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Abstract

A complexity-theoretic model for public-key steganography with active attacks is introduced. The
notion ofsteganographic security against adaptive chosen-covertext attacks, abbreviatedSS-CCA,
is formalized and shown to be closely related to the notion ofsecurity against adaptive chosen-
ciphertext attacksfor public-key cryptosystems. In particular, it is shown that any SS-CCA stego-
system is a secure public-key cryptosystem and that an SS-CCA stegosystem can be realized from
any secure public-key cryptosystem with almost uniform ciphertexts.

1 Introduction

Steganography is the art and science of hiding information by embedding messages within other, seem-
ingly harmless messages. As the goal of steganography is to hide thepresenceof a message, it can be
seen as the complement of cryptography, whose goal is to hide thecontentof a message.

Consider two parties linked by a public communications channel which is under the control of
an adversary. The parties are allowed to exchange messages as long as they are not adding a hidden
meaning to their conversation. A genuine communication message is calledcovertext; but if the sender
of a message has embedded hidden information in a message, it is calledstegotext. The adversary,
who also knows the distribution of the covertext, tries to detect whether a given message is covertext or
stegotext.

Steganography has a long history as surveyed by Anderson and Petitcolas [2], but formal models
for steganography have only recently been introduced. Several information-theoretic formalizations [6,
21, 13] and one complexity-theoretic model [12] have addressedprivate-keysteganography, where the
participants share a common secret key. These models are all limited to a passive adversary, however,
who can only read messages on the channel.

In this paper, we introduce a complexity-theoretic model for public-key steganography with active
attacks, where the participants a priori do not need shared secret information and the adversary may
write to the channel and mount a so-calledadaptive chosen-covertext attack. This attack seems to be
the most general attack conceivable against a public-key stegosystem. It allows the adversary to send an
arbitrary sequence of adaptively chosen covertext messages to a receiver and to learn the interpretation
of every message, i.e., if the receiver considers a message to be covertext or stegotext, plus the decoding
of the embedded message in the latter case. (Note that here and in the sequel, a message on the channel
is also called a “covertext” whenever we do not want to distinguish stegotext and covertext in the proper
sense.)
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Our model is based on the intuition that a public-key stegosystem essentially is a public-key cryp-
tosystem with the additional requirement that its output conforms to a given covertext distribution. As in
the formalization of private-key steganography [6, 12, 15], the covertext distribution is publicly known
and accessible only through an oracle that samples the distribution. We introduce the notion ofstegano-
graphic security against adaptive chosen-covertext attacks (SS-CCA)and show that it is closely linked to
the notion ofsecurity against adaptive chosen-ciphertext attacksfor public-key cryptosystems (called
CCA-securityfor short). In particular, we show that SS-CCA stegosystems are related to public-key
cryptosystems satisfyingRCCA-security[7], a relaxation of strict CCA-security, in the following ways:

Theorem 1 (informal statement). Any SS-CCA stegosystem is an RCCA-secure public-key cryptosys-
tem.

Theorem 2 (informal statement). An SS-CCA stegosystem can be constructed from any RCCA-secure
public-key cryptosystem whose ciphertexts are almost uniformly distributed.

The stegosystem constructed in the proof of Theorem 2 embeds more hidden bits per stegotext than
any previous system.

Our model for public-key steganography is introduced in Section 2, where also the relation to previ-
ous work is discussed. Section 3 recalls the definition of RCCA-security for public-key cryptosystems,
states our results formally, and presents the proof of Theorem 1. Section 4 gives the construction of an
SS-CCA stegosystem and proves Theorem 2.

2 Definitions

2.1 Notation

A function f : N → R≥0 is callednegligibleif for every constantc ≥ 0 there existskc ∈ N such that
f(k) < 1

kc for all k > kc. A (randomized) algorithm is calledefficientif its running time is bounded by
a polynomial except with negligible probability (over the coin tosses of the algorithm).

Let x← y denote the algorithm that assigns a valuey to x. If A(·) is a (randomized) algorithm, the
notationx ← A(y) denotes the algorithm that assigns tox a randomly selected value according to the
probability distribution induced byA(·) with inputy over the set of its outputs.

If S is a probability distribution, then the notationx
R← S denotes the algorithm which assigns tox

an element randomly selected according toS. If S is a finite set, then the notationx
R← S denotes the

algorithm which assigns tox an element selected at random fromS with uniform distribution overS.
If p(·, ·, · · · ) is a predicate, the notation

Pr[x R← S; y R← T ; · · · : p(x, y, · · · )]

denotes the probability thatp(x, y, · · · ) will be true after the ordered execution of the algorithmsx
R←

S, y
R← T, · · · . If X is a (randomized) algorithm, a distribution, or a set, thenPrX [x] is short for

Pr
x
R←X

[x], which is short forPr[s R← X : s = x].
Thestatistical distancebetween two distributionsX andY over the same setX is defined as‖X −

Y‖ = maxX0⊆X
∣∣∑

x∈X0
PrX (x)− PrY(x)

∣∣. Themin-entropyof a distributionX over an alphabetX
is defined asH∞(X ) =− log maxx∈X PrX [x]. (All logarithms are to the base 2.)
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2.2 Public-key Stegosystems

We define a public-key stegosystem as a triple of algorithms for key generation, message encoding,
and message decoding, respectively. The notion corresponds to a public-key cryptosystem in which the
ciphertext should conform to a target covertext distribution.

