Cryptanalysis of the Repaired Public-key Encryption Scheme Based on the Polynomial Reconstruction Problem

Jean-Sébastien Coron
Gemplus Card International
34 rue Guynemer
Issy-les-Moulineaux, F-92447, France
jean-sebastien.coron@gemplus.com

Abstract

At Eurocrypt 2003, Augot and Finiasz proposed a new public-key encryption scheme based on the polynomial reconstruction problem [1]. The scheme was subsequently broken in [4], who showed that given the public-key and a ciphertext, one could recover the corresponding plaintext in polynomial time. Recently, Augot, Finiasz and Loidreau published on the IACR eprint archive a reparation [2] of the cryptosystem. The reparation is based on the trace operator, and is resistant against the previous attack. However, we describe a new cryptanalysis of the repaired scheme. Given the public-key and a ciphertext, we can still recover the corresponding plaintext in polynomial time. Our technique is a variant of the Berlekamp-Welsh algorithm, and works very well in practice, as for the proposed parameters, we recover the plaintext in less than 8 minutes on a single PC.

Key-Words: Cryptanalysis, Augot and Finiasz cryptosystem, Polynomial Reconstruction Problem, Reed-Solomon codes.

1 Introduction

We describe a cryptanalysis of a public-key encryption scheme recently published by Augot, Finiasz and Loidreau [2]. The scheme is based on the polynomial reconstruction (PR) problem [9], which is the following:

Problem 1 (Polynomial Reconstruction). Given n, k, ω and $\left(x_{i}, y_{i}\right)_{i=1 \ldots n}$, output any polynomial p such that $\operatorname{deg} p<k$ and $p\left(x_{i}\right)=y_{i}$ for at least $n-\omega$ values of i.

This problem has an equivalent formulation in terms of the decoding of ReedSolomon error-correcting codes [10]. The problem can be solved in polynomial time when the number of errors ω is such that $\omega \leq(n-k) / 2$, using the Berlekamp-Welsh algorithm [3]. This has been improved to $\omega \leq n-\sqrt{k n}$ by Guruswami and Sudan [6].

When the number of errors is larger, no polynomial time algorithm is known for the PR problem. Therefore, some cryptosystem have been constructed based on the hardness of the PR problem; for example, an oblivious polynomial evaluation scheme [9], and a semantically secure symmetric cipher [7].

At Eurocrypt 2003, Augot and Finiasz proposed a new public-key encryption scheme based on the polynomial reconstruction problem [1]. A security level exponential in terms of the parameters was conjectured. However, the scheme was subsequently
broken in [4], who showed that given the public-key and a ciphertext, one could recover the corresponding plaintext in polynomial time. Recently, Augot, Finiasz and Loidreau published on the IACR eprint archive a reparation [2] of the cryptosystem. The reparation is based on the trace operator, and is resistant against the previous attack. However, we describe a new cryptanalysis of the repaired scheme. Given the public-key and a ciphertext, we can still recover the corresponding plaintext in polynomial time. Our technique is again a variant of the Berlekamp-Welsh algorithm [3], and works very well in practice, as for the proposed parameters, we recover the plaintext in less than 8 minutes on a single PC.

2 The Original Cryptosystem

In this section, we recall the original cryptosystem proposed by Augot and Finiasz at Eurocrypt 2003. As in [1], we first recall some basic definitions of Reed-Solomon codes.

2.1 Reed-Solomon Codes

Let F_{q} be the finite field with q elements and let x_{1}, \cdots, x_{n} be n distinct elements of F_{q}. We denote by ev the following map:

$$
e v:\left\{\begin{array}{l}
F_{q}[X] \rightarrow F_{q}^{n} \\
p(X) \rightarrow\left(p\left(x_{1}\right), \ldots, p\left(x_{n}\right)\right)
\end{array}\right.
$$

Definition 1. The Reed-Solomon code of dimension k and length n over F_{q} is the following set of n-tuples (codewords):

$$
R S_{k}=\left\{e v(f) ; f \in F_{q}[X], \operatorname{deg} f<k\right\}
$$

where $F_{q}[X]$ is the set of univariate polynomials with coefficients in F_{q}.
The weight of a word $c \in F_{q}^{n}$ is the number of non-zero coordinates in c. The Hamming distance between two words x and y is the weight of $x-y$. Formally, the problem of decoding Reed-Solomon code is the following:

Problem 2 (Reed-Solomon decoding). Given a Reed-Solomon code $R S_{k}$ of length n, ω an integer and a word $y \in F_{q}^{n}$, find any codeword in $R S_{k}$ at distance less than ω of y.

