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Abstract

We provide formal definitions and efficient secure techniques for

• turning noisy information into keys usable foranycryptographic application, and, in particular,

• reliably and securely authenticating biometric data.

Our techniques apply not just to biometric information, but to any keying material that, unlike tradi-
tional cryptographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We propose
two primitives: afuzzy extractorreliably extracts nearly uniform randomnessR from its input; the ex-
traction is error-tolerant in the sense thatR will be the same even if the input changes, as long as it
remains reasonably close to the original. Thus,R can be used as a key in a cryptographic application.
A secure sketchproduces public information about its inputw that does not revealw, and yet allows
exact recovery ofw given another value that is close tow. Thus, it can be used to reliably reproduce
error-prone biometric inputs without incurring the security risk inherent in storing them.

We define the primitives to be both formally secure and versatile, generalizing much prior work. In
addition, we provide nearly optimal constructions of both primitives for various measures of “closeness”
of input data, such as Hamming distance, edit distance, and set difference.
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1 Introduction

Cryptography traditionally relies on uniformly distributed and precisely reproducible random strings for its
secrets. Reality, however, makes it difficult to create, store, and reliably retrieve such strings. Strings that
are neither uniformly random nor reliably reproducible seem to be more plentiful. For example, a random
person’s fingerprint or iris scan is clearly not a uniform random string, nor does it get reproduced precisely
each time it is measured. Similarly, a long pass-phrase (or answers to 15 questions [FJ01] or a list of favorite
movies [JS02]) is not uniformly random and is difficult to remember for a human user. This work is about
using such nonuniform and unreliable secrets in cryptographic applications. Our approach is rigorous and
general, and our results have both theoretical and practical value.

To illustrate the use of random strings on a simple example, let us consider the task of password authen-
tication. A user Alice has a passwordw and wants to gain access to her account. A trusted server stores
some informationy = f(w) about the password. When Alice entersw, the server lets Alice in only if
f(w) = y. In this simple application, we assume that it is safe for Alice to enter the password for the veri-
fication. However, the server’s long-term storage is not assumed to be secure (e.g.,y is stored in a publicly
readable/etc/passwd file in UNIX [MT79]). The goal, then, is to design an efficientf that is hard to
invert (i.e., giveny it is hard to findw′ s.t. f(w′) = y), so that no one can figure out Alice’s password from
y. Recall that such functionsf are calledone-way functions.

Unfortunately, the solution above has several problems when used with passwordsw available in real
life. First, the definition of a one-way function assumes thatw is truly uniform, and guarantees nothing if
this is not the case. However, human-generated and biometric passwords are far from uniform, although
they do have some unpredictability in them. Second, Alice has to reproduce her passwordexactlyeach
time she authenticates herself. This restriction severely limits the kinds of passwords that can be used.
Indeed, a human can precisely memorize and reliably type in only relatively short passwords, which do not
provide an adequate level of security. Greater levels of security are achieved by longer human-generated and
biometric passwords, such as pass-phrases, answers to questionnaires, handwritten signatures, fingerprints,
retina scans, voice commands, and other values selected by humans or provided by nature, possibly in
combination (see [Fry00] for a survey). These measurements seem to contain much more entropy than
human-memorizable passwords. However, two biometric readings are rarely identical, even though they are
likely to be close; similarly, humans are unlikely to precisely remember their answers to multiple question
from time to time, though such answers will likely be similar. In other words, the ability to tolerate a
(limited) number of errors in the password while retaining security is crucial if we are to obtain greater
security than provided by typical user-chosen short passwords.

The password authentication described above is just one example of a cryptographic application where
the issues of nonuniformity and error-tolerance naturally come up. Other examples include any crypto-
graphic application, such as encryption, signatures, or identification, where the secret key comes in the form
of noisy nonuniform data.

OUR DEFINITIONS. As discussed above, an important general problem is to convert noisy nonuniform in-
puts into reliably reproducible, uniformly random strings. To this end, we propose a new primitive, termed
fuzzy extractor. It extracts a uniformly random stringR from its inputw in a noise-tolerant way. Noise tol-
erance means that if the input changes to somew′ but remains close, the stringR can be reproduced exactly.
To assist in reproducingR fromw′, the fuzzy extractor outputs a non-secret stringP . It is important to note
R remains uniformly random even givenP . (Strictly speaking,R will be ε-close to uniform rather than
uniform; ε can be made exponentially small, which makesR as good as uniform for the usual applications.)

Our approach is general:R extracted fromw can be used as a key in a cryptographic application,
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Figure 1: (a) secure sketch;(b) fuzzy extractor;(c) a sample application: user who encrypts a sensitive
record using a cryptographically strong, uniform keyR extracted from biometricw via a fuzzy extractor;
bothP and the encrypted record need not be kept secret, because no one can decrypt the record without a
w′ that is close.

but, unlike traditional keys, need not be stored (because it can be recovered from anyw′ that is close to
w). We define fuzzy extractors to beinformation-theoreticallysecure, thus allowing them to be used in
cryptographic systems without introducing additional assumptions (of course, the cryptographic application
itself will typically have computational, rather than information-theoretic, security).

For a concrete example of how to use fuzzy extractors, in the password authentication case, the server
can store(P, f(R)). When the user inputsw′ close tow, the server reproduces the actualR usingP and
checks iff(R) matches what it stores. The presence ofP will help the adversary invertf(R) only by
the additive amount ofε, becauseR is ε-close to uniform even givenP .1 Similarly, R can be used for
symmetric encryption, for generating a public-secret key pair, or other applications that utilize uniformly
random secrets.2

As a step in constructing fuzzy extractors, and as an interesting object in its own right, we propose
another primitive, termedsecure sketch. It allows precise reconstruction of a noisy input, as follows: on
inputw, a procedure outputs a sketchs. Then, givens and a valuew′ close tow, it is possible to recoverw.
The sketch is secure in the sense that it does not reveal much aboutw: w retains much of its entropy even
if s is known. Thus, instead of storingw for fear that later readings will be noisy, it is possible to stores
instead, without compromising the privacy ofw. A secure sketch, unlike a fuzzy extractor, allows for the
precise reproduction of the original input, but does not address nonuniformity.

Secure sketches, fuzzy extractors and a sample encryption application are illustrated in Figure 1.

1 To be precise, we should note that because we do not requirew, and henceP , to be efficiently samplable, we need thatf is a
one-way function even in the presence of samples fromw; this is implied by security against circuit families.

2 Naturally, the security of the resulting system should be properly defined and proven, and will depend on the possible ad-
versarial attacks. In particular, in this work we do not consider active attacks onP or scenarios in which the adversary can force
multiple invocations of the extractor with relatedw and gets to observe the differentP values. See [Boy04, BDK+05, DKRS06]
for follow-up work that considers attacks on the fuzzy extractor itself.
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Secure sketches and extractors can be viewed as providing fuzzy key storage: they allow recovery of
the secret key (w or R) from a faulty readingw′ of the passwordw, by using some public information (s
or P ). In particular, fuzzy extractors can be viewed as error- and nonuniformity-tolerant secret keykey-
encapsulation mechanisms[Sho01].