For the scope of this work, the covertext is modeled by a distributionC over a given setC. The dis-
tribution is only available via an oracle; it samplesC upon request, with each sample being independent.
In other words, it outputs a sequence of independent and identically distributed covertexts. W.l.o.g.,
PrC [c] > 0 for all c ∈ C.

The restriction to independent repetitions is made here only to simplify the notation and to focus on
the contribution of this work. All our definitions and results can be extended in the canonical way to the
very general model of a covertextchannelas introduced by Hopper et al. [12]. They model a channel as
an unbounded sequence of values drawn from a setC whose distribution may depend in arbitrary ways
on past outputs; access to the channel is given only by an oracle that samples from the channel.

Such a channel underlies only one restriction: The sampling oracle must allow random access to
the channel distribution, i.e., the oracle can be queried with an arbitrary prefix of a possible channel
output and will return the next symbol according to the channel distribution. In other words, the channel
sampler cannot only be rewound to an earlier state of its execution but also restarted from a given state.
(Hence it may be difficult to use an email conversation among humans for a covertext channel since that
cannot easily be rewound.)

The sampling oracle for the covertext distribution is available to all users and to the adversary.
In order to avoid technical complications, assume w.l.o.g. that the sampling oracle is implemented by
a probabilistic polynomial-time algorithm and therefore does not help an adversary beyond its own
capabilities (for example, with solving a computationally hard problem).

Definition 1. [Public-Key Stegosystem] LetC be a distribution on a setC of covertexts. A public-key
stegosystemis a triple of probabilistic polynomial-time algorithms(SK,SE,SD) with the following
properties.

• Thekey generation algorithmSK takes as input the security parameterk and outputs a pair of bit
strings(spk, ssk), called the[stego] public keyand the[stego] secret key.

• The steganographic encoding algorithmSE takes as inputs the security parameterk, a public
keyspkand amessagem ∈ {0, 1}l and outputs acovertextc ∈ C. The plaintextm is often called
theembedded message.

• The steganographic decoding algorithmSD takes as inputs the security parameterk, a secret
key ssk, and a covertextc ∈ C and outputs either a messagem ∈ {0, 1}l or a special symbol⊥.
An output value of⊥ indicates a decoding error, for example, whenSD has determined that no
message is embedded inc.

We require that for all(spk, ssk) output bySK(1k) and for allm ∈ {0, 1}l, the probability that
SD(1k, ssk,SE(1k, spk,m)) 6= m is negligible ink.

Note that except for the presence of the covertext distribution, this definition is equivalent to that
of a public-key cryptosystem. Although all algorithms have oracle access toC, only SE needs it in
the stegosystems considered in this paper. For ease of notation, the security parameter will be omitted
henceforth.

The probability that the decoding algorithm outputs the correct embedded message is referred to
as thereliability of the stegosystem. Although one might also allow a non-negligible decoding error
in the definition of a stegosystem (as done in previous work [12]), we require that the decoding error
probability is negligible in order to maintain the analogy between a stegosystem and a cryptosystem.
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Security definition. Coming up with the “right” security definition for a cryptographic primitive has
always been a challenging task because the sufficiency of a security property cannot be demonstrated.
Only its insufficiency can be shown by pointing out a specific attack, but finding an attack is usually
hard. Often, security definitions had to be strengthened when a primitive was used as part of a larger
system. Probably the most typical example is the security of public-key cryptosystems: the original
notion of semantic security [11], which considers only a passive or eavesdropping adversary, was later
augmented to security against adaptive chosen-ciphertext attacks or non-malleability, which allows also
for active attacks [14, 10, 3].

We introduce here the notion ofsteganographic security against adaptive chosen-covertext attacks,
abbreviatedSS-CCA. It is based on the intuition that a stegosystem is essentially a cryptosystem with a
prescribed ciphertext distribution.

SS-CCA is defined by the following experiment. Let an arbitrary distributionC on a setC be given
and consider a (stego-)adversary, defined by two arbitrary probabilistic polynomial-time algorithmsSA1

andSA2. The experiment consists of five stages.

Key generation: A key pair(spk, ssk) is generated by the key generation algorithmSK.

First decoding stage: Algorithm SA1 is run with the public keyspk as input and has access to the
sampling oracle forC and to a decoding oracleSO1. The decoding oracle knows the secret keyssk.
Whenever it receives a covertextc, it runsSD(ssk, c) and returns the result toSA1.

WhenSA1 finishes its execution, it outputs a tuple(m∗, s), wherem∗ ∈ {0, 1}l is a message and
s is some additional information which the algorithm wants to preserve.

Challenge: A bit b is chosen at random and achallenge covertextc∗ is determined depending on it:
If b = 0 thenc∗ ← SE(pk,m∗) elsec∗

R← C. c∗ is given to algorithmSA2, who should guess
the value ofb, i.e., determine whether the messagem∗ has been embedded inc or whetherc has
simply been chosen according toC.

Second decoding stage:SA2 is run on inputm∗, c∗, ands, i.e., it knows the message which is po-
tentially embedded, the challenge covertext, and the state provided bySA1. SA2 may access a
decoding oracleSO2, which is analogous toSO1 and knowsssk, butSO2 also knowsm∗ and does
not allow certain queries to be asked. In particular, upon receiving queryc, oracleSO2 computes
m← SD(ssk, c), checks ifm ∈ {m∗,⊥} and returnsnot-allowed if yes; otherwise, it returns
m.