The smallest weight of non-zero codewords in $R S_{k}$ is $n-k+1$. Therefore, when $\omega \leq(n-k) / 2$, the solution to Reed-Solomon decoding is guaranteed to be unique. It is easy to see that the Polynomial Reconstruction problem and the Reed-Solomon decoding problem are equivalent. Both problems can be solved in polynomial time when $w \leq(n-k) / 2$, using the Berlekamp-Welsh algorithm [3].

2.2 The original Cryptosystem

In the following, we briefly review Augot and Finiasz public-key cryptosystem [1].

Parameters: q is the size of F_{q}, n is the length of the Reed-Solomon code, k its dimension, W is the weight of a large error, so that the PR problem for n, k, W is believed to be hard, i.e. we must have:

$$
W>\frac{n-k}{2}
$$

ω is the weight of a small error, for which the PR problem with $n-W$ coordinates is easy:

$$
\begin{equation*}
\omega \leq \frac{n-W-k}{2} \tag{1}
\end{equation*}
$$

It is recommended in [1] to take $n=1024, k=900, \omega=25, W=74$ and $q=2^{80}$.

Key generation: Generate a unitary polynomial p of degree $k-1$, and a random n-dimensional vector E of weight W. Compute the codeword $c=e v(p)$ of $R S_{k}$. The public key is $z=c+E$, while the private key is (p, E).

Encryption: Let m a message of length $k-1$ over the alphabet F_{q}. The message m is seen as a polynomial $m(X)=m_{0}+m_{1} X+\ldots+m_{k-1} X^{k-2}$ of degree at most $k-2$. Generate a random $\alpha \in F_{q}$ and a random error e of weight ω. The ciphertext y is then:

$$
y=e v(m)+\alpha \times(c+E)+e
$$

Decryption: One considers only the positions where $E_{i}=0$ and define the shortened code of length $n-W$, which is also a Reed-Solomon code of dimension k, which we denote $\overline{R S}_{k}$. Let $\bar{y}, \overline{e v}(m), \bar{c}, \bar{e}$ be the shortened $y, e v(m), c, e$. One must solve the equation:

$$
\bar{y}=\overline{e v}(m)+\alpha \times \bar{c}+\bar{e}
$$

We have $\overline{e v}(m)+\alpha \times \bar{c} \in \overline{R S}_{k}$, and from (1), the weight of the small error \bar{e} is less than the error correction capacity of $\overline{R S}_{k}$; therefore, using the Berlekamp-Welsh algorithm, one can recover the unique polynomial r of degree $k-1$ such that:

$$
e v(r)=\overline{e v}(m)+\alpha \times \bar{c}
$$

which gives

$$
r=m+\alpha \cdot p
$$

Since $\operatorname{deg}(m) \leq k-2$ and p is a unitary polynomial of degree $k-1$, the field element α is the leading coefficient of r. Therefore one can recover m as:

$$
m=r-\alpha \cdot p
$$

3 Attack on the Original Cryptosystem

In this section, we recall [4]'s attack on the original cryptosystem. The attack is a variant of the Berlekamp-Welsh algorithm for solving the PR problem (see [5]). Let n, k, W, ω and q be the parameters of the system. Let (p, E) be the private key and $z=e v(p)+E$ be the public-key. Let m be the plaintext encoded as a polynomial of
degree less than $k-2$. Let e be an error vector of weight ω, and α be a field element. Let

$$
\begin{equation*}
y=e v(m)+\alpha \times z+e \tag{2}
\end{equation*}
$$

be the corresponding ciphertext.
Theorem 1. Given the public-key z and the ciphertext y, one can recover the corresponding plaintext m in polynomial time.

Proof. Let y_{i}, z_{i} and e_{i} be the components of the words y, z and e. Given y and z, one must solve the following set of equations:

$$
\begin{equation*}
\exists e, m, \alpha, y_{i}=m\left(x_{i}\right)+\alpha \cdot z_{i}+e_{i} \text { for all } 1 \leq i \leq n \tag{3}
\end{equation*}
$$

where the weight of e is less than ω. Note that from the definition of the cryptosystem, there is a unique solution.

Consider the following set of equations:

$$
\exists V, m, \alpha,\left\{\begin{array}{l}
\operatorname{deg}(V) \leq \omega, V \neq 0, \quad \operatorname{deg}(m) \leq k-2 \tag{4}\\
\forall i, \quad V\left(x_{i}\right) \cdot\left(y_{i}-\alpha \cdot z_{i}\right)=V\left(x_{i}\right) \cdot m\left(x_{i}\right)
\end{array}\right.
$$

Any solution V, m, α of (4) gives a solution to (3). Namely, the fact that $V \neq 0$ and $\operatorname{deg} V \leq \omega$ implies that V can be equal to zero at most ω times. Therefore, letting $e_{i}=y_{i}-m\left(x_{i}\right)-\alpha \cdot z_{i}$, the weight of e is less than ω.

