handle both single and multi-user scenarios. Our
constructions use indexes stored on a remote server, which ensures that users always access the
latest version of the index.

Security versus Efficiency Tradeoff. This paper aims for practical constructions that can be
immediately deployed. Song, Wagner, and Perrig (SWP) [26] were the first to consider practical
search constructions. Like the SWP solutions, our scheme does not hide data access pattern hiding
that Private Information Retrieval (PIR) schemes [12] provide. For example, after a search for
keyword x using SWP or our construction, the server does not learn what the keyword is but
knows which document files contain x. Our solution, however, is vastly more efficient than either
SWP or PIR schemes.

Security Goals. Recall that the user sends a codeword representing a word to the server and the
server returns matching documents. The coded keyword query must not reveal the actual search
word, and the server cannot generate coded queries without the user. After a search, the server
should learn nothing more about the documents than the search result. Indexes should reveal
nothing about the document even on updates. We capture these properties in the security model
of semantic security against adaptive chosen keyword attack.

4 Design

The basic design uses a Bloom filter per document as an index to track words in each document. In
our scheme, words are represented by codewords, which are derived using pseudo-random functions.
These codewords are called “word digests”.

Definition 4.1 (Word Digest). Let x ∈ {0, 1}∗. The word digest of x is defined to be W (x) =
f1(x), . . . , fr(x), where fj(x) denotes computing the pseudo-random function f with key j on x.

We describe our index setup, search, and update algorithms by using the index for searching
encrypted files on a remote server.

4.1 Setup Algorithm

Suppose a user U stores a set of n documents on an untrusted server B and wants to use our index
to search. To achieve this, the following steps are carried out —

1. First derive suitable Bloom filter parameters. We delay the discussion of choosing suitable
parameters until Section 7. For now, assume that the Bloom filter is instantiated with an
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array of size m. Instead of using r independent hash functions, we use the same pseudo-
random function f with r different keys. These keys are chosen uniformly at random from
the key space.

2. Sequentially assign an integer from the range [1, n] to each document.

3. Scan each document — for each word x in document j, first compute W (x) = f1(x), . . . , fr(x)
and then insert ff1(x)(j), . . . , ffr(x)(j) into document j’s Bloom filter. This procedure is
carried out for all n documents, creating n document Bloom filters.

4. Compress and encrypt each document using standard algorithms. Mark each document and
its associated Bloom filter with the assigned integer label before transferring the documents
and their Bloom filters to B.

Cost of Setup. It is easy to see that the cost of setup is linear with the size of documents.

Statistical Analysis Across Document Bloom Filters. In Step 3, the obvious idea is to
insert the word digests f1(x), . . . , fr(x) directly into the document Bloom filter instead of the non-
standard technique of applying pseudo-random functions that we have chosen.1 The reason for this
design decision is to prevent statistical analysis across a set of document Bloom filters.

As explained in Section 9, keyword hash tables are unsuitable for indexes because updates reveal
too much information. Bloom filters suffer from the same problem if we insert the word digests
directly into document Bloom filters. By comparing document Bloom filters, the overlap, or lack
thereof, of 1’s in the filter allows an adversary to deduce if two documents contain a similar set
of unique words. A similar statistical attack on document updates can be mounted by tracking
document Bloom filter changes between updates.

Nevertheless, observe that these attacks are effective only if the codeword representing a word
remains the same across all documents. The simplest solution based on this observation is to use
different keys for every document. This solution, however, leads to key proliferation and even
worse, the user has to compute a codeword for every document and send it to the server on every
query. On the other hand, the non-standard technique we have chosen allows us to vary the word
digest while using only a small (constant) number of keys. In fact, Lemma 5.2 shows that our
non-standard usage of the pseudo-random function transforms it into a pseudo-random generator.
Therefore, it is impossible to correlate the words contained in the document Bloom filters across
all the documents. This fact is crucial in the security proof of this construction.

4.2 Search Algorithm

Suppose a user U wants to obtain all documents on the untrusted server B that contain a word y.
To achieve this, the following procedure is carried out —

1. U derives the word digest of y by computing W (x) = h1(y), . . . , hr(y). U sends the word
digest of y to the server B.

2. For every document i in the set of n documents, B computes hh1(y)(i), . . . , hhr(y)(i) and tests
document i’s Bloom filter for a match. All matching documents are returned to U .