Because different biometric information has different error patterns, we do not assume any particular
notion of closeness betweenw′ andw. Rather, in defining our primitives, we simply assume thatw comes
from some metric space, and thatw′ is no more than a certain distance fromw in that space. We consider
particular metrics only when building concrete constructions.

GENERAL RESULTS. Before proceeding to construct our primitives for concrete metrics, we make some
observations about our definitions. We demonstrate that fuzzy extractors can be built out of secure sketches
by utilizing strongrandomness extractors[NZ96], such as, for example, universal hash functions [CW79,
WC81] (randomness extractors, defined more precisely below, are families of hash which “convert” a high
entropy input into a shorter, uniformly distributed output). We also provide a general technique for con-
structing secure sketches from transitive families of isometries, which is instantiated in concrete construc-
tions later in the paper. Finally, we define a notion of abiometric embeddingof one metric space into
another, and show that the existence of a fuzzy extractor in the target space, combined with a biometric
embedding of the source into the target, implies the existence of a fuzzy extractor in the source space.

These general results help us in building and analyzing our constructions.

OUR CONSTRUCTIONS. We provide constructions of secure sketches and fuzzy extractors in three metrics:
Hamming distance, set difference, and edit distance. Unless stated otherwise, all the constructions are new.

Hamming distance (i.e., the number of symbol positions that differ betweenw andw′) is perhaps the
most natural metric to consider. We observe that the “fuzzy-commitment” construction of Juels and Wat-
tenberg [JW99] based on error-correcting codes can be viewed as a (nearly optimal) secure sketch. We then
apply our general result to convert it into a nearly optimal fuzzy extractor. While our results on the Ham-
ming distance essentially use previously known constructions, they serve as an important stepping stone for
the rest of the work.

The set difference metric (i.e., size of the symmetric difference of two input setsw andw′) is appropriate
whenever the noisy input is represented as a subset of features from a universe of possible features.3 We
demonstrate the existence of optimal (with respect to entropy loss) secure sketches and fuzzy extractors for
this metric. However, this result is mainly of theoretical interest, because (1) it relies on optimal constant-
weight codes, which we do not know how to construct, and (2) it produces sketches of length proportional
to the universe size. We then turn our attention to more efficient constructions for this metric in order handle
exponentially large universes. We provide two such constructions.

First, we observe that the “fuzzy vault” construction of Juels and Sudan [JS02] can be viewed as a secure
sketch in this metric (and then converted to a fuzzy extractor using our general result). We provide a new,
simpler analysis for this construction, which bounds the entropy lost fromw givens. This bound is quite
high unless one makes the size of the outputs very large. We then improve the Juels-Sudan construction to
reduce the entropy loss and the length ofs to near optimal. Our improvement in the running time and in the
length ofs is exponential for large universe sizes. However, this improved Juels-Sudan construction retains
a drawback of the original: it is able to handle only sets of the same fixed size (in particular,|w′|must equal
|w|.)

3A perhaps unexpected application of the set difference metric was explored in [JS02]: a user would like to encrypt a file (e.g.,
her phone number) using a small subset of values from a large universe (e.g., her favorite movies) in such a way that those and only
those with a similar subset (e.g., similar taste in movies) can decrypt it.
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Second, we provide an entirely different construction, called PinSketch, that maintains the exponential
improvements in sketch size and running time and also handles variable set size. To obtain it, we note that
in the case of a small universe, a set can be simply encoded as its characteristic vector (1 if an element is
in the set, 0 if it is not), and set difference becomes Hamming distance. Even though the length of such a
vector becomes unmanageable as the universe size grows, we demonstrate that this approach can be made
to work quite efficiently even for exponentially large universes (in particular, because it is not necessary to
ever actually write the vector down). This involves a result that may be of independent interest: we show
that BCH codes can be decoded in time polynomial in theweightof the received corrupted word (i.e., in
sublineartime if the weight is small).

Finally, edit distance (i.e., the number of insertions and deletions needed to convert one string into the
other) comes up, for example, when the password is entered as a string, due to typing errors or mistakes
made in handwriting recognition. We discuss two approaches for secure sketches and fuzzy extractors for
this metric. First, we observe that a recent low-distortion embedding of Ostrovsky and Rabani [OR05]
immediately gives a construction for edit distance. The construction performs well when the number of
errors to be corrected is very small (saynα for α < 1) but cannot tolerate a large number of errors. Second,
we give a biometric embedding (which is less demanding than a low-distortion embedding, but suffices for
obtaining fuzzy extractors) from the edit distance metric into the set difference metric. Composing it with a
fuzzy extractor for set difference gives a different construction for edit distance, which does better whent is
large; it can handle as many asO(n/ log2 n) errors with meaningful entropy loss.

Most of the above constructions are quite practical; some implementations are available [HJR].

EXTENDING RESULTS FORPROBABILISTIC NOTIONS OFCORRECTNESS. The definitions and construc-
tions just described use a very strong error model: we require that secure sketches and fuzzy extractors
accepteverysecretw′ which is sufficiently close to the original secretw, with probability 1. Such a strin-
gent model is useful, as it makes no assumptions on the stochastic and computational properties of the error
process. However, slightly relaxing the error conditions allows constructions which tolerate a (provably)
much larger number of errors, at the price of restricting the settings in which the constructions can be ap-
plied. In Section 8, we extend the definitions and constructions of earlier sections to several relaxed error
models.

It is well-known that in the standard setting of error-correction for a binary communication channel,
one can tolerate many more errors when the errors are random and independent than when the errors are
determined adversarially. In contrast, we present fuzzy extractors that meet Shannon’s bounds for correcting
random errors and, moreover, can correct the same number of errors even when errors are adversarial. In our
setting, therefore, under a proper relaxation of the correctness condition, adversarial errors are no stronger
than random ones. The constructions are quite simple, and draw on existing techniques from the coding
literature [BBR88, DGL04, Gur03, Lan04, MPSW05].

RELATION TO PREVIOUS WORK. Since our work combines elements of error correction, randomness
extraction and password authentication, there has been a lot of related work.

The need to deal with nonuniform and low-entropy passwords has long been realized in the security
community, and many approaches have been proposed. For example, Kelsey et al. [KSHW97] suggested
usingf(w, r) in place ofw for the password authentication scenario, wherer is a public random “salt,” to
make a brute-force attacker’s life harder. While practically useful, this approach does not add any entropy
to the password, and does not formally address the needed properties off . Another approach, more closely
related to ours, is to add biometric features to the password. For example, Ellison et al. [EHMS00] proposed
asking the user a series ofn personalized questions, and using these answers to encrypt the “actual” truly
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random secretR. A similar approach using user’s keyboard dynamics (and, subsequently, voice [MRLW01a,
MRLW01b]) was proposed by Monrose et al. [MRW99]. These approaches require the design of a secure
“fuzzy encryption.” The above works proposed heuristic designs (using various forms of Shamir’s secret
sharing), but gave no formal analysis. Additionally, error tolerance was addressed only by brute force search.