Conversely, any solution to (3) gives a solution to (4). Namely, one can take $V(X)=\prod_{i \in B}\left(X-x_{i}\right)$ with $B=\left\{i \mid e_{i} \neq 0\right\}$. The problem of solving (3) can thus be reduced to finding V, m, α satisfying (4). Consider now the following set of equations:

$$
\exists V, N, \lambda,\left\{\begin{array}{l}
\operatorname{deg}(V) \leq \omega, V \neq 0, \quad \operatorname{deg}(N) \leq k+\omega-1 \tag{5}\\
\forall i, \quad V\left(x_{i}\right) \cdot\left(y_{i}-\lambda \cdot z_{i}\right)=N\left(x_{i}\right)
\end{array}\right.
$$

The system (5) is a linearized version of (4), in which one has replaced the product $V\left(x_{i}\right) \cdot m\left(x_{i}\right)$ by $N\left(x_{i}\right)$. It is easy to see that any solution of (4) gives a solution to (5), as one can take $\lambda=\alpha$ and $N=m \cdot V$. However, the converse is not necessarily true.

For a given λ, the system (5) gives a linear system of n equations in the $k+2 \cdot \omega+1$ unknown, which are the coefficients of the polynomials V and N. More precisely, denoting:

$$
V(X)=\sum_{i=0}^{\omega} v_{i} \cdot X^{i}, \quad N(X)=\sum_{i=0}^{k+\omega-1} n_{i} \cdot X^{i}
$$

and Y the vector of coordinates:

$$
Y=\left(v_{0}, \cdots, v_{\omega}, n_{0}, \cdots, n_{k+\omega-1}\right)
$$

one let $M(\lambda)$ be the matrix of the system:

$$
M(\lambda)_{i, j}= \begin{cases}\left(y_{i}-\lambda \cdot z_{i}\right) \cdot\left(x_{i}\right)^{j} & \text { if } 0 \leq j \leq \omega \\ -\left(x_{i}\right)^{j-\omega-1} & \text { if } \omega<j<k+2 \omega+1\end{cases}
$$

The matrix $M(\lambda)$ is a rectangular matrix with n lines and $k+2 \omega+1$ columns; from (1) we have that $n>k+2 \omega+1$. The coefficients of $M(\lambda)$ are a function of the public-key and the ciphertext only. The system (5) is then equivalent to:

$$
\begin{equation*}
\exists Y, \lambda, \quad M(\lambda) \cdot Y=0, Y \neq 0 \tag{6}
\end{equation*}
$$

Let one consider the matrix $M(\lambda)$ with $\lambda=0$. Using Gaussian elimination, one computes the rank of the matrix $M(0)$. One distinguishes two cases: rank $M(0)=$ $k+2 \omega+1$, and $\operatorname{rank} M(0)<k+2 \omega+1$.

If $\operatorname{rank} M(0)=k+2 \omega+1$, then there exists a square sub-matrix of $M(0)$ of dimension $k+2 \omega+1$ which is invertible. Without loss of generality, one can assume that the matrix obtained by taking the first $k+2 \omega+1$ lines of $M(0)$ is invertible. Let $M^{\prime}(\lambda)$ be the square matrix obtained by taking the first $k+2 \omega+1$ lines of $M(\lambda)$. Any solution Y, λ of (6) satisfies:

$$
M^{\prime}(\lambda) \cdot Y=0, \quad Y \neq 0
$$

which implies that the matrix $M^{\prime}(\lambda)$ is non-invertible, i.e. $\operatorname{det}(M(\lambda))=0$. Then, the solution α in system (4) must be a root of the function:

$$
f(\lambda)=\operatorname{Det}\left(M^{\prime}(\lambda)\right)
$$

which is a polynomial of degree at most $\omega+1$. The polynomial f is not identically zero, because $M^{\prime}(0)$ is invertible, which implies $f(0) \neq 0$. The polynomial f can easily be obtained from the public-key z and the ciphertext y by computing $f(\lambda)=\operatorname{Det}\left(M^{\prime}(\lambda)\right)$ for $\omega+2$ distinct values of λ and then using Lagrange interpolation.

The factorization of a polynomial over a finite-field can be done in polynomial time (see for example [12]). Therefore, one obtains a list of at most $\omega+1$ candidates, one of which being the solution α of (4), and equivalently, of (3). For the right candidate α, the vector $y-\alpha \times z$ is equal to $e v(m)+e$, where the weight of e is less than the error correcting capacity of the Reed-Solomon code. Therefore, using Berlekamp-Welsh algorithm, one recovers the plaintext m from $y-\alpha \times z$ in polynomial time.

