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Abstract

In this paper, we first propose two basic protocols, 1) in one pro-
tocol, the prover proves to the verifier that two committed integers
are equal. 2) in another protocol, the prover convinces the verifier
that a committed integer a 6= 0 holds. With the above protocols, we
present our main protocol in which the prover can prove a polynomial
f(x) with degree t − 1 exactly, in particular, our three protocols are
statistical zero-knowledge proofs.

Keywords: cryptography, secret sharing, statistical zero-knowledge,
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1 Introduction

In a (t, n)-secret sharing scheme, it is an interesting and practical problem
how the dealer proves a polynomial f(x) with degree t− 1 exactly without
revealing any further information about this polynomial to all players, where
this polynomial is selected by the dealer in a field Zp and p is a prime. There
exist two reasons for the prover choosing a polynomial with degree t − 1
exactly, one reason is in order to obtain (t, n)-scheme, the other is in order
to obtain a perfect secret sharing scheme[1].

Using cut-and-choose protocol(it is not zero-knowledge), Benaloh pro-
posed a protocol in which the dealer can convince all players a polynomial
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f(x) with degree at most t−1, but, the protocol does not satisfy the follow-
ing properties: 1) the dealer convinces all players the polynomial f(x) with
degree t− 1 exactly; 2) the protocol is a zero-knowledge proof. In [2, 3], it
has already been proposed as an open problem how to construct a protocol
satisfying 1) and 2).

In [4], Camenisch and Michels proved in statistical zero-knowledge that
a+b = d(mod n), ab = d(mod n), and ab = d(mod n) hold for commitments
to a, b, d, n based on discrete logarithm. In [5], Boudot proposed a statistical
zero-knowledge protocol for proving x ∈ [a, b], where a and b are integers,
and a < b.

In this paper, we mainly construct a protocol satisfying the 1) and 2).
The structure of this paper is following, we review camenisch and Michel’s

results and some other zero-knowledge proofs of knowledge based on dis-
crete logarithm in section 2. In section 3, we prove that two committed
integers are equal. In section 4, we propose a statistical zero-knowledge
proofs for proving an integer a 6= 0. In section 5, we present a statistical
zero-knowledge proof for proving a polynomial with degree t− 1 exactly.

2 Preliminary

2.1 Commitment schemes

Pederson[6] proposed a computationally binding and unconditionally
hiding scheme based on the discrete logarithm problem. Given a group G
of prime order q and two random generators g and h such that logg h is
unknown and computing discrete logarithms is infeasible. A value α ∈ Zq

is committed to as Cα := gαhr, where r is randomly chosen from Zq. We
will use this commitment scheme for our construction and hence they will
be statistical zero-knowledge proof of knowledge.

2.2 Zero-knowledge proofs of knowledge about some modu-
lar relations

In this section, we mainly review some results from in [4, 5, 14, 15]. Other
zero-knowledge proofs of knowledge based on discrete logarithm are referred
in [7]-[13],
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2.2.1 proving that a discrete logarithm lies in a given range

A statistical zero-knowledge protocol proving that a discrete logarithm lies
in a given range in [14, 15] was proposed. The protocol is denoted by

PK{(α) : y = gα ∧ −2l̈ < x < 2l̈}.

In [5], a statistical zero-knowledge protocol for proving x ∈ [a, b] was pro-
posed, which is denoted PK{(α, β) : cx = gαhβ ∧ α ∈ [a, b])}.

2.2.2 Proving in statistical zero-knowledge that a+ b ≡ d(mod n),
ab ≡ d(mod n) and ab ≡ d(mod n) hold

Let l be an integer such that −2l < a, b, d, n < 2l holds and ε > 1 be
security parameters. Furthermore, we assume that a group G of order q >
22εl+5(= 22l̈+1) and two generators g and h are available such that loggh is
not known. This group could for instance be chosen by the prover in which
case she would have to prove that she has chosen it correctly. Finally, let the
prover’s commitments to a, b, d and n be ca := gahr1 , cb := gbhr2 , cd := gdhr3 ,
and cn := gnhr4 , where r1, r2, r3, and r4 are randomly chosen elements of
Zq.

