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Abstract. In this paper we present two new protocols from the Tate
Pairing. The first is a secret handshake, in which we introduce a covert
channel into Smarts “An identity based key agreement protocol based on
the weil pairing” and the second is an efficient Signcryption scheme for
low bandwidth channels.
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1 Introduction

Handshakes are one of the most often used protocols in cryptography. Two of
the fundamentals of secure communication are authentication - that you are sure
who you are communicating with, and confidentiality - that the data can only
be read by the intended recipient. The basic idea of a cryptographic handshake
is that two unauthenticated parties enter into a protocol. The outcome of which
should be that either one or both of the parties is authenticated, and that both
parties have formulated a shared secret with which to encrypt future data; an
example of this is the SSL protocol.

Using traditional PKI methods these protocols relied on the parties obtaining
each others certificates, extracting each others public keys, checking certificate
chains, which may involve many signature verifications, and finally generating
a shared secret. Identity Based Encryption (IBE), an idea first proposed by
Shamir in 1984[1], made possible first by Cocks [2], and then Boneh and Franklin
[3], greatly simplifies this process. The persons online identity, i.e. their email
address, becomes their certified public key. This greatly reduces the overhead
when compared with PKI, both computationally and in terms of key manage-
ment. This is currently an area of very active research, with many identity based
security protocols being proposed [4,5,6,7].
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Secret Handshakes have been used since the middle ages to allow people
that have never met to authenticate each other as members of a secret group.
Balfanz et al have proposed a secret handshake scheme from bilinear maps [8].
This scheme uses a non-interactive key agreement protocol to establish a shared
secret if both parties are members of a group. As it is non-interactive they do leak
any information about their status as members of the secret group. One problem
with this scheme is that if both parties are not members of the same group they
do not establish a shared secret. In this situation communication between the
parties terminates abruptly, and they may become suspicious of each other. We
feel one of the properties of a physical secret handshake is missing, that the
secret handshake itself should not be recognised as such by a non-member of
the particular group. Therefore it should be as similar as possible to a normal
handshake, whilst still being different enough to allow members of the secret
group to recognise their handshake. The traditional indication that someone
who has just received the handshake is a member of the group is that they reply
with a secret codeword. Obviously non-members, not recognising the significance
of the handshake and mistaking it for a regular handshake, will not know to do
this and so will unknowingly give themselves away as non-members.

The idea of the proposed cryptographic secret handshake allows two people
who have never met to calculate a shared secret. However, if one or neither of
them is in a particular group then they will share a“standard secret”. In contrast,
if both of them are in the same secret group, then they will share a secret unique
to them as members of that particular group.

2 Mathematical Preliminaries

An elliptic curve E(Fqk) is the set of solutions (x, y) over the field Fqk to an
equation of the form y2 = x3 + Ax + B, together with an additional point at
infinity, denoted O. There exists an abelian group law on E. There are explicit
formulas for computing the coordinates of a point P3 = P1 + P2 from the coor-
dinates of P1 and P2 . Scalar multiplication of a point is defined as the repeated
addition of a point to itself n times, e.g. 3P1 = P1 + P1 + P1 .

The number of points of an elliptic curve E(Fqk) is called the order of the
curve over the field Fqk . A point P has order r if rP = O. The set of all points
of order r in E is denoted E[r]. This is arranged as cyclic subgroups of prime
order r. The order of a point always evenly divides the curve order. A subgroup
G of an elliptic curve is said to have embedding degree (a.k.a security multiplier)
k if its order r divides qk − 1 for the smallest possible k. We assume k > 1. [9]

Our system uses the Tate pairing, which is computationally more efficient
than the Weil pairing. The Tate pairing is an example of a bilinear map of the
form e: G0×G1 → G2 where G0 and G2 are groups of order r. We will also make
use of a complexity assumption called the co-Bilinear Diffie Hellman assumption
(co-BDH), this assumption states:



Given P , xP , ∈ G0 and yQ, zQ ∈ G1 for unknown random values x, y and
z, no polynomial time algorithm can compute e(P,Q)xyz with non-negligible
probability.

