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Abstract
A secure index is a data structure that allows a querier with a “trapdoor” for a word x to test

in O(1) time only if the index contains x; The index reveals no information about its contents
without valid trapdoors, and trapdoors can only be generated with a secret key. Secure indexes
are a natural extension of the problem of constructing data structures with privacy guarantees
such as those provided by oblivious and history independent data structures. In this paper, we
formally define a secure index and formulate a security model for indexes known as semantic
security against adaptive chosen keyword attack (ind-cka). We also develop an efficient ind-
cka secure index construction called z-idx using pseudo-random functions and Bloom filters,
and show how to use z-idx to implement searches on encrypted data. This search scheme is
the most efficient encrypted data search scheme currently known; It provides O(1) search time
per document, and handles compressed data, variable length words, and boolean and certain
regular expression queries. The techniques developed in this paper can also be used to build
encrypted searchable audit logs, private database query schemes, accumulated hashing schemes,
and secure set membership tests.

1 Introduction

Keyword indexes let us search in constant time for documents containing specified keywords. Un-
fortunately, standard index constructions such as those using hash tables are unsuitable for indexing
encrypted (and presumably sensitive) documents because they leak information about the docu-
ment contents (and hence break semantic security). Informally, a secure index allows users with
a “trapdoor” for a word x to test the index only for x; The index reveals no information about
its contents without valid trapdoors, and trapdoors can only be generated with a secret key. Data
structures with such privacy guarantees can be used to safely index the contents of semantically
secure ciphertexts. We note that secure indexes do not hide information such as document size
that can be obtained by simply examining the encrypted documents.

Secure indexes are a natural extension of the problem of constructing data structures with
privacy guarantees such as those provided by oblivious [15] and history independent [18, 8] data
structures. In oblivious (history independent) data structures, the shape (memory representation)
of the data structure reveals no information about the sequence of operations applied to the data
structure other than the final result. History independence is a necessary, but not sufficient, condi-
tion for a secure index; A history independent data structure guarantees nothing about the privacy
of its contents, which is exactly the property required by secure indexes.

∗A early version of this paper first appeared on the Cryptology ePrint Archive on October 7th 2003.
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Secure indexes are useful only in multi-user settings where the encrypted documents and their
indexes are frequently updated. If indexes are used by only one user or if indexes are never updated,
the best solution is for each user to maintain a local index such as a hash table where each bucket
contains pointers to documents with a particular search term. For example, single user scenarios
include those where a mobile device accesses files on a home server. Since indexes are stored
locally, no security is required. Such local indexes do not work well in multi-user settings because it
is difficult to maintain the consistency of local indexes across all users when documents are updated.

It is natural to assume files with indexes are those containing sensitive data that users would
conceivably wish to search on. Such files include documents containing text, or source code, or
other non-binary data, and others. In these documents, the entire content can be mechanically
(and naturally) parsed and tokenized into search terms, which users can search for. We note that
in such files, document sizes are proportional to the total number of search terms so that two equally
sized documents have roughly the same number of tokens. We assume that documents containing
binary data are not indexed; After all, it is unclear what are search terms in a music, movie, or
picture file, and for most users, such files are not sensitive enough to be worth encrypting.

Our Contribution. The first contribution of this paper is in defining a secure index and formu-
lating a security model for indexes known as semantic security against adaptive chosen keyword
attack (ind-cka). The ind-cka model captures the intuitive notion that the contents of a doc-
ument are not revealed from its index and the indexes of other documents apart from what an
adversary already knows from previous query results or other channels. In particular, an ind-cka
secure index is also secure against correlation attacks where information about the contents of an
index-document pair, such as similarity to other documents, can be deduced from other index-
document pairs. For example, consider a document D containing n words, of which an adversary
already knows m words and wants information about the set W of n −m unknown words. Even
when the adversary A has full access to other index-document pairs, and can adaptively obtain
trapdoors for any word except those in W , A still cannot deduce any information about any word
in W from D’s index.1

The second contribution is an efficient ind-cka secure index construction called z-idx using
pseudo-random functions and Bloom filters. Previous attempts at building secure indexes using
hash tables [21] are incomplete because their indexes cannot securely handle updates. We also show
how to use z-idx for the application of searching on encrypted data, and as a result, obtain the
most efficient scheme currently known for this application. Our search scheme requires only O(1)
search time per document, and can (without any modification) handle variable length words, and
boolean and certain regular expression queries. Our search scheme, being index-based, is indifferent
to the compression and encryption algorithm used on the documents.

