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Abstract. A public key cryptosystem based on Drinfeld modules has been proposed by
Gillard, Leprevost, Panchishkin and Roblot. The paper shows how an adversary can directly
recover a private key using only the public key, and so the cryptosystem is insecure.

1 Introduction

Gillard, Leprevost, Panchishkin and Roblot [1] have recently proposed a cryptosystem based on
Drinfeld modules. We refer to this cryptosystem as the GLPR cryptosystem. We aim to show that
this cryptosystem is insecure, by showing how an adversary with access to just the public key may
recover a corresponding private key. Thus the title of a paper by Scanlon [3] remains correct.

The paper is divided into three sections. Section 2 describes the encryption function of the
GLPR cryptosystem, avoiding the use of Drinfeld module terminology. This description makes use
of two linear maps λ1 and λ2 that Gillard et al [1] define using Drinfeld modules. Section 3 explores
the definition of λ1 and λ2 in more detail, and shows that these linear maps have a property claimed
in Section 2 which we use in our cryptanalysis. Section 3 is the only section that uses Drinfeld
modules explicitly. Finally, Section 4 describes our attack on the GLPR scheme.

2 The Cryptosystem

We describe the encryption function of GLPR cryptosystem. Let p be a prime and let d and e be
integers. Typical values according to [1] are p ≈ 232, d = 5 or d = 6 and e = 5 or e = 7.

The GLPR cryptosystem is a trapdoor one-way function ψ : Fpd → Fpd specified by selecting
two bijective Fp-linear maps λ1, λ2 on the vector space Fpd and an element δ ∈ Fpd . The function
is then defined by

ψ(z) = λ1((λ2 z)e + δ) (1)

In fact, the linear maps λ1 and λ2 are chosen to be of the form

b0 + b1F + · · · bd−1F
d−1 (2)

where F is the p-power Frobenius map on Fpd and where the coefficients bi lie in Fpd .
The public key of the system will be the prime p, the integer d and certain information about

how to compute ψ. The private key or trapdoor consists of the transformations λ1, λ2 and the
values e and δ. Note that if λ1, λ2, e and δ are all known, it is easy to compute the inverse of ψ.



The particular structure of the maps λi means that, if e is small, it is possible to give a compact
description of how to compute the function ψ(z), without explicitly describing λ1, λ2, e or δ. We
refer to the original paper [1] for details; for our purposes it is sufficient to know the fact (obvious,
since the GLPR proposal is a public key cryptosystem) that the image of any element in Fpd under
ψ can easily be computed from the public key.

We note that the public key does not determine the private key uniquely: for any b ∈ Fpd the
private key (λ1b

−e, bλ2, e, b
eδ) gives the same function ψ as the private key (λ1, λ2, e, δ). Any of

these solutions can be used as a trapdoor for the function ψ.

3 Drinfeld modules

The mappings λ1 and λ2 of the previous section were originally defined using Drinfeld modules [1].
This section recaps this definition, so that it can be seen that λ1 and λ2 really do have the form (2).

Let p be a prime number. We denote by A the ring Fp[T ] of polynomials in a variable T with
coefficients in Fp. We write A{τ} for the ring defined as follows. The set of elements of A{τ}
is the set of polynomials in τ with coefficients in A. Addition in A{τ} is the usual addition for
polynomials. However, multiplication in A{τ} is ‘twisted’ by using the rule τk × a = apk

τk for all
a ∈ A and all positive integers k. Thus A is naturally has the structure of a (left) A{τ}-module,
where for x =

∑m
i=0 aiτ

i ∈ A{τ} and z ∈ A we define

xz =
m∑

i=0

aiz
pi

.

(So the elements of A ⊆ A{τ} act by left multiplication, and τ acts as the Frobenius map.)
A Drinfeld module is simply an Fp-algebra morphism ϕ : A → A{τ}, with the property that

ϕ(T ) is a polynomial in τ of degree at least 1 whose constant term is T .
Let d be an integer such that d > 1, and let f(T ) ∈ A be an irreducible polynomial of degree d.