Camenisch and Michels([4]) assume that the verifier has already obtained
the commitments ca, cb, cd, and cn. Then the prover can convince the verifier
that a + b ≡ d(mod n) holds by running the protocol denoted:

S+ := PK{(α, β, γ, δ, ε, ζ, η, ϑ, %, λ) :
ca = gαhβ ∧ −2l̈ < α < 2l̈ ∧ cb = gγhδ ∧ −2l̈ < γ < 2l̈∧
cd = gεhζ ∧ −2l̈ < ε < 2l̈ ∧ cn = gηhϑ ∧ −2l̈ < η < 2l̈∧

cd
cacb

= c%
nhλ ∧ −2l̈ < % < 2l̈}

Alternatively, she can convince the verifier that ab ≡ d(mod n) holds by
running the protocol:

S∗ := PK{(α, β, γ, δ, ε, ζ, η, ϑ, ξ, ρ, σ) :
ca = gαhβ ∧ −2l̈ < α < 2l̈ ∧ cb = gγhδ ∧ −2l̈ < γ < 2l̈∧
cd = gεhζ ∧ −2l̈ < ε < 2l̈ ∧ cn = gηhϑ ∧ −2l̈ < η < 2l̈∧

cd = cα
b cρ

nhσ ∧ −2l̈ < ρ < 2l̈}.
At the same time, they presented a protocol in which the prover can

convince the verifier that ab ≡ d(mod n) holds for the committed integers
without revealing any further information. The protocol is denoted by Sexp

and its detail content is referred in [4].In the following, when denoting a pro-
tocol, we will abbreviate the protocol Sexp by a clause like to the statement
that is proven and assume that the prover send the verifier all necessary
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commitments; e.g.,

PK{(α, β, γ, δ, ε, ζ, θ, κ) : ca = gαhβ ∧ cb = gγhδ ∧ cd = gεhζ∧

cn = gθhκ ∧ (αγ ≡ ε(mod θ))}

Theorem 1 Let a, b, d, and n be integers that are committed to by the prover
as described above, Then All three Potocols S+, S∗, and Sexp are statistical
zero-knowledge proofs that a + b ≡ d(mod n), ab ≡ d(mod n) and ab ≡
d(mod n) hold, respectively.

2.2.3 proving the pseudo-primality of a committed number

In [4], J.Camenish and M.Michels show how the prover and the verifier can
do Lehmann’s primality test1 for a number committed by prover such that
the verifier is convinced that the test was correctly done but does not learn
any other information. The general idea is that the prover commits to s

random bases ai and then prove that for these bases a
(m−1)/2
i ≡ ±1(mod m)

holds. Furthermore, the prover must commit to a base, say ã, such that
ã(m−1)/2 ≡ −1(mod m) holds to satisfy the second condition in Lehmann’s
primality test. We call this protocol Sprime which is described in [4]. In the
following section, PK{(α, β) : ca = gαhβ ∧ α ∈ {prime}) denotes proving
that an integer a is a prime by Sprime.

Theorem 2 Given a commitment cm to an integer, the protocol Sprime is
a statistical zero-knowledge proof that the committed integer is a prime with
error-probability at most 2−s for the primality-test.

All described protocols can be combined in natural ways. First of all,
one can use multiple bases instead of a single one in any of the above proofs.
Then, executing any number of instances of these protocols in parallel and
choosing the same challenges for all of them in each round corresponding to
the ∧-composition of the statements the single protocols prove.

1An odd integer m > 1 is prime if and only if

∀a ∈ Z∗m : a(m−1)/2 ≡ ±1 (mod m) and ∃a ∈ Z∗m : a(m−1)/2 ≡ −1 (mod m).
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3 The statistical zero-knowledge proof for a+b = d,
ab = d, and d = ab

In [4], Camenisch and Michels obtained the statistical zero-knowledge proofs
for a + b ≡ d(mod n), ab ≡ d(mod n), and ab ≡ d(mod n), however, the ver-
ifier gets only commitments to some integers without obtaining any further
information in these protocols. Now, we will generalize their results and
construct the statistical zero-knowledge proof for a + b = d, ab = d, and
d = ab, furthermore, the verifier also obtains nothing information except
commitments to some integers.