1It is easy to see that using pseudo-random functions in the standard way with Bloom filters results in an accu-
mulated hashing scheme [7, 23]. This scheme’s security is a direct result of the security proof given in Section 5.2.
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Cost of Searching. The server tests a Bloom filter for a word by applying the pseudo-random
function twice, and then checking r locations in the Bloom filter array. If we assume that computing
a pseudo-random function and checking a Bloom filter location are both unit time operations, then
searching a document for one word takes 3r = O(1) time. Using the same unit time assumption,
the time taken in searching a set of documents for a word is linear in the number of documents.
Notice that simultaneous word searches can be combined and will only require one pass through the
document Bloom filter set. Note that the communication cost is dominated by the false positive
rate of document Bloom filters. Section 7 discusses the choice of suitable Bloom filter parameters.

Boolean and Regular Expression Queries. Our construction can also handle “AND” and
“OR” boolean queries involving multiple words. We give an example of how to perform an “AND”
query. Suppose the user wants all documents containing words x and y. The user first derives
the word digests for x and y and gives the server both word digests W (x) and W (y). The server
performs the search by simultaneously checking each document Bloom filter using both word digests.
“OR” queries can be carried out in a similar manner. The cost and search time for boolean queries
grows linearly with the length of the query as compared with a single word query. Note that a
boolean query can be completed with a single pass over all documents.

Certain regular expression queries such as “ab[a − z]” can be expressed as boolean queries in
the following way aba ∧ . . . ∧ abz. Hence, such queries can be done with a single pass over all
documents. Wildcard regular expression queries such as “ab∗” are much harder because of the
exponential blowup in the number of possible strings.

Less Revealing Queries. Although searching the entire document set for a word x does not
disclose the value of x to the server, the server knows which documents match the codeword for
x. This information leakage is the price our scheme and the SSKE schemes pay in exchange for
efficiency. Queries restricted to a subset of the entire document set reveal less information to the
server. In particular, queries of the form “Does document 5 contain word x” where the server is
only given the document 5’s codeword for x reveal no information about the other documents.

4.3 Update Algorithms

Adding and Deleting Documents. The setup algorithm in Section 4.1 is used to add new
documents. Deletions simply require deleting the document and its Bloom filter from the server.

Altering Document Contents. Altering the contents of an existing document requires assign-
ing the document a new (unique) number and regenerating the document Bloom filter based on the
the new number. Using a new number prevents statistical analysis on document content updates.

Cost of Updates. Deleting a document is a constant time operation. Adding or updating a
document requires regenerating a new document Bloom filter; Recall that the cost of generating a
document Bloom filter is linear in the size of the document.

4.4 Properties

In this section, we mention several interesting properties of our construction.
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1. Compressed and Encrypted Data

Our scheme, being index-based, does not require access to the document contents after the
index is built. Hence, we can compress and encrypt the documents with any compression
and chosen cipher-text secure (IND-CCA2) [6, 13, 24] cipher.

2. Boolean and Limited Regular Expression Queries

Our scheme can handle these queries efficiently. The algorithms for performing these queries
are described in Section 4.2.

3. Variable Length Words

Our scheme handles variable length words without any modification.

4. Simple Key Management

As described, our construction requires r keys. Note that the r keys can be generated using
a pseudo-random generator with a single secret seed.

5 Security Proofs

We first prove that our schemes use pseudo-random functions securely, and then develop a security
model for secure indexes.

5.1 Pseudo-Random Functions

Our construction uses a fixed pseudo-random function with r different keys simultaneously on a
single word in a document Bloom filter. The next lemma shows that using a pseudo-random function
in this way does not seriously degrade the security of the pseudo-random function. Readers may
wish to refer to Section 2.2 to recall the definition of a pseudo-random function. The proofs in this
section are straightforward and are omitted.

Lemma 5.1 (Using Pseudo-Random Functions in Parallel). Let f : {0, 1}n × {0, 1}s →
{0, 1}m be a (t, ε, q)-pseudo-random function. Consider the following pseudo-random function f ′

defined as
f ′k1,...,kr

(x) = fk1(x)‖ . . . ‖fkr(x).

Then, f ′ is a (t, rε, q)-pseudo-random function.

To prevent statistical analysis, codewords representing a single word are varied across a set of
documents. The next lemma proves that the technique used in Section 4.1 transforms the pseudo-
random function into a pseudo-random generator. Therefore, correlating codewords representing
the same word across a set of documents is infeasible. We first define a pseudo-random generator.