A formal approach to error tolerance in biometrics was taken by Juels and Wattenberg [JW99] (for
less formal solutions, see [DFMP99, MRW99, EHMS00]), who provided a simple way to tolerate errors
in uniformly distributedpasswords. Frykholm and Juels [FJ01] extended this solution and provided en-
tropy analysis to which ours is similar. Similar approaches have been explored earlier in seemingly unre-
lated literature on cryptographic information reconciliation, often in the context of quantum cryptography
(where Alice and Bob wish to derive a secret key from secrets that have small Hamming distance), particu-
larly [BBR88, BBCS91]. Our construction for the Hamming distance is essentially the same as a component
of the quantum oblivious transfer protocol of [BBCS91].

Juels and Sudan [JS02] provided the first construction for a metric other than Hamming: they con-
structed a “fuzzy vault” scheme for the set difference metric. The main difference is that [JS02] lacks a
cryptographically strong definition of the object constructed. In particular, their construction leaks a signifi-
cant amount of information about their analog ofR, even though it leaves the adversary with provably “many
valid choices” forR. In retrospect, their informal notion is closely related to our secure sketches. Our con-
structions in Section 6 improve exponentially over the construction of [JS02] for storage and computation
costs, in the setting when the set elements come from a large universe.

Linnartz and Tuyls [LT03] defined and constructed a primitive very similar to a fuzzy extractor (that
line of work was continued in [VTDL03].) The definition of [LT03] focuses on the continuous spaceRn,
and assumes a particular input distribution (typically a known, multivariate Gaussian). Thus, our definition
of a fuzzy extractor can be viewed as a generalization of the notion of a “shielding function” from [LT03].
However, our constructions focus on discrete metric spaces.

Other approaches have also been taken for guaranteeing the privacy of noisy data. Csirmaz and Katona
[CK03] considered quantization for correcting errors in “physical random functions.” (This corresponds
roughly to secure sketches with no public storage.) Barral, Coron and Naccache [BCN04] proposed a
system for offline, private comparison of fingerprints. Although seemingly similar, the problem they study
is complementary to ours, and the two solutions can be combined to yield systems which enjoy the benefits
of both.

Work on privacy amplification, e.g., [BBR88, BBCM95], as well as work on derandomization and hard-
ness amplification, e.g., [HILL99, NZ96], also addressed the need to extract uniform randomness from a
random variable about which some information has been leaked. A major focus of follow-up research has
been the development of (ordinary, not fuzzy) extractors with short seeds (see [Sha02] for a survey). We
use extractors in this work (though for our purposes, universal hashing is sufficient). Conversely, our work
has been applied recently to privacy amplification: Ding [Din05] used fuzzy extractors for noise tolerance
in Maurer’s bounded storage model [Mau93].

Independently of our work, similar techniques appeared in the literature on non-cryptographic informa-
tion reconciliation [MTZ03, CT04] (where the goal is communication efficiency rather than secrecy). The
relationship between secure sketches and efficient information reconciliation is explored further in Section 9,
which discusses, in particular, how our secure sketches for set differences provide more efficient solutions
to the set and string reconciliation problems.

FOLLOW-UP WORK. Since the original presentation of this paper [DRS04], several follow-up works have
appeared (e.g., [Boy04, BDK+05, DS05, DORS06, Smi07, CL06, LSM06, CFL06]). We refer the reader to
a recent survey about fuzzy extractors [DRS07] for more information.
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2 Preliminaries

Unless explicitly stated otherwise, all logarithms below are base2. TheHamming weight(or justweight)
of a string is the number of nonzero characters in it. We useU` to denote the uniform distribution oǹ-bit
binary strings. If an algorithm (or a function)f is randomized, we use the semicolon when we wish to make
the randomness explicit: i.e., we denote byf(x; r) the result of computingf on inputx with randomness
r. If X is a probability distribution, thenf(X) is the distribution induced on the image off by applying
the (possibly probabilistic) functionf . If X is a random variable, we will (slightly) abuse notation and also
denote byX the probability distribution on the range of the variable.

2.1 Metric Spaces

A metric space is a setM with a distance functiondis : M×M → R+ = [0,∞). For purposes of this
of work,M will always be a finite set, and the distance function will only take on integer values (with
dis(x, y) = 0 if and only if x = y), and will obey symmetrydis(x, y) = dis(y, x) and the triangle inequality
dis(x, z) ≤ dis(x, y) + dis(y, z) (we adopt these requirements for simplicity of exposition, even though the
definitions and most of the results below can be generalized to remove these restrictions).

We will concentrate on the following metrics.

1. Hamming metric. HereM = Fn for some alphabetF , anddis(w,w′) is the number of positions in
which the stringsw andw′ differ.

2. Set difference metric. HereM consists of all subsets of a universeU . For two setsw,w′, their

symmetric differencew4w′ def= {x ∈ w ∪ w′ | x /∈ w ∩ w′}. The distance between two setsw,w′ is
|w4w′|. 4 We will sometimes restrictM to contain onlys-element subsets for somes.

3. Edit metric. HereM = F∗, and the distance betweenw andw′ is defined to be the smallest num-
ber of character insertions and deletions needed to transformw into w′. 5 (This is different from
the Hamming metric because insertions and deletions shift the characters that are to the right of the
insertion/deletion point.)

As already mentioned, all three metrics seem natural for biometric data.

2.2 Codes and Syndromes

Since we want to achieve error tolerance in various metric spaces, we will useerror-correcting codesfor
a particular metric. A codeC is a subset{w0, . . . , wK−1} of K elements ofM. The map fromi to wi,
which we will also sometimes denote byC, is calledencoding. Theminimum distanceof C is the smallest
d > 0 such that for alli 6= j we havedis(wi, wj) ≥ d. In our case of integer metrics, this means that one
can detect up to(d − 1) “errors” in an element ofM. The error-correcting distanceof C is the largest
numbert > 0 such that for everyw ∈ M there exists at most one codewordc in the ball of radiust around
w: dis(w, c) ≤ t for at most onec ∈ C. This means that one can correct up tot errors in an elementw of
M; we will use the termdecodingfor the map that finds, givenw, thec ∈ C such thatdis(w, c) ≤ t (note

4In the preliminary version of this work [DRS04], we worked with this metric scaled by1
2
, that is the distance was1

2
|w4w′|.

Not scaling makes more sense, particularly whenw andw′ are of potentially different sizes since|w4w′| may be odd. It also
agrees with the hamming distance of characteristic vectors; see Section 6.

5Again, in [DRS04], we worked with this metric scaled by1
2
. Likewise, this makes little sense when strings can be of different

lengths, and we avoid it here.
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that for somew, suchc may not exist, but if it exists, it will be unique; note also that decoding is not the
inverse of encoding in our terminology). For integer metrics by triangle inequality we are guaranteed that
t ≥ b(d− 1)/2c. Since error correction will be more important than error detection in our applications, we
denote the corresponding codes as(M,K, t)-codes. For efficiency purposes, we will often want encoding
and decoding to be polynomial-time.