Assume l, q and commitment scheme be uniform in 2.2.2, and the verifier
gets commitments ca, cb, cd to a, b, d, respectively. Then, in the following two
protocols S′+ and S′∗ the prover can convince the verifier that a + b = d and
ab = d hold.

S′+ := PK{(α, β, γ, δ, ε, ζ, λ) :
ca = gαhβ ∧ −2l̈ < α < 2l̈∧
cb = gγhδ ∧ −2l̈ < γ < 2l̈∧
cd = gεhζ ∧ −2l̈ < ε < 2l̈∧
cd

cacb
= hλ}

S′∗ := PK{(α, β, γ, δ, ε, ζ, σ) :
ca = gαhβ ∧ −2l̈ < α < 2l̈∧
cb = gγhδ ∧ −2l̈ < γ < 2l̈∧
cd = gεhζ ∧ −2l̈ < ε < 2l̈∧
cd = cα

b hσ}
The following protocol S′exp will guarantee that the prover convinces the

verifier that ab = d holds.
S′exp := PK{(α, β, ξ, χ, γ, δ, η, (λi, µi, ξi, σi, τi, ϑi, ψi)

lb−1
i=1 , (ωi, ρi)

lb−2
i=1 , ) :

ca = gαhβ ∧ −2l̈ < α < 2l̈∧
cd = gγhδ ∧ −2l̈ < γ < 2l̈∧

(
∏lb−1

i=0 c2i

bi
)/cb = hη∧

cv1 = gλ1hµ1 ∧ ... ∧ cvlb−1
= gλlb−1hµlb−1∧

cv1 = cα
ahξ1 ∧ cv2 = cλ1

v1
hξ2 ∧ ... ∧ cvlb−1

= c
λlb−2
νlb−2 hξlb−1∧

−2l̈ < λ1 < 2l̈ ∧ ... ∧ −2l̈ < λlb−1 < 2l̈∧
cµ1 = gω1hρ1 ∧ ... ∧ cµlb−2

= gωlb−2hρlb−2∧
−2l̈ < ω1 < 2l̈ ∧ ... ∧ −2l̈ < ωlb−2 < 2l̈∧

((cb0 = hσ0 ∧ cµ0/g = hτ0) ∨ (cb0/g = hϑ0 ∧ cµ0/ca = hψ0))∧
((cb1 = hσ1 ∧ cµ1/cµ0 = hτ1)∨

(cb1/g = hϑ1 ∧ cµ1 = cλ1
µ0

hψ1)) ∧ ...∧
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((cblb−2
= hσlb−2 ∧ cµlb−2

/cµlb−3
= hτlb−2)∨

(cblb−2
/g = hϑlb−2 ∧ cµlb−2

= c
λlb−2
µlb−3h

ψlb−2))∧
((cblb−1

= hσlb−1 ∧ cd/cµlb−2
= hτlb−1)∨

(cblb−1
/g = hϑlb−1 ∧ cd = c

λlb−1
µlb−2h

ψlb−1))}

Theorem 3 Let a, b, and d be integers that are committed to by the prover
as described above, Then All three Protocols S′+, S′∗, and S′exp are statistical
zero-knowledge proofs that a+b = d, ab = d = and ab = d hold, respectively.

Proof: We explain mainly this reason that a + b = d holds, however, the
proofs of ab = d and ab = d are omitted.

The statistical zero-knowledge claims follows from the statistical zero-
knowledgeness of the building blocks.

Running the prover with this protocol and using standard techniques,
the knowledge extractor can compute integers â, b̂, d̂, r̂1, r̂2, r̂3 such that ca =
gâhr̂1 , cb = gb̂hr̂2 , and cd = gd̂hr̂3 hold. Moreover, −2l̈ < â < 2l̈, −2l̈ < b̂ <
2l̈, and −2l̈ < d̂ < 2l̈, hold for these integers.

