
Fuzzy Extractors:

How to Generate Strong Keys from Biometrics and Other Noisy Data

Yevgeniy Dodis∗. Leonid Reyzin† Adam Smith‡

April 13, 2004

Abstract

We provide formal definitions and efficient secure techniques for

• turning biometric information into keys usable for any cryptographic application, and

• reliably and securely authenticating biometric data.

Our techniques apply not just to biometric information, but to any keying material that, unlike
traditional cryptographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We
propose two primitives: a fuzzy extractor extracts nearly uniform randomness R from its biometric input;
the extraction is error-tolerant in the sense that R will be the same even if the input changes, as long as it
remains reasonably close to the original. Thus, R can be used as a key in any cryptographic application.
A secure sketch produces public information about its biometric input w that does not reveal w, and
yet allows exact recovery of w given another value that is close to w. Thus, it can be used to reliably
reproduce error-prone biometric inputs without incurring the security risk inherent in storing them.

In addition to formally introducing our new primitives, we provide nearly optimal constructions
of both primitives for various measures of “closeness” of input data, such as Hamming distance, edit
distance, and set difference.

1 Introduction

Cryptography traditionally relies on uniformly distributed random strings for its secrets. Reality, however,
makes it difficult to create, store, and reliably retrieve such strings. Strings that are neither uniformly
random nor reliably reproducible seem to be more plentiful. For example, a random person’s fingerprint
or iris scan is clearly not a uniform random string, nor does it get reproduced precisely each time it is
measured. Similarly, a long pass-phrase (or answers to 15 questions [14] or a list of favorite movies [18])
is not uniformly random and is difficult to remember for a human user. This work is about using such
nonuniform and unreliable secrets in cryptographic applications. Our approach is rigorous and general,
and our results have both theoretical and practical value.

To illustrate the use of random strings on a simple example, let us consider the task of password
authentication. A user Alice has a password w and wants to gain access to her account. A trusted server
stores some information y = f(w) about the password. When Alice enters w, the server lets Alice in only
if f(w) = y. In this simple application, we assume that it is safe for Alice to enter the password for the

∗dodis@cs.nyu.edu. New York University, Department of Computer Science, 251 Mercer St., New York, NY 10012 USA.
†reyzin@cs.bu.edu. Boston University, Department of Computer Science, 111 Cummington St., Boston MA 02215 USA.
‡asmith@theory.lcs.mit.edu. MIT, Laboratory for Computer Science, 200 Technology Sq., Cambridge, MA 02139 USA.

1

verification. However, the server’s long-term storage is not assumed to be secure (e.g., y is stored in a
publicly readable /etc/passwd file in UNIX [25]). The goal, then, is to design an efficient f that is hard
to invert (i.e., given y it is hard to find w′ s.t. f(w′) = y), so that no one can figure out Alice’s password
from y. Recall that such functions f are called one-way functions.

Unfortunately, the solution above has several problems when used with passwords w available in real
life. First, the definition of a one-way function assumes that w is truly uniform, and guarantees nothing if
this is not the case. However, human-generated and biometric passwords are far from uniform, although
they do have some unpredictability in them. Second, Alice has to reproduce her password exactly each
time she authenticates herself. This restriction severely limits the kinds of passwords that can be used.
Indeed, a human can precisely memorize and reliably type in only relatively short passwords, which do not
provide an adequate level of security. Greater levels of security are achieved by longer human-generated and
biometric passwords, such as pass-phrases, answers to questionnaires, handwritten signatures, fingerprints,
retina scans, voice commands, and other values selected by humans or provided by nature, possibly in
combination (see [13] for a survey). However, two biometric readings are rarely identical, even though
they are likely to be close; similarly, humans are unlikely to precisely remember their answers to multiple
question from time to time, though such answers will likely be similar. In other words, the ability to
tolerate a (limited) number of errors in the password while retaining security is crucial if we are to obtain
greater security than provided by typical user-chosen short passwords.

The password authentication described above is just one example of a cryptographic application where
the issues of nonuniformity and error tolerance naturally come up. Other examples include any crypto-
graphic application, such as encryption, signatures, or identification, where the secret key comes in the
form of “biometric” data.

Our Definitions. We propose two primitives, termed secure sketch and fuzzy extractor.
A secure sketch addresses the problem of error tolerance. It is a (probabilistic) function outputting a

public value v about its biometric input w, that, while revealing little about w, allows its exact recon-
struction from any other input w′ that is sufficiently close. The price for this error tolerance is that the
application will have to work with a lower level of entropy of the input, since publishing v effectively re-
duces the entropy of w. However, in a good secure sketch, this reduction will be small, and w will still have
enough entropy to be useful, even if the adversary knows v. A secure sketch, however, does not address
nonuniformity of inputs.

A fuzzy extractor addresses both error tolerance and nonuniformity. It reliably extracts a uniformly
random string R from its biometric input w in an error-tolerant way. If the input changes but remains
close, the extracted R remains the same. To assist in recovering R from w′, a fuzzy extractor outputs
a public string P (much like a secure sketch outputs v to assist in recovering w). However, R remains
uniformly random even given P .

Our approach is general: our primitives can be naturally combined with any cryptographic system.
Indeed, R extracted from w by a fuzzy extractor can be used as a key in any cryptographic application,
but, unlike traditional keys, need not be stored (because it can be recovered from any w′ that is close
to w). We define our primitives to be information-theoretically secure, thus allowing them to be used in
combination with any cryptographic system without additional assumptions (however, the cryptographic
application itself will typically have computational, rather than information-theoretic, security).

For a concrete example of how to use fuzzy extractors, in the password authentication case, the server
can store 〈P, f(R)〉. When the user inputs w′ close to w, the server recovers the actual R and checks if f(R)
matches what it stores. Similarly, R can be used for symmetric encryption, for generating a public-secret
key pair, or any other application. Secure sketches and extractors can thus be viewed as providing fuzzy
key storage: they allow recovery of the secret key (w or R) from a faulty reading w′ of the password w,

2

by using some public information (v or P). In particular, fuzzy extractors can be viewed as error- and
nonuniformity-tolerant secret key key-encapsulation mechanisms [30].

Because different biometric information has different error patterns, we do not assume any particular
notion of closeness between w′ and w. Rather, in defining our primitives, we simply assume that w comes
from some metric space, and that w′ is no more that a certain distance from w in that space. We only
consider particular metrics when building concrete constructions.

General Results. Before proceeding to construct our primitives for concrete metrics, we make some
observations about our definitions. We demonstrate that fuzzy extractors can be built out of secure sketches
by utilizing (the usual) strong randomness extractors [27], such as, for example, pairwise-independent hash
functions. We also demonstrate that the existence of secure sketches and fuzzy extractors over a particular
metric space implies the existence of certain error-correcting codes in that space, thus producing lower
bounds on the best parameters a secure fingerprint and fuzzy extractor can achieve. Finally, we define a
notion of a biometric embedding of one metric space into another, and show that the existence of a fuzzy
extractor in the target space implies, combined with a biometric embedding of the source into the target,
the existence of a fuzzy extractor in the source space.

These general results help us in building and analyzing our constructions.

Our Constructions. We provide constructions of secure sketches and extractors in three metrics:
Hamming distance, set difference, and edit distance.

Hamming distance (i.e., the number of bit positions that differ between w and w′) is perhaps the
most natural metric to consider. We observe that the “fuzzy-commitment” construction of Juels and
Wattenberg [17] based on error-correcting codes can be viewed as a (nearly optimal) secure sketch. We
then apply our general result to convert it into a nearly optimal fuzzy extractor. While our results on the
Hamming distance essentially use previously known constructions, they serve as an important stepping
stone for the rest of the work.

The set difference metric (i.e., size of the symmetric difference of two input sets w and w′) comes up
naturally whenever the biometric input is represented as a subset of features from a universe of possible
features.1 We demonstrate the existence of optimal (with respect to entropy loss) secure sketches (and
therefore also fuzzy extractors) for this metric. However, this result is mainly of theoretical interest,
because (1) it relies on optimal constant-weight codes, which we do not know how construct and (2) it
produces sketches of length proportional to the universe size. We then turn our attention to more efficient
constructions for this metric, and provide two of them.

First, we observe that the “fuzzy vault” construction of Juels and Sudan [18] can be viewed as a secure
sketch in this metric (and then converted to a fuzzy extractor using our general result). We provide a new,
simpler analysis for this construction, which bounds the entropy lost from w given v. Our bound on the
loss is quite high unless one makes the size of the output v very large. We then provide an improvement to
the Juels-Sudan construction to reduce the entropy loss to near optimal, while keeping v short (essentially
as long as w).