Extending the ideas and techniques in this paper, Chang and Mitzenmacher [9] later developed
two secure index constructions using pre-built dictionaries. Their main contribution is an index

1Note that our model is concerned with the difficulty of deducing the contents of an index, and not with the
difficulty of distinguishing between two documents (using their indexes) with different numbers of keywords; In
particular, as discussed earlier, documents that are meaningful for a user to index and search on are non-binary text
documents whose entire contents can be mechanically parsed and tokenized. As Chang and Mitzenmacher [9] observe,
our model allows for indexes that still leak some information, namely the number of unique tokens. Nevertheless,
that leakage is confined to the approximate number of tokens in the document, which can already be obtained from
the size of the encrypted document. Although they suggest suspected flaws in the proof, they have not described an
attack, and it appears that their disagreement is not with the proof but with the assumptions behind the model.
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blinding technique, enabling them to prove security in a stronger model where the indexes for two
documents with different numbers of keywords cannot be distinguished. We note that this extra
security is not required for securing index contents in most conceivable search scenarios. The price
they pay for extra security using this index blinding technique is twofold — 1) a less efficient scheme:
Compared to z-idx, whose index building algorithm for a document with n words requires O(n)
time, their scheme requires 3n + n2d+1 time per document where d is the size of the dictionary.
Note that 2d � n for the majority of documents. 2) inability to handle arbitrary updates: Their
schemes use pre-built dictionaries where the dictionary size and contents are determined and fixed
when the dictionary and indexes are built for a set of documents. Since it is difficult to anticipate all
possible words that need to be indexed, it is fair to say that their schemes cannot efficiently handle
arbitrary updates. For the same reasons as the hash table index [21], it appears difficult to securely
update the dictionary on the server without revealing information about updated documents.

Applications. Secure indexes are best suited for multi-user applications where the indexes are
used simultaneously by multiple users where it is necessary to restrict access to the documents and
their indexes. Our interest in secure indexes is primarily motivated by the application of searching
on encrypted data [21, 7, 9], but secure indexes can also be used for accumulated hashing [5, 19]
and testing set membership securely. In fact, the techniques in this paper have already been used
to build encrypted and searchable audit logs [22], and similar techniques were recently used to build
databases that allow for private queries using a semi-trusted third party [4]. We now describe a
few applications in greater detail.

1. Searching on Encrypted Data. Increasingly, organizations and users are storing their
data on servers outside their direct control. Backups and remote data storage are commonly
outsourced to data warehousing companies. Even when data is stored locally, organizations
hire system administrators (sysadmins) to run backup and storage servers. In either case,
sysadmins typically have full administrator access to storage systems, and can read confiden-
tial data. Therefore, sensitive documents should be encrypted before being storing remotely.
With files encrypted on a remote server, it is difficult to retrieve files based on their content.
For example, consider a user Alice who stores her work documents on a untrusted file system.
Suppose Alice wishes to retrieve all documents containing the word “aardvark”. Since the
document files are encrypted and the server cannot be trusted with the document keys or
their contents, Alice has to download all the document files, decrypt them, and then search
the decrypted documents on her local machine; This naive solution is inefficient. The ideal
solution is to let the server search the encrypted documents and return only relevant ones,
while ensuring that it learns nothing about the keyword or document contents. Section 4
discusses both the use of secure indexes and related work for this search problem.

2. Encrypted and Searchable Audit Logs. Waters et al. [22] build private audit logs
that allow keyword searches only if the querier possesses trapdoors for those keywords. The
symmetric key version of their scheme is based partly on techniques derived from this paper.

3. Private Queries. Using similar techniques, Bellovin and Cheswick [4] recently developed a
scheme for performing private queries using a semi-trusted third party.

2 ind-cka Secure Indexes

In this section, we define an ind-cka secure index scheme.
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Notation. Throughout the paper, we use x, y, z
R← S to denote random variables x, y, and z that

are drawn uniformly at random from the set S. We write x
R← [1, N ] to denote a random variable

x drawn uniformly at random from the set of integers in [1, N ]. For a randomized algorithm A,
we use x

R← A() to denote the random variable x representing the output of the algorithm. The
symmetric set difference of two sets A and B is defined as A ./ B

def= (A−B) ∪ (B −A). We write
|A| for a set A to denote the number of elements A. We use ‖ to denote string concatenation.

Index Scheme. An index scheme consists of the following four algorithms —

Keygen(s): Given a security parameter s, outputs the master private key Kpriv.
Trapdoor(Kpriv, w): Given the master key Kpriv and word w, outputs the trapdoor Tw for w.
BuildIndex(D,Kpriv): Given a document D and the master key Kpriv, outputs the index ID.
SearchIndex(Tw, ID): Given the trapdoor Tw for word w and the index ID for document D,

outputs 1 if w ∈ D and 0 otherwise.

Semantic Security Against Adaptive Chosen Keyword Attack (ind-cka). Intuitively,
our security model aims to capture the notion that an adversary A cannot deduce a document’s
contents from the document’s index other than what it already knows from previous query results
or from other channels. That is, consider a set D (representing a document) containing n words,
m of which are public or have been queried upon and are therefore known to A; The adversary’s
challenge is to deduce at least one of the n−m words given an index encoding the words in D.

Suppose the challenger C gives the adversary A two distinct sets of n−m words together with
an index, and C tells A that one of these two sets is encoded in the index. Here, A’s challenge
is to determine which set is encoded in the index. We note that an adversary that wins the
previous challenge with non-negligible probability also wins this challenge with the same probability.
Therefore, if the problem of distinguishing two distinct sets of n−m words is hard, then the previous
problem of deducing at least one of the n−m words must also be hard. It follows that if A cannot
determine which set is encoded in the index with probability non-negligibly different than 1/2, then
the index reveals nothing about its contents. We use this formulation of index indistinguishability
(ind) to prove the semantic security of indexes. We note that secure indexes do not hide information
such as document size that can be obtained by examining the encrypted documents.