When running the prover with S′+, the knowledge extractor can further
compute integers r̂4 ∈ Zq such that cd/(cacb) = hr̂4 holds.

Therefore we have gd̂−â−b̂hr̂3−r̂1−r̂2 = hr̂5 and hence, provided that the
discrete log of h to the base g is not known, we must have

d̂ ≡ â + b̂(mod q).

Thus we have d̂ = â+ b̂+ w̄q for some integer w̄. Since 22l̈+1 < q and due to
the constraints on â, b̂, d̂ we can conclude that the integer w̄ must be 0 and
hence

d̂ = â + b̂

must hold.
In the following, when denoting a protocol, we will abbreviate the pro-

tocol S′exp by a clause like to the statement that is proven and assume that
the prover send the verifier all necessary commitments; e.g.,

PK{(α, β, γ, δ, ε, ζ) : ca = gαhβ ∧ cb = gγhδ ∧ cd = gεhζ ∧ (αγ = ε)}

Remarks: By using protocol S′+, S′∗, we can construct a statistical zero-
knowledge proof proving that a committed integer a is either odd or even.
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4 Proving that two committed integers are equal

Assume ca and cb are commitments to integers a and b, and the verifier has
obtained these commitments before the protocol beginning. A protocol, in
which the prover convinces the verifier that a = b holds, will be proposed in
this section, and it is denoted by S=.

S= : PK{(α, β, γ, δ, λ) :

ca = gαhβ ∧ −2l̈ < α < 2l̈∧ (1)

cb = gγhδ ∧ −2l̈ < γ < 2l̈∧ (2)
ca

cb
= hλ} (3)

Theorem 4 If ca and cb are commitments to integers a and b as described
above, the protocol S= is a statistical zero-knowledge proof that a = b holds.

Proof: The statistical zero-knowledge claims follows from the statistical zero-
knowledgeness of commitment scheme.

Running the prover with this protocol and using standard techniques, the
knowledge extractor can compute integers â, b̂, r̂1, r̂2 such that ca = gâhr̂1

and cb = gb̂hr̂2 , hold. Moreover, −2l̈ < â < 2l̈, and −2l̈ < b̂ < 2l̈ hold for
these integers.

When running the prover with S=, the knowledge extractor can further
compute integers r̂3 ∈ Zq such that ca/cb = hr̂3 holds.

Therefore we have gâ−b̂hr̂1−r̂2 = hr̂3 and hence, provided that the discrete
log of h to the base g is not known, we must have

â ≡ b̂(mod q).

Thus we have â = b̂+ w̄q for some integer w̄. Since 22l̈+1 < q and due to the
constraints on â, b̂ we can conclude that the integer w̄ must be 0 and hence

â = b̂

must hold.
Assume an integer a is known, the following protocol S′= is a statistical

zero-knowledge proof that the committed integer b is equal to a.
S′= := PK{(α, β, λ) :

cb = gαhβ ∧ −2l̈ < α < 2l̈∧ (4)
cb

ga
= hλ} (5)
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5 Proving that a committed integer is not equal
to 0

In this section, we will present a protocol by which the prover can convince
the verifier that an integer a is not 0, furthermore, it is statistical zero-
knowledge.

For an arbitrary integer a, it can be written
∏i=t

i=1 pki
i , where p1, ..., pr are

primes and k1, ..., kr are integers. Now, if the prover can prove that a has
form

∏r
i=1 pki

i and all p1, ..., pr are primes, then a 6= 0 holds.
Assume l, q and commitment scheme be set in 2.2.2, and let prover’s

commitments to a, s1 = pk1
1 , ..., sr = pkr

r , p1, ..., pr, k1, ..., kr, and suppose the
verifier has already obtained all commitments before the protocol begins.
The following protocol will prove that the integer a is not 0.