Second, we note that in the case of a small universe, a set can be simply encoded as its characteristic
vector (1 if an element is in the set, 0 if it is not), and set difference becomes Hamming distance. However,
the length of such a vector becomes unmanageable as the universe size grows. Nonetheless, we demonstrate
that this approach can be made to work efficiently even for exponentially large universes. This involves a
result that may be of independent interest: we show that BCH codes can be decoded in time polynomial in

1A perhaps unexpected application of the set difference metric was explored in [18]: a user would like to encrypt a file (e.g.,
her phone number) using a small subset of values from a large universe (e.g., her favorite movies) in such a way that those
and only those with a similar subset (e.g., similar taste in movies) can decrypt it.

3

the weight of the received corrupted word (i.e., in sublinear time if the weight is small). The resulting secure
sketch scheme compares favorably to the modified Juels-Sudan construction: it has the same near-optimal
entropy loss, while the public output v is even shorter (proportional to the number of errors tolerated,
rather than the input length).

Finally, edit distance (i.e., the number of insertions and deletions needed to convert one string into the
other) naturally comes up, for example, when the password is entered as a string, due to typing errors
or mistakes made in handwriting recognition. We construct a biometric embedding from the edit metric
into the set difference metric, and then apply our general result to show such an embedding yields a fuzzy
extractor for edit distance, because we already have fuzzy extractors for set difference. We note that the
edit metric is quite difficult to work with, and the existence of such an embedding is not a priori obvious:
for example, low-distortion embeddings of the edit distance into the Hamming distance are unknown and
seem hard [2]. It is the particular properties of biometric embeddings, as we define them, that help us
construct this embedding.

Relation to Previous Work. Since our work combines elements of error correction, randomness
extraction and password authentication, there has been a lot of related work.

The need to deal with nonuniform and low-entropy passwords has long been realized in the security
community, and many approaches have been proposed. For example, Kelsey et al [19] suggest using
f(w, r) in place of w for the password authentication scenario, where r is a public random “salt,” to make
a brute-force attacker’s life harder. While practically useful, this approach does not add any entropy to
the password, and does not formally address the needed properties of f . Another approach, more closely
related to ours, is to add biometric features to the password. For example, Ellison et al. [12] propose
asking the user a series of n personalized questions, and use these answers to encrypt the “actual” truly
random secret R. A similar approach using user’s keyboard dynamics (and, subsequently, voice [23, 24])
was proposed by Monrose et al [22]. Of course, this technique reduces the question to that of designing a
secure “fuzzy encryption”. While heuristic approaches were suggested in the above works (using various
forms of Shamir’s secret sharing), no formal analysis was given. Additionally, error tolerance was addressed
only by brute force search.

A formal approach to error tolerance in biometrics was taken by Juels and Wattenberg [17] (for less
formal solutions, see [10, 22, 12]), who provided a simple way to tolerate errors in uniformly distributed
passwords. Frykholm and Juels [14] extended this solution; our analysis is quite similar to theirs in the
Hamming distance case. Almost the same construction appeared implicitly in earlier, seemingly unrelated,
literature on information reconciliation and privacy amplification (see, e.g., [4, 5, 8]). We discuss the
connections between these works and our work further in Section 4.

Juels and Sudan [18] provided the first construction for a metric other than Hamming: they construct a
“fuzzy vault” scheme for the set difference metric. The main difference is that [18] lacks a cryptographically
strong definition of the object constructed. In particular, their construction leaks a significant amount of
information about their analog of R, even though it leaves the adversary with provably “many valid choices”
for R. In retrospect, their notion can be viewed as an (information-theoretically) one-way function, rather
than a semantically-secure key encapsulation mechanism, like the one considered in this work. Nonetheless,
their informal notion is very closely related to our secure sketches, and we improve their construction in
Section 5.

Linnartz and Tuyls [20] define and construct a primitive very similar to a fuzzy extractor (that line of
work was continued in [31].) The definition of [20] focuses on the continuous space R

n, and assumes a
particular input distribution (typically a known, multivariate Gaussian). Thus, our definition of a fuzzy
extractor can be viewed as a generalization of the notion of a “shielding function” from [20]. However, our
constructions focus on discrete metric spaces.

4

Other approaches have also been taken for guaranteeing the privacy of noisy data. Csirmaz and Katona
[9] consider quantization for correcting errors in “physical random functions.” (This corresponds roughly
to secure sketches with no public storage). Barral, Coron and Naccache [3] proposed a system for offline,
private comparison of fingerprints. Although seemingly similar, the problem they study is complimentary
to ours, and the two solutions can be combined to yield systems which enjoy the benefits of both.

Work on privacy amplification [4, 5], as well as work on de-randomization and hardness amplification
[16, 27], also addressed the need to extract uniform randomness from a random variable about which some
information has been leaked. A major focus of research in that literature has been the development of
(ordinary, not fuzzy) extractors with short seeds (see [29] for a survey). We use extractors in this work
(though for our purposes, pairwise independent hashing [4, 16] is sufficient). Conversely, our work has been
applied recently to privacy amplification: Ding [11] uses fuzzy extractors for noise tolerance in Maurer’s
bounded storage model.

Extensions. We can relax the error correction properties of sketches and fuzzy extractors to allow list
decoding: instead of outputting one correct secret, we can output a short list of secrets, one of which is
correct. For many applications (e.g., password authentication), this is sufficient, while the advantage is that
we can possibly tolerate many more errors in the password. Not surprisingly, by using list-decodable codes
(see [15] and the references therein) in our constructions, we can achieve this relaxation and considerably
improve our error tolerance. Other similar extensions would be to allow small error probability in error-
correction, to ensure correction of only average-case errors, or to consider nonbinary alphabets. Again,
many of our results will extend to these settings. Finally, an interesting new direction is to consider other
metrics not considered in this work.

2 Preliminaries

Unless explicitly stated otherwise, all logarithms below are base 2. We use U� to denote the uniform
distribution on �-bit binary strings.

Entropy. The min-entropy H∞(A) of a random variable A is − log(maxa Pr(A = a)). For a pair of
(possibly correlated) random variables A,B, a conventional notion of “average min-entropy” of A given B
would be Eb←B [H∞(A | B = b)]. However, for the purposes of this paper, the following slightly modified
notion will be more robust: we let H̃∞(A | B) = − log

(
Eb←B

[
2−H∞(A|B=b)

])
. Namely, we define average

min-entropy of A given B to be the logarithm of the average probability of the most likely value of A
given B. This definition is the right one to use when one is interested in the statistical difference from
uniform, as becomes clear, e.g., in Lemma 3.2. One can easily verify that if B is an �-bit string, then
H̃∞(A | B) ≥ H∞(A)− �.

Strong Extractors. The statistical distance between two probability distributionsA andB is SD (A,B) =
1
2

∑
v |Pr(A = v)− Pr(B = v)|. We can now define strong randomness extractors [27].

Definition 1. An efficient (n,m′, �, ε)-strong extractor is a polynomial time probabilistic function Ext :
{0, 1}n → {0, 1}� such that for all min-entropym′ distributionsW , we have SD (〈Ext(W ;X), X〉, 〈U�, X〉) ≤
ε, where Ext(W ;X) stands for applying Ext to W using (uniformly distributed) randomness X.

Strong extractors can extract at most � = m′ − 2 log(1/ε) + O(1) nearly random bits [28]. Many
constructions match this bound (see Shaltiels’ survey [29] for references). Extractor constructions are
often complex since they seek to minimize the length of the seed X. For our purposes, the length of X will
be less important, so 2-wise independent hash functions will already give us optimal � = m′ − 2 log(1/ε)
[4, 16].

5

Metric Spaces. A metric space is a setM with a distance function dis :M×M→ R
+ = [0,∞) which

obeys various natural properties. In this work, M will always be a finite set, and the distance function
will only take on integer values. The size of theM will always be denoted N = |M|. We will assume that
any point inM can be naturally represented as a binary string of appropriate length O(logN).

We will concentrate on the following metrics. (1) Hamming metric. HereM = Fn over some alphabet
F (we will mainly use F = {0, 1}), and dis(w,w′) is the number of positions in which they differ. (2) Set
Difference metric. HereM consists of all s-element subsets in a universe U = [n] = {1, ..., n}. The distance
between two sets A,B is the number of points in A that are not in B. Since A and B have the same size,
the distance is half of the size of their symmetric difference: dis(A,B) = 1

2 |A�B|. (3) Edit metric. Here
again M = Fn, but the distance between w and w′ is defined to be one half of the smallest number of
character insertions and deletions needed to transform w into w′.

