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Abstract

A group signature scheme allows a group member of a given group to sign mes-
sages on behalf of the group in an anonymous and unlinkable way. In case of a
dispute, however, a designated group manager can reveal the signer of a valid group
signature. Based on Song’s forward-secure group signature schemes, Zhang, Wu, and
Wang proposed a new group signature scheme with forward security at ICICS 2003.
Their scheme is very efficient in both communication and computation aspects. Un-
fortunately, their scheme is insecure. In this paper we present a security analysis to
show that their scheme is linkable, untraceable, and forgeable.

Keywords: digital signature, group signature, forward security, cryptanalysis.

1 Introduction

In modern electronic society, digital signatures are playing an important role to provide
integrity, authentication and undeniability for electronic transactions. Group signatures,
first introduced by Chaum and van Heyst in [14], are a special king of digital signatures.
In such a scheme each group member of a given group is allowed to sign messages on
behalf of the group in an anonymous and unlinkable way. To check the validity of a group
signature, a receiver only needs to get the unique group public key. However, with the
exception of a designated group manager, anybody else neither can identify the identity
of the singer nor determine whether multiple signatures are generated by the same group
member. Furthermore, in case of later disputes, the group manager can “open” a group
signature and then reveal the true signer’s identity.

From the viewpoints of verifiers, only a single group public key is needed to verify
group signatures. On the other hand, from the viewpoint of the signing group, its
internal structure is hidden from verifiers while the signer’s identities can be revealed, if
necessary. In virtue of these advantages, group signatures have many potentially practical
applications, such as e-voting, e-bidding and e-cash etc [15, 20, 23, 21, 13].

Following the first schemes constructed in [14], a number of new group signature
schemes and improvements have been proposed [15, 9, 22, 10, 2, 3, 19, 8, 24, 12, 7]. In
[15], Chen and Pedersen constructed the first scheme which allows new members to join
the group dynamically, and suggested to use group signatures in e-bidding. Camenisch
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and Stadler proposed the first group signature scheme that can be used for large groups,
since in their scheme the group public key and signatures have lengths independent of
the group size [9]. Based on the strong RSA assumption [16], Camenisch and Michels
presented an efficient group signature scheme in [10, 11]. Later, Kim et al. extended
their scheme to support efficient member revocation [19]. Ateniese and Tsudik pointed
out some obstacles that stand in the way of real world applications of group signatures,
such as coalition attacks and member deletion [2]. In fact, there have been several papers
which focused on the problem of member deletion [19, 8, 4]. Ateniese et al. presented a
provably secure group signature scheme in [3].

Song addressed two important problems in group signature schemes, i.e., how to deal
with exposure of group signing keys and how to efficiently revoke group members [24].
Here, a group signing key is referred to all secrets that enable a signer to produce group
signatures in [24]. In fact, a group signing key consists of the membership secret and
the group membership certificate [9, 3]. Based on the idea of forward secure signatures
[1, 6, 17], Song constructed the fist two forward-secure group signature schemes. In such
a scheme, the expected system life-time is divided into T time periods, and each group
member’s signing key evolves over time. In time period j + 1, the signing key skj+1 is
updated from the signing key skj for time period j by using a public one-way function,
and then skj is erased from the system. When the signing key skj+1 is compromised,
an attacker cannot derive any previous signing key which corresponds to a time period
i (i < j). Furthermore, Song also extended her schemes to support group member
revocation. In Song’s schemes, the group public key is affected neither by signing key
update, nor by group member join or leave.

In [26], Zhang, Wu, and Wang proposed a newly efficient forward-secure group signa-
ture scheme. Since signatures of knowledge (refer to [9, 3]) are not used, their scheme is
really very efficient in both computation and communication aspects. For example, the
total computation cost of their signature generation and verification is only 7 modular
exponentiations, while 36 modular exponentiations are needed in Song’s schemes. At the
same time, they claimed that their scheme satisfies all the desired security requirements
(see Section 2). However, we find this is not the fact.