Guessing stage:WhenSA2 finishes its execution, it outputs a bitb′.

The stego-adversary succeeds to distinguish stegotext from covertext ifb′ = b in the above exper-
iment. We require that for a secure stegosystem, no efficient adversary can distinguish stegotext from
covertext except with negligible probability over random guessing.

Definition 2. [Steganographic Security against Adaptive Chosen-Covertext Attacks] LetC be a distri-
bution on a covertext setC and letΣ = (SK,SE,SD) be a stegosystem. We say thatΣ is steganograph-
ically secure against adaptive chosen-covertext attacks (SS-CCA)with respect toC if for all probabilistic
polynomial-time adversaries(SA1,SA2), there exists a negligible functionε such that

Pr
[
(spk, ssk)← SK; (m∗, s)← SASO1

1 (spk); b R← {0, 1};

if b = 0 then c← SE(spk,m∗) elsec R← C : SASO2
2 (spk,m∗, c∗, s) = b

]
=

1
2

+ ε(k).

Note that this leaves the adversary free to query the decoding oracle with any element of the covertext
spacebeforethe challenge is issued.
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2.3 Discussion

The relation to public-key cryptosystems. A stegosystem should allow for two parties to communi-
cate over a public channel in such a way that the presence of a message in the conversation cannot be
detected by an adversary. It seems natural to conclude from this that the adversary must not learn any
useful information about an embedded message, should there be one. The latter property is the subject
of cryptography: hiding the content of a message transmitted over a public channel. This motivates our
approach of modeling a public-key stegosystem after a public-key cryptosystem in which the ciphertext
conforms to a particular covertext distribution.

The most widely accepted formal notion of a public-key cryptosystem secure against an active
adversary isindistinguishability of encryptions against an adaptive chosen-ciphertext attack(CCA-
security) [14] and is equivalent tonon-malleability of ciphertextsin the same attack model [10, 3].
CCA-security is defined by an experiment with almost the same stages as above, except that the first
part of the adversary outputstwo messagesm0 andm1, of which one is chosen at random and then
encrypted. The resulting valuec∗, also called thetarget ciphertext, is returned to the adversary and the
adversary has to guess what has been encrypted. In the second query stage, the adversary is allowed to
obtain decryptions ofanyciphertext except forc∗.

This appears to the minimal requirement to make the definition of a cryptosystem meaningful, but it
has turned out to be overly restrictive in some cases. For example, consider a CCA-secure cryptosystem
secure where a useless bit is appended to each ciphertext during encryption and that is ignored during
decryption. Although this clearly does not affect the security of the cryptosystem, the modified scheme
is no longer CCA-secure.

Several authors have relaxed CCA-security to allow for such changes [16, 1, 7]; the resulting notion
has been calledreplayable CCA-securityor RCCA-security. The only difference to CCA-security is that
in the second query stage, the adversary is more restricted and does not allow any query that decrypts to
either one of the messagesm0 orm1. The intuition is that such a cryptosystem allows anyone to modify
a ciphertext into an equivalent one and therefore “replay” the target ciphertext.

Our notion of SS-CCA security for stegosystems contains a restriction that is very similar to RCCA-
security, by not allowing queries that decode either to the test message or to⊥. Intuitively, also a
stegosystem should allow to “replay” covertexts since anyone can sample covertexts. This similarity is
no coincidence: We show in Section 3 that any SS-CCA stegosystem is an RCCA-secure public-key
cryptosystem.

Previous models for steganography. The first published model of a steganographic system is the
“Prisoners’ Problem” by Simmons [18]. This work addresses the particular situation of message au-
thentication among two communicating parties, where a so-calledsubliminal channelmight be used to
transport a hidden message in the view of an adversary who tries to detect the presence of a hidden
message. Although a subliminal channel in that sense is only made possible by the existence of message
authentication in the model, it can be seen as the first formulation of a general model for steganography.

Cachin [6] presented an information-theoretic model for steganography, which was the first to ex-
plicitly require that the stegotext distribution is indistinguishable from the covertext distribution to an
adversary. Since the model is unconditional, a statistical information measure is used.

Hopper et al. [12] give the first complexity-theoretic model for private-key steganography with pas-
sive attacks; they point out that a stegosystem is similar to a cryptosystem whose ciphertext is indistin-
guishable from a given covertext. In Section 3 we establish such an equivalence formally.

No formal model for public-key steganography with active attacks has been published so far, al-
though the subject was discussed by several authors, and some systems with heuristic security have
been proposed [9, 2]. There are two manuscripts of von Ahn and Hopper [20] and of Van Le [19]
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both addressing public-key steganography with passive attacks; they contain some interesting ideas, but
do not address an active adversary that can mount adaptive chosen-covertext attacks and, in one case,
conclude incorrectly that steganography with chosen-covertext attacks is not possible. A crucial ele-
ment of our formalization seems to be the restriction of the stage-two decoding oracle depending on the
challenge covertext.

3 Results

This section investigates the relation between SS-CCA stegosystems and CCA-secure public-key cryp-
tosystems. Two results are presented:

1. Any SS-CCA stegosystem is an RCCA-secure public-key cryptosystem.

2. An SS-CCA stegosystem can be constructed from any RCCA-secure public-key cryptosystem
whose ciphertexts are almost uniformly distributed.