As already mentioned, all three metrics seem natural for biometric data.

Coding. Since we want to achieve error tolerance in various metric spaces, we will use error-correcting
codes in the corresponding metric spaceM. A code C is a subset {w1, . . . , wK} of K elements of M (for
efficiency purposes, we want the map from i to wi to be polynomial-time). The minimum distance of C
is the smallest d > 0 such that for all i �= j we have dis(wi, wj) ≥ d. In our case of integer metrics, this
means that one can detect up to (d − 1) “errors” in any codeword. The error-correcting distance of C is
the largest number t > 0 such that for every w ∈ M there exists at most one codeword wi in the ball of
radius t around w: dis(w,wi) ≤ t for at most one i. Clearly, for integer metrics we have t = �(d− 1)/2�.
Since error correction will be more important in our applications, we denote the corresponding codes
by (M,K, t)-codes. For the Hamming and the edit metrics on strings of length n over some alphabet
F , we will sometimes call k = log|F |K the dimension on the code, and denote the code itself as an
[n, k, d = 2t+ 1]-code, following the standard notation in the literature.

3 Definitions and General Lemmas

LetM be a metric space on N points with distance function dis.

Definition 2. An (M,m,m′, t)-secure sketch is a randomized map SS :M → {0, 1}∗ with the following
properties.

1. There exists a deterministic recovery function Rec allowing to recover w from its sketch SS(w) and
any vector w′ close to w: for all w,w′ ∈M satisfying dis(w,w′) ≤ t, we have Rec(w′,SS(w)) = w.

2. For all random variables W overM with min-entropy m, the average min-entropy of W given SS(W)
is at least m′. That is, H̃∞(W | SS(W)) ≥ m′.

The secure sketch is efficient if SS and Rec run in time polynomial in the representation size of a point in
M. We denote the random output of SS by SS(W), or by SS(W ;X) when we wish to make the randomness
explicit.

We will have several examples of secure sketches when we discuss specific metrics. The quantity m−m′

is called the entropy loss of a secure sketch. Our proofs in fact bound m−m′, and the same bound holds
for all values of m.

Definition 3. An (M,m, �, t, ε) fuzzy extractor is a given by two procedures (Gen,Rep).

1. Gen is a probabilistic generation procedure, which on input w ∈ M outputs an “extracted” string
R ∈ {0, 1}� and a public string P . We require that for any distribution W on M of min-entropy m, if
〈R,P 〉 ← Gen(W), then we have SD (〈R,P 〉, 〈U�, P 〉) ≤ ε.

6

2. Rep is a deterministic reproduction procedure allowing to recover R from the corresponding public
string P and any vector w′ close to w: for all w,w′ ∈ M satisfying dis(w,w′) ≤ t, if 〈R,P 〉 ← Gen(w),
then we have Rep(w′, P) = R.

The fuzzy extractor is efficient if Gen and Rep run in time polynomial in the representation size of a point
inM.

In other words, fuzzy extractors allow one to extract some randomness R from w and then successfully
reproduce R from any string w′ that is close to w. The reproduction is done with the help of the public
string P produced during the initial extraction; yet R looks truly random even given P . To justify our
terminology, notice that strong extractors (as defined in Section 2) can indeed be seen as “nonfuzzy”
analogs of fuzzy extractors, corresponding to t = 0, P = X (andM = {0, 1}n).
Construction of Fuzzy Extractors from Secure Sketches. Not surprisingly, secure sketches
come up very handy in constructing fuzzy extractors. Specifically, we construct fuzzy extractors from
secure sketches and strong extractors. For that, we assume that one can naturally represent a point w in
M using n bits. The strong extractor we use is the standard pairwise-independent hashing construction,
which has (optimal) entropy loss 2 log

(
1
ε

)
. The proof of the following lemma uses the “left-over hash”

(a.k.a. “privacy amplification”) lemma of [16, 5].

Lemma 3.1 (Fuzzy Extractors from Sketches). Assume SS is a (M,m,m′, t)-secure sketch with
recovery procedure Rec, and let Ext be the (n,m′, �, ε)-strong extractor based on pairwise-independent hashing
(in particular, � = m′ − 2 log

(
1
ε

)
). Then the following (Gen,Rep) is a (M,m, �, t, ε)-fuzzy extractor:

– Gen(W ;X1, X2): set P = 〈SS(W ;X1), X2〉, R = Ext(W ;X2), output 〈R,P 〉.
– Rep(W ′, 〈V,X2〉): recover W = Rec(W ′, V) and output R = Ext(W ;X2).

Proof. Lemma 3.1 follows directly from the intermediate result below (Lemma 3.2), which explains our
choice of the measure H̃∞(A|B) for the average min-entropy. Lemma 3.2 says that pairwise independent
hashing extracts randomness from the random variable A as if the min-entropy of A given B = b were
always at least H̃∞(A|B) (rather than having the inequality hold on average).

Interestingly, the above lemma, combined with secure sketches, will often produce nearly optimal fuzzy
extractors.

Lemma 3.2. If A,B are random variables such that A ∈ {0, 1}n and H̃∞(A|B) ≥ m′, and H is a random
pairwise independent hash function from n bits to � bits, then SD (〈B,H,H(A)〉 , 〈B,H,U�〉) ≤ ε as long
as � ≤ m′ − 2 log

(
1
ε

)
.

Proof. The particular extractor we chose has a smooth tradeoff between the entropy of the input and the
quality of the output. For any random variable X, the left-over hash/privacy amplification lemma [4, 16, 5]
states:

SD (〈H,H(X)〉 , 〈H,U�〉) ≤
√

2−H∞(X)2�

In our setting we have a bound on the expected value of 2−H∞(A|B=b), namely E
[
2−H∞A | B)

] ≤ 2−m′
.

Using the fact that E

[√
Z

]
≤√

E [Z], we get:

Eb [SD (〈H,H(A|B = b)〉 , 〈H,U�〉)] ≤
√

2�−m′ .

7

Now the distance of 〈B,H,H(A)〉 from 〈B,H,U�〉 is the average over values of B of the distance of
〈H,H(A)〉 from 〈H,U�〉. This average is exactly what was bounded above:

SD (〈B,H,H(A)〉, 〈P,U�〉) = EB [SD (〈H,H(A)〉 , 〈H,U�〉)] ≤
√

2�−m′ .

The extractor we use always has � ≤ m′ − 2 log
(

1
ε

)
, and so the statistical difference is at most ε.

Remark 1. One can prove an analogous form of Lemma 3.2 using any strong extractor. However, in
general, the resulting reduction leads to fuzzy extractors with min-entropy loss 3 log

(
1
ε

)
instead of 2 log

(
1
ε

)
.

This may happen in the case when the extractor does not have a convex tradeoff between the input entropy
and the distance from uniform of the output. Then one can instead use a high-probability bound on the
min-entropy of the input (that is, if H̃∞(X|Y) ≥ m′ then the event H∞(X|Y = y) ≥ m′− log

(
1
ε

)
happens

with probability 1− ε).

Sketches for Transitive Metric Spaces. We give a general technique for building secure sketches
in transitive metric spaces, which we now define. A permutation π on a metric spaceM is an isometry if it
preserves distances, i.e. dis(a, b) = dis(π(a), π(b)). A family of permutations Π = {πi}i∈I acts transitively
onM if for any two elements a, b ∈M, there exists πi ∈ Π such that πi(a) = b. Suppose we have a family
Π of transitive isometries forM (we will call suchM transtive). For example, in the Hamming space, the
set of all shifts πx(w) = w ⊕ x is such a family (see Section 4 for more details on this example).

Let C be an (M,K, t)-code. Then the general sketching scheme is the following: given a input w ∈M,
pick a random codeword b ∈ C, pick a random permutation π ∈ Π such that π(w) = b, and output
SS(w) = π. To recover w given w′ and the sketch π, find the closest codeword b′ to π(w′), and output
π−1(b′). This works when dis((, w), w′) ≤ t, because then dis((, b), π(w′)) ≤ t, so decoding π(w′) will result
in b′ = b, which in turn means that π−1(b′) = w.

A bound on the entropy loss of this scheme, which follows simply from “counting” entropies, is |“π′′| −
logK, where |“π′′| is the size, in bits, of a canonical description of π. (We omit the proof, as it is a simple
generalization of the proof of Lemma 4.1.) Clearly, this quantity will be small if the family Π of transifitive
isometries is small and the code C is dense. (For the scheme to be usable, we also need the operations on
the code, as well as π and π−1, to be implementable reasonably efficiently.)