More precisely, let α, m, e be the solution of (3). Given a solution V, N, λ of (5) with $\lambda=\alpha$, we have for all $1 \leq i \leq k+2 \cdot \omega+1$:

$$
V\left(x_{i}\right) \cdot\left(m\left(x_{i}\right)+e_{i}\right)=N\left(x_{i}\right)
$$

Since the error vector e has a weight at most ω, we have for at least $\omega+k+1$ values of i :

$$
V\left(x_{i}\right) \cdot m\left(x_{i}\right)=N\left(x_{i}\right)
$$

N and $V \cdot m$ are therefore two polynomials of degree less than $\omega+k-1$ which take the same value on at least $\omega+k+1$ distinct points; consequently, the two polynomials must be equal. This means that one can recover m by performing a polynomial division:

$$
m=\frac{N}{V}
$$

Therefore, one can recover the plaintext in polynomial time.

Let us now consider the second case, i.e. $\operatorname{rank} M(0)<k+2 \omega+1$. Then there exists $Y \neq 0$ such that $M(0) . Y=0$. The vector Y gives the coefficients of two polynomials V and N such that for all $1 \leq i \leq n$:

$$
V\left(x_{i}\right) \cdot y_{i}=N\left(x_{i}\right)
$$

From (2) we have $y_{i}=m\left(x_{i}\right)+\alpha \cdot\left(p\left(x_{i}\right)+E_{i}\right)+e_{i}$, which gives for all i :

$$
V\left(x_{i}\right) \cdot\left((m+\alpha \cdot p)\left(x_{i}\right)+\alpha \cdot E_{i}+e_{i}\right)=N\left(x_{i}\right)
$$

The weight of E is at most W and the weight of e is at most ω. Moreover, from (1) we have $n \geq k+2 \omega+W$. Therefore, for at least $\omega+k$ values of i, we have:

$$
V\left(x_{i}\right) \cdot(m+\alpha \cdot p)\left(x_{i}\right)=N\left(x_{i}\right)
$$

As previously, $V \cdot(m+\alpha \cdot p)$ and N are two polynomials of degree less than $k+\omega-1$ which take the same value on at least $\omega+k$ distinct points; consequently, they must be equal, which gives:

$$
m+\alpha \cdot p=\frac{N}{V}
$$

Since the polynomial p is unitary and $\operatorname{deg} p=k-1$ and $\operatorname{deg} m \leq k-2$, this enables to recover α. Then, as previously, given α, we recover m in polynomial time ${ }^{1}$.

Kiayias and Yung describe in [8] a modification of Augot and Finiasz cryptosystem, resistant against the previous attack, but which they manage to break in the same paper.

4 The Repaired Cryptosystem

In this section, we describe the repaired cryptosystem published in [2]. The new cryptosystem is resistant against the previous attack. The reparation is based on working in the subfield of a given field, and using the trace operator. Following [2], we recall these notions in the next section.

4.1 Subfields and Trace Operator

We consider the finite field $\operatorname{GF}\left(q^{u}\right)$, where q is the power of a prime integer. The finite field $\operatorname{GF}(q)$ is a subfield of $\operatorname{GF}\left(q^{u}\right)$. The finite field $\operatorname{GF}\left(q^{u}\right)$ can be viewed as a u-dimensional vector space over $\operatorname{GF}(q)$. Let $\gamma_{1}, \ldots, \gamma_{u}$ be a basis of $\operatorname{GF}\left(q^{u}\right)$ over $\operatorname{GF}(q)$, then every element $\alpha \in \operatorname{GF}\left(q^{u}\right)$ can be uniquely written $\alpha=\sum_{i=1}^{u} \alpha_{i} \gamma_{i}$, where $\alpha_{i} \in \mathrm{GF}(q)$.

Definition 2. The trace operator of $G F\left(q^{u}\right)$ into $G F(q)$ is defined by:

$$
\forall x \in G F\left(q^{u}\right), \operatorname{Tr}(x)=x+x^{q}+\ldots+x^{q^{u-1}}
$$

[^0]The trace operator is a $\operatorname{GF}(q)$-linear mapping (and not $\operatorname{GF}\left(q^{u}\right)$-linear) of $\mathrm{GF}\left(q^{u}\right)$ into $\operatorname{GF}(q)$. For any basis $\gamma_{1}, \ldots, \gamma_{u}$ of $\operatorname{GF}\left(q^{u}\right)$, there exists a unique dual basis $\gamma_{1}^{*}, \ldots, \gamma_{u}^{*}$ with respect to the Trace operator. The dual basis is such that:

$$
\operatorname{Tr}\left(\gamma_{i} \gamma_{j}^{*}\right)=1 \text { if } i=j, \text { and } 0 \text { otherwise }
$$