We first recall the formal definitions for public-key encryption and RCCA-security. Apublic-key
cryptosystemis a triple(K,E,D) of probabilistic polynomial-time algorithms. AlgorithmK, on input the
security parameterk, generates a pair of keys(sk, pk). The encryption and decryption algorithms,E and
D, have the property that for any pair(sk, pk) generated byK and for any plaintext messagem ∈ {0, 1}l,
the probability thatD(1k, sk,E(1k,pk,m)) 6= m is negligible ink. (The security parameter is omitted
henceforth.)

RCCA-security for a public-key encryption scheme is defined by the following experiment. Con-
sider an adversary defined by two arbitrary polynomial-time algorithmsA1 andA2. First, a key pair
(pk, sk) is generated byK. Next,A1 is run on input the public keypk and may access a decryption
oracleO1. OracleO1 knows the secret keysk, and whenever it receives a ciphertextc, it appliesD with
key sk to c and returns the result toA1. WhenA1 finishes its execution, it outputs a triple(m0,m1, s),
wherem0,m1 ∈ {0, 1}l are two arbitrary messages ands is some additional state information. Now a
bit b is chosen at random andmb is encrypted usingE under keypk, resulting in a ciphertextc∗. Algo-
rithm A2 is givenm0 andm1, ciphertextc∗, and states, and has to guess the value ofb, i.e., whether
m0 or m1 has been encrypted.A2 may access a decryption oracleO2, which is analogous toO1 and
knowssk, but does not allow any query that decrypts to one of the messagesm0 andm1 (it returns
not-allowed when such a query occurs). Finally,A2 outputs a bitb′ as its guess forb.

An RCCA-secure cryptosystem requires that no efficient adversary can distinguish an encryption of
m0 from an encryption ofm1 except with negligible probability.

Definition 3. [RCCA-Security for Public-Key Cryptosystems [7]] LetΩ = (K,E,D) be a public-key
cryptosystem. We say thatΩ is RCCA-secureif for all polynomial-time adversariesA = (A1, A2), there
exists a negligible functionε such that

Pr
[
(pk, sk)← K; (m0,m1, s)← AO1

1 (pk); b R← {0, 1};

c← E(pk,mb); AO2
2 (pk,m0,m1, c

∗, s) = b
]

=
1
2

+ ε(k).

The following is our first main result.

Theorem 1. Let Σ = (SK,SE,SD) denote a public-key stegosystem. IfΣ is SS-CCA with respect to
some distributionC, thenΣ is an RCCA-secure public-key cryptosystem.
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Proof. Note first thatΣ satisfies the definition of a public-key cryptosystem. We prove thatΣ is RCCA-
secure by a reduction argument. Assume thatΣ is not an RCCA-secure cryptosystem and hence there
exists an (encryption-)adversary(A1, A2) that breaks the RCCA-security ofΣ, i.e., it wins in the exper-
iment of Definition 3 with probability12 +δ(k) for some non-negligible functionδ. LetC be an arbitrary
distribution. We construct a (stego-)adversary(SA1,SA2) againstΣ as a stegosystem with respect toC
that has black-box access to(A1, A2) as follows.

Key generation: WhenSA1 receives a public-key, it invokesA1 with this key.

First decoding stage: WheneverA1 queries its decryption oracleO1 with a ciphertextc, SA1 passesc
on to its decoding oracleSO1, waits for the response and forwards the response toA1.

WhenA1 halts and outputs(m0,m1, s), the stego-adversarySA1 chooses a random bitb′, and
outputs(mb′ , (m0,m1, b

′, s)).

Challenge: A challenge covertextc∗ is computed according to the definition of a stegosystem and given
to SA2.

Second decoding stage:SA2 receives inputsmb′ , c∗, and(m0,m1, b
′, s) and invokesA2 on inputsm0,

m1, c∗, ands. Otherwise,SA2 behaves in the same way asSA1 during first decoding stage,
forwarding the decryption requests thatA2 makes toO2 to the decoding oracleSO2.

Guessing stage:WhenA2 outputs a bitb∗, the stego-adversarySA2 tests ifb∗ = b′ and outputs 0 if
true, and 1 otherwise.

We now analyze the environment simulated by the stego-adversary(SA1,SA2) to the encryption-
adversary(A1, A2), and the probability that the stego-adversary can distinguish stegotext from cover-
text.

Clearly, key generation and the first decoding stage perfectly simulate the decryption oracle to ad-
versaryA1. During the challenge, a random bitb is chosen and a challenge covertextc∗ ← SE(pk,mb′)
is computed in caseb = 0 andc

R← C otherwise.
Note that whenb = 1, algorithmA2 and its final outputb∗ are independent ofb′. Hence, we have

Pr[b′ = b∗|b = 1] = 1
2 and the stego-adversary has no advantage over randomly guessingb′ in that case.

Whenb = 0, we show that during the second decoding phase,SA2 emulates the decryption oracle
O2 to A2 except with negligible probability. We only have to show thatA2 never queries any value
that is permitted for decryption oracleO2 but forbidden for decoding oracleSO2. Apart from this, the
emulation is perfect by definition.

