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Abstract

A complexity-theoretic model for public-key steganography with active attacks is introduced. The
notion of steganographic security against adaptive chosen-covertext attabkseviated5S-CCA

is formalized and shown to be closely related to the notiosedfurity against adaptive chosen-
ciphertext attack$or public-key cryptosystems. In particular, it is shown that any SS-CCA stego-
system is a secure public-key cryptosystem and that an SS-CCA stegosystem can be realized from
any secure public-key cryptosystem with almost uniform ciphertexts.

1 Introduction

Steganography is the art and science of hiding information by embedding messages within other, seem-
ingly harmless messages. As the goal of steganography is to higeetbenceof a message, it can be
seen as the complement of cryptography, whose goal is to hidmttientof a message.

Consider two parties linked by a public communications channel which is under the control of
an adversary. The parties are allowed to exchange messages as long as they are not adding a hidden
meaning to their conversation. A genuine communication message is calledext but if the sender
of a message has embedded hidden information in a message, it is stetietext The adversary,
who also knows the distribution of the covertext, tries to detect whether a given message is covertext or
stegotext.

Steganography has a long history as surveyed by Anderson and Petitcolas [2], but formal models
for steganography have only recently been introduced. Several information-theoretic formalizations [6,
21, 13] and one complexity-theoretic model [12] have addrepsegdte-keysteganography, where the
participants share a common secret key. These models are all limited to a passive adversary, however,
who can only read messages on the channel.

In this paper, we introduce a complexity-theoretic model for public-key steganography with active
attacks, where the participants a priori do not need shared secret information and the adversary may
write to the channel and mount a so-calkahptive chosen-covertext attackhis attack seems to be
the most general attack conceivable against a public-key stegosystem. It allows the adversary to send an
arbitrary sequence of adaptively chosen covertext messages to a receiver and to learn the interpretation
of every message, i.e., if the receiver considers a message to be covertext or stegotext, plus the decoding
of the embedded message in the latter case. (Note that here and in the sequel, a message on the channel
is also called a “covertext” whenever we do not want to distinguish stegotext and covertext in the proper
sense.)



Our model is based on the intuition that a public-key stegosystem essentially is a public-key cryp-
tosystem with the additional requirement that its output conforms to a given covertext distribution. Asin
the formalization of private-key steganography [6, 12, 15], the covertext distribution is publicly known
and accessible only through an oracle that samples the distribution. We introduce the nstegyanb-
graphic security against adaptive chosen-covertext attacks (SS-&@show that it is closely linked to
the notion ofsecurity against adaptive chosen-ciphertext attdokgublic-key cryptosystems (called
CCA-securityfor short). In particular, we show that SS-CCA stegosystems are related to public-key
cryptosystems satisfyingCCA-security7], a relaxation of strict CCA-security, in the following ways:

Theorem 1 (informal statement). Any SS-CCA stegosystem is an RCCA-secure public-key cryptosys-
tem.

Theorem 2 (informal statement). An SS-CCA stegosystem can be constructed from any RCCA-secure
public-key cryptosystem whose ciphertexts are almost uniformly distributed.

The stegosystem constructed in the proof of Theorem 2 embeds more hidden bits per stegotext than
any previous system.

Our model for public-key steganography is introduced in Section 2, where also the relation to previ-
ous work is discussed. Section 3 recalls the definition of RCCA-security for public-key cryptosystems,
states our results formally, and presents the proof of Theorem 1. Section 4 gives the construction of an
SS-CCA stegosystem and proves Theorem 2.

2 Definitions

2.1 Notation

A function f: N — R is callednegligibleif for every constant > 0 there exists:. € N such that
flk) < ki forall & > k.. A (randomized) algorithm is calleefficientif its running time is bounded by
a polynomial except with negligible probability (over the coin tosses of the algorithm).

Letx — y denote the algorithm that assigns a vajue z. If A(-) is a (randomized) algorithm, the
notationz — A(y) denotes the algorithm that assignsita randomly selected value according to the
probability distribution induced b () with inputy over the set of its outputs.

If S is a probability distribution, then the notatien- S denotes the algorithm which assignsito
an element randomly selected accordingstaf S is a finite set, then the notatian<- S denotes the
algorithm which assigns te an element selected at random frémvith uniform distribution ovelrS.

If p(-,-,---) is a predicate, the notation

Pr[xﬁS;yﬁT;”' s p(x,y, )]

denotes the probability tha{z, y, - - - ) will be true after the ordered execution of the algoritrwn«s]i
S,y & T,.-.. If X is a (randomized) algorithm, a distribution, or a set, tier [z] is short for
Pr n. [2], which is short folPr[s & X : s = a].

Thestatistical distancdetween two distribution&” and)’ over the same se¥ is defined ag X’ —

V|| = maxx,cx|Y,ex, Pra(z) — Pry(z)|. Themin-entropyof a distribution’ over an alphabek
is defined adi,(X') = — log max,cx Pry[z]. (All logarithms are to the base 2.)