2.1 Properties of the Tate pairing over this curve.

A curve with security multiplier k = 2 defined over the field Fq2 contains r + 1
subgroups, each containing r points and sharing the point at infinity O. In the
following notation we are only concerned with two of these groups, which we
refer to as G0 and G1 . In implementation it is convenient to make one of these
the group of points of order r defined over the field Fq. In the following notation
we will refer to points using capital letters, with different letters referring to
different points. All points will be marked with a subscript to denote which
group they below to, elements of group G0 will be subscripted with a 0, whilst
elements of G1 will be subscripted with a 1. Results of the pairing operation are
elements of the group G2 . Therefore P0 , Q0 , R0 ∈ G0 . P1 , Q1 , R1 ∈ G1 .

– e(P0 , Q0) = e(P1 , Q1) = 1
for any two points in the same subgroup.

– e(P0 , Q1) 6= 1
for any two points from different subgroups.

– e(P0 , Q1) 6= e(Q1 , P0)
for any two points from different subgroups.

– e(xP0 , yQ1)
z = e(P0 , Q1)

xyz

bilinearity
– e(x(Q1 + P0), yQ1) = e(xQ1 , yQ1) × e(xP0 , yQ1) = 1 × e(xP0 , yQ1) =

e(xP0 , yQ1)
pairing properties hold for a third point that results as the addition of points
in the two separate subgroups.

3 The Proposed Secret Handshake Scheme

As with all identity based key agreement schemes the proposed secret handshake
scheme consists of the following 3 algorithms

Setup: The Public Key Generation Centre (PKGC) generates a random mas-
ter secret s, selects an appropriate elliptic curve. The PKGC then picks a
generator point in the subgroup G0 called P0 , and calculates Ppub0 = sP0 .
The PKGC then hashes identities and private keys to the second subgroup
G1 .
The Secret Groups Key Generation Centre (SGKGC) picks it’s generator
point in G1 , say P1 , it then generates its own master secret x, and calculates
Ppub1

= xP1 , and hashes identities and private keys on G0 . The two systems
are effectively a mirror image of each other, each having a unique master
secret.



Extract: Identity strings as certified by the PKGC are hashed to elements of
G1 . Where a particular identity is hashed to ID1 , the corresponding private
key is calculated as sID1 . The hashing algorithm is made known to the
public so that public keys can be derived directly from the identity string. In
a similar fashion, identities certified by the SGKGC are hashed to elements
of G0 , where an identity is hashed to ID0 , the private key is calculated as
xID0 . It is assumed that everyone has a PKGC issued identity and private
key, whilst only members of the secret group have SGKGC issued public
keys. Importantly these secret group public keys are not distributed, such
a list of public keys may imply membership of the secret group. Instead it
is assumed that they are generated when needed, directly from the identity
string, this can be the same identity as is used for generating PKGC public
keys, and so need not be secret. It is assumed that the hash algorithm needed
to do this is made known to the members of the group.

Handshake/Key-Agreement: There are three possible scenario’s for the hand-
shake phase

1. Both parties are not members of the secret group.
2. One party is a member of the secret group.
3. Both parties are members of the secret group.

We will look at these in turn.

3.1 Both parties are not members of the secret group

The algorithm uses a hash function H(.) : R ∈ G2 → {0, 1}k , that is, a one way
maps from an element on the field over Fqk to a suitable asymmetric session key.
When both parties are not members of the group there is obviously no secret
handshake and the protocol is simply Smarts’ key agreement protocol[10]. To
recap, this is as follows:

Alice’s public identity is A1 , Bob’s public identity is B1

Alice generates a random number a and calculates aP0 .
Alice then sends this to Bob.

Alice → Bob

– aP0

Bob generates a random number b and calculates bP0 .
Bob then sends this to Alice.

Bob → Alice

– bP0



Alice calculates her shared secret as

– H(e(sA1 , bP0)× e(B1 , aPpub0)) = H(e(bA1 + aB1 , Ppub0))

Likewise, Bob calculates his shared secret as

– H(e(sB1 , aP0)× e(A1 , bPpub0)) = H(e(bA1 + aB1 , Ppub0))

And so they have a common shared secret.