More precisely, let (Keygen, Trapdoor, BuildIndex, SearchIndex) be an index scheme. We use
the following game between a challenger C and an attacker A to define semantic security against
an adaptive chosen keyword attack (ind-cka) —

Setup. The challenger C creates a set S of q words and gives this to the adversary A. A chooses
a number of subsets from S.2 This collection of subsets is called S∗ and is returned to C.
Upon receiving S∗, C runs Keygen to generate the master key Kpriv, and for each subset in
S∗, C encodes its contents into an index using BuildIndex. Finally, C sends all indexes with
their associated subsets to A.

Queries. A is allowed to query C on a word x and receive the trapdoor Tx for x. With Tx, A
can invoke SearchIndex on an index I to determine if x ∈ I.

Challenge. After making some Trapdoor queries, A decides on a challenge by picking a subset
V0 ∈ S∗, and generating another subset V1 from S such that |V0| = |V1| 6= 0 and |V0 ./ V1| 6= 0.

2S is the set of all the unique words in a collection of documents and each of the subsets represents a document.
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Furthermore, A must not have queried C for the trapdoor of any word in V0 ./ V1. Next, A
gives V0 and V1 to C who chooses b

R← {0, 1}, invokes BuildIndex(Vb,Kpriv) to obtain the
index IVb

for Vb, and returns IVb
to A. The challenge for A is determine b. After the challenge

is issued, A is not allowed to query C for the trapdoors of any word x ∈ V0 ./ V1.
Response. A eventually outputs a bit b′, representing its guess for b. The advantage of A in

winning this game is defined as AdvA = |Pr[b = b′] − 1/2|, where the probability is over A
and C’s coin tosses.

We say that an adversary A (t, ε, q)-breaks an index if AdvA is at least ε after A takes at most t
time and makes q trapdoor queries to the challenger. We say that I is a (t, ε, q)-ind-cka secure
index if no adversary can (t, ε, q)-break it.

3 Constructing ind-cka Secure Indexes

We first review Bloom filters, pseudo-random functions, and pseudo-random generators.

3.1 Background

Bloom Filters. A Bloom filter [6] represents a set of S = {s1, . . . , sn} of n elements and is
represented by an array of m bits. All array bits are initially set to 0. The filter uses r independent
hash functions h1, . . . , hr, where hi : {0, 1}∗ → [1,m] for i ∈ [1, r]. For each element s ∈ S, the
array bits at positions h1(s), . . . , hr(s) are set to 1. A location can be set to 1 multiple times, but
only the first is noted. To determine if an element a belongs to the set S, we check the bits at
positions h1(a), . . . , hr(a). If all the checked bits are 1’s, then a is considered a member of the set.
There is, however, some probability of a false positive, in which a appears to be in S but actually
is not. False positives occur because each location may have also been set by some element other
than a. On the other hand, if any checked bits are 0, then a is definitely not a member of S.
Section 4.3 discusses the false positive rate. We note that Bloom filters are history independent
data structures [18, 8].

Pseudo-Random Functions. Intuitively, a pseudo-random function is computationally indistin-
guishable from a random function — given pairs (x1, f(x1, k)), . . . , (xm, f(xm, k)), an adversary can-
not predict f(xm+1, k) for any xm+1. More precisely, we say that a function f : {0, 1}n×{0, 1}s →
{0, 1}m is a (t, ε, q)-pseudo-random function if

1. f(x, k) def= fk(x) can be computed efficiently from input x ∈ {0, 1}n and key k ∈ {0, 1}s.
2. for any t time oracle algorithm A that makes at most q adaptive queries,∣∣∣Pr

[
Af(·,k) = 0

∣∣ k
R← {0, 1}s

]
− Pr

[
Ag = 0

∣∣ g
R← {F : {0, 1}n → {0, 1}m}

]∣∣∣ < ε.

Pseudo-Random Generators. Intuitively, a pseudo-random generator outputs strings that are
computationally indistinguishable from random strings. More precisely, we say that a function
G : {0, 1}n → {0, 1}m where m > n is a (t, ε)-pseudo-random generator if

1. G is efficiently computable by a deterministic algorithm
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2. For all t time probabilistic algorithms A,∣∣∣Pr
[
A(G(s)) = 0

∣∣ s
R← {0, 1}n

]
− Pr

[
A(r) = 0

∣∣ r
R← {0, 1}m

]∣∣∣ < ε.

Our secure index construction uses pseudo-random functions as shown in the following lemma —

Lemma 3.1. If f : {0, 1}n × {0, 1}s → {0, 1}m is a (t, ε, q)-pseudo-random function, then

G(k) = f(1, k) ‖ f(2, k) ‖ . . . ‖ f(q, k)

where k ∈ {0, 1}s is a (t− q, ε)-pseudo-random generator.

The proof is straightforward and is omitted. Note that if f is a random function, the derived
generator G is unconditionally secure.

3.2 Construction

We use a Bloom filter as a per document index to track words in each document. In our scheme, a
word is represented in an index by a codeword derived by applying pseudo-random functions twice
— once with the word as input and once with a unique document identifier as input. As we will later
see, this non-standard use of pseudo-random functions ensures that the codewords representing a
word x are different for each document in the set, thus preventing statistical analysis. Furthermore,
the different codewords for a word x can be efficiently reproduced given just a short trapdoor for
x. Both efficiently computable codewords and short trapdoors are important for the application of
searching on encrypted data. We now describe our index called z-idx.