2.2 Public-key Stegosystems

We define a public-key stegosystem as a triple of algorithms for key generation, message encoding,
and message decoding, respectively. The notion corresponds to a public-key cryptosystem in which the
ciphertext should conform to a target covertext distribution.

For the scope of this work, the covertext is modeled by a distributioner a given sef’. The dis-
tribution is only available via an oracle; it sampl&spon request, with each sample being independent.

In other words, it outputs a sequence of independent and identically distributed covertexts. W.l.o0.g.,
Prcle] > O0forallc e C.

The restriction to independent repetitions is made here only to simplify the notation and to focus on
the contribution of this work. All our definitions and results can be extended in the canonical way to the
very general model of a covertesthtannelas introduced by Hopper et al. [12]. They model a channel as
an unbounded sequence of values drawn from &'sehose distribution may depend in arbitrary ways
on past outputs; access to the channel is given only by an oracle that samples from the channel.

Such a channel underlies only one restriction: The sampling oracle must allow random access to
the channel distribution, i.e., the oracle can be queried with an arbitrary prefix of a possible channel
output and will return the next symbol according to the channel distribution. In other words, the channel
sampler cannot only be rewound to an earlier state of its execution but also restarted from a given state.
(Hence it may be difficult to use an email conversation among humans for a covertext channel since that
cannot easily be rewound.)

The sampling oracle for the covertext distribution is available to all users and to the adversary.
In order to avoid technical complications, assume w.l.0.g. that the sampling oracle is implemented by
a probabilistic polynomial-time algorithm and therefore does not help an adversary beyond its own
capabilities (for example, with solving a computationally hard problem).

Definition 1. [Public-Key Stegosystem] L&t be a distribution on a sét of covertexts A public-key
stegosysteris a triple of probabilistic polynomial-time algorithn{$K, SE, SD) with the following
properties.

e Thekey generation algorithrBK takes as input the security parameéteand outputs a pair of bit
strings(spk ssk, called thgstego] public keyand the[stego] secret key

e The steganographic encoding algorith®E takes as inputs the security parameéigia public
key spkand amessagen € {0, 1}' and outputs @overtextc € C. The plaintextn is often called
theembedded message

e The steganographic decoding algorith®D takes as inputs the security parameteml secret
key ssk and a covertext € C and outputs either a messagec {0, 1} or a special symbal..
An output value ofL indicates a decoding error, for example, wigd has determined that no
message is embeddeddn

We require that for al(spk ssk output bySK(1*) and for allm € {0, 1}, the probability that
SD(1*, ssk SE(1%, spk m)) # m is negligible ink.

Note that except for the presence of the covertext distribution, this definition is equivalent to that
of a public-key cryptosystem. Although all algorithms have oracle acce§s doly SE needs it in
the stegosystems considered in this paper. For ease of notation, the security parameter will be omitted
henceforth.

The probability that the decoding algorithm outputs the correct embedded message is referred to
as thereliability of the stegosystem. Although one might also allow a non-negligible decoding error
in the definition of a stegosystem (as done in previous work [12]), we require that the decoding error
probability is negligible in order to maintain the analogy between a stegosystem and a cryptosystem.
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Security definition. Coming up with the “right” security definition for a cryptographic primitive has
always been a challenging task because the sufficiency of a security property cannot be demonstrated.
Only its insufficiency can be shown by pointing out a specific attack, but finding an attack is usually
hard. Often, security definitions had to be strengthened when a primitive was used as part of a larger
system. Probably the most typical example is the security of public-key cryptosystems: the original
notion of semantic security [11], which considers only a passive or eavesdropping adversary, was later
augmented to security against adaptive chosen-ciphertext attacks or non-malleability, which allows also
for active attacks [14, 10, 3].

We introduce here the notion sfeganographic security against adaptive chosen-covertext aftacks
abbreviated5S-CCAIt is based on the intuition that a stegosystem is essentially a cryptosystem with a
prescribed ciphertext distribution.

SS-CCA is defined by the following experiment. Let an arbitrary distribufiom a set” be given
and consider a (stego-)adversary, defined by two arbitrary probabilistic polynomial-time algdithms
andSA. The experiment consists of five stages.

Key generation: A key pair (spk ssK is generated by the key generation algoritGi

First decoding stage: Algorithm SA is run with the public keyspkas input and has access to the
sampling oracle fof and to a decoding orac®0,. The decoding oracle knows the secret &sl
Whenever it receives a covertextit runsSD(ssk ¢) and returns the result BA .

WhenSA finishes its execution, it outputs a tugle*, s), wherem* € {0,1}! is a message and
s is some additional information which the algorithm wants to preserve.