Definition 5.1 (Pseudo-Random Generator). A (t, ε)-pseudo-random generator is a function
G : {0, 1}n → {0, 1}m where m� n, and

1. G is efficiently computable by a deterministic algorithm
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2. For all t time probabilistic algorithms A,∣∣ Pr[A(G(s)) = rand | s R← {0, 1}n]− Pr[A(r) = rand | r R← {0, 1}m]
∣∣ < ε.

Lemma 5.2. Let f : {0, 1}n × {0, 1}k → {0, 1}m be a (t, ε, q)-pseudo-random function. Consider

G(s) = fs(1)‖ . . . ‖fs(q).

Then G is a (t− q, ε)-pseudo-random generator.

5.2 Security Model

Intuitively, our security model aims to capture the notion that an adversary learns nothing about
the document from the index other than what it already knows from previous query results or other
channels. That is, consider a set P (representing a document) containing n words, m of which are
public or have been queried upon and are therefore known to an adversary. The challenge to the
adversary is, given an index (a Bloom filter using pseudo-random functions in our case) encoding
the words in P , deduce at least one of the n−m words.

Suppose the challenger also gives the adversary two distinct sets of n−m words together with
an index and tells the adversary that one of these sets is encoded in the index. The new challenge
to the adversary is to figure out which set is encoded. It is easy to see that an adversary that
wins the previous challenge with non-negligible probability also wins this challenge with the same
probability. Therefore, if this challenge is difficult, then the previous challenge — deducing one
of the n −m words — must also be difficult. As a result, if the adversary cannot tell which set
is encoded in the index with probability greater than 1/2, then clearly the index reveals nothing
about the n−m words. We use this idea of semantic security [6] to formalize the intuition behind
this security game between an adversary and challenger.

An index that satisfies our security model provides very strong security in the following sense
— Consider a document P containing n words, of which an adversary already knows m words and
wants information about the n−m unknown words. We call the set of n−m unknown words W .
Even when the adversary is given plain text access to all other documents except on W , and is also
allowed to make arbitrary queries of its choice on any word except on those in W , the adversary
still cannot obtain any information about any word in W from P ’s index.

Definition 5.2 (Symmetric Set Difference). The symmetric difference of two sets A and B is

A ./ B = (A ∪B)− (A ∩B).

Semantic Security Against Adaptive Chosen Keyword Attack (SS-CKA) Game.

Setup. The challenger C creates a set S of q words and gives this to the adversary A. From S,
A chooses an arbitrary number of subsets.2 This collection of subsets is called S∗. Next, A
gives S∗ to C. For each subset in S∗, C encodes its contents into an index using some function
f . Finally, C sends all indexes with their associated subsets to A.

2S is the set of all the unique words in a collection of documents and each of the subsets represents a document.
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Queries. At any point so far, A is allowed to query C on a word x and receive f(x). In addition,
A has access to a function Q that given f(x) and an index I for a subset from S, outputs if
I contains f(x). That is,

Q(I, f(x)) =
{

0 if f(x) /∈ I
1 if f(x) ∈ I.

Challenge. Upon receiving the indexes from C, A makes some (or no) queries and then decides on
a challenge. A picks a subset from S∗, call it P , and generates another subset Q from S such
that that both P and Q are non-empty, of equal size, and P ./ Q is non-empty. Furthermore,
A must not have queried C on any word in P ./ Q.3 Next, A gives P and Q to C who then
randomly picks either P or Q. We refer to C’s choice as V . For each word x ∈ V , C encodes
x using the function f and stores f(x) in an index D. Lastly, C sends D to A. The challenge
for A is to, given D, guess if V = P or Q.4 Furthermore, after the challenge has been given,
A is not allowed to query C on all words x ∈ P ./ Q.

Response. After running for some time and making more queries, A makes its guess. Let g be
A’s guess. A wins if its guess is correct. A’s advantage, AdvA, is defined as

AdvA = |Pr[g = V ]− 1/2|,

where the probabilities are over A and C’s coin tosses.

Remark. The adaptive chosen keyword model gives the adversary more power than would nor-
mally be expected. In fact, we even allow the adversary to choose the contents of all the documents,
and to choose the document that it wishes to be challenged on.

Definition 5.3 (SS-CKA Index). An adversary A (t, ε, q)-breaks a data structure in the SS-
CKA model if AdvA is at least ε after at most t time and q queries to challenger. We say that D
is a (t, ε, q)-SS-CKA index if no adversary can (t, ε, q)-break it.