The dual basis can be efficiently computed. We extend the trace operator to vectors:

$$
\operatorname{Tr}\left(c_{1}, \ldots, c_{n}\right)=\left(\operatorname{Tr}\left(c_{1}\right), \ldots, \operatorname{Tr}\left(c_{n}\right)\right)
$$

and to polynomials: for any polynomial $p \in \mathrm{GF}\left(q^{u}\right)[X], p(x)=\sum_{i=0}^{k} p_{i} x^{i}$, we define the polynomial $\operatorname{Tr}(p) \in \operatorname{GF}(q)[X]$ as:

$$
\operatorname{Tr}(p)(x)=\sum_{i=0}^{k} \operatorname{Tr}\left(p_{i}\right) x^{i}
$$

Let x_{1}, \cdots, x_{n} be n distinct elements of $\operatorname{GF}(q) \in \operatorname{GF}\left(q^{u}\right)$. As in section 2.1 we denote by $e v$ the following map:

$$
e v: \begin{cases}\mathrm{GF}\left(q^{u}\right)[X] & \rightarrow \mathrm{GF}\left(q^{u}\right)^{n} \\ p(X) & \rightarrow\left(p\left(x_{1}\right), \ldots, p\left(x_{n}\right)\right)\end{cases}
$$

Proposition 1. For all $p \in G F\left(q^{u}\right)[X]$, we have $\operatorname{Tr}(e v(p))=e v(\operatorname{Tr}(p))$
Proof. The j-th component of $\operatorname{Tr}(e v(p))$ is

$$
\operatorname{Tr}\left(p\left(x_{j}\right)\right)=\operatorname{Tr}\left(\sum_{i=0}^{k} p_{i} \cdot x_{j}^{i}\right)
$$

From the $\mathrm{GF}(q)$-linearity of the Trace operator and the fact that $x_{j} \in \mathrm{GF}(q)$, we obtain:

$$
\operatorname{Tr}\left(p\left(x_{j}\right)\right)=\sum_{i=0}^{k} \operatorname{Tr}\left(p_{i}\right) x_{j}^{i}
$$

which is the j-th component of $e v(\operatorname{Tr}(p))$.
As in section 2.1, we define the Reed-Solomon code of dimension k and length n over $\operatorname{GF}\left(q^{u}\right)$ as the following set of n-tuples (codewords):

$$
R S_{k}=\left\{e v(f) ; f \in \mathrm{GF}\left(q^{u}\right)[X], \operatorname{deg} f<k\right\}
$$

4.2 The Repaired Cryptosystem

In this section, we recall the repaired cryptosystem [2].

Parameters: A finite field $\mathrm{GF}\left(q^{u}\right)$, an integer n as the length of the Reed-Solomon code, k its dimension, W is the weight of a large error, ω is the weight of a small error, for which the PR problem with $n-W$ coordinates is easy:

$$
\begin{equation*}
\omega \leq \frac{n-W-k}{2} \tag{7}
\end{equation*}
$$

The authors of the repaired cryptosystem recommend in [2] to take $q=2^{20}, u=4$, $n=2048, k=1400, W=546$ and $\omega=49 .{ }^{2}$

Key generation: Generate a random polynomial p of degree $k-1$ over $\mathrm{GF}\left(q^{u}\right)$, such that the u coefficients p_{k-1}, \ldots, p_{k-u} form a basis of $\operatorname{GF}\left(q^{u}\right)$ over $\operatorname{GF}(q)$. Compute $c=e v(p) \in R S_{k}$. Generate a random n-dimensional vector E of weight W with coefficients in $\operatorname{GF}\left(q^{u}\right)$. The public-key is the vector $K=c+E$ over $\operatorname{GF}\left(q^{u}\right)$. The private key is (p, E).

Encryption: Let m a message of length $k-u$ over the alphabet GF (q). The message m is seen as a polynomial $m(X)=m_{0}+m_{1} X+\ldots+m_{k-1} X^{k-u-1}$ in $\operatorname{GF}(q)[X]$. Generate a random $\alpha \in \operatorname{GF}\left(q^{u}\right)$ and a random vector e of weight ω over $\operatorname{GF}(q)$. The ciphertext y is then:

$$
y=e v(m)+\operatorname{Tr}(\alpha \cdot K)+e
$$

Decryption: One considers only the positions where $E_{i}=0$ and define the shortened code of length $n-W$, which is also a Reed-Solomon code of dimension k, which we denote $\overline{R S}_{k}$. Let $\bar{y}, \bar{c}, \bar{e}$ be the shortened y, c, e and let $\overline{e v}$ be the shortened map $e v$. One must solve the equation:

$$
\bar{y}=\overline{e v}(m)+\operatorname{Tr}(\alpha \cdot \bar{c})+\bar{e}
$$

Using proposition 1, we have:

$$
\operatorname{Tr}(\alpha \cdot \bar{c})=\operatorname{Tr}(\alpha \cdot \overline{e v}(p))=\operatorname{Tr}(\overline{e v}(\alpha p))=\overline{e v}(\operatorname{Tr}(\alpha p))
$$