Challenge: A bit b is chosen at random andchallenge covertext* is determined depending on it:
If b = 0 thenc* «— SE(pk m*) elsec* & ¢. ¢ is given to algorithnSA;, who should guess
the value of, i.e., determine whether the messagéhas been embedded éror whetherc has
simply been chosen accordingdo

Second decoding stageSA is run on inputm®, ¢*, ands, i.e., it knows the message which is po-
tentially embedded, the challenge covertext, and the state provid&€dbySA may access a
decoding oracl&0,, which is analogous t80, and knowsssk butSG; also knowsn™* and does
not allow certain queries to be asked. In particular, upon receiving guenacleSO, computes
m «— SD(ssk ¢), checks ifm € {m*, L} and returnsiot-allowed if yes; otherwise, it returns
m.

Guessing stage:WhenSA finishes its execution, it outputs a bit

The stego-adversary succeeds to distinguish stegotext from covertéxt ib in the above exper-
iment. We require that for a secure stegosystem, no efficient adversary can distinguish stegotext from
covertext except with negligible probability over random guessing.

Definition 2. [Steganographic Security against Adaptive Chosen-Covertext Attacks] heta distri-
bution on a covertext sét and let® = (SK, SE, SD) be a stegosystem. We say thais steganograph-
ically secure against adaptive chosen-covertext attacks (SS-@i@Aespect ta if for all probabilistic

polynomial-time adversarig$SA , SA), there exists a negligible functiearsuch that

Pr|(spkssk — SK; (m",s) — SA (spk: b < {0,1};

if b = 0 then ¢ — SE(spk m*) elsec <~ C : SA%(spkm*,c*,s) =b| = % + (k).

Note that this leaves the adversary free to query the decoding oracle with any element of the covertext
spacebeforethe challenge is issued.



2.3 Discussion

The relation to public-key cryptosystems. A stegosystem should allow for two parties to communi-

cate over a public channel in such a way that the presence of a message in the conversation cannot be
detected by an adversary. It seems natural to conclude from this that the adversary must not learn any
useful information about an embedded message, should there be one. The latter property is the subject
of cryptography: hiding the content of a message transmitted over a public channel. This motivates our
approach of modeling a public-key stegosystem after a public-key cryptosystem in which the ciphertext
conforms to a particular covertext distribution.

The most widely accepted formal notion of a public-key cryptosystem secure against an active
adversary idndistinguishability of encryptions against an adaptive chosen-ciphertext afaCla-
security) [14] and is equivalent toon-malleability of ciphertextén the same attack model [10, 3].
CCA-security is defined by an experiment with almost the same stages as above, except that the first
part of the adversary output&’o messagesny andmy, of which one is chosen at random and then
encrypted. The resulting valué, also called thearget ciphertextis returned to the adversary and the
adversary has to guess what has been encrypted. In the second query stage, the adversary is allowed to
obtain decryptions adny ciphertext except foe*.

This appears to the minimal requirement to make the definition of a cryptosystem meaningful, but it
has turned out to be overly restrictive in some cases. For example, consider a CCA-secure cryptosystem
secure where a useless bit is appended to each ciphertext during encryption and that is ignored during
decryption. Although this clearly does not affect the security of the cryptosystem, the modified scheme
is no longer CCA-secure.

Several authors have relaxed CCA-security to allow for such changes [16, 1, 7]; the resulting notion
has been callerplayable CCA-securitgr RCCA-securityThe only difference to CCA-security is that
in the second query stage, the adversary is more restricted and does not allow any query that decrypts to
either one of the messages or m;. The intuition is that such a cryptosystem allows anyone to modify
a ciphertext into an equivalent one and therefore “replay” the target ciphertext.

Our notion of SS-CCA security for stegosystems contains a restriction that is very similar to RCCA-
security, by not allowing queries that decode either to the test messagelor Iotuitively, also a
stegosystem should allow to “replay” covertexts since anyone can sample covertexts. This similarity is
no coincidence: We show in Section 3 that any SS-CCA stegosystem is an RCCA-secure public-key
cryptosystem.

Previous models for steganography. The first published model of a steganographic system is the
“Prisoners’ Problem” by Simmons [18]. This work addresses the particular situation of message au-
thentication among two communicating parties, where a so-csllbliminal channemight be used to
transport a hidden message in the view of an adversary who tries to detect the presence of a hidden
message. Although a subliminal channel in that sense is only made possible by the existence of message
authentication in the model, it can be seen as the first formulation of a general model for steganography.

Cachin [6] presented an information-theoretic model for steganography, which was the first to ex-
plicitly require that the stegotext distribution is indistinguishable from the covertext distribution to an
adversary. Since the model is unconditional, a statistical information measure is used.

Hopper et al. [12] give the first complexity-theoretic model for private-key steganography with pas-
sive attacks; they point out that a stegosystem is similar to a cryptosystem whose ciphertext is indistin-
guishable from a given covertext. In Section 3 we establish such an equivalence formally.