Sa 6=0 := PK{(α, β, ρ, (δi, εi, ζi, ηi, θi, µi)i=r
i=1) :

ca = gαhβ ∧ −2l̈ < α < 2l̈∧ (6)

cs1 = gδ1hε1 ∧ ... ∧ csr = gδrhεr∧ (7)

(−2l̈ < δ1 < 2l̈) ∧ ... ∧ (−2l̈ < δr < 2l̈)∧ (8)
ca/cs1 ...csr = hρ∧ (9)

cp1 = gζ1hη1 ∧ ... ∧ cpr = gζrhηr∧ (10)

(−2l̈ < ζ1 < 2l̈) ∧ ... ∧ (−2l̈ < ζr < 2l̈)∧ (11)

ck1 = gθ1hµ1 ∧ ... ∧ ckr = gθrhµr∧ (12)

(−2l̈ < θ1 < 2l̈) ∧ ... ∧ (−2l̈ < θr < 2l̈)∧ (13)

(δ1 = ζθ1
1 ) ∧ ... ∧ (δr = ζθr

r )∧ (14)
ζ1 ∈ {prime} ∧ ... ∧ ζr ∈ {prime}} (15)

Theorem 5 Let a be an integer that is committed by ca. Then Sa 6=0 is a
statistical zero-knowledge proof that a 6= 0 holds.

Proof: Completeness: If a 6= 0, the prover can prove that a =
∏r

i=1 pki
i

holds in (6)-(14); in (15), the prover proves that all of p1, ..., pr are prime
numbers. As a result, the verifier believes that a 6= 0 holds .

Soundness: If a = 0, the prover may prove that a is a composite integer
in (6)-(14); however, she can not prove that each of p1, ..., pr is prime; so,
the verifier rejects.

Zero-knowledgeness: Sa 6=0 is statistical zero-knowledge from Theorem 2,
3 and 4.
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6 Proving a polynomial f(x) with degree t− 1 ex-
actly

Assume cb = (cb0 , cb1 , ..., cbm) and ca = (ca0 , ca1 , ..., cam) are commitments
to all exponents of x and all coefficients, respectively, in polynomial f(x),
furthermore, we assume that the i-th term is aix

bi , that is, f(x) = a0x
b0 +

a1x
b1 + ...+amxbm . If all above commitments satisfy the following: 1) there

exists a committed integer bj is equal to t−1; 2) other all committed integers
bi ∈ [0, t−2], where i 6= j; 3) aj 6= 0 holds, then the degree of the polynomial
f(x) is t−1 exactly. In total subsection, we assume arbitrary two committed
integers bi and bk is not equal, where i 6= k and m ≤ r.

Protcol 1

1. the prover chooses randomly a permutation π, obtains two vectors
ca′ = πca = (ca′0 , ca′1 , ..., ca′m) and cb′ = πcb = (cb′0 , cb′1 , ..., cb′m), and
sends ca′ and cb′ to the verifier.

2. The prover proves to the verifier that a committed integer b′j = t − 1
holds by S′=.

3. The prover proves to the verifier that the committed integer a′j 6= 0
holds by Sa 6=0.

4. The prover proves to the verifier that all committed integer b′i ∈ [0, t−
2], where i 6= j, i.e.,
PK : {((αi, βi)m

i=0,i6=j) : cb′0 = gα0hβ0 ∧ α0 ∈ [0, t − 2] ∧ ... ∧ cb′j−1
=

gαj−1hβj−1 ∧ αj−1 ∈ [0, t− 2] ∧ cb′j+1
= gαj+1hβj+1 ∧ αj+1 ∈ [0, t− 2] ∧

... ∧ cb′m = gαmhβm ∧ αm ∈ [0, t− 2]}.
5. The prover obtains the primitive ca and cb by ca = c′aπ− and cb = c′bπ

−.

Theorem 6 Let cb = {cb0 , cb1 , ..., cbm} and ca = {ca0 , ca1 , ..., cam} are com-
mitments to all exponents of x and all coefficients, respectively, in polynomial
f(x), then the Protocol 1 is a statistical zero-knowledge proof that the degree
of the polynomial f(x) is t− 1 exactly.