3.2 One party is a member of the secret group

When one person is a member of the group it is important that the other person
is unable to distinguish between this instance of the protocol and an instance of
the protocol as outlined in section 3.1 above. Obviously they cannot be exactly
the same, or another member of the group will not be able to distinguish them
either.

Lets say that Alice is now a member of a group of which Bob is not a member.

Alice generates two random numbers, a and a′. One for her public group shared
secret and the other for her secret group shared secret. Alice then sends the
following value off to Bob.

Alice → Bob

– aP0 + a′P1

Bob, not being a member of the group, thinks that he is engaging in the protocol
as outlined in section 3.1 and so responds as he did previously.

Bob → Alice:

– bP0

Using the Tate pairing Alice can pair the value that she has just received from
Bob with the point P0 . If the result is 1 then Bob is not in the group, since as
noted above e(xP0 , yP0) = 1, otherwise he is. Alice establishes that Bob is not
in the group and so completes the protocol as if she was not in the group.

Alice calculates her shared secret as

– H(e(sA1 , bP0))× e(B1 , aPpub0) = H(e(bA1 + aB1 , Ppub0))

Likewise, Bob calculates his shared secret as

– H(e(sB1 , aP0 + a′P1)× e(A1 , bPpub0)) =
H(e(sB1 , aP0)× e(sB1 , a

′P1)× e(A1 , bPpub0)) =
H(e(sB1 , aP0)× 1× e(A1 , bPpub0)) =
H(e(bA1 + aB1 , Ppub0))

And so they have the common shared secret.



3.3 Both parties are members of the group

When both parties are members of the group, they perform the secret handshake.
This is done as follows.
Obviously neither party knows before the handshake whether the other is in the
secret group. Therefore they have to perform a handshake that allows them to
obtain a shared public secret as well.

Alice’s secret group identity is A0 , Bob’s secret group identity is B0 . Note,
importantly, these points are in G0whereas their public identities A1 and B1 are
in G1 . It is assumed that all members of the secret group have the necessary
algorithms to hash from an identity string to an element of the group G0 , and
therefore that explicit public keys are not kept in a list anywhere, but generated
on the fly. Also members of the secret group Alice and Bob are equiped with the
private keys xA0 and xB0respectively

Alice generates her two random numbers, a and a′ again. Alice then sends the
following value off to Bob.

Alice → Bob

– aP0 + a′P1

Bob, now being a member of the group, replies to Alice in a similar fashion.

Bob → Alice:

– bP0 + b′P1

Alice and Bob both now pair the value that they have been given with the
point P0 . They see that the result is non-trivial, since, as mentioned above
e(P0 , P0 + P1) = e(P0 , P1) 6= 1 and so realise that they are both in the se-
cret group.

They both now, instead of using their public identities, use their secret group
identities and perform the usual handshake. Alice generates her shared secret
value as

– H(e(xA0 , bP0 + b′P1)× e(B0 , a
′Ppub1

)) =
H(e(xA0 , b

′P1)× e(B0 , a
′Ppub1

)) =
H(e(b′A0 + a′B0 , Ppub1

))

Likewise, Bob calculates his shared secret as

– H(e(xB0 , aP0 + a′P1))× e(P, b′Ppub1
) =

H(e(xB0 , a
′P1))× e(P, b′Ppub1

) =
H(e(b′A0 + a′B0 , Ppub1

))

And so they have a shared secret that is unique to them as members of the secret
group.



4 The Proposed Signcryption Scheme

Signcryption - first proposed by Zheng [11] - is the combination of encryption
and signing operations in a way that is more efficient than doing both operations
desperately. We now propose a signcryption scheme for low bandwidth channels
based on the above technique of adding points in different subgroups. In practical
implementation this protocol saves 513 bits for a reasonably secure system with
k = 2, when compared with the bandwidth of the Malone-Lee Identity Based
Signcryption system[12]. It does this by removing one of the points defined over
Fq that was previously sent across as part of the signcryption (512bits for the x
co-ordinate of the point, 1 bit for the y co-ordinate). Depending on the curves
used it also makes bandwidth savings over the schemes of Libert & Quisquater
when using the Tate pairing. [13]

The protocol uses hash functions H1 : R ∈ G2 → {0, 1}k and H2 : {0, 1}∗ →
{0, 1}k. It also uses a suitable symmetric encryption algorithm, keyed with a
session key, denoted SE

sessionkey
(.).