No formal model for public-key steganography with active attacks has been published so far, al-
though the subject was discussed by several authors, and some systems with heuristic security have
been proposed [9, 2]. There are two manuscripts of von Ahn and Hopper [20] and of Van Le [19]



both addressing public-key steganography with passive attacks; they contain some interesting ideas, but
do not address an active adversary that can mount adaptive chosen-covertext attacks and, in one case,
conclude incorrectly that steganography with chosen-covertext attacks is not possible. A crucial ele-
ment of our formalization seems to be the restriction of the stage-two decoding oracle depending on the
challenge covertext.

3 Results

This section investigates the relation between SS-CCA stegosystems and CCA-secure public-key cryp-
tosystems. Two results are presented:

1. Any SS-CCA stegosystem is an RCCA-secure public-key cryptosystem.

2. An SS-CCA stegosystem can be constructed from any RCCA-secure public-key cryptosystem
whose ciphertexts are almost uniformly distributed.

We first recall the formal definitions for public-key encryption and RCCA-securitypuBlic-key
cryptosystens a triple(K, E, D) of probabilistic polynomial-time algorithms. AlgorithKy on input the
security parametéy, generates a pair of keysk, pk). The encryption and decryption algorithnisand
D, have the property that for any pitk, pk) generated biK and for any plaintext message < {0, 1},
the probability thaD (1%, sk, E(1%, pk,m)) # m is negligible ink. (The security parameter is omitted
henceforth.)

RCCA-security for a public-key encryption scheme is defined by the following experiment. Con-
sider an adversary defined by two arbitrary polynomial-time algoritAmand A,. First, a key pair
(pk, sk) is generated b¥X. Next, A; is run on input the public keyk and may access a decryption
oracleO;. OracleO; knows the secret keyk, and whenever it receives a ciphertexit appliesD with
key sk to ¢ and returns the result td;. When 4, finishes its execution, it outputs a triplew, m1, s),
wheremg, m; € {0,1} are two arbitrary messages anis some additional state information. Now a
bit b is chosen at random and,, is encrypted using under keypk, resulting in a ciphertext*. Algo-
rithm A, is givenmg andm;, ciphertextc*, and states, and has to guess the valuebpfi.e., whether
mg Or my has been encryptedd, may access a decryption oracle, which is analogous t®; and
knows sk, but does not allow any query that decrypts to one of the messagesdm, (it returns
not-allowed  when such a query occurs). Finall, outputs a bit’ as its guess fab.

An RCCA-secure cryptosystem requires that no efficient adversary can distinguish an encryption of
mg from an encryption ofn; except with negligible probability.

Definition 3. [RCCA-Security for Public-Key Cryptosystems [7]] L&t = (K, E, D) be a public-key
cryptosystem. We say th&tis RCCA-securd for all polynomial-time adversaried = (A;, As), there
exists a negligible function such that

Pr [(pk,sk) — K; (mg,my,s) «— A?l (pk); b & {0,1};
1
¢ — E(pk,my); AS2(pk mg, my,c*,s) =b| = 3 + e(k).

The following is our first main result.

Theorem 1. Let¥ = (SK, SE, SD) denote a public-key stegosystemlfs SS-CCA with respect to
some distributiort’, then is an RCCA-secure public-key cryptosystem.



Proof. Note first that> satisfies the definition of a public-key cryptosystem. We proveXhatRCCA-
secure by a reduction argument. Assume & not an RCCA-secure cryptosystem and hence there
exists an (encryption-)adversaiy;, As) that breaks the RCCA-security Bf i.e., it wins in the exper-
iment of Definition 3 with probability% +0(k) for some non-negligible functiom LetC be an arbitrary
distribution. We construct a (stego-)adversé®y, SA ) against: as a stegosystem with respectto
that has black-box access(td;, A2) as follows.

Key generation: WhenSA receives a public-key, it invokes; with this key.

First decoding stage: WheneverA, queries its decryption oracte, with a ciphertext, SA passes
on to its decoding oracl8Q,, waits for the response and forwards the responsg to

When A; halts and outputémg, m1, s), the stego-adversaiyA chooses a random hit, and
outputs(myy, (mg, m,b', s)).

Challenge: A challenge covertext* is computed according to the definition of a stegosystem and given
to SA.

Second decoding stageSA receives inputsn,, ¢*, and(mg, m1,b’, s) and invokesAs on inputsmy,
my, ¢*, ands. Otherwise,SA behaves in the same way 8% during first decoding stage,
forwarding the decryption requests thét makes ta0O, to the decoding oracl80,.

Guessing stage:When A, outputs a bith*, the stego-adversai§A tests ifb* = b’ and outputs O if
true, and 1 otherwise.

We now analyze the environment simulated by the stego-adve{S&ySA) to the encryption-
adversary(A;, Ay), and the probability that the stego-adversary can distinguish stegotext from cover-
text.

Clearly, key generation and the first decoding stage perfectly simulate the decryption oracle to ad-
versaryA;. During the challenge, a random biis chosen and a challenge covertext— SE(pk, my)
is computed in case= 0 andc <- C otherwise.