For the Hamming metric overFn, we will sometimes callk = log|F|K thedimensionof the code, and
denote the code itself as an[n, k, d = 2t+1]F -code, following the standard notation in the literature. We will
denote byA|F|(n, d) the maximumK possible in such a code (omitting the subscript when|F| = 2), and
byA(n, d, s) the maximumK for such a code over{0, 1}n with the additional restriction that all codewords
have exactlys ones.

If the code is linear (i.e.,F is a field,Fn is a vector space overF andC is a linear subspace), then
one can fix a parity-check matrixH as any matrix whose rows generate the orthogonal spaceC⊥. Then

for any v ∈ Fn, the syndromesyn(v) def= Hv. The syndrome of a vector is its projection onto subspace
that is orthogonal to the code, and can thus be intuitively viewed as the vector modulo the code. Note that
v ∈ C ⇔ syn(v) = 0. Note also thatH is an(n− k)× n matrix, and thatsyn(v) is n− k bits long.

The syndrome captures all the information necessary for decoding. That is, suppose a codewordc is
sent through a channel and the wordw = c + e is received. First, the syndrome ofw is the syndrome ofe:
syn(w) = syn(c) + syn(e) = 0 + syn(e) = syn(e). Moreover, for any valueu, there is at most one worde
of weight less thand/2 such thatsyn(e) = u (because the existence of a pair of distinct wordse1, e2 would
mean thate1 − e2 is a codeword of weight less thand, but since0n is also a codeword and the minimum
distance of the code isd, this is impossible). Thus, knowing syndromesyn(w) is enough to determine the
error patterne if not too many errors occurred.

2.3 Min-Entropy, Statistical Distance, Universal Hashing, and Strong Extractors

When discussing security, one is often interested in the probability that the adversary predicts a random
value (e.g., guesses a secret key). The adversary’s best strategy, of course, is to guess the most likely value.
Thus,predictabilityof a random variableA is maxa Pr[A = a], and, correspondingly,min-entropyH∞(A)
is− log(maxa Pr[A = a]) (min-entropy can thus be viewed as the “worst-case” entropy [CG88]; see also
Section 2.4).

Min-entropy of a distribution tells us how many nearly uniform random bits can be extracted from it.
The notion of “nearly” is defined as follows. Thestatistical distance betweentwo probability distributions
A andB is SD (A,B) = 1

2

∑
v |Pr(A = v)− Pr(B = v)|.

Recall the definition ofstrong randomness extractors[NZ96].

Definition 1. Let Ext : {0, 1}n → {0, 1}` be a polynomial time probabilistic function which usesr bits of
randomness. We say thatExt is an efficient(n,m, `, ε)-strong extractorif for all min-entropym distributions
W on{0, 1}n, SD ((Ext(W ;X), X), (U`, X)) ≤ ε, whereX is uniform on{0, 1}r.

Strong extractors can extract at most` = m − 2 log
(

1
ε

)
+ O(1) nearly random bits [RTS00]. Many

constructions match this bound (see Shaltiels’ survey [Sha02] for references). Extractor constructions are
often complex since they seek to minimize the length of the seedX. For our purposes, the length ofX will
be less important, so universal hash functions [CW79, WC81] (defined in the lemma below) will already
give us the optimal̀ = m−2 log

(
1
ε

)
+2, as given by theleftover hash lemmabelow (see [HILL99, Lemma

4.8], as well as references therein for earlier versions):
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Lemma 2.1 (Universal Hash Functions and the Leftover-Hash / Privacy-Amplification Lemma).As-
sume a family of functions{Hx : {0, 1}n → {0, 1}`}x∈X is universal: ∀a 6= b ∈ {0, 1}n, Prx∈X [Hx(a) =
Hx(b)] = 2−`. Then, for any random variableW ,6

SD ((HX(W ), X) , (U`, X)) ≤ 1
2

√
2−H∞(W )2` (1)

In particular, universal hash functions are(n,m, `, ε)-strong extractors whenever` ≤ m− 2 log
(

1
ε

)
+ 2.

2.4 Average Min-Entropy

Recall thatpredictability of a random variableA is maxa Pr[A = a], and itsmin-entropyH∞(A) is
− log(maxa Pr[A = a]). Consider now a pair of (possibly correlated) random variablesA,B. If the
adversary finds out the valueb of B, then predictability ofA becomesmaxa Pr[A = a | B = b]. On
average, the adversary’s chance of success in predictingA is thenEb←B [maxa Pr[A = a | B = b]]. Note
that we are taking theaverageoverB (which is not under adversarial control), but theworst caseoverA
(because prediction ofA is adversarial onceb is known). Again, it is convenient to talk about security in
log-scale, which is why we define theaverage min-entropyof A givenB as simply the logarithm of the
above:

H̃∞(A | B) def= − log
(
Eb←B

[
max
a

Pr[A = a | B = b]
])

= − log
(
Eb←B

[
2−H∞(A|B=b)

])
.

Because other notions of entropy have been studied in cryptographic literature, a few words are in order
to explain why this definition is useful. Note the importance of taking the logarithmafter taking the average
(in contrast, for instance, to conditional Shannon entropy). One may think it more natural to define average
min-entropy asEb←B [H∞(A | B = b)], thus reversing the order oflog andE. However, this notion is
unlikely to be useful in a security application. For a simple example, consider the case whenA andB are
1000-bit strings distributed as follows:B = U1000 andA is equal the valueb of B if the first bit of b is
0, andU1000 (independent ofB) otherwise. Then for half of the values ofb, H∞(A | B = b) = 0, while
for the other half,H∞(A | B = b) = 1000, soEb←B [H∞(A | B = b)] = 500. However, it would be
obviously incorrect to say thatA has 500 bits of security. In fact, an adversary who knows the valueb of B
has a slightly greater than50% chance of predicting the value ofA by outputtingb. Our definition correctly
captures this50% chance of prediction, becausẽH∞(A | B) is slightly less than 1. In fact, our definition of
average min-entropy is simply the logarithm of predictability.

The following useful properties of average min-entropy are proven in Appendix A. We also refer to
Appendix B for a generalization of average min-entropy and a discussion of the relationship between this
notion and other notions of entropy.

Lemma 2.2. LetA,B,C be random variables. Then

(a) For anyδ > 0, the conditional entropyH∞(A|B = b) is at leastH̃∞(A|B)− log(1/δ) with proba-
bility at least1− δ over the choice ofb.

(b) If B has at most2λ possible values, theñH∞(A | (B,C)) ≥ H̃∞((A,B) | C)−λ ≥ H̃∞(A | C)−λ.
In particular, H̃∞(A | B) ≥ H∞((A,B))− λ ≥ H∞(A)− λ.