The protocol is composed of four steps. Setup and Extract, carried out by the
Key Generation Centre, and Signcryption and Unsigncryption, carried out by
end users. To allow for non-repudiation services, if the receiver wishes to prove
the origin of a message to a third party then he can decrypt the message and
the signature must hold.

Setup: The KGC generates a random value s. The KGC publishes a group
generator for the first subgroup P0 , and the point Ppub0 = sP0 , keeping s a
secret.

Extract: The KGC generates each users private key, first by hashing their iden-
tity to a point on the G1 to generate their public key and then computing the
private key by muiltiplying this point by s. It is assumed that the hash algo-
rithm used to generate public keys from identity strings is publicly known.

Signcryption: Alice has as her public key A1 and her corresponding private
key is sA1 . She generates a random number r and calculates rP0 . Bob has as
his public key B1 and his corresponding private key is sB1 . The signcryption
scheme proceeds as follows:

Alice calculates the following:

– sk = H1(e(Ppub0 , B1)
r)

– v = H2(H2(message)⊕ sk)
– K = vsA1 + rP0

– cipher = SE
sk

(message)

Alice → Bob

– Signcryption = (K, cipher)

We note here that the signcryption consists of just one point, and a small piece
of cipher text.



Unsigncryption: Bob checks the validity of the signcryption as follows:

Bob calculates:

– sk′ = H1(e(K, sB1)) =
H1(e(vsA1 , sB1)× e(rP0 , sB1)) =
H1(e(P0 , sB1)

r)
– message′ = SE

sk′ (cipher)
– v′ = H2(H2(message′)⊕ sk′)
– Accept iff e(K, P0) = e(A1 , Ppub0)

v′

To see that this is the case consider
If message′ = message and sk′ = sk, then v′ = v.

e(K, P ) =
e((vsA1 + rP0), P0) =
e(vsA1 , P0)× e(rP0 , P0) =
e(vsA1 , P0)× 1 =
e(vsA1 , P0) =
e(vA1 , sP0) =
e(A1 , Ppub0)

v′

5 Security of the Proposed Schemes

5.1 Security of the Secret Handshake

We now analysis the security of the proposed schemes, looking at the security of
the secret handshake scheme first, taking as our reference the accepted criteria
for an Authenticated Key Agreement with Key Confirmation (AKC). We use
the notation of Blake et al. [14].

A protocol is a secure AKC protocol if:

– In the presence of a benign adversary on
∏s

i,j and
∏t

i,j, both oracles (parties
to the key agreement) always accept holding the same session key, FK, and
that this key is uniformly distributed at random on {0,1}k

And if for every adversary E

– If uncorrupted oracles
∏s

i,j and
∏t

i,j have matching conversations then both
oracles accept and hold the same session key FK.

– The probability of No-MatchingEis negligible.
– advantageE(K) is negligible

The first condition says that in the presence of a benign adversary, oracles al-
ways accept holding the same, randomly distributed key. The second says that
in the presence of any adversary if two entities behave correctly, and the trans-
missions between them are not tampered with, then both accept and hold the



same key. The third says that essentially the only way for any adversary to get
an uncorrupted entity to accept in a run of the protocol with any other uncor-
rupted entity is by relaying communications like a wire. The fourth says that no
adversary can learn any information about a session key held by a fresh oracle.
[14]

Theorem 1. In the random oracle model, the proposed protocol is an AKC
protocol.

Proof: The protocol satisfies all of the conditions outlined above.

– Both oracles accept and hold the same session key as a result of the bilinearity
of the pairing.

– The session key is uniformly distributed over {0, 1}k as a result of using
a random oracle on the output of the pairing. Also if even one party to
the protocol picks their random element truly at random then the result is
random.

– Condition two above follows from condition one.
– Conditions three and four will be dealt with simultaneously. Consider an

algorithm E that has advantageE(K) with non-negligible probability. This
can be transformed by another algorithm F to non-negligible advantage in
breaking the Bilinear Diffie Hellman Assumption.