Note that wherb = 1, algorithm A, and its final outpub* are independent df. Hence, we have
Pr[t/ =b*b=1] = % and the stego-adversary has no advantage over randomly gu&ssitigat case.

Whenb = 0, we show that during the second decoding ph&#g,emulates the decryption oracle
O, to A, except with negligible probability. We only have to show tit never queries any value
that is permitted for decryption oracte, but forbidden for decoding orackO,. Apart from this, the
emulation is perfect by definition.

A queryc to SOy is not allowed ifSD(ssk ¢') € {my, L} by the definition of SS-CCA. However,
sinceD(sk, ¢) = my except with negligible probability by the definition of a public-key cryptosystem,
the queryc is also not allowed for the decryption orad® and A, will receive the correct answer
not-allowed , except with negligible probability. Becauske makes at most a polynomial number
of queries to0,, the probability that at least one of them is allowed € but not allowed forSO,
is also negligible. HenceSA correctly simulates the decryption oradlk to A, except with some
negligible probabilitye* (k).

Since the encryption-adversan, by assumption breaks the RCCA-security of the cryptosystem,
andA; is independent df whenb = 1 as argued above, we habe[b’ = b*|b = 0] = £ +25(k)—e* (k).

By the definition ofSA, this is also the probability that the stego-adversary gudssesectly when
b = 0. Hence, the overall probability th&A, guesse$ correctly is% +4(k) — <) \which exceed%

2
by a non-negligible quantity and shows thais not SS-CCA with respect to ardy O




Theorem 1 shows that a SS-CCA stegosystem is a special case of an RCCA-secure public-key cryp-
tosystem. In the converse direction, we show now that some RCCA-secure public-key cryptosystems,
namely those with “almost uniform ciphertexts,” can also be used to construct SS-CCA stegosystems.

Let a random variable be calleeclose to uniformwhenever its statistical distance to the uniform
distribution over the same domain is at mest

Definition 4. [Public-key Cryptosystem with Almost Uniform Ciphertexts] A public-key cryptosystem
is said to havealmost uniform ciphertexts for any key pair(sk, pk) generated by there exists a
negligible functione such that for any plaintext message € {0,1}!, the distribution generated by
E(pk, m) is e(k)-close to uniform.

It seems difficult to construct SS-CCA stegosystemsaforcovertext distribution. We show that it
is possible for covertexts whose distribution conforms to a sequence of independently repeated experi-
ments. (According to the remark in Section 2.2, this result generalizes to an arbitrary costestaxel)
Given a covertext distributio@ and positivet, let C! denote the probability distribution consisting of a
sequence of independent repetitions Gt

The next theorem is our second main result. Its proof is the subject of Section 4.

Theorem 2. SS-CCA stegosystems with respect to a covertext distrib@itifor anyC with sufficiently
large min-entropy can be efficiently constructed from any RCCA-secure cryptosystem with almost uni-
form ciphertexts.

Theorem 2 leaves us with the task of finding an RCCA-secure cryptosystem with almost uniform
ciphertexts. Such a cryptosystem exists at least in the random oracle model: the OAEP+ scheme of
Shoup [17]. OAEP+is a CCA-secure cryptosystem in the random oracle model and based on an arbitrary
trapdoor one-way permutation.

Corollary 3. Provided that trapdoor one-way permutations exist, there is an SS-CCA stegosystem in
the random oracle model.

The proof of this result appears in Appendix A.

4 An SS-CCA Stegosystem

In this section, we propose a stegosystem that is steganographically secure against adaptive chosen-
covertext attacks.

This stegosystem works for any covertext distribution that consists of a sequence of independent
repetitions of a base-covertext distribution. Deviating from the notation of Section 2, we denote the
base-covertext distribution iy and the covertext distribution used by the stegosysteY by IT:_,C.

As noted in Section 2.2, through the introduction of a history, our construction also generalizes to
arbitrary covertext channels.

Let (K, E,D) be an RCCA-secure public-key cryptosystem with almost uniform ciphertexts. Sup-
pose its cleartexts afebit strings and its ciphertexts arebit strings.

A classG of functions X — Y is calledstrongly 2-universalif, for all distinct z1, 22 € X and
all (not necessarily distinct);, y» € Y, exactly|G|/|Y|? functions fromG takez; to y; andxzs to ys.

Such a function family is sometimes simply calledteongly 2-universal hash functidor brevity.



encrypt —— sample..—>

Figure 1: The encoding process of the stegosystem: a message is first encrypted and then embedded
using Algorithmsample. The decoding process works analogously in the reverse direction.

4.1 Description

The SS-CCA stegosystem consists of a triple of algoritlikeggen, encode, decode). The idea be-
hind it is to encrypt a message using the public-key cryptosystem first and to embed the resulting ci-
phertext into a covertext sequence, as shown in Figure 1.

The encoding method is based on the following algoridample, which samples a base-covertext
according taC such that a giverf-bit string b is embedded in it. Under the name “rejection sampler,”
this algorithm has been suggested previously for steganography [2, 12], but was restricted to embedding
single-bit messages only.