Constructions from Biometric Embeddings. We now introduce a general technique that allows one
to build good fuzzy extractors in some metric spaceM1 from good fuzzy extractors in some other metric
spaceM2. Below, we let dis(·, ·)i denote the distance function inMi. The technique is to embedM1 into
M2 so as to “preserve” relevant parameters for fuzzy extraction.

Definition 4. A function f :M1 → M2 is called a (t1, t2,m1,m2)-biometric embedding if the following
two conditions hold:

• for any w1, w
′
1 ∈M1 such that dis(w1, w

′
1)1 ≤ t1, we have dis(f(w1), f(w2))2 ≤ t2.

• for any W1 onM1 of min-entropy at least m1, f(W1) has min-entropy at least m2.

The following lemma is immediate:

Lemma 3.3. If f is (t1, t2,m1,m2)-biometric embedding ofM1 intoM2 and (Gen1(·),Rep1(·, ·)) is a (M2,
m2, �, t2, ε)-fuzzy extractor, then (Gen1(f(·)),Rep1(f(·), ·)) is a (M1,m1, �, t1, ε)-fuzzy extractor.

Notice that a similar result does not hold for secure sketches, unless f is injective (and efficiently invertible).
We will see the utility of this particular notion of embedding (as opposed to previously defined notions)

in Section 6.

8

4 Constructions for Hamming Distance

In this section we consider constructions for the spaceM = {0, 1}n under the Hamming distance metric.

The Code-Offset Construction. Juels and Wattenberg [17] considered a notion of “fuzzy commit-
ment.” 2 Given a binary [n, k, 2t + 1] error-correcting code C (not necessarily linear), they fuzzy-commit
to X by publishing W ⊕C(X). Their construction can be rephrased in our language to give a very simple
construction of secure sketches: for random X ← {0, 1}k, set

SS(W ;X) = W ⊕ C(X) .

(Note that if W is uniform, this secure sketch direcly yields a fuzzy extractor with R = X).
When the code C is linear, this is equivalent to revealing the syndrome of the input w, and so we do

not need the randomness X. Namely, in this case we could have set SS(w) = synC(w) (as mentioned in
the introduction, this construction also appears implicitly in the information reconciliation literature, e.g.
[4, 5, 8]: when Alice and Bob hold secret values which are very close in Hamming distance, one way to
correct the differences with few bits of communication is for Alice to send to Bob the syndrome of her word
w with respect to a good linear code.)

Since the syndrome of a k-dimensional linear code is n − k bits long, it is clear that SS(w) leaks only
n− k bits about w. In fact, we show the same is true even for nonlinear codes.

Lemma 4.1. For any [n, k, 2t + 1] code C and any m, SS above is a (M,m,m + k − n, t) secure sketch.
It is efficient if the code C allows decoding errors in polynomial time.

Proof. Let D be the decoding procedure of our code C. Since D can correct up to t errors, if v = w⊕C(x)
and dis(w,w′) ≤ t, then D(w′ ⊕ v) = x. Thus, we can set Rec(w′, v) = v ⊕ C(D(w′ ⊕ v)).

Let A be the joint variable (X,W). Together, these have min-entropy m+ k when H∞(W) = m. Since
SS(W) ∈ {0, 1}n, we have H̃∞(W,X | SS(W)) ≥ m+ k − n. Now given SS(W), W and X determine each
other uniquely, and so H̃∞(W | SS(W)) ≥ m+ k − n as well.

In Appendix A, we present some generic lower bounds on secure sketches and extractors. Let A(n, d)
denote the maximum number of codewords possible in a code of distance d in {0, 1}n. Then Lemma A.1
implies that the entropy loss of a secure sketch for the Hamming metric is at least n − logA(n, 2t + 1),
when the input is uniform (that is, when m = n). This means that the code-offset construction above
is optimal for the case of uniform inputs. Of course, we do not know the exact value of A(n, d), never
mind of efficiently decodable codes which meet the bound, for most settings of n and d. Nonetheless, the
code-offset scheme gets as close to optimality as is possible in coding.

Getting Fuzzy Extractors. As a warm-up, consider the case when W is uniform (m = n) and look at
the code-offset sketch construction: V = W⊕C(X). Setting R = X, P = V and Rep(W ′, V) = D(V ⊕W ′),
we clearly get an (M, n, k, t, 0) fuzzy extractor, since V is truly random when W is random, and therefore
independent of X. In fact, this is exactly the usage proposed by Juels-Wattenberg, except they viewed the
above fuzzy extractor as a way to use W to “fuzzy commit” to X, without revealing information about X.

Unfortunately, the above construction setting R = X only works for uniform W , since otherwise V
would leak information about X. However, by using the construction in Lemma 3.1, we get

Lemma 4.2. Given any [n, k, 2t + 1] code C and any m, ε, we can get an (M,m, �, t, ε) fuzzy extractor,
where � = m + k − n− 2 log(1/ε). The recovery Rep is efficient if C allows decoding errors in polynomial
time.

2In their interpretation, one commits to X by picking a random W and publishing SS(W ;X).

9

5 Constructions for Set Difference

Consider the collection of all sets of a particular size s in a universe U = [n] = {1, ..., n}. The distance
between two sets A,B is the number of points in A that are not in B. Since A and B have the same size,
the distance is half of the size of their symmetric difference: 1

2dis(A,B) = |A�B|. If A and B are viewed
as n-bit characteristic vectors over [n], this metric is the same as the Hamming metric (scaled by 1/2).
Thus, the set difference metric can be viewed as a restriction of the binary Hamming metric to all the
strings with exactly s nonzero components. However, one typically assumes that n is much larger than s,
so that representing a set by n bits is much less efficient than, say writing down a list of elements, which
requires (s log n) bits.

Large Versus Small Universes. Most of this section studies situations where the universe size n is
super-polynomial in the set size s. We call this the large universe setting. By contrast, the small universe
setting refers to situations in which n = poly(s). We want our various constructions to run in polynomial
time and use polynomial storage space. Thus, the large universe setting is exactly the setting in which the
n-bit string representation of a set becomes too large to be usable. We consider the small-universe setting
first, since it appears simpler (Section 5.1). The remaining subsections consider large universes.

5.1 Small Universes

When the universe size is polynomial in s, there are a number of natural constructions. Perhaps the most
direct one, given previous work, is the construction of Juels and Sudan [18]. Unfortunately, that scheme
achieves relatively poor parameters (see Section 5.2).

We suggest two possible constructions: first, to represent sets as n-bit strings and use the constructions of
the previous section (with the caveat that Hamming distance is off by a factor of 2 from set difference). The
second construction, presented below, goes directly through codes for set difference, also called “constant-
weight” codes.

In order to be able to compare the constructions, and for consistency with the coding theory literature,
we will in fact work with the Hamming metric here. Thus, codes which correct any t errors in set difference
will have minimum distance at least 4t+ 1.

Permutation-based Sketch. Recall the general construction of Section 3 for transitive metric spaces,
and observe that the set difference space is transitive. Specifically, the family of permutations Π we use is
simply the one induced by the set of all permutations on the universe [n]. Let C ⊆ {0, 1}n be any [n, k, d]
code (nonlinear) in which all words have weight exactly s, and view elements of the code as sets of size s.
We obtain the following scheme, which produces a sketch of length n logn:

Algorithm 1 (Permutation-based sketch). Input: a set A ⊆ U = [n] of size s.

1. Choose B ⊆ [n] at random from the code C.

2. Choose a random permutation π : [n]→ [n] such that π(A) = B:
(That is, choose a random matching between A and B and a random matching between [n] − A and
[n]−B.)

3. Output SS(A) = π (say, by listing π(1), ..., π(n)).

Lemma 5.1. Suppose that C is a [n, k, d] constant-weight-s code (for Hamming distance), then:

1. If d ≥ 4t + 1, there is an algorithm Rec() such that Rec(A′,SS(A)) = A for any sets A,A′ such that
1
2 |A�A′| ≤ t. The algorithm is efficient if C has an efficient decoding algorithm.

10

2. The left-over entropy is H̃∞(A | SS(A)) ≥ H∞(A) + k − log
(
n
s

)
.

Proof. (1) Given π and A′, we can compute B′ = π−1(A′). The intersection of B and B′ is the same size
as A ∩ A′, and so the Hamming distance between the characteristic vectors of B and B′ is at most 2t.
Since the code has minimum distance d ≥ 4t + 1, it can correct 2t errors, and so the closest codeword is
B = π−1(A). All operations are n logn-time except for (possibly) the random choice of B in the algorithm
and the decoding.