F has as its task to gain non-negligible advantage in breaking the co-Bilinear
Diffie Hellman assumption:

Given P0 , xP0 ∈ G0 and yQ1 and zQ1 ∈ G1 for unknown values x, y, z,
compute e(P0 , Q1)

xyz.
E can with non-negligible advantage, predict whether a random sequence

R = {0, 1}k = H(e(bA1 + aB1 , Ppub0)), having seen aP0 and bP0 . Note that in
the protocol the value aP0+a′P1 is sent across for the secret handshake, but since
one point, for example a′P1 disappears in the pairing the complexity assumption
rests on aP0 . Therefore we will refer to aP0 +a′P1 simply as aP0 . Since H is a true
random oracle there is no other way to guess R with non-negligible advantage
other than to be able to guess e(bA1 +aB1 , Ppub0) with non-negligible advantage.

In the random oracle model we can formulate, for random i and j, values
for P0(representing the group generator), xP0 (representing the KGC’s public
point), yQ1 (representing Alice’s public point), (z × (i + j)−1)Q1 (representing
Bob’s public point), (i× y)P0 (representing Alice’s token to Bob), (j(i + j)−1 ×
z)P0 (representing Bob’s token to Alice).

Remember that the random oracle’s do not know the private keys for Alice
and Bob, nor the server secret value s, but are allowed a best guess. Computing
e(bA1 + aB1 , Ppub0) = e(bP0 , sA1) × e(sP0 , aB1) = e((zj(i + j)−1)P0 , yQ1) ×
e(xP0 , (z(i+j))Q1) = e(P0 , Q1)

xyz. Since the oracles do not know the real server
secret, it can be seen that non-negligible advantageE(K) in guessing a genuine
fresh shared secret, or the ability to corrupt the communication in a way that
an uncorrupted oracle will still accept, can be transformed into non-negligible



advantage in solving the co-BDH assumption. The full example of this proof is
explained by Chen and Kulda using the BDH assumption. [15]

The protocol also has the following properties:

1. Forward Secrecy: Since each run of the protocol interactively uses random
secrets, destruction of these random secrets after a run of the protocol means
that even if the long term private keys are compromised past session keys
will not be compromised. Entities can protect themselves by doing this.

2. High Key EntrEntopyopy: Provided that at least one of the entities has a
good source of randomness the agreed session key will be random. Enti-
ties can protect themselves by maintaining a good source of randomness for
themselves.

3. Known Session Keys: Because each key generation is randomised, knowledge
of previously agreed session keys does not reveal any information about a
freshly generated session key.

5.2 Security of the proposed Signcryption scheme

We use as our security model an idea proposed by John Malone-Lee. This is a
two part definition in which he looks at the encryption and unforgeability prop-
erties of the signcryption scheme separately. This security model for encryption
is called indistinguishability of identity-based signcryptions under chosen cipher-
text attack (IND-ISC-CCA) and is a natural adaptation of the de facto standard
for public key encryption schemes: indistinguishability of encryptions under cho-
sen ciphertext attack.[12]

We recap:

Definition 1. We say that an identity based signcryption scheme (IDSC) has
the indistinguishability against adaptive chosen ciphertext attacks prop-
erty (IND-IDSC-CCA) if no polynomially bounded adversary has a non-
negligeable advantage in the following game.

– The challenger runs the Setup algorithm with a security parameter k and
sends the system parameters to the adversary.

– The adversary A performs a polynomially bounded number of requests:
– Signcryption request: A produces two identities A, B and a plaintext m.

The challenger computes sA = Keygen(A) and then Signcrypt(m, sA, B)
and sends the result to A.

– Unsigncryption request: A produces two identities A and B , a ciphertext
σ. The challenger generates the private key sA = Keygen(A) and sends the
result of Unsigncrypt(σ, sA,B) to A (this result can be the ⊥ symbol if σ
is an invalid ciphertext).

– Key extraction request: A produces an identity A and receives the extracted
private key sA = Keygen(A). A can present its requests adaptively: every
request may depend on the answer to the previous ones.