6In [HILL99], this inequality is formulated in terms of Ŕenyi entropy of order two ofW ; the change toH∞(C) is allowed
because the latter is no greater than the former).
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2.5 Average-Case Extractors

Recall from Definition 1 that a strong extractor allows one to extract almost all the min-entropy from some
non-uniform random variableW . In many situations,W represents the adversary’s uncertainty about some
secretw conditioned on some side informationi. Since this side informationi is often probabilistic, we
shall find the following generalization of a strong extractor useful (see Lemma 4.1).

Definition 2. Let Ext : {0, 1}n → {0, 1}` be a polynomial time probabilistic function which usesr
bits of randomness. We say thatExt is an efficientaverage-case(n,m, `, ε)-strong extractor if for all
pairs of random variables(W, I) such thatW is ann-bit string satisfyingH̃∞(W | I) ≥ m, we have
SD ((Ext(W ;X), X, I), (U`, X, I)) ≤ ε, whereX is uniform on{0, 1}r.

To distinguish the strong extractors of Definition 1 from average-case strong extractors, we will some-
times call the formerworst-casestrong extractors. The two notions are closely related, as can be seen from
the following simple application of Lemma 2.2(a).

Lemma 2.3. For anyδ > 0, if Ext is a (worst-case)(n,m− log
(

1
δ

)
, `, ε)-strong extractor, thenExt is also

an average-case(n,m, `, ε+ δ)-strong extractor.

Proof. Assume(W, I) are such that̃H∞(W | I) ≥ m. LetWi = (W | I = i) and let us call the valuei
“bad” if H∞(Wi) < m− log

(
1
δ

)
. Otherwise, we say thati is “good”. By Lemma 2.2(a),Pr(i is bad) ≤ δ.

Also, for any goodi, we have thatExt extracts` bits that areε-close to uniform fromWi. Thus, by
conditioning on the “goodness” ofI, we get

SD ((Ext(W ;X), X, I), (U`, X, I)) =
∑
i

Pr(i) · SD ((Ext(Wi;X), X), (U`, X))

≤ Pr(i is bad) · 1 +
∑
goodi

Pr(i) · SD ((Ext(Wi;X), X), (U`, X))

≤ δ + ε

However, for many strong extractors we do not have to suffer this additional dependence onδ, because
the strong extractor may be already average-case. In particular, this holds for extractors obtained via univer-
sal hashing.

Lemma 2.4 (Generalized Leftover Hash Lemma).Assume{Hx : {0, 1}n → {0, 1}`}x∈X is a family of
universal hash functions. Then, for any random variablesW andI,

SD ((HX(W ), X, I) , (U`, X, I)) ≤
1
2

√
2−H̃∞(W |I)2` (2)

In particular, universal hash functions areaverage-case(n,m, `, ε)-strong extractors whenever` ≤ m −
2 log

(
1
ε

)
+ 2.

Proof. LetWi = (W | I = i). Then

SD ((HX(W ), X, I) , (U`, X, I)) = Ei [SD ((HX(Wi), X) , (U`, X))]

≤ 1
2

Ei
[√

2−H∞(Wi)2`
]

≤ 1
2

√
Ei
[
2−H∞(Wi)2`

]
=

1
2

√
2−H̃∞(W |I)2` .
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In the above derivation, the first inequality follows from the standard Leftover Hash Lemma (Lemma 2.1),

and the second inequality follows from Jensen’s inequality (namely,E
[√

Z
]
≤
√

E [Z]).

3 New Definitions

3.1 Secure Sketches

LetM be a metric space with distance functiondis.

Definition 3. An (M,m, m̃, t)-secure sketchis a pair of randomized procedures, “sketch” (SS) and “re-
cover” (Rec), with the following properties:

1. The sketching procedureSS on inputw ∈M returns a bit strings ∈ {0, 1}∗.

2. The recovery procedureRec takes an elementw′ ∈ M and a bit strings ∈ {0, 1}∗. The correct-
nessproperty of secure sketches guarantees that ifdis(w,w′) ≤ t, thenRec(w′,SS(w)) = w. If
dis(w,w′) > t, then no guarantee is provided about the output ofRec.

3. Thesecurityproperty guarantees that for any distributionW overM with min-entropym, the value
of W can be recovered by the adversary who observess with probability no greater than2−m̃. That
is, H̃∞(W | SS(W )) ≥ m̃.

A secure sketch isefficientif SS andRec run in expected polynomial time.

AVERAGE-CASE SECURESKETCHES. In many situations, it may well be that the adversary’s informationi
about the passwordw is probabilistic, so that sometimesi reveals a lot aboutw, but most of the timew stays
hard to predict even giveni. In this case, the previous definition of secure sketch is hard to apply: it provides
no guarantee ifH∞(W |i) is not fixed to at leastm for some bad (but infrequent) values ofi. A more robust
definition would provide the same guarantee for all pairs of variables(W, I) such that predicting the value
of W given the value ofI is hard. We therefore define anaverage-casesecure sketch as as follows:

Definition 4. An average-case(M,m, m̃, t)-secure sketchis a secure sketch (as defined in Definition 3)
whose security property is strengthened as follows: for any random variablesW overM andI over{0, 1}∗
such thatH̃∞(W | I) ≥ m, we haveH̃∞(W | (SS(W ), I)) ≥ m̃. Note that an average-case secure sketch
is also a secure sketch (takeI to be empty).

This definition has the advantage that it composes naturally, as shown in Lemma 4.7. All of our con-
structions will in fact be average-case secure sketches. However, we will often omit the term “average-case”
for simplicity of exposition.

ENTROPY LOSS. The quantitym̃ is called theresidual (min-)entropyof the secure sketch, and the quantity
λ = m − m̃ is called theentropy lossof a secure sketch. In analyzing the security of our secure sketch
constructions below, we will typically bound the entropy loss regardless ofm, thus obtaining families of
secure sketches that work for allm (in general, [Rey07] shows that the entropy loss of a secure sketch is
upperbounded by its entropy loss on the uniform distribution of inputs). Specifically, for a given construction
of SS, Rec and a given valuet, we will get a valueλ for the entropy loss, such that, foranym, (SS,Rec) is
an(M,m,m− λ, t)-secure sketch. In fact, the most common way to obtain such secure sketches would be
to bound the entropy loss by the length of the secure sketchSS(w), as given in the following simple lemma:
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Lemma 3.1. Assume some algorithmsSS andRec satisfy the correctness property of a secure sketch for
some value oft, and that the output range ofSS has size at most2λ (this holds, in particular, if the length
of the sketch is bounded byλ). Then, for any min-entropy thresholdm, (SS,Rec) form an average-case
(M,m,m − λ, t)-secure sketch forM. In particular, for anym, the entropy loss of this construction is at
mostλ.

Proof. The result follows immediately from Lemma 2.2(b), sinceSS(W ) has at most2λ values: for any
(W, I), H̃∞(W | (SS(W ), I)) ≥ H̃∞(W | I)− λ.