Algorithm sample

Input: security parametek, a functiong : C — {0,1}/, and a valué < {0,1}/
Output: a covertextr
3«0
repeat
& C
Je=J+1
until g(z) =borj==k
returnx

2 A A

Intuitively, algorithmsample returns a covertext chosen from distributiénbut restricted to that
subset ofC' which is mapped to the givelnby g. sample may also fail and return a covertexwith
g(c) # b, but this happens only with negligible probability/in As will be shown in Section 4.2, when
b is a randomf-bit string, g is chosen randomly from a 2-universal hash function, @més sufficient
min-entropy, then the output distribution mple is statistically close t@.

We now turn to the description of the stegosystem. Let ~log k for a positive constany < 1
and letG : C — {0,1}/ denote a strongly 2-universal hash function.

Algorithm keygen chooses a random <- G and computes a tuplesk, pk) — K, by running
the key generation algorithm of the cryptosystem. The outpWegfien is the tuple(spk, ssk) =
((pk, 9), sk).

Algorithm encode first encrypts an input messageusing the given encryption algorithiy which
outputs in a ciphertexg. Assuming w.l.0.g. thay is ann-bit string such that is polynomial ink and
n = tf, encode then repeatedly invokesample to embedy in pieces off bits a time into a sequence
of ¢ covertext symbols. Formally:

Algorithm encode
Input: security parametek, a public keyspk= (pk, g), and a message < {0, 1}! to encode

Output: a covertexicy,...,c)
1: y < E(pk,m)
2. parsey asyi||yz|| - - - ||lye, wherey; € {0,1}/



3: fori=1totdo
4 ¢; «— sample(k, g,y;)
5: return(cy, ... ,ct)

Algorithm decode proceeds analogously. From each of tteymbols in the covertext, a string of
f bits is extracted by; then the concatenation of these bit strings is decryptel,lgnd the resulting
value is returned (this is either &bit message or the symbal):

Algorithm decode
Input: security parametek, a secret kegsk= (sk, g), and a covertexfcy, ..., ¢;) € C* to decode
Output: a decoded-bit message or
:fori=1totdo
yi < glci)
y < yillyzl - llye
x — D(sk,y)
returnz

a R wbhe

4.2 Analysis

This section is devoted to an analysis of the above stegosystem. Theorems 4 and 8 below together imply
Theorem 2.

Theorem 4. (keygen, encode, decode) is a valid stegosystem.

Proof (Sketch).According to Definition 1, the only non-trivial steps are to show that the algorithms are
efficient and that

decode(1*, sskencode(1*, spkm)) = m

for all m € {0, 1} except with negligible probability.

Efficiency follows immediately from the construction, the assumptfos ~log k, and the effi-
ciency of the public-key cryptosystem.

For reliability, it suffices to analyze the output@hcode because the decoding operation is deter-
ministic.

Consider iteration in Algorithm encode, in which Algorithmsample tries to find a covertext
that is mapped tg; by g. Becausgy is chosen from a strongly 2-universal class of hash functions, the
probability that in any particular iteration shmple, anz is chosen withy(x) # y;, is1 — 277,

Thus, since thé iterations insample are independensample returnsc with g(c) # y; only with
some negligible probability(k) provided thatf < ~log k.

Hence, by the union bound, the probability that any iteration of Algoriémoode fails to embed
the correct value is at most(k), which is negligible. O

Before we can analyze the security of the stegosysteygen, encode, decode), we investigate
the output distribution of Algorithnsample and derive the following result that may be of independent
interest. It shows that the distribution of the output from Algoriteample is statistically close t@
whensample is run with uniformly chosen inputs. The result also generalizes a theorem of Reyzin and
Russell [15].

Let sample be run with independently chosén™ {0,1}/ andg < @, and denote bys(k) the
distribution of its output.

10



Proposition 5. If the min-entropy of the covertext distributichis large enough compared th, then
the statistical distance betwe&t{k) andC is negligible; in particular, there exists a positive constant
A < 1 such that for all sufficiently largé

|S(k) —C| < 2f~HC) 4 \F,

The proof of this result is based on Lemmas 6 and 7 below. Given a fungtised by Algorithm
sample and a valué, define

~v(g,b) = Pr[zx Le: g(x) =1].

Lete(Q? b) =1- 7(g7b)

Lemma 6. For a given functiory and a valueb, the probability that Algorithnsample outputs a par-
ticular cis

P le(C,g,b,k) = c| = refe i
r[sample(C, g,b, k) = ] e(g,b)’“f(;g,)] otherwise

{(1 —€(g, b)k) 5{;};)] if gc) =10

Proof. The probability of a value: under distributionC conditioned on the event(C) = b is equal

to Prelc]/~v(g,b) if g(c) = b and O otherwise; similarly, the probability efunder the conditional
distribution ofC giveng(C) # b is Pr¢[c]/e(g,b) if g(c) # b and0 otherwise. By construction, the
second case, i.esample outputsc with g(c) # b, occurs if and only if the loop terminated with= k;
this happens with probability(g, b)* because the realizations©®fre independent. The first case covers
any other outcome of the algorithm. O

Lemma 7. For every distributiorC, there exist$) < A < 1 such that for all sufficiently largé and all
ceC,

—F(r Ak Pre[c] 1 . . _f i Preld] 1
=N 68 gy < Prewld < 27 0eN) T5R 0 Sy @

Proof.