A queryc′ to SO2 is not allowed ifSD(ssk, c′) ∈ {mb′ ,⊥} by the definition of SS-CCA. However,
sinceD(sk, c′) = mb′ except with negligible probability by the definition of a public-key cryptosystem,
the queryc′ is also not allowed for the decryption oracleO2 andA2 will receive the correct answer
not-allowed , except with negligible probability. BecauseA2 makes at most a polynomial number
of queries toO2, the probability that at least one of them is allowed forO2 but not allowed forSO2

is also negligible. Hence,SA2 correctly simulates the decryption oracleO2 to A2 except with some
negligible probabilityε∗(k).

Since the encryption-adversaryA2 by assumption breaks the RCCA-security of the cryptosystem,
andA2 is independent ofb′ whenb = 1 as argued above, we havePr[b′ = b∗|b = 0] = 1

2 +2δ(k)−ε∗(k).
By the definition ofSA2, this is also the probability that the stego-adversary guessesb correctly when
b = 0. Hence, the overall probability thatSA2 guessesb correctly is1

2 + δ(k)− ε∗(k)
2 , which exceeds12

by a non-negligible quantity and shows thatΣ is not SS-CCA with respect to anyC.
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Theorem 1 shows that a SS-CCA stegosystem is a special case of an RCCA-secure public-key cryp-
tosystem. In the converse direction, we show now that some RCCA-secure public-key cryptosystems,
namely those with “almost uniform ciphertexts,” can also be used to construct SS-CCA stegosystems.

Let a random variable be calledε-close to uniformwhenever its statistical distance to the uniform
distribution over the same domain is at mostε.

Definition 4. [Public-key Cryptosystem with Almost Uniform Ciphertexts] A public-key cryptosystem
is said to havealmost uniform ciphertextsif for any key pair(sk, pk) generated byK there exists a
negligible functionε such that for any plaintext messagem ∈ {0, 1}l, the distribution generated by
E(pk,m) is ε(k)-close to uniform.

It seems difficult to construct SS-CCA stegosystems foranycovertext distribution. We show that it
is possible for covertexts whose distribution conforms to a sequence of independently repeated experi-
ments. (According to the remark in Section 2.2, this result generalizes to an arbitrary covertextchannel.)
Given a covertext distributionC and positivet, let Ct denote the probability distribution consisting of a
sequence oft independent repetitions ofC.

The next theorem is our second main result. Its proof is the subject of Section 4.

Theorem 2. SS-CCA stegosystems with respect to a covertext distributionCt for anyC with sufficiently
large min-entropy can be efficiently constructed from any RCCA-secure cryptosystem with almost uni-
form ciphertexts.

Theorem 2 leaves us with the task of finding an RCCA-secure cryptosystem with almost uniform
ciphertexts. Such a cryptosystem exists at least in the random oracle model: the OAEP+ scheme of
Shoup [17]. OAEP+ is a CCA-secure cryptosystem in the random oracle model and based on an arbitrary
trapdoor one-way permutation.

Corollary 3. Provided that trapdoor one-way permutations exist, there is an SS-CCA stegosystem in
the random oracle model.

The proof of this result appears in Appendix A.

4 An SS-CCA Stegosystem

In this section, we propose a stegosystem that is steganographically secure against adaptive chosen-
covertext attacks.

This stegosystem works for any covertext distribution that consists of a sequence of independent
repetitions of a base-covertext distribution. Deviating from the notation of Section 2, we denote the
base-covertext distribution byC and the covertext distribution used by the stegosystem byCt = Πt

i=1C.
As noted in Section 2.2, through the introduction of a history, our construction also generalizes to
arbitrary covertext channels.

Let (K,E,D) be an RCCA-secure public-key cryptosystem with almost uniform ciphertexts. Sup-
pose its cleartexts arel-bit strings and its ciphertexts aren-bit strings.

A classG of functionsX → Y is calledstrongly2-universalif, for all distinct x1, x2 ∈ X and
all (not necessarily distinct)y1, y2 ∈ Y , exactly|G|/|Y |2 functions fromG takex1 to y1 andx2 to y2.
Such a function family is sometimes simply called astrongly 2-universal hash functionfor brevity.
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Figure 1: The encoding process of the stegosystem: a message is first encrypted and then embedded
using Algorithmsample. The decoding process works analogously in the reverse direction.

4.1 Description

The SS-CCA stegosystem consists of a triple of algorithms(keygen,encode,decode). The idea be-
hind it is to encrypt a message using the public-key cryptosystem first and to embed the resulting ci-
phertext into a covertext sequence, as shown in Figure 1.

The encoding method is based on the following algorithmsample, which samples a base-covertext
according toC such that a givenf -bit stringb is embedded in it. Under the name “rejection sampler,”
this algorithm has been suggested previously for steganography [2, 12], but was restricted to embedding
single-bit messages only.

Algorithm sample

Input: security parameterk, a functiong : C → {0, 1}f , and a valueb ∈ {0, 1}f
Output: a covertextx

1: j ← 0
2: repeat
3: x

R← C
4: j ← j + 1
5: until g(x ) = b or j = k
6: returnx

Intuitively, algorithmsample returns a covertext chosen from distributionC, but restricted to that
subset ofC which is mapped to the givenb by g. sample may also fail and return a covertextc with
g(c) 6= b, but this happens only with negligible probability ink. As will be shown in Section 4.2, when
b is a randomf -bit string,g is chosen randomly from a 2-universal hash function, andC has sufficient
min-entropy, then the output distribution ofsample is statistically close toC.