The above observation formalizes the intuition that a good secure sketch should be as short as possible.
In particular, a short secure sketch will likely result in a better entropy loss. More discussion about this
relation can be found in Section 9.

3.2 Fuzzy Extractors

Definition 5. An (M,m, `, t, ε)-fuzzy extractoris a pair of randomized procedures, “generate” (Gen) and
“reproduce” (Rep), with the following properties:

1. The generation procedureGen on inputw ∈ M outputs an extracted stringR ∈ {0, 1}` and a helper
stringP ∈ {0, 1}∗.

2. The reproduction procedureRep takes an elementw′ ∈M and a bit stringP ∈ {0, 1}∗ as inputs. The
correctnessproperty of fuzzy extractors guarantees that ifdis(w,w′) ≤ t andR,P were generated by
(R,P )← Gen(w), thenRep(w′, P ) = R. If dis(w,w′) > t, then no guarantee is provided about the
output ofRep.

3. Thesecurityproperty guarantees that for any distributionW onM of min-entropym, the stringR is
nearly uniform even for those who observeP : if (R,P )← Gen(W ), thenSD ((R,P ), (U`, P )) ≤ ε.

A fuzzy extractor isefficientif Gen andRep run in expected polynomial time.

In other words, fuzzy extractors allow one to extract some randomnessR fromw and then successfully
reproduceR from any stringw′ that is close tow. The reproduction uses the helper stringP produced during
the initial extraction; yetP need not remain secret, becauseR looks truly random even givenP . To justify
our terminology, notice that strong extractors (as defined in Section 2) can indeed be seen as “non-fuzzy”
analogs of fuzzy extractors, corresponding tot = 0, P = X, andM = {0, 1}n.

We reiterate that the nearly-uniform random bits output by a fuzzy extractor can be used in any cryp-
tographic context that requires uniform random bits (e.g., for secret keys). The slight nonuniformity of the
bits may decrease security, but by no more than their distanceε from uniform. By choosingε negligibly
small (e.g.,2−80 should be enough in practice), one can make the decrease in security irrelevant.

Similarly to secure sketches, the quantitym − ` is called theentropy lossof a fuzzy extractor. Also
similarly, a more robust definition is that of anaverage-casefuzzy extractor, which requires that if̃H∞(W |
I) ≥ m, thenSD ((R,P, I), (U`, P, I)) ≤ ε for any auxiliary random variableI.

4 Metric-Independent Results

In this section we demonstrate some general results that do not depend on specific metric spaces. They will
be helpful in obtaining specific results for particular metric spaces below. In addition to the results in this
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section, some generic combinatorial lower bounds on secure sketches and fuzzy extractors are contained
in Appendix C. We will later use these bounds to show the near-optimality of some of our constructions for
the case of uniform inputs.7

4.1 Construction of Fuzzy Extractors from Secure Sketches

Not surprisingly, secure sketches are quite useful in constructing fuzzy extractors. Specifically, we construct
fuzzy extractors from secure sketches and strong extractors as follows: applySS to w to obtains, and a
strong extractorExt with randomnessx tow to obtainR. Store(s, x) as the helper stringP . To reproduce
R fromw′ andP = (s, x), first useRec(w′, s) to recoverw and thenExt(w, x) to getR.

w’
R

s

Rec

x
w

x Ext

x

w

R

P
s

r
x

SS

Ext

A few details need to be filled in. First, in order to applyExt tow, we will assume that one can represent
elements ofM usingn bits. Second, since after leaking the secure sketch values, the passwordw only
hasconditionalmin-entropy, technically we need to use theaverage-casestrong extractor, as defined in
Definition 2. The formal statement is given below.

Lemma 4.1 (Fuzzy Extractors from Sketches).Assume(SS,Rec) is an(M,m, m̃, t)-secure sketch, and
let Ext be anaverage-case(n, m̃, `, ε)-strong extractor. Then the following(Gen,Rep) is a (M,m, `, t, ε)-
fuzzy extractor:

• Gen(w; r, x): setP = (SS(w; r), x),R = Ext(w;x), and output(R,P ).

• Rep(w′, (s, x)): recoverw = Rec(w′, s) and outputR = Ext(w;x).

Proof. From the definition of secure sketch (Definition 3), we know thatH̃∞(W | SS(W )) ≥ m̃. And since
Ext is an average-case(n, m̃, `, ε)-strong extractor,SD ((Ext(W ;X),SS(W ), X), (U`,SS(W ), X)) =
SD ((R,P ), (U`, P )) ≤ ε.

On the other hand, if one would like to use a worst-case strong extractor, we can apply Lemma 2.3 to
get

Corollary 4.2. If (SS,Rec) is an (M,m, m̃, t)-secure sketch andExt is an (n, m̃ − log
(

1
δ

)
, `, ε)-strong

extractor, then the above construction(Gen,Rep) is a (M,m, `, t, ε+ δ)-fuzzy extractor.

Both Lemma 4.1 and Corollary 4.2 hold (with the same proofs) for buildingaverage-casefuzzy extrac-
tors fromaverage-casesecure sketches.

While the above statements work for general extractors, for our purposes we can simply use univer-
sal hashing, since it is an average-case strong extractor that achieves the optimal [RTS00] entropy loss of
2 log

(
1
ε

)
. In particular, using Lemma 2.4, we obtain our main corollary:

7Although we believe our constructions to be near optimal for non-uniform inputs as well, and our combinatorial bounds in
Appendix C are also meaningful for such inputs, at this time we can only use these bounds effectively for uniform inputs.
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Lemma 4.3. If (SS,Rec) is an(M,m, m̃, t)-secure sketch andExt is an(n, m̃, `, ε)-strong extractor given
by universal hashing (in particular, anỳ≤ m̃−2 log

(
1
ε

)
+2 can be achieved), then the above construction

(Gen,Rep) is a(M,m, `, t, ε)-fuzzy extractor. In particular, one can extract up to(m̃−2 log
(

1
ε

)
+2) nearly

uniform bits from a secure sketch with residual min-entropym̃.

Again, if the above secure sketch is average-case secure, then so is the resulting fuzzy extractor. In
fact, combining the above result with Lemma 3.1, we get the following general construction of average-case
fuzzy extractors:

Lemma 4.4. Assume some algorithmsSS andRec satisfy the correctness property of a secure sketch for
some value oft, and that the output range ofSS has size at most2λ (this holds, in particular, if the
length of the sketch is bounded byλ). Then, for any min-entropy thresholdm, there exists an average-
case(M,m,m− λ− 2 log

(
1
ε

)
+ 2, t, ε)-fuzzy extractor forM. In particular, for anym, the entropy loss

of the fuzzy extractor is at mostλ+ 2 log
(

1
ε

)
− 2.