Prgaylc] = Prfb & Big & Gya & sample(C,b, g, k) : @ = (]

1
— o f Z i Z Pr[z & sample(C, b, g,k) : = = (]
beB ’ | geG

_ o5 b . i Prelc] ] i Preld]
=2 S (v 2 dod) ) @

beB * g:g(c)=b

_¢Prelc 1 —e(g,b)* -1
S E S S er)

g€G *b:b=g(c) b:b#g(c)
— 2*f PI‘c[C] < 1- G(g, g(c))k + 6(9, b)kfl > (4)
|G| gez;; (9, 9(¢)) b:b%@

where(2) follows from Lemma 6{3) from switching the order of summation, a() from noting that
the first sum contains only the tertim= g(c).
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Recall thatPr¢[c] > 0 for all ¢ € C and that2/ < k. Hence,0 < ¢(g,b) < 1 and there exists
0 < A < 1 such that for all sufficiently largg,

€(9:9(e))" +7(g,9(c) Y elg.g(e) ] < AN
b:b#g(c)

The lemma follows from combining this with (4). O

Proof of Proposition 5.For a particular functiory and a covertext, defineA.(g) = ~(g,9(c)) and
considerA.(g) as a random variable induced by the random choice with uniform distributigrirom
G. The expectation ofi.(g) is

E[A.(9)] = > Pralglv(g,9(c)

geG
= Prlg & Gyx & Cigla) = g(o)]
= Prlz &C:z=( +Pr(g LGz & Cloviey 1 9(x) = g(c)] (1 = Prlz ECix= d)
< Pumax(C) +277 = 27O 407, (5)

whereC|\ (. denotes the conditional distribution @frestricted toC' \ {c} and the inequality follows
from the definition ofp,ax and from the 2-universality off.

Note that the bound of Lemma 7 involves the expected valdelofg))~! (over the random choice
of g). The Jensen inequality [8] states that for any convex fungtiapplied to a random variablg, the
expected value of (X) is at least as big asapplied to the expected value &t Thus,E[(A:(g))"!] >

(E[Ac(g)])_1 forall c € C. We get

IC = S]]

Z Pre[c] — Prs) [c]

c:Prele]|>Prg)lc]

< > <Prc (1~ 2fyc:|Z )) (6)

c:Prelc]>Prgi)lc] geG ’Y 9 g

< P -1 )\kE Ad(g)) ™ 7
< 3 relc] E[(Aclg) ] )
C:Prc[c]>PrS<k)[C]
1—\F
= 2 <Prc g (1 T T ¥ 2—Hoo(6>)>> ®
c:Prele]>Prgi)lc]
1—\F

e Y

< 9f—Ho(C) | Nk

where (6) follows from Lemma 7, (7) from the Jensen inequality and from the definitiof. @f),
and (8) from (5). O

Theorem 8. For a covertext distributior®! such thatC has sufficiently large min-entropy and provided
that (K, E, D) is an RCCA-secure public-key cryptosystem with almost uniform ciphertexts, the stego-
systemkeygen, encode, decode) is SS-CCA.

12



Proof (Sketch).We prove that the stegosystgikeygen, encode, decode) is SS-CCA by a reduction
argument. Assume that it is not SS-CCA and and hence there exists a (stego-)ad\@hsed ) that
succeeds in the experiment of Definition 2 with probabiﬁt} d(k) for some non-negligible function
5. We construct an (encryption-)adverséry;, As) that has black-box access(i®A, SA) and breaks
the RCCA-security ofK, E, D) as follows.

Key generation: When A, receives a public-kepk generated by, it choosesy <- @G, computes
spk— (pk, g), and invokesSA with spk

First decryption stage: WhenSA sends a querey, . . ., ¢;) to its decoding oracl8Q, thenA; com-
putesy «— wyillya|l - |lye for v; — g(ci), givesy to its decryption oracle);, waits for the
response and forwards the responsgAp.

Challenge: When SA halts and output$m™, s), the encryption-adversarny; chooses an arbitrary
plaintext message:’ € {0, 1} and outputm*, m’, g). According to the definition of a public-
key cryptosystem, a challenge ciphertgxtis computed. NowA, is invoked with inputspk,
m*, m/, y*, andg. It parsesy* as a sequencg||y;| - - - ||y; of f-bit strings, computes; —
sample(k, g,y;) fori =1,...,t, and invokesSA with inputs(pk, g), m*, (ci, ..., c}), ands.