In this paper, we present a security analysis of Zhang-Wu-Wang group signature
scheme with forward security [26]. More specifically, we demonstrate that their scheme
is linkable, untraceable and forgeable. We first identify an effective way that allows any-
body can determine whether two group signatures are signed by the same group member.
Then, we demonstrate that any group member can forge valid signatures which cannot
be opened by the group manager. This implies that their OPEN procedure fails to trace
malicious group members. Furthermore, we prove that Zhang-Wu-Wang scheme is un-
traceable in essence, i.e., it is impossible to meet the traceability by improving OPEN pro-
cedure. Finally, under reasonable assumptions, a universally forging attack is presented.
In this attack, even an outsider (not a group member) can forge valid group signatures
on any messages of his choice. Therefore, Zhang-Wu-Wang scheme is insecure, though
it is very efficient.

The rest of this paper is organized as follows. In Section 2, we introduce the informal
definitions of a forward-secure group signature scheme and the security requirements.
Section 3 reviews Zhang-Wu-Wang scheme [26]. Then, our security analysis is presented
in Section 4. Finally, Section 5 concludes this paper.
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2 Definitions

A forward-secure group signature scheme involves a group manager, a set of group mem-
bers, and a set of verifiers. The group manager (for short, GM) is responsible for ad-
mitting/revoking group members, and for opening group signatures to reveal the true
singers. When a potential user registers with GM, he/she becomes a group member and
then can signs messages on behalf of the group. A verifier checks the validity of a group
signature by using the unique group public key. The computational capability of each
entity is modeled by a probabilistic polynomial-time Turing machine. We now review the
definitions of forward-secure group signature schemes and their security requirements as
follows. For more formal definitions on this subject, please refer to [7].

Definition 1. A forward-secure group signature scheme is comprised of the following
procedures [9, 2, 3, 24, 26]:

• SETUP: On input of a security parameter `, this probabilistic algorithm outputs the
initial group public key and the secret key for the group manager.

• JOIN: An interactive protocol between the group manager and a user that results in
the user becoming a new group member. The user’s output is a group signing key.

• SIGN: A probabilistic algorithm that on input a group public key, a group signing
key, and a message m outputs a group signature on m.

• EVOLVE: An algorithm that on input a group signing key for time period j, outputs
the corresponding group signing key for time period j + 1.

• VERIFY: An algorithm for establishing the validity of an alleged group signature of
a message with respect to a group public key.

• OPEN: An algorithm that, given a message, a valid group signature on it, a group
public key and the corresponding group manger’s secret key, determines the identity
of the signer.

• REVOKE: An algorithm that on input a group member’s certificate, a group public
key and the corresponding group manger’s secret key, outputs a revocation token
that revokes the group member’s signing ability.

Definition 2. A forward-secure group signature scheme is secure if it satisfies all the
following security requirements [2, 3, 24, 26]:

• Correctness: Signatures produced by a group member using SIGN procedure must
be accepted by VERIFY procedure.

• Unforgeability: Only group members are able to sign messages on behalf of the
group.

• Anonimity: Given a valid group signature for some message, identifying the actual
signer is computationally hard for everyone but the group manager.

• Unlinkability: Deciding whether two different valid signatures were generated by the
same group member is computationally hard for everyone but the group manager.
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• Excupability: Even if the group manager and some of the group members collude,
they cannot sign on behalf of non-involved group members.

• Traceability: The group manager can always open a valid group signature using
OPEN procedure and then identify the actual signer.

• Coalition-resistance: A colluding subset of group members cannot generate a valid
group signature that cannot be traced by the group manager.

• Revocability: The group manager can revoke a group member so that this group
member cannot produce a valid group signature any more after being revoked.

• Forward security: When a group signing key is exposed, previously generated group
signatures remain valid and do not need to be re-signed.