Proof: 1) Completeness: If f(x) =
∑m

i=0 aix
bi is a polynomial with degree

t−1 exactly, then, in the above protocol the prover can convince the verifier
the polynomial with degree t− 1 exactly. In particular, the verifier does not
know j, which satisfies bj = t− 1, because we rearrange the ca and cb by a
random permutation π in the first step in protocol 1.
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2)Soundness: If f(x) is not a polynomial with degree t−1 exactly, there
exist three cases: 1) if there is not a committed bj = t− 1, the second step
is wrong; 2) if there is a bj = t− 1, however, aj = 0 holds, the third step is
wrong; 3) if bj = t− 1 and aj 6= 0 hold, but there exists a committed bk not
in [0, t− 2], then fourth step is wrong. So, if f(x) is not a polynomial with
degree t−1 exactly, the prover can convince the verifier the polynomial with
degree t− 1 exactly with negligible probability.

3) Zero-knowledge: By theorem 2, 3, and 4, we know that our protocol
satisfies statistical zero-knowledge.

References

[1] D.R. Stinson, Cryptography: Theory and Practice. CRC Press, London.
1996

[2] J.C.Benaloh, Secret Sharing Homomorphisms: Keeping Shares of a Se-
cret. Proc of CRYPTO’86, Berlin: Springer, 1986.

[3] L.Xishong, H.Liang, and Z.Zhencheng, Computer Cryptography and Its
Applications, Industry Publish of National Defence, Beijing, 2001.

[4] J.Camenisch, M.Michels, Proving in Zero-knowledge that a Num-
ber is the Product of Two Safe Primes. Advances in Cryptology-
EUROCRYPT’99, pp 106-121, Berlin: Springer, 1999.

[5] F.Boudot, Efficient Proofs that a Committed Number Lies in an Interval.
Advances in Cryptology-EUROCRYPT’00, pp 431-444, Berlin: Springer,
2000.

[6] T.P.Pedersen, Non-interactive and information-theoretic secu5re verifi-
able secret sharing. Advances in Cryptology-CRYPTO’91, pp 129-140,
Berlin: Springer, 1991.

[7] D.Chaum, J.H.Evertse, and J.van de Graaf, and R.Peralta, Demonstrat-
ing possession of a discrete logarithm without revealing it. Advances in
Cryptology-CRYPTO’86, pp 200-212, Berlin: Springer, 1987.

[8] C.P.Schnorr, Efficient signature generation for smart cards. J of Cryp-
tology, 4(3):239-252, Berlin: Springer, 1991.

[9] J.Camenisch, and M.Stadler, Efficient group signature schemes for
large groups. Advances in Cryptology-CRYPTO’97, pp 410-424, Berlin:
Springer, 1997.

10



[10] S.Brands, Electronic cash systems based on the representation problem
in groups of prime order, Advances in Cryptology-CRYPTO’93, pp 1-15,
Berlin: Springer, 1993.

[11] D.Chaum, J.E.Evertse, and J.van de Graaf, An improved protocol
for demonstrating possession of discrete logarithms and some general-
izations, Advances in Cryptology-EUROCRYPT’87, pp 127-141, Berlin:
Springer, 1988.

[12] D.Chaum, and T.P.Pedersen, Wallet databases with observers, Ad-
vances in Cryptology-CRYPTO’92, pp 89-105, Berlin: Springer, 1993.

[13] R.Cramer, I.Damgard, and B.Schoenmakers, Proofs of partial knowl-
edge and simplified design of witness hiding protocols, Advances in
Cryptology-CRYPTO’94, pp 174-187, Berlin: Springer, 1994.

[14] E.Fujisaki, and T.Okamoto, Statistical zero-knowledge protocols
to prove modular polynomial relations. Advances in Cryptology-
CRYPTO’97, pp 16-30, Berlin: Springer, 1997.

[15] A.Chan, Y.Frankel, and Y.Tsiounis, Easy come-easy go divisible cash.
Advances in Cryptology-EUROCRYPT’98, pp 561-575, Berlin: Springer,
1998.

11