Second decryption stage: A, behaves in the same way 4s during first decryption stage: It computes
a ciphertexty from any decoding request th8®, makes as above, submijgo the decryption
oracleO,, and returns the answer 8%.

Guessing stage:WhenSA outputs a bib*, indicating its guess as to whether messages contained
in the challenge covertext;, . . ., ¢;), the encryption-adversary, returnsh* as its own guess of
whetherm™* or m’ is encrypted iny*.

We now analyze the environment simulated by the encryption-adve(shryA,) to the stego-
adversary(SA, SA) and the probability that the encryption-adversary can distinguish the encrypted
messages.

Clearly, during key generation and the first decoding stage, the simulation for the stego-adversary
SA is perfect. During the encoding stage, a randonb lt chosen according to Definition 3 and the
challenge ciphertext is computed@s— E(pk, m*) if b = 0 andy™ — E(pk,m’) if b = 1.

Whenb = 0, then, according to the definition of, the challenge covertext is computed in the
same way as expected by the stego-adversary in the experiment of Definition 2 and the simulation is
perfect.

Whenb = 1, however,SA expects(c}, ..., cf) to be a random covertext drawn according’to
but receives:’ = sample(k, g,y;) fori = 1,...,t instead, where the concatenation of yjeis an
encryption ofm’ under keypk with E.

Proposition 5 implies that for everye {1, ...,t}, the statistical distance betweérand the distri-

bution of¢} as computed by Algorithreample when run with input ainiformly chosery-bit string is
bounded by a negligible quantity (k).

Furthermore, since the cryptosysték E, D) has almost uniform ciphertexts, there exists a negligi-
ble quantitye3 (k) such that the statistical distance betwggas used byl, and the uniform distribution
on f-bit strings is at most; (k).

By combining these two facts with the triangle inequality, it follows that the distance between the
distribution of the challengéc}, ..., c;) computed byA, and the covertext! is at moste* (k) =
t(€;(k) + e5(k)). Hence, the behavior @A in the simulation wherd = 1 does not differ from the
experiment of Definition 2 with more than probabiliy/( k).

13



By definition, the output of the encryption-adversaty is the same as that of the stego-adversary
SA. SinceSA succeeds with probabilit%r—k d(k) in attacking the stegosystem and since the simulated
view of SA is correct except with probability*(k) whenb = 1, the probability thaiSA, breaks
RCCA-security is} + §(k) — 6*§k), which exceeds by a non-negligible quantity and establishes the
theorem. O
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Appendix
A Proof of Corollary 3

OAEP+ is a method to transform any trapdoor one-way permutation into a CCA-secure public-key
cryptosystem in the random oracle model [4]. It was introduced by Shoup [17] as an improvement of
the OAEP transformation by Bellare and Rogaway [5], which had certain problems.

OAEP+ is based on an arbitrary trapdoor one-way permutation the set of.-bit strings. The
scheme has two parametegsandn, such thatg+n; < n and27"° and2~"! are negligible quantities.
The plaintext space i€, 1} for I = n—ng —n1; the ciphertext space {#), 1}". The scheme uses three
hash functiongs : {0,1}" — {0,1}}, H' : {0,1}f*m0 — {0,1}™, andH : {0, 1}}*+™ — {0, 1}"o.
In the security analysis, they are modeled as random oracles.

The scheme works as follows.

Key generation: The key generation algorithm runs the key generator of the trapdoor one-way permu-
tation and obtains descriptions gfand f~!. The public key is the description ¢f the private
key is the description of ~1.

15



Encryption: Letz € {0,1} be a plaintext to encrypt. The encryption algorithm choosés {0,1}"m0

and computes a ciphertexias follows:

[

< & «

(G(r) @ x)||H (r||z),
H(s)or,
s|lt,

f(w).

Decryption: Lety € {0,1}" be a ciphertext to decrypt. The decryption algorithm computes the cor-

responding plaintext as follows. For a bit string, let z[i, . ..

, j] denote the substring starting

with thei-th bit and ending with thg-th bit. The algorithm computes:

w
s
t
r

T

rrTr1r1r

Cc

),
wl0,...,k+n — 1],
wlk +mnq,...,n,
H(s) @ t,

G(r)® s[0,... , k—1],
sin,... , k+n; —1].

If ¢ = H'(r||z), then the algorithm outputs; otherwise, the algorithm outputs the symhoal|

which indicates a decryption error.

We now argue that the ciphertext generated by OAEP+ is uniformly distributgd i}". From the
fact thatG and H’ are random oracles, we know tt@Gitr) @ = and H'(r||«) are distributed uniformly in
{0,1}" and{0, 1}™, respectively; hence;, is a uniformly distributed element db, 1}'+71. Sincer is
chosen uniformly random i0, 1} and H is a random oraclé, is uniformly distributed in{0, 1}"°.
Becausev = s||t, it is a uniformly random element ¢0, 1}", and sincef is a permutatiory = f(w)

is a uniformly randorm-bit string.
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