(2) Let X be the randomness used by the sketching algorithm. There are s! possibilities for the matching
from A to B and (n− s)! possibilities for the matching from [n]−A to [n]−B. Hence, the min-entropy of
the pair (A,X) is H∞(A) + log(s!(n− s)!). There are n! possibilities for the sketch π, and so the average
min-entropy of (A,X) given SS(A) is at least H∞(A)+ log(s!(n− s)!)− log(n!) = H∞(A)− log

(
n
s

)
. Given

A and SS(A) we can recover X exactly, and so H̃∞(A | SS(A)) is the same as H̃∞(A,X | SS(A)).

Comparing the Hamming Scheme with the Permutation Scheme. In order to get a feeling for
how the random permutation technique compares to simply using Hamming-based schemes directly, we
recall some notation from the coding theory literature. Let A(n, d, s) denote the maximum size of a binary
code for which all codewords have weight exactly s. Here n is the length of the code and d is the minimum
distance. Let A(n, d) denote the maximum size of an (unrestricted) binary code of length n and minimum
distance d. In all cases, we’re interested in codes with minimum distance d ≥ 4t + 1, since we want to
correct t errors in the set difference metric.

The code-offset construction was shown to have entropy loss n− logA(n, d) if an optimal code is used;
the random permutation scheme can have entropy loss log

(
n
s

) − logA(n, d, s) for an optimal code. The
Bassalygo-Elias inequality (see [21]) shows that the bound on the random permutation scheme is always at
least as good as the bound on the code offset scheme: A(n, d) · 2−n ≤ A(n, d, s) · (n

s

)−1. This implies that
n− logA(n, d) ≥ log

(
n
s

)− logA(n, d, s). Moreover, standard packing arguments give better constructions
of constant-weight codes than they do of ordinary codes. 3 In fact, the random permutations scheme is
optimal for this metric, just as the code-offset scheme is optimal for the Hamming metric: Lemma A.1
shows that the min-entropy loss of a secure sketch must be at least log

(
n
s

)− logA(n, d, s), in the case of a
uniform secret set A. Thus in principle, it is better to use the random permutation scheme. Nonetheless,
there are caveats. First, we do not know of explicitly constructed constant-weight codes that beat the
Elias-Bassalygo inequality and would thus lead to better entropy loss for the random permutation scheme
than for the Hamming scheme (see [7] for more on constructions of constant-weight codes and [1] for upper
bounds). Second, much more is known about efficient implementation of decoding for ordinary codes than
for constant-weight codes; for example, one can find off-the-shelf hardware and software for decoding many
binary codes. In practice, the Hamming-based scheme is likely to be more useful.

5.2 Modifying the Construction of Juels and Sudan

We now turn to the large universe setting, where n is super-polynomial in s. Juels and Sudan [18] proposed a
secure sketch for the set difference metric (called a “fuzzy vault” in that paper). They assume for simplicity
that n = |U| is a prime power and work over the field F = GF (n). On input set A, the sketch they produce
is a set of r pairs of points (xi, yi) in F , with s < r ≤ n.

Algorithm 2 (Juels-Sudan Secure Sketch). Input: a set A ⊆ U .
3This comes from the fact that the intersection of a ball of radius d with the set of all words of weight s is much smaller

than the ball of radius d itself.

11

1. Choose p() at random from the set of polynomials of degree at most k = s− 2t− 1 over F .
Write A = {x1, ..., xs}, and let yi = p(xi) for i = 1, ..., s.

2. Choose r − s distinct points xs+1, ..., xr at random from F −A.

3. For i = s+ 1, ..., r, choose yi ∈ F at random such that yi �= p(xi).

4. Output SS(A) = {(x1, y1), ..., (xr, yr)} (in lexicographic order of xi).

The parameter r dictates the amount of storage necessary, one on hand, and also the security of the
scheme (that is, for r = s the scheme leaks all information and for larger and larger r there is less
information about A). Juels and Sudan actually propose two analyses for the scheme. First, they analyze
the case where the secret A is distributed uniformly over all subsets of size s. Second, they provide an
analysis of a nonuniform password distribution, but only for the case r = n (that is, their analysis only
applies in the small universe setting, where Ω(n) storage is acceptable). Here we give a simpler analysis
which handles nonuniformity and any r ≤ n. We get the same results for a broader set of parameters.

Lemma 5.2. The entropy loss of the Juels-Sudan scheme SS() above is at most 2t log n+log
(
n
r

)−log
(
n−s
r−s

)
.

Proof. As for the code-offset, we can simply count entropies. Let X denote the random bits used by the
algorithm to generate SS(A). Choosing the polynomial p requires s−2t random choices from F . The choice
of the remaining xi’s requires log

(
n−s
r−s

)
bits, and choosing the y′is requires r−s random choices from F (we

will ignore the difference between F and F −{xi} here since it doesn’t affect the result significantly). The
min-entropy of the pair A,X is thus H̃∞(A,X) = H̃∞(A) + (r− 2t) log(n)+ log

(
n−s
r−s

)
. The output can be

described in log
((

n
r

)
nr

)
bits, and hence we get that H̃∞(A,X | SS(A)) = H̃∞(A)− 2t log n + log

(
n−s
r−s

)−
log

(
n
r

)
. Finally, note that X is entirely determined by A and SS(A), so the entropy of A,X given SS(A) is

the same as the entropy of A given SS(A).

In the large universe setting, we will have r � n (since we wish to have storage polynomial in s). In
that setting, the bound on the entropy loss of the Juels-Sudan scheme is in fact very large. We can rewrite
the entropy loss as 2t logn − log

(
r
s

)
+ log

(
n
s

)
, using the identity

(
n
r

)(
r
s

)
=

(
n
s

)(
n−s
r−s

)
. Now the entropy of

A is at most
(
n
s

)
, and so our lower bound on the remaining entropy is (log

(
r
s

) − 2t log n). To make this
quantity large requires making r very large.

Modified JS Sketches. We suggest a modification of the Juels-Sudan scheme with entropy loss at
most 2t logn and storage s log n. Our scheme has the advantage of being even simpler to analyze. As
before, we assume n is a prime power and work over F = GF (n). An intuition for the scheme is that the
numbers ys+1, ..., yr from the JS scheme need not be chosen at random. One can instead evaluate them as
yi = p′(xi) for some polynomial p′. One can then represent the entire list of pairs (xi, yi) using only the
coefficients of p′.

Algorithm 3 (Modified JS Secure Sketch). Input: a set A ⊆ U .
1. Choose p() at random from the set of polynomials of degree at most k = s− 2t− 1 over F .

2. Let p′() be the unique monic polynomial of degree exactly s such that p′(x) = p(x) for all x ∈ A.
(Write p′(x) = xs +

∑s−1
i=0 aix

i. Solve for a0, ..., as−1 using the s linear constraints p′(x) = p(x), x ∈ A.)

3. Output the list of coefficients of p′(), that is SS(A) = (a0, ..., as−1).

First, observe that solving for p′() in Step 2 is always possible, since the s constraints
∑s−1

i=0 aix
i =

p(x)− xs are in fact linearly independent (this is just polynomial interpolation).
Second, this sketch scheme can tolerate t set difference errors. Suppose we are given a set B ⊆ U which

agrees with A in at least s − t positions. Given p′ = SS(A), one can evaluate p′ on all the points in the

12

set B. The resulting vector agrees with p on at least s− t positions, and using the decoding algorithm for
Reed-Solomon codes, one can thus reconstruct p exactly (since k = s− 2t− 1). Finally, the set A can be
recovered by finding the roots of the polynomial p′ − p: since p′ − p is not identically zero and has degree
exactly s, it can have at most s roots and so p′ − p is zero only on A.

We now turn to the entropy loss of the scheme. The sketching scheme invests (s − 2t) log n bits of
randomness to choose the polynomial p. The number of possible outputs p′ is ns. If X is the invested
randomness, then the (average) min-entropy (A,X) given SS(A) is at least H̃∞(A) − 2t log n. The ran-
domness X can be recovered from A and SS(A), and so we have H̃∞(A | SS(A)) ≥ H̃∞(A)− 2t logn. We
have proved:

Lemma 5.3 (Analysis of Modified JS). The entropy loss of the modified JS scheme is at most 2t log n.
The scheme has storage (s + 1) log n for sets of size s in [n], and both the sketch generation SS() and the
recovery procedure Rec() run in polynomial time.