Keygen(s): Given a security parameter s, choose a pseudo-random function f : {0, 1}n×{0, 1}s →
{0, 1}s and the master key Kpriv = (k1, . . . , kr)

R← {0, 1}sr.

Trapdoor(Kpriv, w): Given the master key Kpriv = (k1, . . . , kr) ∈ {0, 1}sr and word w, output the
trapdoor for word w as Tw = (f(1 ‖ w, k1) , . . . , f(1 ‖ w, kr)) ∈ {0, 1}sr.

BuildIndex(D,Kpriv): The input is the document D comprising of an unique identifier (name)
Did ∈ {0, 1}n together with a list of words (w0, . . . , wt) ∈ {0, 1}nt and the master key Kpriv =
(k1, . . . , kr) ∈ {0, 1}sr. For each word wi for i ∈ [0, t], do the following —

1. Let zi be the order of occurrence of wi relative to previous occurrences of wi in D. That
is, if wi = ‘foo’ is the second time word ‘foo’ occurs in D, then zi = 2.

2. Compute a modified trapdoor: (x1 = f(zi‖wi, k1) , . . . , xr = f(zi‖wi, kr)) ∈ {0, 1}sr,
3. Compute the codeword for wi in Did: (y1 = f(Did, x1) , . . . , yr = f(Did, xr)) ∈ {0, 1}sr,
4. Insert the codeword y1, . . . , yr into document Did’s Bloom filter BF.

Finally output IDid
= (Did , BF) as the index for Did.

SearchIndex(Tw, ID): The input is the trapdoor Tw = (x1, . . . , xr) ∈ {0, 1}sr for word w and
the index IDid

= (Did , BF) for document Did.

1. Compute the codeword for w in Did: (y1 = f(Did, x1) , . . . , yr = f(Did, xr)) ∈ {0, 1}sr.
2. Test if BF contains 1’s in all r locations denoted by y1, . . . , yr.
3. If so, output 1; Otherwise, output 0.

6



Note 1. The obvious idea is to insert the trapdoors Tx = f(x, k1), . . . , f(x, kr) directly into the
Bloom filter index instead of our method of applying the pseudo-random function a second time on
the identifier with the trapdoor as the key. If trapdoors are inserted directly into document Bloom
filters, Bloom filters are vulnerable to correlation attacks where an attacker can deduce if two
documents contain a similar set of unique words by comparing Bloom filters indexes for overlaps,
or lack thereof, of 1’s in the Bloom filter. A similar attack on document updates can be mounted by
tracking document Bloom filter changes between updates. Nevertheless, such correlation attacks
are prevented by using pseudo-random functions such that codewords are the output of a pseudo-
random generator (by Lemma 3.1) across all indexes.

Using the occurrence order of words when inserting them into the index prevents differentiating
two equal length documents with differing numbers of unique words. If two equal length documents
in the document set always contains the same number of unique words, then this technique can be
safely removed without affecting semantic security of the indexes.

Finally, we note that the ind-cka model captures such correlation attacks.

Note 2. We delay the discussion of choosing suitable Bloom filter parameters until Section 4.3.
In practice, we use the keyed hash function HMAC-SHA1 : {0, 1}∗×{0, 1}160 → {0, 1}160 [1] as the
pseudo-random function f , which allows z-idx to handle arbitrary length words. Alternatively, we
can use provably secure number theoretic pseudo-random functions [17], but these are much slower.

Cost of Algorithms. Since a 866 MHz Pentium 3 machine can compute roughly 150,000 HMAC-
SHA1 evaluations per second on 16 byte inputs, it is reasonable to assume that computing a pseudo-
random function is a constant time operation. We also assume that testing/inserting entries into
a Bloom filter are constant time operations. As a result, the Trapdoor algorithm takes O(1) time
and produces trapdoors that are rs bits long; The BuildIndex algorithm on a document takes time
linear in the number of words in the document; The SearchIndex algorithm takes O(1) time.

Properties. The z-idx scheme possesses several useful properties —

1. Boolean and Limited Regular Expression Queries: These queries can be performed efficiently
on z-idx indexes; The algorithms for performing these queries are described in Section 4.1.

2. Occurrence Search: z-idx can be easily modified handle queries such as “does ‘foo’ occur at
least twice in the index”. To perform such a search for a word w, Trapdoor is modified to
take in the order of occurrence of w as additional input, which it uses to create the trapdoor
(instead of using 1 in the basic algorithm).

3. Short Trapdoors and Efficiently Reproducible Codewords: Given the short trapdoor for word
w, the different codewords of w for each index can be efficiently reproduced.

4. Compressed and Encrypted Data: Index schemes do not require access to the document
contents after the index is built. Hence, the documents can be compressed and encrypted
with any compression algorithm and chosen ciphertext secure [14, 3, 20] cipher.

5. Variable Length Words: when HMAC-SHA1 is used as the pseudo-random function f .
6. Simple Key Management: As described, our construction requires r keys but the r keys can

be generated by a pseudo-random generator with a single secret seed.