– A chooses two plaintexts m0 and m1 , and two identities A and B on which he
wishes to be challenged. He cannot have asked the private key corresponding
to A nor B in the first stage.

– The challenger takes a random bit b and computes C = Signcrypt(mb, sA, B)
which is sent to A.

– A asks again a polynomially bounded number of requests just like in the first
stage. This time, he cannot make a key extraction request on A nor B and
he cannot ask the plaintext corresponding to C.

– Finally, A produces a bit b0 and wins the game if b0 = b.
– The adversarys advantage is defined to be Adv(A) = |prob(win) - 1/2|

Definition2. An identity based signcryption scheme (IDSC) is said to be secure
against an existential forgery for adaptive chosen messages attacks (EF-
IDSC-ACMA) if no polynomially bounded adversary has a non-negligeable
advantage in the following game

– The challenger runs the Setup algorithm with a security parameter k and
gives the system parameters to the adversary.

– The adversary A performs a polynomially bounded number of requests just
like in the previous definition.

– Finally, A produces a new triple (σ,A, B) (i.e. a triple that was not produced
by the signcryption oracle), where the private key of A was not asked in the
second stage and wins the game if the result of Unsigncrypt(σ, sA,B) is not
the ⊥ symbol.

– The adversarys advantage is simply its probability of victory.
– In this definition, the adversary is allowed to ask the private key correspond-

ing to the identity B for which the ciphertext he produces must be valid.
This condition is necessary to obtain the non-repudiation property and to
prevent a dishonest recipient from sending a ciphertext to himself on Alices
behalf and trying to convince a third party that Alice was the sender.

Proof of IND-IDSC-CCA security of our signcryption scheme First we
consider the indistinguishablity of cipher texts produced by this signcryption
scheme. Again, we show that an adversary that has non-negligible advantage in
distinguishing ciphertexts against this signcryption scheme has non-negliglable
advantage advantage against co-BDH assumption. This is a very straightforward
transformation. The known points are B1 , where this is Bob’s public key, rP0 ,
where r is the random mask, and sP0 , for the system wide secret s. Because
the result of the pairing e(B1 , sP0)

r is hashed using a true random oracle an
attacker can only distinguish between ciphertexts if they can calculate, with
non-negligable probability e(B1 , sP0)

r , knowing only rP0, B1 and sP0 . This is
the co-Bilinear Diffie Hellman problem. We also note that the attack outlined
in Libert & Quisquater [13], that is distinguishing between ciphertexts just by
checking signatures, would not succeed as the signature is not directly visible
in the signcryption. This is accomplished by the hashing of the message and
the secret session key together in the signature, and the use of a symmetric
encryption algorithm to generate the cipher text.



Proof of EF-ISC-ACMA security of our signcryption scheme We now
consider the strength of our signcryption in the face EF-ISC-ACMA challenge,
that is, its resistance to forgery. We can use the method of Hess [16], using the
forking lemma of Pointcheval and Stern [17] to show that the ability to produce
two ciphertexts in the random oracle model implies a non-negligible advantage in
Computational Diffie Hellman Assumption. We assume that we have generated
two forged signatures on the same message, using different outputs of the hash
on the same message, all imputs are kept the same.

Forgery 1:

– v = H2(H2(message)⊕ sk)
– K = vsA1 + xP0

Forgery 2:

– v′ = H2(H2(message)⊕ sk)
– K ′ = vsA1 + xP0

Attack:

– K −K ′ = (vsA1 + xP0)− (v′sA1 + xP0) = (v − v′)sA1

– i = (1/(v − v′))
– sA1 = i(K −K ′)

The Computational Diffie Hellman Assumption states that, knowing P,Q ∈ G1

and R = sP , it is not computationally feasible to calculate sQ [18]. If this was
trivial, it would be possible to generate private keys at will, just from knowing
the system parameters.

6 Conclusion

We have presented two new protocols from the Tate pairing. We have seen how
it is possible to introduce a covert channel into Smart’s Handshake, such that
it is possible to generate two concurrent secrets from the one instance of the
protocol, we call the second of these secrets the secret handshake, since it requires
additional knowledge to compute. We have also shown an efficient signcryption
scheme in which just one point and one small piece of cipher text is transmitted.
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