The next theorem shows that Bloom filters using pseudo-random functions are SS-CKA indexes.

Theorem 5.3. If the Bloom filter construction described in Section 4.1 uses a (t, ε, q)-pseudo-
random function f : {0, 1}n × {0, 1}s → {0, 1}m, then the construction is a (t, ε, q)-SS-CKA index.

Proof. We prove the theorem by contradiction. Suppose the Bloom filter using the pseudo-random
function f is not a (t, ε, q)-SS-CKA data structure but f is a (t, ε, q)-pseudo-random function. Then
there exists an algorithmA that (t, ε, q)-breaks the Bloom filter using f in the SS-CKA model. Using
A, we build another algorithm C that is a distinguisher for f . Algorithm C simulates the challenger
and interacts with A as follows.

Setup. C first picks a set S of q strings from {0, 1}n uniformly at random. Next, C sends S to A
and receives a number of subsets from A. Call this collection of subsets S∗. C assigns each
subset an integer id, and makes the necessary queries to the oracle for f , Of , to create a
Bloom filter for each subset according to Section 4.1. C stores all results of the oracle queries.
Once the setup is complete, C returns all Bloom filters and associated subsets to A.

3Suppose P and Q contain n words and share m words in common. The m shared words represent the information
A already knows and A’s job is to gain some information about the set difference of n−m words.

4Note that A always wins the challenge if the encoding of P or Q in the index is deterministic and never changes
on updates — A simply compares D to the index for P received before the challenge.
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Queries. At any point, A can query C on words of its choosing. On A’s query for a word x, C
checks if it had previously queried Of on x. If it did, C returns the stored response to A.
Otherwise, C queries Of on x, stores the oracle’s response, and returns the response to A. A
can use the responses with function Q to determine if a Bloom filter contains queried words.

Challenge. At some point after receiving the Bloom filters, A picks a challenge subset and
returns two subsets of S, called P and Q. By definition, a legal challenge is when P and Q
are non-empty, of equal size, P ./ Q (the set difference) is non-empty, and A must not have
queried C on any word in P ./ Q. After receiving P and Q, C picks either P or Q uniformly
at random. Let V be C’s choice. C then makes the necessary queries to Of and creates a
document Bloom filter for V with a new unique integer id. Finally, C gives the Bloom filter
for V to A. From this point on, A only queries C on all words x such that x /∈ P ./ Q.

Response. A queries C on more words and takes up to time t before it produces a bit g, where
g = 0 indicates A guesses that V = P and vice versa. If A outputs the right answer, then C
outputs that f is a pseudo-random function. Otherwise, C outputs that f is random.

Analysis. C takes at most t time because A takes at most t time. Furthermore, C makes at
most q queries to Of because there are only q strings in S. Since A breaks the Bloom filter using
the pseudo-random function f with advantage at least ε, we see that A guesses V correctly with
probability at least 1/2 + ε if f is a pseudo-random function.

Claim 1. If f is a random function, then A guesses V correctly with at most probability 1/2.
Before proving claim 1, we explore the consequences of its veracity. If claim 1 is true, then C is

a distinguisher for f with advantage at least ε. This implication contradicts the initial hypothesis
that f is a (t, ε, q)-pseudo-random function. Therefore, if claim 1 is true, then we have proved that
the Bloom filter construction using f is a (t, ε, q)-SS-CKA index. We now prove claim 1.

Proof of Claim 1. Recall that Lemma 5.2 tells us that it is infeasible for an adversary to cor-
relate codewords representing the same word across all document Bloom filters in our construction
when f is a pseudo-random function. Extending the lemma to random functions, we see that it is
not only infeasible but impossible for an adversary to correlate codewords across document Bloom
filters. From the extended lemma, together with the restriction on the choice of sets P and Q and
the restriction on A’s queries after committing to the challenge, we see that the adversary gains
zero information about P ./ Q (and the challenge subset V ) from the other subsets in S∗ and their
associated Bloom filters. Therefore, we only need to consider the challenge subsets.

Without loss of generality, assume that P ./ Q contains only two words, x and y where x ∈ P
and y ∈ Q. Note that A can derive f(z) where z = x or y from D because there are only two words
in P ./ Q. Suppose A guesses V correctly with probability 1/2 + δ where δ > 0. Then, A, given
f(z), can determine if z = x or y with advantage δ. We have shown that A is a distinguisher with
advantage δ for a random function f , which is impossible. Therefore, A guesses V correctly with
probability at most 1/2.