We now turn to the description of the stegosystem. Letf ≤ γ log k for a positive constantγ < 1
and letG : C → {0, 1}f denote a strongly 2-universal hash function.

Algorithm keygen chooses a randomg
R← G and computes a tuple(sk , pk) ← K, by running

the key generation algorithm of the cryptosystem. The output ofkeygen is the tuple(spk , ssk) =
((pk , g), sk).

Algorithm encode first encrypts an input messagem using the given encryption algorithmE, which
outputs in a ciphertexty. Assuming w.l.o.g. thaty is ann-bit string such thatn is polynomial ink and
n = tf , encode then repeatedly invokessample to embedy in pieces off bits a time into a sequence
of t covertext symbols. Formally:

Algorithm encode

Input: security parameterk, a public keyspk= (pk, g), and a messagem ∈ {0, 1}l to encode
Output: a covertext(c1, . . . , ct)

1: y ← E(pk,m)
2: parsey asy1‖y2‖ · · · ‖yt, whereyi ∈ {0, 1}f
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3: for i = 1 to t do
4: ci ← sample(k, g, yi)
5: return(c1, . . . , ct)

Algorithm decode proceeds analogously. From each of thet symbols in the covertext, a string of
f bits is extracted byg; then the concatenation of these bit strings is decrypted byD, and the resulting
value is returned (this is either anl-bit message or the symbol⊥):

Algorithm decode
Input: security parameterk, a secret keyssk= (sk, g), and a covertext(c1, . . . , ct) ∈ Ct to decode
Output: a decodedl-bit message or⊥

1: for i = 1 to t do
2: yi ← g(ci)
3: y ← y1‖y2‖ · · · ‖yt
4: x← D(sk, y)
5: returnx

4.2 Analysis

This section is devoted to an analysis of the above stegosystem. Theorems 4 and 8 below together imply
Theorem 2.

Theorem 4. (keygen, encode, decode) is a valid stegosystem.

Proof (Sketch).According to Definition 1, the only non-trivial steps are to show that the algorithms are
efficient and that

decode(1k, ssk,encode(1k, spk,m)) = m

for all m ∈ {0, 1}l except with negligible probability.
Efficiency follows immediately from the construction, the assumptionf ≤ γ log k, and the effi-

ciency of the public-key cryptosystem.
For reliability, it suffices to analyze the output ofencode because the decoding operation is deter-

ministic.
Consider iterationi in Algorithm encode, in which Algorithmsample tries to find a covertextx

that is mapped toyi by g. Becauseg is chosen from a strongly 2-universal class of hash functions, the
probability that in any particular iteration ofsample, anx is chosen withg(x) 6= yi, is 1− 2−f .

Thus, since thek iterations insample are independent,sample returnsc with g(c) 6= yi only with
some negligible probabilityε(k) provided thatf ≤ γ log k.

Hence, by the union bound, the probability that any iteration of Algorithmencode fails to embed
the correct value is at mosttε(k), which is negligible.

Before we can analyze the security of the stegosystem(keygen, encode, decode), we investigate
the output distribution of Algorithmsample and derive the following result that may be of independent
interest. It shows that the distribution of the output from Algorithmsample is statistically close toC
whensample is run with uniformly chosen inputs. The result also generalizes a theorem of Reyzin and
Russell [15].

Let sample be run with independently chosenb
R← {0, 1}f andg

R← G, and denote byS(k) the
distribution of its output.
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Proposition 5. If the min-entropy of the covertext distributionC is large enough compared tof , then
the statistical distance betweenS(k) andC is negligible; in particular, there exists a positive constant
λ < 1 such that for all sufficiently largek

‖S(k)− C‖ < 2f−H∞(C) + λk.

The proof of this result is based on Lemmas 6 and 7 below. Given a functiong used by Algorithm
sample and a valueb, define

γ(g, b) = Pr[x R← C : g(x) = b].

Let ε(g, b) = 1− γ(g, b).

Lemma 6. For a given functiong and a valueb, the probability that Algorithmsample outputs a par-
ticular c is

Pr[sample(C, g, b, k) = c] =

{(
1− ε(g, b)k

)PrC [c]
γ(g,b) if g(c) = b

ε(g, b)k PrC [c]
ε(g,b) otherwise

Proof. The probability of a valuec under distributionC conditioned on the eventg(C) = b is equal
to PrC [c]/γ(g, b) if g(c) = b and 0 otherwise; similarly, the probability ofc under the conditional
distribution ofC given g(C) 6= b is PrC [c]/ε(g, b) if g(c) 6= b and0 otherwise. By construction, the
second case, i.e.,sample outputsc with g(c) 6= b, occurs if and only if the loop terminated withj = k;
this happens with probabilityε(g, b)k because the realizations ofC are independent. The first case covers
any other outcome of the algorithm.

Lemma 7. For every distributionC, there exists0 < λ < 1 such that for all sufficiently largek and all
c ∈ C,

2−f
(
1− λk

) PrC [c]
|G|

∑
g∈G

1
γ(g, g(c))

< PrS(k)[c] < 2−f
(
1 + λk

) PrC [c]
|G|

∑
g∈G

1
γ(g, g(c))

. (1)

Proof.