3 Review of Zhang-Wu-Wang Scheme

3.1 SETUP Procedure

The group manager (GM, for short) randomly chooses two large primes p1, p2 of the
same size such that p1 = 2p′1 +1 and p2 = 2p′2 +1, where both p′1 and p′2 are also primes.
Let n = p1p2, and G = 〈g〉 be a cyclic subgroup of Z∗

n. Usually, G is selected as the set
of quadratic residues modulo n [10, 3, 24], i.e., g’s order ord(g) = p′1p

′
2. GM randomly

chooses an integer x as his secret key, and then sets his public key as y = gx mod n. GM
selects a random integer e (e.g., e = 3) which satisfies gcd(e, φ(n)) = 1, and computes
d such that de = 1 mod φ(n). Let h(·) be a publicly known coalition-resistant hash
function (e.g., SHA-1, MD5). The expected system life-time is divided into T intervals
and the intervals are publicly known. (c, s) = SPK{γ : y = gγ}( ) denotes the signature
of knowledge of logg y on the empty message (see [9, 3] for details). Finally, the group
manager publishes the public key (y, n, g, e, h(·), IDGM , T ) , where IDGM is the identity
of the group manager.

3.2 JOIN Procedure

If a user, say Bob, wants to join to the group, he executes an interactive protocol with
GM. Firstly, Bob chooses a random number k ∈ Z∗

n as his secret key, and computes
his identity IDB = gk mod n. Then, Bob generates the signature of knowledge (c, s) =
SPK{k : IDB = gk}( ) to show that he knows a secret value k to meet IDB = gk mod n).
Finally, Bob keeps k privately and sends (IDB, (c, s)) to the group manager.

Upon receiving (IDB, (c, s)), GM first verifies the signature of knowledge (c, s). If
the verification holds, GM chooses a random number α ∈ Z∗

n, and computes a triple
(rB, sB,WB0) from

rB = gα mod n, sB = α + rBx, wB0 = (rBIDGMIDB)−dT
mod n.

Then, GM sends Bob (sB, rB, wB0) via a private channel, and stores (sB, rB, wB0) to-
gether with (IDB, (c, s)) in his local database. Bob accepts (sB, rB, wB0) as his initial
membership certificate if the following two equalities hold.

gsB ≡ rByrB mod n, and rBIDGMIDB ≡ wB0
−eT

mod n. (1)
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3.3 EVOLVE Procedure

Assume that Bob has the group membership certificate (sB, rB, wBj ) at time period j.
Then at time period j+1, he updates his group membership certificate as (sB, rB, wBj+1)
by computing

wBj+1 = (wBj )
e mod n (= (rBIDGMIDB)−dT−j

mod n). (2)

3.4 SIGN Procedure

Let (sB, rB, wBj ) be Bob’s group membership certificate at time period j. To sign a
message m, Bob randomly chooses two numbers q1, q2 ∈ Z∗

n, and computes z1, u, r1, r2, r3

as follows:
z1 = gq1yq2 mod n,
u = h(z1,m),
r2 = wu

Bj
mod n,

r1 = q1 + (sB + k) · u · h(r2) (in Z),
r3 = q2 − rB · u · h(r2) (in Z).

(3)

The resulting group signature on m is σ = (u, r1, r2, r3,m, j).

3.5 VERIFY Procedure

Given σ = (u, r1, r2, r3,m, j), a verifier accepts it as a valid group signature on m if and
only if u ≡ h(z′1,m), where z′1 is computed by

z′1 = ID
u·h(r2)
GM gr1r

h(r2)·eT−j

2 yr3 mod n. (4)

3.6 OPEN Procedure

Given a group signature σ = (u, r1, r2, r3,m, j), if necessary, GM can open it to reveal the
actual identity of the signer who produced the signature. GM first checks σ’s validity via
VERIFY procedure. If σ is a valid signature, GM operates as follows to find the signer’s
identity:

(1) Compute η = 1/(u · h(r2)) mod φ(n).