Insecurity of Other Index Constructions. Both the keyword hash table index and the Bloom
filter index using pseudo-random functions in the standard way are not SS-CKA indexes. In
particular, claim 1 in the proof above is false for these two indexes.
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In Practice. Recall that a document Bloom filter stores codewords representing the words con-
tained in the document. These codewords are generated using a pseudo-random function with a
set of keys. We assume that an adversary has no access to pseudo-random function keys because
they are secret and kept securely by the user. When the keys are secret, an adversary cannot
deduce the actual search word from the query codeword, and cannot generate codewords without
the aid of the user. Hence, it is hard for an adversary to perform adaptive searches on words of its
choice. In most situations, an adversary can only passively observe word searches. Furthermore,
documents are usually encrypted with a chosen cipher-text secure (IND-CCA2) [6, 13, 24] cipher,
hence denying document content access to an adversary.

Corollaries. The results in this section show that the Bloom filter using pseudo-random functions
can be used as to test set membership without revealing the set elements. This same property
implies that our Bloom filter construction can also be using for accumulated hashing [7, 23]. A
separate observation is that Bloom filters are history independent data structures [22].

6 Extensions

In this section, we describe three useful extensions.

6.1 Heuristically Increasing Security

We describe a technique that makes it harder for the server to figure out when a word is searched
for more than once.

Technique. When searching for a word y, the user computes f1(y), . . . , fr(y) in the normal way
but instead of sending all r outputs to the server, she sends only r/2 randomly chosen outputs.
Note that the document Bloom filter is still built using all r outputs.

Benefits. The advantage of this technique is that it is harder for an eavesdropper to determine
when the user is searching for a word multiple times. On the other hand, since the server has only
half of pseudo-random function outputs, the document Bloom filters register more false positives.
A higher rate of false positives increases the communication overhead but more false positives
hides the documents that actually contain the keyword. We can choose appropriate Bloom filter
parameters to give the desired information hiding rate versus communication overhead. Section 7
discusses the right choice of Bloom filter parameters.

Why Only Heuristic? In certain situations, the server can determine which truncated word
digests refer to the same word with no extra work. We show this using an example. Assume we
have a set of n documents, all of which contain a word x. Also assume that using the technique
described above gives a false positive rate of 1/10.

Suppose a user performs m queries, of which two are for the same word x and the other m− 2
are queries for words not contained by any document in the set (nonexistent words). The number
of documents returned by a query for a nonexistent word is given by the binomial distribution with
p = 1/10. Observe that the two queries for x return all n documents. In contrast, the probability
that a nonexistent word query returns all n documents is bounded by the Chebyshev inequality
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n m =
√

n (1− 1
9
√

n
)m−2

64 8.00 0.920
128 11.31 0.912
256 16.00 0.907
512 22.63 0.903
1024 32.00 0.901
16384 128.00 0.896
131072 362.04 0.895
1048576 1024.00 0.895
67108864 8192.00 0.895

Figure 1: Probability that none of the m− 2 queries on n documents return all n documents

to be at most 1
9
√

n
. Hence, the probability that all m − 2 queries return less than n documents

is at least (1 − 1
9
√

n
)m−2. Figure 1 lists some sample values of n and the corresponding values of

m where m =
√

n. As we can see from the table, the probability that all m − 2 queries return
less than n documents is high even with relatively low values of m. Therefore, after all m queries
are complete, the server can, with high probability, determine which are the two queries for x by
observing which queries return the entire document set.

Still Useful in Practice. The example given above is a contrived “bad” case. In many common
usage scenarios, it is hard (or impossible) for the server to perform similar kinds of analysis on the
query patterns. Therefore, it is still useful to implement this modification for real applications.

6.2 Locating Words Within Documents

Instead of using a Bloom filter for every document, we can divide documents into chunks and
use a Bloom filter for each chunk. With this modification, we can locate words with chunk size
granularity within a document.

6.3 Occurrence Search

We show how to handle queries such as “find all documents where “foo” occurs at least twice”.
When creating codewords to insert into the Bloom filter, each word is prefixed with the order of
its occurrence relative to previous occurrences of the same word in the document. Searching for
documents where “foo” occurs twice involves creating a word digest for “(2‖foo)” and handing it
to the server. A disadvantage is that this technique increases the number of unique words, which
leads to worse Bloom filter parameters. We discuss choosing suitable Bloom filter parameters in
Section 7.