Theorem 3.2. If f is a (t, ε, q)-pseudo-random function, then z-idx is a (t, ε, q/2)-ind-cka index.
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Proof. We prove the theorem using its contrapositive. Suppose z-idx is not a (t, ε, q)-ind-cka
index. Then there exists an algorithm A that (t, ε, q)-breaks z-idx. We build an algorithm B that
uses A to determine if f is a pseudo-random function or a random function. B has access to an
oracle Of for the unknown function f that takes as input x ∈ {0, 1}n and returns f(x) ∈ {0, 1}s.
When running any of the four index algorithms, B substitutes evaluations of f with queries to the
oracle Of . Algorithm B simulates A as follows —

Setup. Algorithm B picks a set S of q/2 strings from {0, 1}n uniformly at random and sends S
to A. In response, A returns a polynomial number of subsets of S. We call this collection of
subsets S∗. For each subset D in S∗, B assigns a unique id Did, and runs BuildIndex on D
with identifier Did to obtain the index IDid

. After creating all the indexes, B gives all indexes
and their associated subsets to A.

Queries. On receiving A’s query for the trapdoor of word x, B runs Trapdoor on x and replies
with the trapdoor Tx.

Challenge. After making some Trapdoor queries, A decides on a challenge by picking a subset
V0 ∈ S∗, and generating another subset V1 from S such that |V0| = |V1| 6= 0 and |V0−V1| 6= 0.
Furthermore, A must not have queried B for the trapdoor of any word in V0 ./ V1. Next,
A gives V0 and V1 to B who chooses b

R← {0, 1} and also chooses a new (unique) identifier
Vid. B runs BuildIndex on Vb with the identifier Vid to get the index IVb

, which is given to
A. After the challenge is issued, A is not allowed to query C for the trapdoors of any word
x ∈ V0 ./ V1.

Response. A eventually outputs a bit b′, representing its guess for b. If b′ = b, then B outputs
0, indicating that it guesses that f is a pseudo-random function. Otherwise, B outputs 1.

We see that B takes at most t time because A takes at most t time. Furthermore, B makes at
most q queries to Of because there are only q/2 strings in S and A makes at most q/2 queries.
Finally, we show that B can determine if f is a pseudo-random function or random function with
advantage greater than ε by proving the following two claims —

Claim 1: When f is a pseudo-random function, then
∣∣ Pr

[
Bf(·,k) = 0

∣∣ k
R← {0, 1}s

]
− 1

2

∣∣ ≥ ε.

Claim 2: When f is a random function, then Pr
[
Bg = 0

∣∣ g
R← {F : {0, 1}n → {0, 1}s}

]
= 1

2 .

It follows from these two claims that∣∣∣Pr
[
Bf(·,k) = 0

∣∣ k
R← {0, 1}s

]
− Pr

[
Bg = 0

∣∣ g
R← {F : {0, 1}n → {0, 1}m}

]∣∣∣ ≥ ε,

thus proving the theorem.
It remains to prove the two claims. The proof of Claim 1 is immediate. When f is a pseudo-

random function, algorithm B simulates perfectly the challenger in an ind-cka game. Therefore,
the claim follows by the definition of A.

We now prove Claim 2. We first show that we only need to consider the challenge subsets in our
analysis because the other subsets of S∗ and further trapdoor queries reveal no information about
the challenge subsets. When f is a pseudo-random function, Lemma 3.1 implies that it is infeasible
for A to correlate codewords representing the same word across all document z-idx indexes. Since
f is a random function, the same lemma applied to random functions implies that it is information
theoretically impossible for A to correlate codewords across document Bloom filters. From this
extended lemma, together with both restrictions on the choice of the challenge subsets V0 and V1
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and on A’s queries after receiving the challenge index, it follows that from A’s view, each codeword
representing a word z ∈ V0 ./ V1 is independent of all other codewords for z across all subsets in
S∗ and their indexes. That is, A learns nothing about V0 ./ V1 from the other subsets in S∗ and
their indexes. As a result, we need only consider the challenge subsets.

Without loss of generality, assume that V0 ./ V1 contains only two words, x and y where x ∈ V0

and y ∈ V1. Suppose A guesses b correctly with advantage δ > 0. It follows that A, given f(z), can
determine if z = x or y with advantage δ; That is, A can distinguish between outputs of a random
function f with advantage δ, which is impossible. Therefore, A at best guesses b correctly with
probability 1/2. It follows that Pr

[
Bg = 0

∣∣ g
R← {F : {0, 1}n → {0, 1}s}

]
= Pr

[
b′ = b

]
= 1

2 , thus
proving Claim 2.

Corollaries. The results in this section show that z-idx indexes can be used 1) to test set
membership without revealing the set elements, and 2) for accumulated hashing [5, 19]. We note
that Claim 2 in the proof is false for both the Song et al. keyword hash table index [21] and the
Bloom filter indexes that insert trapdoors directly.

4 Secure Indexes Applied to Searching on Encrypted Data

As an application of secure indexes, we show how to use z-idx for searching on encrypted doc-
uments stored on a remote server (which was motivated in Section 1). The seven properties of
z-idx discussed in Section 3.2 — the ability to handle 1) encrypted compressed data, 2) boolean
and regular expression queries, 3) occurrence queries, and 4) variable length words, together with
5) short trapdoors that minimize network bandwidth, 6) efficiently reproducible codewords that
minimize server computation, and 7) simple key management — make z-idx indexes especially well
suited for this application.