(2) Compute z′1 = ID
u·h(r2)
GM gr1r

h(r2)·eT−j

2 yr3 mod n.

(3) Search his database to find a pair (IDB, rB) that satisfies the following equality:

rBIDB ≡ (gr1yr3/z′1)
η mod n. (5)

(4) If there is a tuple (rB, IDB) satisfying the above equation, GM concludes that IDB

is the identity of the actual signer. Otherwise, output ⊥.
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3.7 REVOKE Procedure

If GM wants to revoke Bob’s membership certificate at time period j, he publishes a
revocation token (Rj , j) in the CRL (the Certificate Revocation List), where the value
Rj is computed by

Rj = (rBIDB)dT−j
mod n. (6)

Given a valid group signature σ = (u, r1, r2, r3,m, j), a verifier can identify whether
σ is produced by a revoked group member. For this sake, he performs as follows:

(1) Compute z′1 = ID
u·h(r2)
GM gr1r

h(r2)·eT−j

2 yr3 mod n.

(2) Search all (Ri, i) (i 6 j) in CRL to check whether there is a Ri (i 6 j) such that
the following equality holds:

gr1yr3 ≡ z′1(R
eT−i

i )u·h(r2) mod n. (7)

(3) If one such Ri (i 6 j) is found, the verifier concludes that the signature σ is revoked,
i.e., it is generated by a group member after he is revoked.

4 Security Analysis of Zhang-Wu-Wang Scheme

In [26], Zhang et al. analyzed the security of their scheme, and concluded that their
scheme satisfies all the security requirements listed in Section 2. However, we find that
this is not the fact.

4.1 Linkability

Let σ = (u, r1, r2, r3,m, j) and σ̄ = (ū, r̄1, r̄2, r̄3, m̄, j) be two (valid) group signatures.
To decide whether they are signed by the same group member, a verifier only need to
check whether the following equality holds.

rū
2 ≡ r̄u

2 mod n. (8)

In fact, if both σ and σ̄ are signed by the same group member, say Bob, according to
SIGN procedure, we know that rū

2 = (wBj )
u·ū mod n = r̄u

2 mod n. So the above equality
holds for σ and σ̄.

On the other hand, we can show that if σ and σ̄ are signed by two different group
members, say Bob and Charlie, respectively, equation (8) unlikely holds. To prove this
claim, on the contrary, we assume that σ and σ̄ satisfy equation (8). Let rB = gα mod n,
rC = gᾱ mod n, IDB = gk mod p, and IDC = gk̄ mod p. Since σ is signed by Bob, and
σ̄ is signed by Charlie, we have rū

2 = (wBj )
u·ū mod n, and r̄u

2 = (wCj )
u·ū mod n. From

rū
2 = r̄u

2 mod n, we have (rBIDGMIDB)−uūdT−j
= (rCIDGMIDC)−uūdT−j

mod n. So,
the following equation holds

g(k−k̄+α−ᾱ)uūdT−j
= 1 mod n. (9)

Since ord(g) = p′1p
′
2, gcd(d, φ(n)) = 1, and φ(n) = 4p′1p

′
2, we know ord(g) - d. At the

same time, usually |h(·)| = 160, and |p′1| = |p′2| > 255, thus we also have ord(g) - uū.
Therefore, from equation (9), we conclude that ord(g)|(k−k̄+α−ᾱ), i.e., (k−k̄+α−ᾱ) =
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0 or (k − k̄ + α − ᾱ) = b · ord(g) for some non-zero integer b. However, both cases
unlikely happen, because ord(g) is the product of two large primes, α and ᾱ are random
numbers selected by GM, and k and k̄ are random numbers selected by Bob and Charlie
respectively.