6.4 Searching for Infrequent Words Efficiently

If preventing statistical analysis attacks (described in Section 4) is not required, then we can
organize document Bloom filters into a binary tree. This tree is used to efficiently search for
uncommon or nonexistent words. Appendix A contains a complete description of this extension.
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7 Choosing Suitable Bloom Filter Parameters

In this section, we discuss the choice of suitable Bloom filter parameters.

False Positive Rate. Increasing the Bloom filter false positive rate causes the server to return
more irrelevant documents in a word search. But the user can easily disregard irrelevant
documents by mechanically scanning them for the word once they are retrieved and decrypted.
Hence, increasing the false positive rate merely increases the communication overhead between
the user and the server and does not affect the correctness of the result. On the other hand,
as discussed in Section 6.1, high false positive rates deter statistical analysis. For most
applications, a false positive rate of 1 in 100 or 1 in 1000 is sufficient.

Number of Pseudo-Random Function Keys. As shown in Section 2.1, the optimal number
of hash functions, r, is given by the equation r = (ln 2)(m/n) where m is the size of the
Bloom filter array and n is the number of words. Selecting r in this manner gives a false
positive rate of (1/2)r. In our application, the number of hash functions r is the number of
pseudo-random function keys.

Array Size. We fix n by choosing an upper bound on the number of unique words in a document
set. Note that we only need to take into account the set of unique words in the document
set and not the set of all possible words in the universe. With r and n determined, we are
left with choosing the array size m. Rearranging the equation, we see m is chosen such that
m = nr/ ln 2.

How to Choose Bloom Filter Parameters. We now explicitly state the procedure to choose
Bloom filter parameters. First choose the desired false positive rate, which in turn gives the number
of hash functions r. Next, scan every document in the set and count the number of unique words.
Multiply the number of unique words by a constant factor to allow for updates. With the expanded
unique word set size n, compute the array size m = nr/ ln 2.

Word Sets are Usually Small. Observe that the set of possible words is potentially very large.
For example, the second edition of the Oxford English Dictionary [25] contains 291500 entries, of
which 47100 entries are obsolete words. Hence, the word set is approximately 218. In this case, for
a false positive rate of 1 in 1024 (210), m ≈ 10 · 218/ ln 2 ≈ 462 kB. If the documents are small,
storing a 462 kB Bloom filter for each of them is inefficient. Nevertheless, most English document
sets do not have a large unique word set. We support this statement with two examples.

1. Consider the Calgary Corpus [2, 3] which is the de facto standard for lossless compression eval-
uation. The standard corpus consists of 14 files containing English text, and is 3.1 megabytes
in size. The corpus contains a total of 437501 English words and letters, of which only 22425
are unique. In this situation, a false positive rate of 1 in 1024 (210) can be obtained by using
10 hash functions and a Bloom filter array of about 58 kB in size.

2. Also consider the news archives for the IPSEC working group [1]. The archives from January
to mid May 2003 consists of 1245 email messages with a total size of 4.5 megabytes. Excluding
email headers and attachments, the email bodies of this archive contains 463869 English words
and letters, of which only 10014 are unique. In this situation, a false positive rate of 1 in
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1024 (210) can be obtained by using 10 hash functions and a document Bloom filter array of
about 29 kB in size.

Even if the word sets are large (resulting in large Bloom filters), we have effective methods for
reducing the Bloom filter size. We describe these techniques in the next section.

8 Reducing Bloom Filter Array Size

In this section, we describe three techniques for reducing Bloom filter sizes.

8.1 Alternative Array Data Structures

In many applications, although the number of possible words in a set of many documents is large,
each document is small and does not contain many unique words. Referring to the example given
in the previous section on the IPSEC news archives, the set of possible words in an email is the total
set of unique words (463869) but each email contains only a small number of unique words.

Since the number of unique words in each email is small, using an array is wasteful because
most of the array entries are 0. Instead, we can simply keep track of the positions which contain
1’s. For example, when the Bloom filter array is 225 bits or 4 megabytes, every position in the array
can be represented using 25 ≈ 25 bits. Hence, this technique is effective for document Bloom filters
whose arrays have less than 220 entries marked with 1’s. For example, consider a large document
containing 5000 unique words.5 Using this technique, the Bloom filter size for this document is
only 5000∗25 = 125000 bits or approximately 15 kilobytes, representing a 99.63% reduction in size
from a 4 megabyte array.