On a word search, recall that the querier sends the trapdoor for the word to the server and the
server returns matching documents. In z-idx indexes, the trapdoor does not reveal the actual search
word, and the server cannot generate trapdoors because it does not possess the keys. After a search,
the server learns nothing about the documents than the search result. Furthermore, document
updates are secure. These security properties and others are a direct consequence of the ind-
cka security model. Before describing the setup, search, and update algorithms for implementing
searches on encrypted data, we briefly review some related work.

Related Work on Searching on Encrypted Data. Song et al. developed a Searchable Sym-
metric Key Encryption (SSKE) scheme [21] that allows a user, given a trapdoor for a word, to test
if a ciphertext block contains the word. Boneh et al. developed Searchable Public Key Encryption
(SPKE) [7], which is the public key equivalent of SSKE. When applied to the problem of searching
encrypted documents, both schemes are inefficient because they require linear scans through all
the documents on the server on every query. Song et al. [21] also consider encrypted hash table
indexes but their solution is incomplete because their index updates are insecure. Like the SSKE
and SPKE schemes when applied to the problem of searching on encrypted data on a remote server,
our search scheme using z-idx indexes sacrifices access pattern privacy for efficiency. For example,
after a search for keyword x, the server does not learn x but learns which documents contain x.
Our solution, however, is much more efficient than all schemes to date.
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Private Information Retrieval (PIR) [11] schemes allow queries to a database such that the
database learns nothing about which records were read. Chor et al. show how to use multiple
rounds of PIR to search on keywords [10]. The PIR schemes proposed to date have efficient
communication complexity but are computationally inefficient and are therefore unsuitable for
practical use. On the other hand, Chor et al.’s search scheme using PIR provides access pattern
privacy. The seminal work of Goldreich and Ostrovsky on Oblivious RAMs [13] imply a scheme for
searching on encrypted data à la Chor et al. [10]. Although their best construction is asymptotically
efficient, it is inefficient in practice because the big-O notation hides large constants.

4.1 Setup, Search, and Update Algorithms

Suppose a user U stores a set of n documents D1, . . . , Dn on an untrusted server S. The search sys-
tem is set up by running the ES-Setup algorithm to build indexes for D1, . . . , Dn. The ES-Search al-
gorithm is used for performing searches. If documents are added, deleted, or altered, the ES-Update
algorithm updates the indexes. HMAC-SHA1 [2] is used as the pseudo-random function f .

ES-Setup: Before the n documents are placed on the server, the indexes are built as follows —

1. First derive suitable Bloom filter parameters for the indexes. We delay the discussion of
choosing suitable parameters until Section 4.3. For now, assume that the Bloom filters are
instantiated with an array of size m. Next invoke Keygen(s) to obtain the pseudo-random
function f : {0, 1}∗ × {0, 1}s → {0, 1}s and the master key Kpriv = (k1, . . . , kr) ∈ {0, 1}sr.

2. Assign (and insert) an integer i ∈ [1, n] to each document Di as its unique identifier.
3. For each document Di, build its index IDi ← BuildIndex(Di,Kpriv).
4. Compress and encrypt each document using standard algorithms before transferring the doc-

uments and their indexes to the server S.

Cost of ES-Setup: It is easy to see that the cost is linear with the total size of documents.

ES-Search: When a user U wants all documents on the server S containing the word y, the
following actions are performed —

1. U computes the trapdoor Ty ← Trapdoor(Kpriv, y) for y and sends Ty to the server.
2. For every index IDi , S invokes SearchIndex(Ty, IDi) to test for a match. All matching

documents are returned to U .

Cost of ES-Search: U takes O(1) time to compute the trapdoor. Each SearchIndex evaluation
takes O(1) time and S runs it on all documents; Therefore, the cost of searching all documents is
linear in the number of documents (and not the size of the documents). We note that simultaneous
word searches can be combined and will only require one pass through all the indexes.

Boolean and Regular Expression Queries. The ES-Search algorithm can also efficiently
perform “and” and “or” boolean queries involving multiple words.3 The procedure for handling
these queries is best illustrated with an example. Suppose the user U wants all documents containing
words x and y. U first computes the trapdoors for both x and y and gives the server S both Tx and

3This technique is aimed at increasing the efficiency of such queries and is only as secure as performing individual
queries for each term.
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Ty. With a single pass over all indexes, S invokes SearchIndex once on each trapdoor. Documents
whose indexes match both trapdoors are returned to U . “or” queries can be carried out in a
similar manner. The cost of such boolean queries is linear with the number of terms in the boolean
expression, but can be completed with a single pass over all documents, whereas the naive method
of performing such boolean queries involves multiple passes over the documents.

Certain regular expression queries such as “ab[a − z]” can be expressed as boolean queries
(aba ∧ . . . ∧ abz). Hence, these queries can also be done with a single pass over all documents.
Wild-card regular expression queries such as “ab∗” are much harder because of the exponential
blowup in the number of possible strings.

ES-Update: There are three possible types of updates —

1. Adding Documents: To add a new document D, the BuildIndex algorithm is used to build
D’s index after D is assigned a unique identifier.

2. Deleting Documents: Deletions simply involve deleting the document and its index from S.
3. Altering Document Contents: Altering the contents of an existing document requires assigning

the document a new (unique) number and regenerating its index by invoking BuildIndex on
the document with the new identifier.