PrS(k)[c] = Pr[b R← B; g R← G;x R← sample(C, b, g, k) : x = c]

= 2−f
∑
b∈B

1
|G|

∑
g∈G

Pr[x R← sample(C, b, g, k) : x = c]

= 2−f
1
|G|

∑
b∈B

( ∑
g:g(c)=b

(
1− ε(g, b)k

)PrC [c]
γ(g, b)

+
∑

g:g(c) 6=b

ε(g, b)k
PrC [c]
ε(g, b)

)
(2)

= 2−f
PrC [c]
|G|

∑
g∈G

( ∑
b:b=g(c)

1− ε(g, b)k

γ(g, b)
+

∑
b:b6=g(c)

ε(g, b)k−1

)
(3)

= 2−f
PrC [c]
|G|

∑
g∈G

(
1− ε(g, g(c))k

γ(g, g(c))
+

∑
b:b6=g(c)

ε(g, b)k−1

)
(4)

where(2) follows from Lemma 6,(3) from switching the order of summation, and(4) from noting that
the first sum contains only the termb = g(c).
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Recall thatPrC [c] > 0 for all c ∈ C and that2f < k. Hence,0 < ε(g, b) < 1 and there exists
0 < λ < 1 such that for all sufficiently largek,∣∣∣ε(g, g(c))k + γ(g, g(c))

∑
b:b6=g(c)

ε(g, g(c))k−1
∣∣∣ < λk.

The lemma follows from combining this with (4).

Proof of Proposition 5.For a particular functiong and a covertextc, defineAc(g) = γ(g, g(c)) and
considerAc(g) as a random variable induced by the random choice with uniform distribution ofg from
G. The expectation ofAc(g) is

E[Ac(g)] =
∑
g∈G

PrG[g]γ(g, g(c))

= Pr[g R← G;x R← C : g(x) = g(c)]

= Pr[x R← C : x = c] + Pr
[
g

R← G;x R← C|C\{c} : g(x) = g(c)
](

1− Pr[x R← C : x = c]
)

≤ pmax(C) + 2−f = 2−H∞(C) + 2−f , (5)

whereC|C\{c} denotes the conditional distribution ofC restricted toC \ {c} and the inequality follows
from the definition ofpmax and from the 2-universality ofG.

Note that the bound of Lemma 7 involves the expected value of(Ac(g))−1 (over the random choice
of g). The Jensen inequality [8] states that for any convex functionf applied to a random variableX, the
expected value off(X) is at least as big asf applied to the expected value ofX. Thus,E

[
(Ac(g))−1

]
≥(

E[Ac(g)]
)−1

for all c ∈ C. We get

‖C − S(k)‖ =
∑

c:PrC [c]>PrS(k)[c]

PrC [c]− PrS(k)[c]

<
∑

c:PrC [c]>PrS(k)[c]

(
PrC [c]

(
1− 1− λk

2f |G|
∑
g∈G

1
γ(g, g(c))

))
(6)

≤
∑

c:PrC [c]>PrS(k)[c]

(
PrC [c]

(
1− 1− λk

2f
E
[
(Ac(g))−1

]))
(7)

≤
∑

c:PrC [c]>PrS(k)[c]

(
PrC [c]

(
1− 1− λk

2f (2−f + 2−H∞(C))

))
(8)

≤ 1− 1− λk

1 + 2f−H∞(C)

≤ 2f−H∞(C) + λk,

where (6) follows from Lemma 7, (7) from the Jensen inequality and from the definition ofAc(g),
and (8) from (5).

Theorem 8. For a covertext distributionCt such thatC has sufficiently large min-entropy and provided
that (K,E,D) is an RCCA-secure public-key cryptosystem with almost uniform ciphertexts, the stego-
system(keygen,encode,decode) is SS-CCA.
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Proof (Sketch).We prove that the stegosystem(keygen,encode,decode) is SS-CCA by a reduction
argument. Assume that it is not SS-CCA and and hence there exists a (stego-)adversary(SA1,SA2) that
succeeds in the experiment of Definition 2 with probability1

2 + δ(k) for some non-negligible function
δ. We construct an (encryption-)adversary(A1, A2) that has black-box access to(SA1,SA2) and breaks
the RCCA-security of(K,E,D) as follows.

Key generation: WhenA1 receives a public-keypk generated byK, it choosesg
R← G, computes

spk← (pk, g), and invokesSA1 with spk.

First decryption stage: WhenSA1 sends a query(c1, . . . , ct) to its decoding oracleSO1, thenA1 com-
putesy ← y1‖y2‖ · · · ‖yt for yi ← g(ci), givesy to its decryption oracleO1, waits for the
response and forwards the response toSA1.

Challenge: When SA1 halts and outputs(m∗, s), the encryption-adversaryA1 chooses an arbitrary
plaintext messagem′ ∈ {0, 1}l and outputs(m∗,m′, g). According to the definition of a public-
key cryptosystem, a challenge ciphertexty∗ is computed. NowA2 is invoked with inputspk,
m∗, m′, y∗, andg. It parsesy∗ as a sequencey∗1‖y∗2‖ · · · ‖y∗t of f -bit strings, computesc∗i ←
sample(k, g, y∗i ) for i = 1, . . . , t, and invokesSA2 with inputs(pk, g),m∗, (c∗1, . . . , c

∗
t ), ands.

Second decryption stage:A2 behaves in the same way asA1 during first decryption stage: It computes
a ciphertexty from any decoding request thatSA2 makes as above, submitsy to the decryption
oracleO2, and returns the answer toSA2.