Thus $\overline{e v}(m)+\operatorname{Tr}(\alpha \cdot \bar{c})=\overline{e v}(m+\operatorname{Tr}(\alpha p)) \in \overline{R S}_{k}$, and from (7), the weight of the small error \bar{e} is less than the error correction capacity of $\overline{R S}_{k}$; therefore, using the Berlekamp-Welsh algorithm, one can recover the polynomial $q=m+\operatorname{Tr}(\alpha p)$.

Letting $q=\sum_{i=0}^{k-1} q_{i} x^{i}$, since $\operatorname{deg}(m) \leq k-u-1$, we have $q_{i}=\operatorname{Tr}\left(\alpha p_{i}\right)$ for $i=k-u, \ldots, k-1$. This gives the u coordinates of α in the dual basis of p_{k-u}, \ldots, p_{k-1}, from which we derive α. From α one recovers m as $m=q-\operatorname{Tr}(\alpha p)$.

5 The Attack

In this section, we describe an attack that breaks the repaired cryptosystem. Given the public key and a ciphertext, we recover the plaintext in polynomial time. As the

[^1]attack of section 3, it is a variant of the Berlekamp-Welsh algorithm. As opposed to the attack of section 3 , the attack is heuristic, but it works very well in practice.

Let $\operatorname{GF}\left(q^{u}\right), n, k, W, \omega$ be the parameters of the system. Let (p, E) be the private key and $K=e v(p)+E$ be the public-key. Let m be the plaintext encoded as a polynomial of degree less than $k-u-1$. Let e be an error vector of weight ω, and $\alpha \in \operatorname{GF}\left(q^{u}\right)$. Let

$$
y=e v(m)+\operatorname{Tr}(\alpha \cdot K)+e
$$

be the corresponding ciphertext.
Let $\gamma_{1}, \ldots, \gamma_{u}$ be a basis of $\operatorname{GF}\left(q^{u}\right)$ over $\operatorname{GF}(q)$. We write $\alpha=\sum_{t=1}^{u} \alpha_{t} \cdot \gamma_{t}$ where $\alpha_{t} \in \mathrm{GF}(q)$. We have

$$
\operatorname{Tr}(\alpha \cdot K)=\sum_{t=1}^{u} \alpha_{t} \operatorname{Tr}\left(\gamma_{t} \cdot K\right)
$$

For $t=1, \ldots, u$, we define

$$
K_{t}=\operatorname{Tr}\left(\gamma_{t} \cdot K\right)
$$

Note that the u vectors K_{t} are vectors over $\operatorname{GF}(q)$ which can be computed from the public-key K. Finally the ciphertext can be written as:

$$
\begin{equation*}
y=e v(m)+\sum_{t=1}^{u} \alpha_{t} \cdot K_{t}+e \tag{8}
\end{equation*}
$$

Note that in equation (8), all computation is done in the subfield $\operatorname{GF}(q)$. Let $y_{i}, K_{t, i}$ and e_{i} be the components of the vectors y, K_{t} and e. Given y and K_{t}, one must solve the following set of equations:

$$
\begin{equation*}
\exists e, m, \alpha_{1}, \ldots, \alpha_{u}, y_{i}=m\left(x_{i}\right)+\sum_{t=1}^{u} \alpha_{t} \cdot K_{t, i}+e_{i} \text { for all } 1 \leq i \leq n \tag{9}
\end{equation*}
$$

where the weight of e is ω. Note that from the definition of the cryptosystem, there is a unique solution.

Let V, R_{1}, \ldots, R_{u} be polynomials of degree at most ω, with $V \neq 0$. Let N be a polynomial of degree at most $\omega+k-u-1$. Consider the following set of equations, where the unknown are the polynomials V, R_{1}, \ldots, R_{u} and N :

$$
\begin{equation*}
\forall i \in[1, n], \quad V\left(x_{i}\right) \cdot y_{i}=N\left(x_{i}\right)+\sum_{t=1}^{u} K_{t, i} \cdot R_{t}\left(x_{i}\right) \tag{10}
\end{equation*}
$$

It is clear that given a solution to system (9), one can obtain a non-zero solution to system (10). Namely, one can take $V(X)=\prod_{i \in B}\left(X-x_{i}\right)$ with $B=\left\{i \mid e_{i} \neq 0\right\}$, and $R_{t}=\alpha_{t} \cdot V$ for $t=1, \ldots, u$ and $N=m \cdot V$. This shows that the system (10) has at least a non-zero solution.