Cost of ES-Update: Deleting a document is a constant time operation. Adding or updating a
document requires invoking BuildIndex, which has cost linear in the size of the document.

4.2 Extensions

We describe four useful extensions to the basic encrypted search algorithms.

1. Heuristically Increasing Security. We describe a technique that makes it harder for the
server to identify duplicate queries for the same word.

Technique. To search for word y, the user computes the trapdoor Ty = f(y, k1), . . . , f(y, kr)
but instead of sending all r pseudo-random outputs to the server, she sends only r/2
randomly chosen outputs. Note that the index is still built using all r outputs.

Benefits. In most normal situations, this technique makes it harder for an eavesdropper to
identify multiple queries for the same word. On the other hand, since the server has only
half of the trapdoor, the document indexes constructed using Bloom filters register more
false positives. A higher rate of false positives increases the communication overhead
but more false positives also hide the documents that actually contain the keyword.
Section 4.3 discusses the right choice of Bloom filter parameters to give the desired
information hiding rate versus communication overhead.

Why Only Heuristic? In certain situations, the server can determine which truncated
trapdoors refer to the same word with no extra work. We show this using an example.
Assume we have a set of n documents, all of which contain a word x. Also assume that
using the technique described above gives a false positive rate of 1/10.
Suppose a user performs m queries, of which two are for the same word x and the other
m − 2 are queries for words not contained by any document in the set (non-existent
words). The number of documents returned by a query for a non-existent word is given
by the binomial distribution with p = 1/10. Observe that the two queries for x return
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n m =
√

n (1− 1
9
√

n
)m−2

64 8.00 0.920
1024 32.00 0.901
16384 128.00 0.896
131072 362.04 0.895

67108864 8192.00 0.895

Figure 1: Probability that none of the m− 2 queries on n documents return all n documents

all n documents. In contrast, the probability that a non-existent word query returns all
n documents is bounded by the Chebyshev inequality to be at most 1

9
√

n
. Hence, the

probability that all m− 2 queries return less than n documents is at least (1− 1
9
√

n
)m−2.

Figure 1 lists some sample values of n and the corresponding values of m where m =
√

n.
From the table, we see that the probability that all m − 2 queries return less than n
documents is high even with relatively low values of m. Therefore, after all m queries
are complete, an eavesdropper can pinpoint with high probability the two queries for x
by observing which queries return the entire document set.
The example given above is a contrived “bad” case. In many common scenarios, it is
hard (or impossible) for the server to perform similar analysis on the query patterns.

2. Locating Words Within Documents. Instead of using an index for every document, we
can divide documents into chunks and create indexes for each chunk. With this modification,
words can be located with chunk size granularity within a document.

3. Searching for Infrequent Words. If preventing statistical analysis attacks (described in
Section 3) is not required, then document indexes (Bloom filters) can be organized into a
binary tree, which facilitates efficient searches for uncommon or non-existent words. Ap-
pendix A contains a complete description of this extension.

4.3 Choosing Suitable Bloom Filter Parameters

We first quantify the probability of a false positive occurring in a Bloom filter. Assume that the
hash functions h1, . . . , hr map arbitrary strings uniformly over the range [1,m]. After using the
r hash functions to insert n distinct elements into an array of size m, the probability that bit
i in the array is 0 is (1− (1/m))rn ≈ e−rn/m. Therefore, the probability of a false positive is
(1− (1− (1/m))rn)r ≈ (1 − e−rn/m)r. Since m and n are typically fixed parameters, we compute
the value of r that minimizes the false positive rate. The derivative of the right hand side of the
equation with respect to r gives a global minimum of r = (ln 2)(m/n), with a false positive rate of
(1/2)r. We round r to the nearest integer in practice. Given a set of documents that we want to
build indexes for, the following procedure shows how to choose optimal Bloom filter parameters.

1. First choose the desired false positive rate fp. Note that increasing the Bloom filter false
positive rate causes the server to return more irrelevant documents in a word search. But
irrelevant documents can be weeded out by mechanical scanning by the user after being
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retrieved and decrypted. Hence, increasing the false positive rate increases the communication
overhead between the user and the server without affecting the correctness of the result.

2. From the false positive rate, compute the number of pseudo-random function keys required.
Recall that in Section 3.1, a false positive rate of (1/2)r is achieved by choosing the number
of pseudo-random function keys r using the equation r = (ln 2)(m/n) where m is the size of
the Bloom filter array and n is the number of unique words in the document set. Therefore,
the number of keys required can be determined by computing r = − log2(fp).

3. Scan every document in the set and count the number of unique words. Multiply the number
of unique words by a constant factor to allow for updates, giving us the required value of n.
We only need to consider the unique words in the document set and not all possible words in
the universe. With r and n determined, the array size m is given by m = nr/ ln 2.