The short length of the sketch makes this scheme feasible for essentially any ratio of set size to universe
size (we only need log n to be polynomial in s). Moreover, for large universes the entropy loss 2t log n is
essentially optimal for the uniform case m = log

(
n
s

)
. Lemma A.1 shows that for a uniformly distributed

input, the best possible entropy loss is m−m′ ≥ log
(
n
s

)−logA(n, s, 4t+1), where A(n, s, d) is the maximum
size of a code of constant weight s and minimum Hamming distance d. Using a bound of Agrell et al ([1],
Theorem 12), the entropy loss is at least:

m−m′ ≥ log
(
n

s

)
− logA(n, s, 4t+ 1) ≥ log

(
n

s

)
− log

((
n

s− 2t

)/(
s

s− 2t

))
= log

(
n− s+ 2t

2t

)

When n ≥ s, this last quantity is roughly 2t log n, as desired.

5.3 Large Universes via the Hamming Metric: Sublinear-Time Decoding

In this section, we show that code-offset construction can in fact be adapted for small sets in large universe,
using specific properties of algebraic codes. We will show that BCH codes, which contain Hamming and
Reed-Solomon codes as special cases, have these properties.

Syndromes of Linear Codes. For a [n, k, d] linear code C with parity check matrix H, recall that
the syndrome of a word w ∈ {0, 1}n is syn(w) = Hw. The syndrome has length n − k, and the code is
exactly the set of words c such that syn(c) = 0n−k. The syndrome captures all the information necessary
for decoding. That is, suppose a codeword c is sent through a channel and the word w = c⊕ e is received.
First, the syndrome of w is the syndrome of e: syn(w) = syn(c)⊕ syn(e) = 0⊕ syn(e) = syn(e). Moreover,
for any value u, there is at most one word e of weight less than d/2 such that syn(e) = u (the existence of
a pair of distinct words e1, e2 would mean that e1 + e2 is a codeword of weight less than d). Thus, knowing
syndrome syn(w) is enough to determine the error pattern e if not too many errors occurred.

As mentioned before, we can reformulate the code-offset construction in terms of syndrome: SS(w) =
syn(w). The two schemes are equivalent: given syn(w) one can sample from w ⊕ C(X) by choosing a
random string v with syn(v) = syn(w); conversely, syn(w ⊕ C(X)) = syn(w). This reformulation gives
us no special advantage when the universe is small: storing w + C(X) is not a problem. However, it’s a
substantial improvement when n� n− k.

Syndrome Manipulation for Small-Weight Words. Suppose now that we have a small set A ⊆ [n]
of size s, where n � s. Let xA ∈ {0, 1}n denote the characteristic vector of A. If we want to use syn(xA)
as the sketch of A, then we must choose a code with n− k ≤ log

(
n
s

) ≈ s logn, since the sketch has entropy
loss (n− k) and the maximum entropy of A is log

(
n
s

)
.

13

Binary BCH codes are a family of [n, k, d] linear codes with d = 4t + 1 and k = n − 2t log n (assuming
n + 1 is a power of 2) (see, e.g. [21]). These codes are optimal for t � n by the Hamming bound, which
implies that k ≤ n − log

(
n
2t

)
[21]. Using the code-offset sketch with a BCH code C, we get entropy loss

n − k = 2t log n, just as we did for the modified Juels-Sudan scheme (recall that d ≥ 4t + 1 allows us to
correct t set difference errors).

The only problem is that the scheme appears to require computation time Ω(n), since we must compute
syn(xA) = HxA and, later, run a decoding algorithm to recover xA. For BCH codes, this difficulty can be
overcome. A word of small weight x can be described by listing the positions on which it is nonzero. We
call this description the support of x and write supp(x) (that is supp(xA) = A)).

Lemma 5.4. For a [n, k, d] binary BCH code C one can compute:

1. syn(x), given supp(x), and

2. supp(x), given syn(x) (when x has weight at most (d− 1)/2),

in time polynomial in |supp(x)| = weight(x) · log(n) and |syn(x)| = n− k.

The proof of Lemma 5.4 mainly requires a careful reworking of the standard BCH decoding algorithm.
The details are presented in Appendix B. For now, we present the resulting sketching scheme for set
difference. The algorithm works in the field GF (2m) = GF (n+1), and assumes a generator α for GF (2m)
has been chosen ahead of time.

Algorithm 4 (BCH-based Secure Sketch). Input: a set A ∈ [n] of size s, where n = 2m − 1. (Here α
is a generator for GF (2m), fixed ahead of time.)

1. Let p(x) =
∑

i∈A xi.

2. Output SS(A) = (p(α), p(α3), p(α5), ..., p(α4t+1)) (computations in GF (2m)).

Lemma 5.4 yields the algorithm Rec() which recovers A from SS(A) and any set which intersects A in
at least s − t points. However, the bound on entropy loss is easy to see: the output is 2t log n bits long,
and hence the entropy loss is at most 2t logn. We obtain:

Theorem 5.5. The BCH scheme above is a [m,m−2t logn, t] secure sketch scheme for set difference with
storage 2t log n. The algorithms SS and Rec both run in polynomial time.

6 Constructions for Edit Distance

First we note that simply applying the same approach as we took for the transitive metric spaces before
(the Hamming space and the set difference space for small universe sizes) does not work here, because the
edit metric does not seem to be transitive. Indeed, it is unclear how to build a permutation π such that for
any w′ close to w, we also have π(w′) close to x = π(w). For example, setting π(y) = y ⊕ (x⊕w) is easily
seen not to work with insertions and deletions. Similarly, if I is some sequence of insertions and deletions
mapping w to x, it is not true that applying I to w′ (which is close to w) will necessarily result in some x′

close to x. In fact, then we could even get dis(w′, x′) = 2dis(w, x) + dis(w,w′).
Perhaps one could try to simply embed the edit metric into the Hamming metric using known embed-

dings, such as conventionally used low-distorion embeddings, which provide that all distances are preserved
up to some small “distortion” factor. However, there are no known nontrivial low-distortion embeddings
from the edit metric to the Hamming metric. Moreover, it was recently proved by Andoni et al [2] that

14

no such embedding can have distortion less than 3/2, and it was conjectured that a much stronger lower
bound should hold.

Thus, as the previous approaches don’t work, we turn to the embeddings we defined specifically for
fuzzy extractors: biometric embeddings. Unlike low-distortion embeddings, biometric embeddings do not
care about relative distances, as long as points that were “close” (closer than t1) do not become “distant”
(farther apart than t2). The only additional requirement of biometric embeddings is that they preserve
some min-entropy: we do not want too many points to collide together, although collisions are allowed,
even collisions of distant points. We will build a biometric embedding from the edit distance to the set
difference.

A c-shingle [6], which is a length-c consecutive substring of a given string w. A c-shingling [6] of a string
w of length n is the set (ignoring order or repetition) of all (n− c+ 1) c-shingles of w. Thus, the range of
the c-shingling operation consists of all nonempty subsets of size at most n− c+ 1 of {0, 1}c. To simplify
our future computations, we will always arbitrarily pad the c-shingling of any string w to contain precisely
n distinct shingles (say, by adding the first n − |c-shingling| elements of {0, 1}c not present in the given
c-shingling). Thus, we can define a deterministic map SHc(w) which maps w into n substrings of {0, 1}c,
where we assume that c ≥ log2 n. Let Edit(n) stand for the edit metric over {0, 1}n, and SDif(N, s) stand
for the set difference metric over [N] where the set sizes are s. We now show that c-shingling yields pretty
good biometric embeddings for our purposes.

Lemma 6.1. For any c > log2 n, SHc is a (t1, t2 = ct1,m1,m2 = m1 − n log2 n
c)-biometric embedding of

Edit(n) into SDif(2c, n).

Proof. Assume dis(w1, w
′
1)ed ≤ t1 and that I is the smallest set of 2t1 insertions and deletions which

transforms w into w′. It is easy to see that each character deletion or insertion affects at most c
shingles, and thus the symmetric difference between SHc(w1) and SHc(w2) ≤ 2ct1, which implies that
dis(SHc(w1),SHc(w2))sd ≤ ct1, as needed.

Now, assume w1 is any string. Define gc(w1) as follows. One computes SHc(w1), and stores n resulting
shingles in lexicographic order h1 . . . hn. Next, one naturally partitions w1 into n/c disjoint shingles of
length c, call them k1 . . . kn/c. Next, for 1 ≤ j ≤ n/c, one sets pc(j) to be the index i ∈ {1 . . . n} such that
kj = hi. Namely, it tells the index of the j-th disjoint shingle of w1 in the ordered n-set SHc(w1). Finally,
one sets gc(w1) = (pc(1) . . . pc(n/c)). Notice, the length of gc(w1) is n

c · log2 n, and also that w1 can be
completely recovered from SHc(w1) and gc(w1).