4.2 Secure Sketches for Transitive Metric Spaces

We give a general technique for building secure sketches intransitivemetric spaces, which we now define. A
permutationπ on a metric spaceM is anisometryif it preserves distances, i.e.dis(a, b) = dis(π(a), π(b)).
A family of permutationsΠ = {πi}i∈I actstransitivelyonM if for any two elementsa, b ∈ M, there
existsπi ∈ Π such thatπi(a) = b. Suppose we have a familyΠ of transitive isometries forM (we will
call suchM transitive). For example, in the Hamming space, the set of all shiftsπx(w) = w ⊕ x is such a
family (see Section 5 for more details on this example).

Construction 1 (Secure Sketch For Transitive Metric Spaces).Let C be an(M,K, t)-code. Then the
general sketching schemeSS is the following: given an inputw ∈M, pick uniformly at random a codeword
b ∈ C, pick uniformly at random a permutationπ ∈ Π such thatπ(w) = b, and outputSS(w) = π (it is
crucial that eachπ ∈ Π should have a canonical description that is independent of howπ was chosen, and in
particular independent ofb andw; the number of possible outputs ofSS should thus be|Π|). The recovery
procedureRec to findw givenw′ and the sketchπ, is as follows: find the closest codewordb′ to π(w′), and
outputπ−1(b′).

Let Γ be the number of elementsπ ∈ Π such thatminw,b |{π|π(w) = b}| ≥ Γ. I.e., for eachw andb,
there are at leastΓ choices forπ. Then we obtain the following lemma.

Lemma 4.5. (SS,Rec) is an average-case(M,m,m − log |Π| + log Γ + logK, t)-secure sketch. It is
efficient if operations on the code, as well asπ andπ−1, can be implemented efficiently.

Proof. Correctness is clear: whendis(w,w′) ≤ t, thendis(b, π(w′)) ≤ t, so decodingπ(w′) will result
in b′ = b, which in turn means thatπ−1(b′) = w. The intuitive argument for security is as follows:
we addlogK + log Γ bits of entropy by choosingb andπ, and subtractlog |Π| by publishingπ. Since
givenπ, w andb determine each other, the total entropy loss islog |Π| − logK − log Γ. More formally,
H̃∞(W | SS(W ), I) = H̃∞((W,SS(W )) | I) − log |Π| by Lemma 2.2(b). Given a particular value ofw,
there areK equiprobable choices forb, and further at leastΓ equiprobable choices forπ onceb is picked,
and hence any given permutationπ is chosen with probability at most1/(KΓ) (because different choices
for b result in different choices forπ). Therefore, for alli, w, andπ, Pr[W = w ∧ SS(w) = π | I = i] ≤
Pr[W = w | I = i]/(KΓ), henceH̃∞((W,SS(W )) | I) ≥ H̃∞(W | I) + logK + log Γ.

Naturally, security loss will be smaller if the codeC is denser.
We will discuss concrete instantiations of this approach in Section 5 and Section 6.1.
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4.3 Changing Metric Spaces via Biometric Embeddings

We now introduce a general technique that allows one to build fuzzy extractors and secure sketches in some
metric spaceM1 from fuzzy extractors and secure sketches in some other metric spaceM2. Below, we let
dis(·, ·)i denote the distance function inMi. The technique is toembedM1 intoM2 so as to “preserve”
relevant parameters for fuzzy extraction.

Definition 6. A function f :M1 →M2 is called a(t1, t2,m1,m2)-biometric embedding if the following
two conditions hold:

• for anyw1, w
′
1 ∈M1 such thatdis(w1, w

′
1)1 ≤ t1, we havedis(f(w1), f(w2))2 ≤ t2.

• for any distributionW1 onM1 of min-entropy at leastm1, f(W1) has min-entropy at leastm2.

The following lemma is immediate (correctness of the resulting fuzzy extractor follows from the first con-
dition, and security follows from the second):

Lemma 4.6. If f is a (t1, t2,m1,m2)-biometric embedding ofM1 intoM2 and (Gen(·),Rep(·, ·)) is an
(M2,m2, `, t2, ε)-fuzzy extractor, then(Gen(f(·)),Rep(f(·), ·)) is an(M1,m1, `, t1, ε)-fuzzy extractor.

It is easy to defineaverage-casebiometric embeddings (in which̃H∞(W1 | I) ≥ m1 ⇒ H̃∞(f(W1) |
I) ≥ m2), which would result in an analogous lemma for average-case fuzzy extractors.

For a similar result to hold for secure sketches, we need biometric embeddings with an additional prop-
erty.

Definition 7. A functionf :M1 →M2 is called a(t1, t2, λ)-biometric embedding with recovery informa-
tion g if:

• for anyw1, w
′
1 ∈M1 such thatdis(w1, w

′
1)1 ≤ t1, we havedis(f(w1), f(w2))2 ≤ t2.

• g : M1 → {0, 1}∗ is a function with range size at most2λ, andw1 ∈ M1 is uniquely determined by
(f(w1), g(w1)).

With this definition, we get the following analog of Lemma 4.6.

Lemma 4.7. Let f be(t1, t2, λ) biometric embedding with recovery informationg. Let (SS,Rec) be(M2,
m1 − λ, m̃2, t2) average-case secure sketch. LetSS′(w) = (SS(f(w)), g(w)). Let Rec′(w′, (s, r)) be
the function obtained by computingRec(w′, s) to getf(w) and then inverting(f(w), r) to getw. Then
(SS′,Rec′) is a (M1,m1, m̃2, t1) average-case secure sketch.

Proof. The correctness of this construction follows immediately from the two properties given in Defi-
nition 7. As for security, using Lemma 2.2(b) and the fact that the range ofg has size at most2λ, we
get thatH̃∞(W | g(W )) ≥ m1 − λ, wheneverH∞(W ) ≥ m1. Moreover, sinceW is uniquely re-
coverable fromf(W ) and g(W ), it follows that H̃∞(f(W ) | g(W )) ≥ m1 − λ as well, whenever
H∞(W ) ≥ m1. Using the fact that(SS,Rec) is anaverage-case(M2,m1 − λ, m̃2, t2) secure sketch,
we get thatH̃∞(f(W ) | (SS(W ), g(W ))) = H̃∞(f(W ) | SS′(W )) ≥ m̃2. Finally, since the application
of f can only reduce min-entropy,̃H∞(W | SS′(W )) ≥ m̃2 wheneverH∞(W ) ≥ m1.

As we saw, the proof above critically used the notion of average-case secure sketches. Luckily, all our
constructions (for example, those obtained via Lemma 3.1) are average-case, so this subtlety will not matter
too much.

We will see the utility of this novel type of embedding in Section 7.
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5 Constructions for Hamming Distance

In this section we consider constructions for the spaceM = Fn under the Hamming distance metric. Let
F = |F| andf = log2 F .

SECURE SKETCHES: THE CODE-OFFSETCONSTRUCTION. For the case ofF = {0, 1}, Juels and Wat-
tenberg [JW99] considered a notion of “fuzzy commitment.”8 Given a[n, k, 2t+ 1]2 error-correcting code
C (not necessarily linear), they fuzzy-commit tox by publishingw ⊕ C(x). Their construction can be
rephrased in our language to give a very simple construction of secure sketches for generalF .