Furthermore, equation (8) can be generalized to link two signatures which generated
by the same group member at different time periods. That is, given two group signatures
σ = (u, r1, r2, r3,m, j) and σ̄ = (ū, r̄1, r̄2, r̄3, m̄, i) where j > i, one can know whether the
same group member generated them by checking

rū
2 ≡ r̄u·ej−i

2 mod n. (10)

4.2 Untraceability

In this section, we demonstrate an attack that enables a group member Bob to forge a
valid certificate. Then, using this forge certificate, he can generate valid group signature
on any message of his choice without being traced. Firstly, we note that it seems difficult
to forge a new pair (rB, sB) so that the first equation in (1) is satisfied, since Bob does
not know GM’s secret key x. However, Bob can change the values of wB0 and IDB, and
get a new certificate. For this sake, he chooses a random number a ∈ Zn, and define
w̄B0 , IDB and k̄ as follows:

w̄B0 = wB0g
a mod n, IDB = IDB · g−aeT

mod n, k̄ = k − aeT (in Z). (11)

In the following, we show that the tuple (sB, rB, w̄B0) with respect to (IDB, k̄) con-
stitutes a valid group membership certificate. Firstly, IDB = IDBg−a·eT

mod n =
gk−a·eT

mod n = gk̄ mod n. Secondly, we already have gsB = rByrB mod n. Finally, the
following equalities hold

rBIDGMIDB = (rBIDGMIDB) · g−aeT
mod n

= wB0
−eT · g−aeT

mod n

= (wB0 · ga)−eT
mod n

= w̄−eT

B0
mod n.

Therefore, according to JOIN procedure, Bob obtains another new certificate (sB, rB, w̄B0)
with (IDB, k̄). Using this tuple (sB, rB, w̄B0 , IDB, k̄), Bob can generate valid group sig-
natures on arbitrary messages. According to OPEN procedure, when such forged signa-
tures are presented, Bob will not be traced as the signer since rBIDB 6= rBIDB mod n.
Therefore, the OPEN procedure provided by [26] fails to trace such malicious group mem-
bers. A natural question is that whether can we improve this OPEN procedure such that
it can reveal the identities of malicious group members? Unfortunately, the answer is
negative. In other words, Zhang-Wu-Wang scheme is untraceable in essence, i.e., two
malicious members may forge the same valid but untraceable group signature on a given
message. More formally, we have the following theorem.

Theorem 1. Using the above attack, the forged group signatures generated by two ma-
licious members for the same message are perfectly indistinguishable.

Proof: We only need to prove that if Bob forges a group signature σ on a message
m, Charlie can also generate it by using our above attack. For simplicity, let skB,j =
(sB, rB, wBj , IDB, k), and fskB,j = (sB, rB, w̄Bj , IDB, k̄), where wBj = we

Bj−1
mod n =
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wej

B0
mod n, and w̄Bj = w̄e

Bj−1
mod n = w̄ej

B0
mod n. skB,j and fskB,j denote Bob’s

signing key and forged signing key at time period j, respectively. Here, w̄B0 , IDB and k̄
are computed by Bob as in the above attack, i.e., Bob selects a random number a and
calculates the values of them from equation (11). To forge a group signature on message
m, he randomly chooses two numbers q1, q2 ∈R Z∗

n, and computes z1 = gq1yq2 mod n,
u = h(z1,m), r2 = w̄u

Bj
mod n, r1 = q1 + (sB + k̄)uh(r2) (in Z), and r3 = q2 − rBuh(r2)

(in Z). σ = (u, r1, r2, r3,m, j) is the resulting forged group signature on message m.
Now, we show that Charlie can forge a group signature σ′ on the same message

m such that σ′ ≡ σ, if he chooses an appropriate number a′ to define his forged
signing key, and two specific numbers q′1 and q′2 to produce group signature. Let
skC,j = (sC , rC , wCj , IDC , k′) be Charlie’s signing key at time period j, where sC =
α′ + rCx, rC = gα′ mod n, IDC = gk′ mod n, wCj = wej