Now, assume W1 is any distribution of min-entropy at least m1 on Edit(n). Since gc(W) has length
(n log2 n/c), its min-entropy is at most this much as well. But since min-entropy ofW1 drops to 0 when given
SHc(W1) and gc(W1), it means that the min-entropy of SHc(W1) must be at least m2 ≥ m1 − (n log2 n)/c,
as claimed.

We can now optimize the value c. By either Lemma 5.3 or Theorem 5.5, for arbitrary universe size (in our
case 2c) and distance threshold t2 = ct1, we can construct a secure sketch for the set difference metric with
min-entropy loss 2t2 log2(2c) = 2t1c2, which leaves us total min-entropy m′2 = m2 − 2t1c2 ≥ m1 − n log n

c −
2t1c2. Applying further Lemma 3.1, we can convert it into a fuzzy extractor over SDif(2c, n) for the min-
entropy level m2 with error ε, which can extract at least � = m′2−2 log

(
1
ε

) ≥ m1− n log n
c −2t1c2−2 log

(
1
ε

)
bits, while still correcting t2 = ct1 of errors in SDif(2c, n). We can now apply Lemma 3.3 to get an
(Edit(n),m1,m1− n log n

c − 2t1c2− 2 log
(

1
ε

)
, t1, ε)-fuzzy extractor. Let us now optimize for the value of c ≥

log2 n. We can set n log n
c = 2t1c2, which gives c = (n log n

2t1
)1/3. We get � = m1− (2t1n2 log2 n)1/3− 2 log

(
1
ε

)
and therefore

15

Theorem 6.2. There is an efficient (Edit(n),m1,m1 − (2t1n2 log2 n)1/3 − 2 log
(

1
ε

)
, t1, ε) fuzzy extractor.

Setting t1 = m3
1/(16n

2 log2 n), we get an efficient (Edit(n),m1,
m1
2 − 2 log

(
1
ε

)
,

m3
1

16n2 log2 n
, ε) fuzzy extractor.

In particular, if m1 = Ω(n), one can extract Ω(n) bits while tolerating Ω(n/ log2 n) insertions and deletions.

Acknowledgements

We thank Piotr Indyk for discussions about embeddings and for his help in the proof of Lemma 6.1. We
are also thankful to Madhu Sudan for helpful discussions about the construction of [18] and the uses of
error-correcting codes. Finally, we thank Rafi Ostrovsky for discussions in the initial phases of this work
and Pim Tuyls for pointing out relevant previous work.

The work of the first author was partly funded by the National Science Foundation under CAREER
Award No. CCR-0133806 and Trusted Computing Grant No. CCR-0311095, and by the New York
University Research Challenge Fund 25-74100-N5237. The work of the second author was partly funded
by the National Science Foundation under Grant No. CCR-0311485. The work of the third author was
partly funded by US A.R.O. grant DAAD19-00-1-0177 and by a Microsoft Fellowship.

References

[1] E. Agrell, A. Vardy, and K. Zeger. Upper bounds for constant-weight codes. IEEE Transactions on
Information Theory, 46(7), pp. 2373–2395, 2000.

[2] A. Andoni, M. Deza, A. Gupta, P. Indyk, S. Raskhodnikova. Lower bounds for embedding edit
distance into normed spaces. In Proc. ACM Symp. on Discrete Algorithms, 2003, pp. 523–526.

[3] C. Barral and J.-S. Coron and D. Naccache. Externalized Fingerprint Matching. Cryptology ePrint
Archive, Report 2004/021, 2004.

[4] C. Bennett, G. Brassard, and J. Robert. Privacy Amplification by Public Discussion. SIAM J. on
Computing, 17(2), pp. 210–229, 1988.

[5] C. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized Privacy Amplification. IEEE
Transactions on Information Theory, 41(6), pp. 1915-1923, 1995.

[6] A. Broder. On the resemblence and containment of documents. In Compression and Complexity of
Sequences, 1997.

[7] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A new table of constant weight
codes,” IEEE Transactions on Information Theory, 36, p. 1334–1380, 1990.

[8] C. Crépeau. Efficient Cryptographic Protocols Based on Noisy Channels. In Advances in Cryptology
— EUROCRYPT 1997, pp. 306–317.

[9] L. Csirmaz and G.O.H. Katona. Geometrical Cryptography. In Proc. International Workshop on
Coding and Cryptography, 2003.

[10] G. Davida, Y. Frankel, B. Matt. On enabling secure applications through off-line biometric identifi-
cation. In Proc. IEEE Symp. on Security and Privacy, pp. 148–157, 1998.

[11] Y.Z. Ding. Manuscript.

16

[12] C. Ellison, C. Hall, R. Milbert, B. Schneier. Protecting Keys with Personal Entropy. Future Generation
Computer Systems, 16, pp. 311–318, 2000.

[13] N. Frykholm. Passwords: Beyond the Terminal Interaction Model. Master’s Thesis, Umea University.

[14] N. Frykholm, A. Juels. Error-Tolerant Password Recovery. In Proc. ACM Conf. Computer and
Communications Security, 2001, pp. 1–8.

[15] V. Guruswami, M. Sudan. Improved Decoding of Reed-Solomon and Algebraic-Geometric Codes. In
Proc. 39th IEEE Symp. on Foundations of Computer Science, 1998, pp. 28–39.

[16] J. H̊astad, R. Impagliazzo, L. Levin, M. Luby. A Pseudorandom generator from any one-way function.
In Proc. 21st ACM Symp. on Theory of Computing, 1989.

[17] A. Juels, M. Wattenberg. A Fuzzy Commitment Scheme. In Proc. ACM Conf. Computer and Com-
munications Security, 1999, pp. 28–36.

[18] A. Juels and M. Sudan. A Fuzzy Vault Scheme. In IEEE International Symposium on Information
Theory, 2002.

[19] J. Kelsey, B. Schneier, C. Hall, D. Wagner. Secure Applications of Low-Entropy Keys. In Proc. of
Information Security Workshop, pp. 121–134, 1997.

[20] J.-P. M. G. Linnartz, P. Tuyls. New Shielding Functions to Enhance Privacy and Prevent Misuse of
Biometric Templates. In AVBPA 2003, p. 393–402.

[21] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1992, 183 pp.

[22] F. Monrose, M. Reiter, S. Wetzel. Password Hardening Based on Keystroke Dynamics. In Proc. ACM
Conf. Computer and Communications Security, 1999, p. 73–82.

[23] F. Monrose, M. Reiter, Q. Li, S. Wetzel. Cryptographic key generation from voice. In Proc. IEEE
Symp. on Security and Privacy, 2001.

[24] F. Monrose, M. Reiter, Q. Li, S. Wetzel. Using voice to generate cryptographic keys. In Proc. of
Odyssey 2001, The Speaker Verification Workshop, 2001.

[25] R. Morris, K. Thomson. Password Security: a case history. In Comm. ACM, 22(11), pp. 594–597,
1979.

[26] N. Nisan, A. Ta-Shma. Extracting Randomness: a survey and new constructions. In JCSS, 58(1),
pp. 148–173, 1999.

[27] N. Nisan, D. Zuckerman. Randomness is Linear in Space. In JCSS, 52(1), pp. 43–52, 1996.

[28] J. Radhakrishnan and A. Ta-Shma. Tight bounds for depth-two superconcentrators. In Proc. 38th
IEEE Symp. on Foundations of Computer Science, 1997, pp. 585–594.

[29] R. Shaltiel. Recent developments in Explicit Constructions of Extractors. Bulletin of the EATCS, 77,
pp. 67–95, 2002.

[30] V. Shoup. A Proposal for an ISO Standard for Public Key Encryption. Available at
http://eprint.iacr.org/2001/112, 2001.

[31] E. Verbitskiy, P. Tuyls, D. Denteneer, J.-P. Linnartz. Reliable Biometric Authentication with Privacy
Protection. In Proc. 24th Benelux Symposium on Information theory, 2003.

17

A Lower Bounds from Coding

Recall that an (M,K, t) code is a subset of the metric spaceM which can correct t errors (this is slightly
different from the usual notation of the coding theory literature.