The system (10) gives a homogeneous linear system of n equations in the $k+(u+$ 2) $\cdot \omega+1$ unknowns, which are the coefficients of the polynomials V, R_{1}, \ldots, R_{u} and N. Let M be the matrix of the corresponding system. The matrix has $k+(u+2) \cdot \omega+1$
columns and n rows and can be computed from the ciphertext and the public-key. In the following, we assume that:

$$
n \geq k+(u+2) \cdot \omega+1
$$

This inequality is valid for the proposed parameters. Since the system (10) has at least a non-zero solution, the matrix cannot be of maximum rank, therefore rank $M \leq$ $k+(u+2) \cdot \omega$.

In the following, we assume that $\operatorname{rank} M=k+(u+2) \cdot \omega$. This is the only assumption that we make for our cryptanalysis. It seems that in practice, this assumption is always satisfied. In this case, the kernel of M is a linear space of dimension 1 . We have already seen that $V(X)=\prod_{i \in B}\left(X-x_{i}\right)$ with $B=\left\{i \mid e_{i} \neq 0\right\}$, and $R_{t}=\alpha_{t} \cdot V$ for $t=1, \ldots, u$ and $N=m \cdot V$ is a solution to the system (10), and so $\left(V, R_{1}, \ldots, R_{t}, N\right)$ generates the kernel of M.

Therefore, if we compute by Gaussian elimination an element $\left(V^{\prime}, R_{1}^{\prime}, \ldots, R_{u}^{\prime}, N^{\prime}\right) \in$ ker M, we must have that $V^{\prime}=\lambda \cdot V, R_{t}^{\prime}=\lambda R_{t}$ for $t=1, \ldots, u$ and $N^{\prime}=\lambda \cdot N$ for some $\lambda \in \operatorname{GF}(q)$ with $\lambda \neq 0$. Therefore, we have $N^{\prime}=\lambda \cdot N=\lambda \cdot m \cdot V=m \cdot V^{\prime}$ and we can recover m by doing a polynomial division:

$$
m=\frac{N^{\prime}}{V^{\prime}}
$$

To summarize, assuming that $\operatorname{rank} M=k+(u+1) \cdot \omega$, we recover the plaintext from the public-key and the ciphertext in polynomial time.

6 Practical Experiments

In appendix, we illustrate the attack for small parameters, in a simplified setting. We have also implemented our attack using Shoup's NTL library [11], against the full cryptosystem. The attack works well in practice. For the recommended parameters, it takes roughly 8 minutes on a single PC to recover the plaintext from the ciphertext and the public-key.

7 Conclusion

We have broken the repaired cryptosystem of [2]. Our attack recovers the plaintext from the ciphertext and the public-key in polynomial time. Therefore, the cryptosystem does not achieve one-wayness. Moreover, our attack works well in practice, as for the recommended parameters, one recovers the plaintext in a few minutes on a single PC.

References

1. D. Augot and M. Finiasz, A Public Key encryption scheme based on the Polynomial Reconstruction problem, Proceedings of Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag.
2. D. Augot, M. Finiasz and P. Loidreau, Using the Trace Operator to repair the Polynomial Reconstruction based Cryptosystem presented at Eurocrypt 2003, Cryptology ePrint Archive, Report 2003/209, 30 Sep 2003, http://eprint.iacr.org/.
3. E.R. Berlekamp and L.R. Welch, Error correction for algebraic block codes. US Patent 4633470 , 1986.
4. J.S. Coron, Cryptanalysis of a public-key encryption scheme based on the polynomial reconstruction problem, Cryptology ePrint Archive, Report 2003/036, 5 Mar 2003, http://eprint.iacr.org/.
5. P. Gemmell and M. Sudan, Highly resilient correctors for multivariate polynomials, Information Processing Letters, 43(4): 169-174, September 1992.
6. V. Guruswami and M. Sudan, Improved deconding of Reed-Solomon and Algebraic-Geometric codes, IEEE Transactions on Information Theory, 45:1757-1767, 1999.
7. A. Kiayias and M. Yung, Cryptographic hardness based on the decoding of Reed-Solomon codes with applications, Proceedings of ICALP 2002, LNCS 2380, pp 232-243, 2002.
8. A. Kiayias and M. Yung, Cryptanalysis of the polynomial reconstruction based publickey cryptosystem of Eurocrypt 2003 in the optimal parameter setting, available at http://www.cse.uconn.edu/ akiayias/.
9. M. Naor and B. Pinkas, Oblivious transfer and polynomial evaluation. In ACM, editor, STOC 99, pp 245-254, 1999.
10. I.S. Reed and G. Solomon, Polynomial codes over certain finite fields, J. SIAM, 8:300-304, 1960.
11. V. Shoup, NTL: A Library for doing Number Theory (version 5.3.1), publicly available at www. shoup.net.
12. V. Shoup, A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic, in Proc. 1991 International Symposium on Symbolic and Algebraic Computation, pp. 14-21, 1991.