C0
mod n, and wC0 =

(rCIDGMIDC)−dT
mod n. To forge a new membership certificate, Charlie first sets

a′ = a − (k + α − k′ − α′) · e−T mod ord(g). This means that there exists an integer l
such that k′ +α′− a′eT = k +α− aeT + l · ord(g). And then, according to equation (11),
he defines w̄C0 , IDC and k̄′ as follows:

w̄C0 = wC0g
a′ mod n, IDC = IDCg−a′eT

mod n, k̄′ = k′ − a′eT (in Z). (12)

Up to this, Charlie obtains his forged signing key fskC,j = (sC , rC , w̄Cj , IDC , k̄′) for
time period j, where w̄Cj = w̄e

Cj−1
mod n = w̄ej

C0
mod n. Due to the specific choice of

the value of a′, we have

rBIDB = rCIDC mod n, and w̄B0 = w̄C0 mod n.

To forge a group signature σ′ on the message m such that σ′ ≡ σ = (u, r1, r2, r3,m, j),
Charlie first sets q′1 = q1 +xuh(r2)(rB−rC)− l ·uh(r2) ·ord(g), and q′2 = q2−uh(r2)(rB−
rC). Then, he computes z′1 = gq′1yq′2 mod n, u′ = h(z′1,m), r′2 = w̄u′

Cj
mod n, r′1 =

q′1 + (sC + k̄′)u′h(r′2) (in Z), and r′3 = q′2 − rCu′h(r′2) (in Z). Let σ′ = (u′, r′1, r
′
2, r

′
3,m, j)

be the resulting group signature forged by Bob. Then, one can directly verify that
z′1 = z1, u′ = u, r′1 = r1, r′2 = r2 and r′3 = r3. In other words, σ′ ≡ σ.

The above discussion shows that for a given forged group signature σ, any group
member may be the attacker who forged it by using our attack. Therefore, Theorem 1
holds1.

4.3 Forgeability

The attack given in Section 4.2 only enables group members to forge valid group signa-
tures. This Section demonstrates a universal forgery which can be mounted by anybody,
not necessarily the group members. We first describe our attack when the value of
ID−dT−j

GM mod n is available, and then explain how to get the value of ID−dT−j

GM mod n
using some public information.

If the value of ID−dT−j

GM mod n is known, to forge a group signature on an arbitrary
message m, the following universally forging attack can be mounted by anybody.

1Note that in the proof of Theorem 1, we only discuss the possibility whether two group members can
forge the same valid but untraceable group signature on the same message, so Charlie can ‘use’ some
secrets controlled by other parties, such as the values of a, q1, q2, x and ord(g) etc.
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(1) Select four random numbers a, b, q1, q2 ∈R Z∗
n.

(2) Compute z1 = gq1yq2 mod n, and u = h(z1,m).

(3) Define r2 = (ID−dT−j

GM )ug−ayb mod n, r1 = q1 + ah(r2)eT−j (in Z), and r3 =
q2 − bh(r2)eT−j (in Z).

(3) Output σ = (u, r1, r2, r3,m, j) as the forged group signature on message m.

We now show the correctness of our above attack. According to VERIFY procedure,
we need to first compute z′1 and then checks whether u ≡ h(z′1,m). By equation (4), we
have the following equalities:

z′1 = ID
uh(r2)
GM gr1r

h(r2)eT−j

2 yr3 mod n

= ID
uh(r2)
GM gr1((ID−dT−j

GM )ug−ayb)h(r2)eT−j
yr3 mod n

= gr1−ah(r2)eT−j
yr3+bh(r2)eT−j

mod n
= gq1yq2 mod n
= z1 mod n.

So, z′1 = z1. This means u = h(z1,m) = h(z′1,m), i.e., our above attack succeeds.