We write B for the quotient A/(f(T )) of A by the principal ideal generated by f(T ), so B ∼= Fpd .
For z ∈ A, we write z for the corresponding element z + (f(T )) ∈ B. The ideal (f(T )) is an
A{τ}-submodule of A, and so the quotient B = A/(f(T )) may be regarded as an A{τ}-module in
a natural way by defining

xz = xz

for any z ∈ B. When x =
∑m

i=0 aiτ
i ∈ A{τ}, we have that

xz =
m∑

i=0

aizpi =
m∑

i=0

aiz
pi

,

and so the map from B to itself defined by z 7→ xz is Fp-linear. For i ∈ {1, 2, . . . , d}, define bi ∈ B
by bi =

∑
j≡i mod d aj . Since the Frobenius map F on B has order d, the map z 7→ xz is of the

form (2).
Let ϕ : A → A{τ} be a Drinfeld module, and let a ∈ A. Define x ∈ A{τ} by x = ϕ(a). We

write ϕa for the map from B to itself given by z 7→ xz discussed above. Note that for any Drinfeld
module ϕ and any a ∈ A we have that ϕa is of the form (2). The mappings λ1 and λ2 in the GLPR
encryption function are defined by setting λ1 = ϕc1 and λ2 = ϕc2 where c1, c2 ∈ A are secret, and
are chosen so that λ1 and λ2 are bijective. So λ1 and λ2 are of the form (2), as required.



4 An attack on the scheme

We show how to recover the private key from the public key. The first step of the attack is to guess
e. The original paper suggests either e = 5 or e = 7, and in any case e must be small, so we can
simply run the attack on each possible value of e in turn.

Now, using the public key we can generate many pairs

(z, w) where w = ψ(z) (3)

for random values of z ∈ Fpd . We will need a large number of these pairs.
The main point of the attack is to recover the two linear maps λ−1

1 and λ2. This is done
by expressing the coefficients of the transformations as variables, generating sufficiently many
equations, and then solving these equations over a finite field. A generic attack would be to represent
λ−1

1 and λ2 as matrices over Fp, each having d2 variables, and to solve the equations over Fp. Since
ψ is a bijection it follows that λ1 is invertible. It is also clear that λ−1

1 can be written in the form
of equation (2).

Instead, we will use d unknowns in Fpd . Write

λ−1
1 = x0 + x1F + · · ·xd−1F

d−1 (4)
λ2 = y0 + y1F + · · · yd−1F

d−1 (5)

where the xi and yj are treated as unknowns in Fpd . To be precise, for any given element z ∈ Fpd ,
the value of λ2(z) is the linear equation

λ2(z) = y0 + y1z
p + y2z

p2
+ · · ·+ yd−1z

pd−1

and similarly for λ−1
1 (w). We also introduce a variable δ, which will replace the private value of δ.

Now, each pair (z, w) gives rise to a relation

λ−1
1 (w) = λ2(z)e + δ. (6)

Since z and w are exact field elements, each of these relations gives rise to a large multivariate
polynomial relation in the 2d+ 1 variables xi, yj and δ. Note that these polynomials are linear in
the xi and δ but of degree e in the yj .

So we have obtained a number of degree e multivariate polynomial relations between the 2d+1
variables. It remains to find an Fpd-solution to this polynomial system. It is probably possible to
apply Gröbner basis techniques, but we suggest using the linearisation methods (see, for exam-
ple, [2, 4]) and which have proved to be effective against multivariate schemes. The key to these
methods is to replace each non-linear monomial

∏
j y

ej

j by a new term uk and thus obtain a linear
equation in a larger number of variables. In this case the number of monomials is less than de

(typically 55 = 3125).
As mentioned above, we know there is not a unique solution to the system, but once the system

is sufficiently reduced it will be easy to select a solution. If enough independent linear equations
can be generated then the system can easily be solved in practice. We do not expect there to be
any difficulties to the above construction producing sufficiently many independent equations.

Finally, once one obtains λ−1
1 and λ2 it is trivial to recover λ1 and the private key is completely

known to the adversary.
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