Reducing Bloom Filter Array Size. In many applications, although the number of unique
words in a set of many documents may be large, each document is small and does not contain many
unique words. Since the number of unique words in each email is small, using an array is inefficient
because most of the array entries are 0. Instead, we keep track of the entries containing 1’s. For
example, when the Bloom filter array is 225 bits or 4 megabytes, each entry in the array can be
represented using only 25 ≈ 25 bits. Hence, this technique is effective for Bloom filters whose arrays
have less than 220 entries containing 1’s. Using this technique on a large document containing 5000
unique words, the Bloom filter index is only 5000 ∗ 25 = 125000 bits or approximately 15 kilobytes,
representing a 99.63% reduction in size from a 4 megabyte array.4 Finally, observe that the large
unique word set with small documents scenario where this technique is most effective frequently
occurs in real applications. Other techniques for reducing the Bloom filter size include only indexing
a limited keywords and using compressed Bloom filters [16].
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A Searching for Infrequent Words Efficiently

property of bloom filters to create a tree. problem comes with the updating the tree, with different
node numbers assigned to each node, any changes requires updating the whole tree.

If preventing statistical analysis attacks (described in Section 3) is not required, then we can
organize document indexes (Bloom filters) into a binary tree, which can be used to efficiently search
for uncommon or non-existent words.

Bloom Filter Tree. In this modified scheme, document indexes (Bloom filters) contain the
trapdoors Tx = f(x, k1), . . . , f(x, kr) instead of codewords f(Did, f(x, k1)) , . . . , f(Did, f(x, kr))
as described in the original scheme. Note that document identifiers are no longer needed.

Observe that a bitwise or operation between the arrays of two Bloom filters (indexes) repre-
senting sets S1 and S2 results in another bit array that represents the union of S1 and S2. The two
Bloom filter arrays must be of the same length and must have been initialized with the same set of
hash functions. We can now describe how to exploit this property to build a document index tree
for a set of n documents. For ease of exposition, assume that n is a power of 2.

1. Divide the set of n documents into pairs of documents. The corresponding document indexes
(Bloom filters) for each pair are the leaves of the index tree.

2. Compute the bitwise or of each pair of document index (Bloom filters) and assign the resulting
index (Bloom filter) as the parent node of the pair in the document tree.

Note that this parent node represents the set of unique words in both documents. Also note
that these parent nodes are the tree nodes at log n− 1 depth.
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Figure 2: A Bloom filter tree for 4 documents.

3. Repeat the previous step for higher levels of the tree until we reach the root. Note that the
index at the root contains the set of unique words in the entire document set.

Figure 2 shows an example of an index (Bloom filter) tree for a set of 4 documents. The tree
can be built by the server or by the user and later transferred to the server. Note that the cost of
building the tree is cheap because only approximately 2n Bloom filter bitwise ors are computed
for a set of n documents. Also note that documents are arbitrarily sorted to form pairs.

Searching a Bloom Filter Tree. We use the following procedure to search for all documents
containing a word x in a set of n documents.

1. Perform a breadth-first traversal on the tree starting at the root. At every node i traversed,
check if the index (Bloom filter) at node i contains the trapdoor for x.

2. If not, all nodes in the subtree rooted from node i are ignored for the rest of the search
because no documents in the subtree rooted from node i contains x.

3. Otherwise, continue searching from node i. If i is a leaf node, the document represented by
the index (Bloom filter) at i contains x.

Figure 3 illustrates the search procedure. In this example, only document d5 contains word x.
The dark lines and shaded circles mark the nodes traversed by the search algorithm.
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Figure 3: Searching a 5 document Bloom filter tree.
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Figure 4: v = n/2 log n as a percentage of n versus n.

Cost of Searching. If no document in the set contains the word, the word digest will not be
found in the root node. Hence, the index (Bloom filter) tree allows us to rule out non-existent words
with a single operation. Otherwise, the cost of searching for a word x in a set of n documents has
an upper bound of 2v log n Bloom filter tests where v is the number of documents containing x.
This method of searching is better than linearly searching all indexes only if v < n/2 log n.

Figure 4 plots the value of v = n/2 log n as a percentage of n versus n for n up to 223. The
x-axis is plotted on a log scale. From the graph, we see that the efficiency of this method of
searching drops as the document set grows in size. In a document set of size 214 = 16384, the tree
construction is more efficient than linearly searching all document indexes if r is less than 6.25%
of n (1024 out of 16384 documents). In a document set of size 223 = 8388608, the tree method is
more efficient than linear search if v is less than 4% of n (335544 out of 8388608 documents). As
the document set size increases, we observe a decrease in the rate at which v as a percentage of n
drops. Therefore, this technique is still useful for very large document sets.

In practice, the search cost can be heuristically reduced using the following technique — when
building the index (Bloom filter) tree, choose pairs of documents such that the Hamming distance
of each pair’s indexes (Bloom filters) is minimized.

Updates on an Index Tree. Adding (or deleting) a document now requires an extra step for
adding (or deleting) a new leaf node to the tree and then propagating the changes up to the root.
Altering the contents of a document also requires an additional step of regenerating the Bloom
filter nodes from the document leaf node back to the tree root.

Deleting a document or altering a document might remove unique words from the document
set. Recall that standard Bloom filters cannot handle word deletions. Therefore, we use “counting
Bloom filters” [12] at all non-leaf nodes.

Cost of Updates. Adding a new document, deleting a document, or changing document contents
now incur an additional cost of updating the index (Bloom filter) tree. Note that changes to the
tree on an update only affect the subtree where the changes occur. Therefore, the update cost has
an upper bound of 2 log n where n is the new number of documents in the tree. The communication
overhead remains the same as in the basic scheme.
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