Now, we describe an algorithm which enables an outsider Alice to derive the value
of ID−dT−j

GM mod n alone from a number of known group signatures, revocation tokens
and the group public key. Before presenting the details, we first explain the basic idea.
Assume that the attacker Alice obtains two group signatures σ = (u, r1, r2, r3,m, i)
and σ′ = (u′, r′1, r

′
2, r

′
3,m

′, i) , which are generated by Bob at time period i and satisfy
gcd(u, u′) = 1. Later, GM revokes Bob by releasing a revocation token (Rj , j) at time
period j (i < j). Since gcd(u, u′) = 1, by using extended Euclidian algorithm Alice can
get two integers a and b such that au + bu′ = 1. Then, she gets the value of wBi by

wBi = (r2)a · (r′2)b mod n. (13)

Equation (13) holds because we have wBi = w1
Bi

mod n = wau+bu′

Bi
mod n = (wu

Bi
)a(wu′

Bi
)b

mod n = (r2)a · (r′2)b mod n. Finally, Alice computes the value of ID−dT−j

GM mod n by

ID−dT−j

GM = (wBi)
ej−i · Rj mod n. (14)

Equation (14) is justified by the following equalities:

ID−dT−j

GM = (IDGMrBIDB)−dT−j · (rBIDB)dT−j
mod n

= (IDGMrBIDB)−dT−i·ej−i · Rj mod n

= (wBi)
ej−i · Rj mod n.

In the following complete description of our algorithm, Alice also has to find who is
the signer revoked by (Rj , j).

Step 1). The attacker Alice collects a number of valid group signatures, and uses
the method described in Section 4.1 to classify them into different directories,
denoted by Dl (1 6 l 6 n). Here, the signatures in each directory are generated
by a different signer, i.e., a different group member. For future use, she stores all
classified signatures in her local database.
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Step 2). Once a revocation token (Rj , j) is released, she computes P = ReT−j

j mod n.
Note that if Bob is the group member revoked by (Rj , j), it is easy to know that
P = rBIDB mod n.

Step 3). Alice chooses one signature σ = (u, r1, r2, r3,m, i) from each non-empty direc-
tory Dl, and searches which signature satisfies the following equality:

reT−i

2 ≡ (IDGM · P )−u mod n.

If one such signature σ ∈ Dl̄ is found, Alice concludes that the group member (say
Bob) corresponding to the directory Dl̄ is revoked.

Step 4). Alice searches the directory Dl̄ in her local database to find two group sig-
natures σ = (u, r1, r2, r3,m, i), and σ′ = (u′, r′1, r

′
2, r

′
3,m

′, i′) such that i′ = i < j
and gcd(u′, u) = 1. If two such signatures (generated by Bob) are found, Alice
executes the expended Euclidian algorithm (??) to get two integers a and b such
that au+ bu′ = 1. Then, Alice can get the value of wBi (i < j) from equation (13).

Step 5). Finally, by using the values of wBi (i < j) and Rj , Alice derives the value of
ID−dT−j

GM mod n by equation (14).

The success of the above algorithm depends on the following assumption: Alice can
find two group signatures σ and σ′ such that gcd(u′, u) = 1, and that they are generated
during the same time period by the same group member who is revoked later. There are
several reasons to support that this is a reasonable assumption in practical applications.
Firstly, a group member of course may generate a number of signatures during the same
time period, and be revoked later. Secondly, for two randomly selected integers N and
M , gcd(N,M) = 1 happens with a very high probability 6/π2 ≈ 0.6 [27]. Since the hash
function h(·) can be viewed as a random function with fixed bit-length output (e.g. 160-
bit), u′ and u can be treated as random numbers. Under this treatment, gcd(u′, u) = 1
also holds with probability about 0.6.

5 Conclusion

In this paper, we presented a security analysis of Zhang-Wu-Wang group signature
scheme proposed in [26]. By successfully identifying several attacks, we demonstrated
that their scheme is insecure. More specifically, our results shows that their scheme
is linkable, untraceable and forgeable. In fact, how to design a secure and more efficient
group signature scheme is still a hot problem in this area. The most recent investigations
are given in [5, 7, 18, 25].
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