A A Toy Example

In this section we illustrate the attack for small parameters, in a simplified setting. As in section 5 , we let $\gamma_{1}, \ldots, \gamma_{u}$ be a basis of $\operatorname{GF}\left(q^{u}\right)$ over $\operatorname{GF}(q)$. Letting K be the public-key, we let:

$$
K_{t}=\operatorname{Tr}\left(\gamma_{t} \cdot K\right) \in \operatorname{GF}(q)^{n}
$$

Given $\alpha \in \operatorname{GF}\left(q^{u}\right)$, we write $\alpha=\sum_{t=1}^{u} \alpha_{t} \cdot \gamma_{t}$ where $\alpha_{t} \in \operatorname{GF}(q)$. The ciphertext can then be written as:

$$
\begin{equation*}
y=e v(m)+\sum_{t=1}^{u} \alpha_{t} \cdot K_{t}+e \tag{11}
\end{equation*}
$$

Note that the ciphertext is computed using only operations in $\mathrm{GF}(q)$.
To simplify the illustration, we randomly generate the vectors K_{t} in $\mathrm{GF}(q)$, without generating K as a public-key in $\operatorname{GF}\left(q^{u}\right)$. Then we encrypt using (11) and show how to recover m from y and the vectors K_{t}. The difference with the normal setting is that the generated K_{t} may not correspond to a valid public-key K.

We take $n=8, k=5, \omega=1, u=2$. We work modulo $q=11$. We take $x_{i}=i$ for $i=$ $1, \ldots, 8$. We take $K_{1}=(2,5,0,4,9,0,4,0,5,4,6)$ and $K_{2}=(5,6,9,10,6,8,2,9,4,5,1)$. We take $m=5+x+9 x^{2}$. We take $\alpha_{1}=8, \alpha_{2}=3$, and $e=(0,0,0,0,0,7,0,0,0,0,0)$. The ciphertext is then:

$$
y=e v(m)+\alpha_{1} \cdot K_{1}+\alpha_{2} \cdot K_{2}+e=(2,2,6,6,6,3,7,0,3,5,1)
$$

The matrix of the linear system is:

$$
M=\left[\begin{array}{cccccccccc}
2 & 2 & 9 & 9 & 6 & 6 & 10 & 10 & 10 & 10 \\
2 & 4 & 6 & 1 & 5 & 10 & 10 & 9 & 7 & 3 \\
6 & 7 & 0 & 0 & 2 & 6 & 10 & 8 & 2 & 6 \\
6 & 2 & 7 & 6 & 1 & 4 & 10 & 7 & 6 & 2 \\
6 & 8 & 2 & 10 & 5 & 3 & 10 & 6 & 8 & 7 \\
3 & 7 & 0 & 0 & 3 & 7 & 10 & 5 & 8 & 4 \\
7 & 5 & 7 & 5 & 9 & 8 & 10 & 4 & 6 & 9 \\
0 & 0 & 0 & 0 & 2 & 5 & 10 & 3 & 2 & 5 \\
3 & 5 & 6 & 10 & 7 & 8 & 10 & 2 & 7 & 8 \\
5 & 6 & 7 & 4 & 6 & 5 & 10 & 1 & 10 & 1 \\
1 & 0 & 5 & 0 & 10 & 0 & 10 & 0 & 0 & 0
\end{array}\right]
$$

The kernel of the matrix modulo q is generated by the vector:

$$
(3,5,2,7,9,4,4,6,10,1)
$$

which gives $V(x)=3+5 \cdot x$ and $N(x)=4+6 x+10 x^{2}+x^{3}$ and eventually:

$$
m=\frac{N}{V} \bmod q=5+x+9 x^{2}
$$

[^0]: ${ }^{1}$ In this second case, we can also recover the private key (p, E). It has been shown in [8] that this second case happens with negligible probability.

[^1]: ${ }^{2}$ Actually, the authors of [2] forgot to clearly specify k, but they state that with these parameters, "a plaintext consists of $k-u$ elements in $\operatorname{GF}\left(2^{20}\right)$, that is 27920 bits", from which we infer that $k=27920 / 20+4=1400$