Guessing stage:WhenSA2 outputs a bitb∗, indicating its guess as to whether messagem∗ is contained
in the challenge covertext(c∗1, . . . , c

∗
t ), the encryption-adversaryA2 returnsb∗ as its own guess of

whetherm∗ orm′ is encrypted iny∗.

We now analyze the environment simulated by the encryption-adversary(A1, A2) to the stego-
adversary(SA1,SA2) and the probability that the encryption-adversary can distinguish the encrypted
messages.

Clearly, during key generation and the first decoding stage, the simulation for the stego-adversary
SA1 is perfect. During the encoding stage, a random bitb is chosen according to Definition 3 and the
challenge ciphertext is computed asy∗ ← E(pk,m∗) if b = 0 andy∗ ← E(pk,m′) if b = 1.

Whenb = 0, then, according to the definition ofA1, the challenge covertextc∗ is computed in the
same way as expected by the stego-adversary in the experiment of Definition 2 and the simulation is
perfect.

Whenb = 1, however,SA2 expects(c∗1, . . . , c
∗
t ) to be a random covertext drawn according toCt,

but receivesc∗i = sample(k, g, y∗i ) for i = 1, . . . , t instead, where the concatenation of they∗i is an
encryption ofm′ under keypk with E.

Proposition 5 implies that for everyi ∈ {1, . . . , t}, the statistical distance betweenC and the distri-
bution ofc∗i as computed by Algorithmsample when run with input auniformly chosenf -bit string is
bounded by a negligible quantityε∗1(k).

Furthermore, since the cryptosystem(K,E,D) has almost uniform ciphertexts, there exists a negligi-
ble quantityε∗2(k) such that the statistical distance betweeny∗i as used byA2 and the uniform distribution
onf -bit strings is at mostε∗2(k).

By combining these two facts with the triangle inequality, it follows that the distance between the
distribution of the challenge(c∗1, . . . , c

∗
t ) computed byA2 and the covertextCt is at mostε∗(k) =

t
(
ε∗1(k) + ε∗2(k)

)
. Hence, the behavior ofSA2 in the simulation whenb = 1 does not differ from the

experiment of Definition 2 with more than probabilityε∗(k).
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By definition, the output of the encryption-adversaryA2 is the same as that of the stego-adversary
SA2. SinceSA2 succeeds with probability12 + δ(k) in attacking the stegosystem and since the simulated
view of SA2 is correct except with probabilityε∗(k) when b = 1, the probability thatSA2 breaks
RCCA-security is1

2 + δ(k) − ε∗(k)
2 , which exceeds12 by a non-negligible quantity and establishes the

theorem.
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Appendix

A Proof of Corollary 3

OAEP+ is a method to transform any trapdoor one-way permutation into a CCA-secure public-key
cryptosystem in the random oracle model [4]. It was introduced by Shoup [17] as an improvement of
the OAEP transformation by Bellare and Rogaway [5], which had certain problems.

OAEP+ is based on an arbitrary trapdoor one-way permutationf on the set ofn-bit strings. The
scheme has two parametersn0 andn1 such thatn0+n1 < n and2−n0 and2−n1 are negligible quantities.
The plaintext space is{0, 1}l for l = n−n0−n1; the ciphertext space is{0, 1}n. The scheme uses three
hash functionsG : {0, 1}n0 → {0, 1}l, H ′ : {0, 1}k+n0 → {0, 1}n1 , andH : {0, 1}k+n1 → {0, 1}n0 .
In the security analysis, they are modeled as random oracles.

The scheme works as follows.

Key generation: The key generation algorithm runs the key generator of the trapdoor one-way permu-
tation and obtains descriptions off andf−1. The public key is the description off , the private
key is the description off−1.
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Encryption: Let x ∈ {0, 1}l be a plaintext to encrypt. The encryption algorithm choosesr
R← {0, 1}n0

and computes a ciphertexty as follows:

s ← (G(r)⊕ x)‖H ′(r‖x),
t ← H(s)⊕ r,
w ← s‖t,
y ← f(w).

Decryption: Let y ∈ {0, 1}n be a ciphertext to decrypt. The decryption algorithm computes the cor-
responding plaintextx as follows. For a bit stringz, let z[i, . . . , j] denote the substring starting
with thei-th bit and ending with thej-th bit. The algorithm computes:

w ← f−1(y),
s ← w[0, . . . , k + n1 − 1],
t ← w[k + n1, . . . , n],
r ← H(s)⊕ t,
x ← G(r)⊕ s[0, . . . , k − 1],
c ← s[n, . . . , k + n1 − 1].

If c = H ′(r‖x), then the algorithm outputsx; otherwise, the algorithm outputs the symbol⊥,
which indicates a decryption error.

We now argue that the ciphertext generated by OAEP+ is uniformly distributed in{0, 1}n. From the
fact thatG andH ′ are random oracles, we know thatG(r)⊕x andH ′(r‖x) are distributed uniformly in
{0, 1}l and{0, 1}n1 , respectively; hence,s is a uniformly distributed element of{0, 1}l+n1 . Sincer is
chosen uniformly random in{0, 1}n0 andH is a random oracle,t is uniformly distributed in{0, 1}n0 .
Becausew = s‖t, it is a uniformly random element of{0, 1}n, and sincef is a permutationy = f(w)
is a uniformly randomn-bit string.
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