Let K(M, t) be the largest K for which there exists and (M,K, t)-code. Given any set S of 2m points
in M, we let K(M, t, S) be the largest K such that there exists an (M,K, t)-code all of whose K points
belong to S. Finally, we let L(M, t,m) = log(min|S|=2m K(n, t, S)). Of course, when m = log |M| = logN ,
we get L(M, t, n) = logK(M, t). The exact determination of quantities K(M, t) and K(M, t, S) form
the main problem of coding theory, and is typically very hard. To the best of our knowledge, the quantity
L(M, t,m) was not explicitly studied in any of three metrics that we study, and its exact determination
seems very hard as well.

We give two simple lower bounds (one for secure sketches, the other for fuzzy extractors) which, somewhat
surprisingly, show that our constructions for the Hamming and Set Difference metrics are essentially
optimal, at least when the original input distribution is uniform.

Lemma A.1. The existence of (M,m,m′, t) secure sketch implies that m′ ≤ L(M, t,m). In particular,
when m = logN (i.e., when the password is truly uniform), m′ ≤ logK(M, t).

Proof. Assume SS is such secure sketch. Let S be any set of size 2m inM, and let W be uniform over S.
Then we must have H̃∞(W | SS(W)) ≥ m′. In particular, there must be some particular value v such that
H∞(W | SS(W) = v) ≥ m′. But this means that conditioned on SS(W) = v, there are at least 2m′

points
w in S (call this set T) which could produce SS(W) = v. We claim that these 2m′

values of w form a code
of error-correcting distance t. Indeed, otherwise there would be a point w′ ∈ M such that dis(w0, w

′) ≤ t
and dis(w1, w

′) ≤ t for some w0, w1 ∈ T . But then we must have that Rec(w′, v) is equal to both w0 and
w1, which is impossible. Thus, the set T above must form an (M, 2m′

, t)-code inside S, which means that
m′ ≤ logK(M, t, S). Since S was arbitrary, the bound follows.

Lemma A.2. The existence of (M,m, �, t, ε)-fuzzy extractors implies that � ≤ L(M, t,m)− log(1− ε). In
particular, when m = logN (i.e., when the password is truly uniform), � ≤ logK(M, t)− log(1− ε).

Proof. Assume (Gen,Rep) is such a fuzzy extractor. Let S be any set of size 2m inM, and let W be uniform
over S. Then we must have SD (〈R,P 〉, 〈U�, P 〉) ≤ ε. In particular, there must be some particular value p
of P such that R is ε-close to U� conditioned on P = p. In particular, this means that conditioned on P = p,
there are at least (1−ε)2� points r ∈ {0, 1}� (call this set T) which could be extracted with P = p. Now, map
every r ∈ T to some arbitrary w ∈ S which could have produced r with nonzero probability given P = p,
and call this map C. We claim that C must define a code with error-correcting distance t. Indeed, otherwise
there would be a point w′ ∈ M such that dis(C(r1), w′) ≤ t and dis(C(r2), w′) ≤ t for some r1 �= r2. But
then we must have that Rep(w′, p) is equal to both r1 and r2, which is impossible. Thus, the map C above
must form an (M, 2�+log(1−ε), t)-code inside S, which means that � ≤ logK(M, t, S)− log(1− ε). Since S
was arbitrary, the bound follows.

Observe that, as long as ε < 1/2, we have 0 < − log(1 − ε) < 1, so the lowerbounds on secure sketches
and fuzzy extractors differ by less than a bit.

B Syndrome Decoding in Sublinear Time

We show that the standard decoding algorithm for BCH codes can be modified to run in time polynomial
in the length syndrome. This works for BCH codes over any field GF (q), which include Hamming codes in

18

the binary case and Reed-Solomon for the case q > n. BCH codes are handled in detail in many textbooks
(e.g., [21]); our presentation here is quite terse. For simplicity, we only discuss primitive, narrow-sense
BCH codes here; the discussion extends easily to the general case.

Definition 5. Let n = qm − 1. The narrow-sense, primitive BCH code of designed distance δ and length
n over GF (q) is given by the set of vectors (c0, ..., cn−1) ∈ GF (q)n such that 0 = c(α1) = c(α2) = · · · =
c(αδ−1), where c(x) =

∑n−1
i=0 cix

i is a polynomial over GF (qm) and α is a fixed generator for GF (qm).

Readers may be used to seeing a different definition of these codes: one can also take the set of vectors
(p(α), . . . , p(αn−1)) given by polynomials with coefficients in GF (qm) all of whose values lie in GF (q) ⊆
GF (qm). The equivalence of the various definitions is standard.

Returning to Definition 5, we can see that some coniditions are redundant. Specifically, because ci ∈
GF (q), we have c(xq) = (c(x))q. Thus, we discard a 1/q fraction of the conditions on c without changing
the code. The syndrome of a word w can thus be computed as the vector of values w(αi), where 1 ≤ i < δ
and q � | i and the polynomial w() is given by w(x) =

∑n−1
i=0 wix

i. Each constraint c(αi) = 0 on codewords
results in at most m constraints (in the field GF (q)) over the vector c.

Fact B.1. The q-ary BCH code of length n and designed distance d has dimension k ≥ n −m(δ − 1) +
(1/q)m �δ/q� and minimum distance d ≥ δ.

The parity check matrix for a BCH code is given by:

H =




α α2 · · · αn−1

α2 α4 · · · α2(n−1)

...
αδ−1 α2(δ−1) · · · α(n−1)(δ−1)




As mentioned above, all rows for αi with q|i are redundant. Nevertheless, the first part of Lemma 5.4 is
clear: to compute the syndrome of a low-weight word, one need only be able to compute any given column
of the parity check matrix in time polynomial in the length of the column. In fact, the computation
time is almost linear, since one only needs to do one exponentiation and δ multiplications to compute any
particular row.

A low-weight word p ∈ GF (q)n can be represented either as a long string or, more compactly, as a list
of positions where it is nonzero and its values at those points. We call this representation the support list
of x and denote it supp(p) = {(i, pi)}i:pi �=0.

Lemma B.2. For a q-ary BCH code C of designed distance δ, one can compute:

1. syn(p), given supp(p), and

2. supp(p), given syn(p) (when p has weight at most (δ − 1)/2),

in time polynomial in |supp(p)| = weight(p) · log(n) · log(q) and |syn(p)| = (n− k) log q.

Proof. Recall that syn(p) = (p(α), ..., p(αδ−1)) where p(x) =
∑n−1

i=0 pi. Part (1) is easy, since any column of
the parity check matrix H can be computed with one exponentiation and δ− 1 multiplications in GF (qm).
For (2), we carefully analyze the various steps of the standard BCH decoding algorithm, based on its
presentation in [21]. Let M = {i|pi �= 0}, and define

σ(z) =
∏
i∈M

(1− αiz) and ω(z) = σ(z)
∑
j∈M

pjα
j

(1− αjz)

19

Since (1 − αjz) divides σ(z) for j ∈ M , we see that ω(z) is in fact a polynomial of degree at most
|M | = weight(p) ≤ (δ − 1)/2. The polynomials σ(z) and ω(z) are known as the error locator polynomial
and evaluator polynomial, respectively. If we now consider formal power series over GF (qm), we get:

ω(z)
σ(z)

=
∑
j∈B

pjα
jz

(1− αjz)
=
∞∑

�=1

z�p(α�)

We are given S� = p(α�) for � = 1, ..., δ. Let S(z) =
∑δ−1

�=1 S�z
�. The equation above implies that

S(z)σ(z) ≡ ω(z) mod zδ. The solution ω(), σ() is “unique” in the following sense: any other solution
ω′(z), σ′(z) satisfies w′(z)/σ′(z) = ω(z)/σ(z). Multiplying the initial congruence by σ′() yields ω(z)σ′(z) ≡
σ(z)ω′(z) mod zδ. Since the both sides of the congruence have degree at most δ−1, they are in fact equal
as polynomials.

Thus it is sufficient to find any solution σ′(), ω′() to the congruence S(z)σ′(z) = ω′(z) mod zδ and
reduce the resulting fraction ω′(z)/σ′(z) to botain a solution ω(), σ() of minimal degree. Finally, the roots
of σ(z) are the points α−i for i ∈ M , and the exact value of pi can be recovered using the equation
ω(α−i) = pi

∏
j∈M,j �=i(1− αj−i).

Solving the congruence only requires solving a system of δ − 1 linear equations, which is certainly
polynomial in δ log q. The reduction of the fraction ω′(z)/σ′(z) requires only running Euclid’s algorithm
for finding the g.c.d. of two polynomials. Finally, finding the roots of σ() can be done in time polynomial
in the degree of σ(), which is at most δ/2.

20