This technique is most effective on sparse (or dense) arrays where entries are mostly 0’s (or 1’s).
Also note that an array consisting mostly of 0’s (or 1’s) can be efficiently compressed. Compressing
the array, however, causes the server to do more work during a word search.

Finally, observe that the large unique word set with small documents scenario where this tech-
nique is most effective frequently occurs in real applications. Therefore, this technique is applicable
to a large number of real world situations.

8.2 Not Indexing All Words

In some situations, users might not need to search on all the content in a set of documents. For
example, consider a set of documents, each labelled with a unique serial number and a set of
attributes such as the date created, authors, and the subject of the document. In this case, it
might suffice to index only the serial number and attributes. The number of unique words in this
reduced set is smaller than if the entire document was indexed. Alternatively, a user could choose
a list of words that he wishes to keep track of in his document set.

8.3 Compressed Bloom Filters

Compressed Bloom filters [20] were developed by Mitzenmacher to minimize the size of the Bloom
filter. Experiments in the paper show that using compressed Bloom filters over standard Bloom
filters gives a reduction of 5-15% in systems of reasonable size.

5In comparison, this paper (including undisplayed comments) only contains 1371 unique words out of 8700 words.
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9 Related Work

Searchable Symmetric Key Encryption (SSKE). The most efficient practical solution to
date is by Song, Wagner, and Perrig (SWP) [26]. Their paper concentrates on developing a SSKE
scheme that allows a user, given a trapdoor, to test if the cipher text contains a word. To encrypt a
document, the document is divided into blocks and each block is encrypted using the SSKE scheme.
We call this method SSKE Linear Search. Given a trapdoor for a particular word, SSKE lets a user
search for the word by linearly scanning and testing every SSKE encrypted block in the document.
The disadvantages of this search method are twofold: First, SSKE uses fixed block sizes and needs
some inelegant modifications to handle variable length words. Second, both the search time and
computation by the server on a query is linear in the number of blocks in the document.

The SWP paper also describes an index solution which we call SSKE Word Index. SWP did
not explicitly describe their index construction but it is clear from their description that they
are thinking of a hash table where words hash into buckets, and each bucket contains pointers to
documents with the word. The main disadvantage of their index construction is that index updates
are insecure. For example, consider the case when a document is added to the document set. For
every word in the new document, a pointer to that document is added to the appropriate word list
in the index. By observing bucket length changes in the index, the server learns the set of coded
words in the document and the size of the set. Note that this attack works even when the bucket
entries are encrypted. The same situation occurs when documents are updated; the bucket length
changes reveal the extent of the document update. To deter such statistical analysis, SWP suggest
performing queries and updates in batches. Query batching, however, does not work for queries
that depend on the results of previous queries. Furthermore, this solution only provides heuristic
security and can be defeated by sampling more queries and updates. We describe a similar heuristic
improvement for our scheme and an attack in Section 6.1. As a result, Song et. al. state that their
index solution is suitable for “mostly read-only data”.

Searchable Public Key Encryption (SPKE). Boneh et. al. developed the public key equiva-
lent of SSKE for searching on encrypted data [9]. In their scheme, any user can create word digests
by using a public key; a trapdoor generated by the private key is required to search documents for
a particular word. Note that one trapdoor is required for one word. Their scheme provides similar
security as our construction. Due to the expense of public key computations, their scheme is only
suitable for encrypting and searching over a small number of words per document.

Private Information Retrieval (PIR). A closely related concept is Private Information Re-
trieval (PIR) [12]. PIR schemes allow users to retrieve information from a database such that the
database server learns nothing about which records were read. PIR schemes aim to minimize com-
munication complexity and provide either information theoretic [12] or computational security [10].
Unfortunately, the schemes proposed so far are impractical and either require large communication
complexity, multiple servers, large computation cost by the server, no data confidentiality, or no
controlled searching. Some work [10, 11, 15, 18] has been done to mitigate some of the limitations,
but they are still impractical. Furthermore, PIR schemes only handle reads.
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Figure 2: A Bloom filter tree for 4 documents.

A Searching for Infrequent Words Efficiently

If preventing statistical analysis attacks (described in Section 4) is not required, then we can
organize document Bloom filters into a binary tree; This tree is used to efficiently search for
uncommon or nonexistent words.

Building a Bloom Filter Tree. In this modified scheme, document Bloom filters contain the
word digest f1(x), . . . , fr(x) instead of ff1(x)(j), . . . , ffr(x)(j) as described in the original scheme.
Note that document numbers are no longer needed.

Observe that a bitwise OR operation between the arrays of two Bloom filters representing sets
S1 and S2 results in another bit array that represents the union of S1 and S2. The two Bloom
filter arrays must be of the same length and must have been initialized with the same set of hash
functions. We can now describe how to exploit this property to build a document Bloom filter tree
for a set of n documents. For ease of exposition, assume that n is a power of 2.

1. Divide the set of n documents into pairs of documents. The corresponding document Bloom
filters for each pair are the leaves of the Bloom filter tree.

2. Compute the bitwise OR of each pair of document Bloom filters and assign the resulting
Bloom filter as the parent node of the pair in the document tree.

Note that this parent node represents the set of unique words in both documents. Also note
that these parent nodes are the tree nodes at log n− 1 depth.

3. Repeat the previous step for higher levels of the tree until we reach the root. Note that the
Bloom filter at the root contains the set of unique words in the entire document set.

Figure 2 shows an example of a Bloom filter tree for a set of 4 documents. The Bloom filter
tree can be built by the server or by the user and later transferred to the server. Note that building
the tree is cheap because only about 2n Bloom filter bitwise ORs are computed for a set of n
documents. Also note that documents are arbitrarily sorted to form pairs.

Searching a Bloom Filter Tree. We use the following procedure to search for all documents
containing a word x in a set of n documents.

1. Perform a breadth-first traversal on the tree starting at the root. At every node i traversed,
check if the Bloom filter at node i contains the word digest for x.
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2. If not, all nodes in the subtree rooted from node i are ignored for the rest of the search
because no documents in the subtree rooted from node i contains x.

3. Otherwise, continue searching from node i. If i is a leaf node, the document represented by
the Bloom filter at i contains x.

Figure 3 illustrates the search procedure. In this example, only document d5 contains word x.
The dark lines and shaded circles mark the nodes traversed by the search algorithm.

Cost of Searching. If no document in the set contains the word, the word digest will not be
found in the root node. Hence, the Bloom filter tree allows us to rule out nonexistent words with
a single operation.

Otherwise, the cost of searching for a word x in a set of n documents has an upper bound of
2v log n Bloom filter checks where v is the number of documents containing x. This method of
searching is better than the linear search only if v < n/2 log n.

Figure 4 plots the value of v = n/2 log n as a percentage of n versus n for n up to 223. The
x-axis is plotted on a log scale. From the graph, we see that the efficiency of this method of
searching drops as the document set grows in size. In a document set of size 214 = 16384, the
tree construction is more efficient than linearly searching all document Bloom filters if r is less
than 6.25% of n (1024 out of 16384 documents). In a document set of size 223 = 8388608, the
tree method is more efficient than linear search if v is less than 4% of n (335544 out of 8388608
documents). As the document set size increases, we observe a decrease in the rate at which v as a
percentage of n drops. Therefore, this technique is still useful for very large document sets.

In practice, the search cost can be heuristically reduced using the following technique — when
building the Bloom filter tree, we choose pairs of documents such that the Hamming distance of
each pair’s Bloom filters is minimized.

Updates on a Bloom Filter Tree. Adding (or deleting) a document requires an extra step for
adding (or deleting) a new leaf node to the tree and then propagating the changes up to the root.
Altering the contents of a document also requires an additional step of regenerating the Bloom
filter nodes from the document leaf node back to the tree root.

Deleting a document or altering a document might remove unique words from the document
set. Recall that standard Bloom filters cannot handle word deletions. Therefore, we use “counting
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Figure 3: Searching a 5 document Bloom filter tree.
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Figure 4: v = n/2 log n as a percentage of n versus n.

Bloom filters” [14] at all non-leaf nodes.

Cost of Updates. Adding a new document or deleted a document or changing document contents
now incurs an additional cost of updating the Bloom filter tree. Note that changes to the Bloom
filter tree on an update only affects the subtree where the changes occur. Therefore, the update
cost has an upper bound of 2 log n where n is the new number of documents in the tree. The
communication overhead remains the same as in the basic scheme.
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