We start with a[n, k, 2t + 1]F error-correcting codeC (not necessarily linear). The idea is to useC
to correct errors inw even thoughw may not be inC. This is accomplished by shifting the code so that a
codeword matches up withw, and storing the shift as the sketch. To do so, we need to viewF as an additive
cyclic group of orderF (in case of most common error-correcting codes,F will anyway be a field).

Construction 2 (Code-Offset Construction). On inputw, select a random codewordc (this is equivalent
to choosing a randomx ∈ Fk and computingC(x)), and setSS(w) to be the shift needed to get fromc to
w: SS(w) = w − c. ThenRec(w′, s) is computed by subtracting the shifts from w′ to getc′ = w′ − s;
decodingc′ to getc (note that becausedis(w′, w) ≤ t, so isdis(c′, c)); and computingw by shifting back to
getw = c+ s.

+s w
c

w’–s
d
e
c

c’

In the case ofF = {0, 1}, addition and subtraction are the same, and we get that computation of the
sketch is the same as the Juels-Wattenberg commitment:SS(w) = w ⊕ C(x). In this case, to recoverw
givenw′ ands = SS(w), computec′ = w′ ⊕ s, decodec′ to getc, and computew = c⊕ s.

When the codeC is linear, this scheme can be simplified as follows.

Construction 3 (Syndrome Construction). SetSS(w) = syn(w). To computeRec(w′, s), find the unique
vectore ∈ Fn of Hamming weight≤ t such thatsyn(e) = syn(w′)− s, and outputw = w′ − e.

As explained in Section 2, finding the short error-vectore from its syndrome is the same as decoding
the code. It is easy to see that two constructions above are equivalent: givensyn(w) one can sample from
w − c by choosing a random stringv with syn(v) = syn(w); conversely,syn(w − c) = syn(w). To show
that Rec finds the correctw, observe thatdis(w′ − e, w′) ≤ t by the constraint on the weight ofe, and
syn(w′ − e) = syn(w′) − syn(e) = syn(w′) − (syn(w′) − s) = s. There can be only one value within
distancet of w′ whose syndrome iss (else by subtracting two such values we get a codeword that is closer
than2t+ 1 to 0, but 0 is also a codeword), sow′ − e must be equal tow.

As mentioned in the introduction, the syndrome construction has appeared before as a component of
some cryptographic protocols over quantum and other noisy channels [BBCS91, Cré97], though it has not
been analyzed the same way.

Both schemes are(Fn,m,m− (n− k)f, t) secure sketches. For the randomized scheme, the intuition
for understanding the entropy loss is as follows: we addk random elements ofF and publishn elements of
F . The formal proof is simply Lemma 4.5, because addition inFn is a family of transitive isometries. For
the syndrome scheme, this follows from Lemma 3.1, because the syndrome is(n− k) elements ofF .

We thus obtain the following theorem.

8In their interpretation, one commits tox by picking a randomw and publishingSS(w; x).
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Theorem 5.1. Given an[n, k, 2t + 1]F error-correcting code, one can construct an average-case(Fn,m,
m− (n− k)f, t) secure sketch, which is efficient if encoding and decoding are efficient. Furthermore, if the
code is linear, then the sketch is deterministic and its output is(n− k) symbols long.

In Appendix C we present some generic lower bounds on secure sketches and fuzzy extractors. Recall
thatAF (n, d) denotes the maximum numberK of codewords possible in a code of distanced over n-
character words from an alphabet of sizeF . Then by Lemma C.1, we obtain that the entropy loss of a secure
sketch for the Hamming metric is at leastnf − log2AF (n, 2t+ 1) when the input is uniform (that is, when
m = nf ), becauseK(M, t) from Lemma C.1 is in this case equal toAF (n, 2t + 1) (since a code that
correctst Hamming errors must have minimum distance at least2t + 1). This means that if the underlying
code is optimal (i.e.,K = AF (n, 2t+ 1)), then the code-offset construction above is optimal for the case of
uniform inputs, because its entropy loss isnf − logF K log2 F = nf − log2K. Of course, we do not know
the exact value ofAF (n, d), let alone efficiently decodable codes which meet the bound, for many settings
of F , n andd. Nonetheless, the code-offset scheme gets as close to optimality as is possible from coding
constraints. If better efficient codes are invented, then better (i.e., lower loss or higher error-tolerance) secure
sketches will result.

FUZZY EXTRACTORS. As a warm-up, consider the case whenW is uniform (m = n) and look at the code-
offset sketch construction:v = w − C(x). For Gen(w), outputR = x, P = v. For Rep(w′, P ), decode
w′ − P to obtainC(x) and applyC−1 to obtainx. The result, quite clearly, is an(Fn, nf, kf, t, 0)-fuzzy
extractor, sincev is truly random and independent ofx whenw is random. In fact, this is exactly the usage
proposed by Juels and Wattenberg [JW99] except they viewed the above fuzzy extractor as a way to usew
to “fuzzy commit” tox, without revealing information aboutx.

Unfortunately, the above construction settingR = x only works for uniformW , since otherwisev
would leak information aboutx.

In general, we use the construction in Lemma 4.3 combined with Theorem 5.1 to obtain the following
theorem.

Theorem 5.2. Given any[n, k, 2t+ 1]F codeC and anym, ε, there exists an average-case(M,m, `, t, ε)-
fuzzy extractor, wherè= m+kf −nf −2 log

(
1
ε

)
+2. The generationGen and recoveryRep are efficient

if C has efficient encoding and decoding.

6 Constructions for Set Difference

We now turn to inputs that are subsets of a universeU ; let n = |U|. This corresponds to representing an
object by a list of its features. Examples include “minutiae” (ridge meetings and endings) in a fingerprint,
short strings which occur in a long document, or lists of favorite movies.

Recall that the distance between two setsw,w′ is the size of their symmetric difference:dis(w,w′) =
|w4w′|. We will denote this metric space bySDif(U). A setw can be viewed as itscharacteristic vectorin
{0, 1}n, with 1 at positionx ∈ U if x ∈ w, and0 otherwise. Such representation of sets makes set difference
the same as the Hamming metric. However, we will mostly focus on settings wheren is much larger than
the size of thew, so that representing a setw by n bits is much less efficient than, say, writing down a list of
elements in thew, which requires only|w| log n bits.

LARGE VERSUS SMALL UNIVERSES. More specifically, we will distinguish two broad categories of
settings. Lets denote the size of the sets that are given as inputs to the secure sketch (or fuzzy extractor)
algorithms. Most of this section studies situations where the universe sizen is super-polynomial in the set
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sizes. We call this the “large universe” setting. In contrast, the “small universe” setting refers to situations
in which n = poly(s). We want our various constructions to run in polynomial time and use polynomial
storage space. In the large universe setting, then-bit string representation of a set becomes too large to be
usable—we will strive for solutions that are polynomial ins andlog n.

In fact, in many applications—for example, when the input is a list of book titles—it is possible that the
actual universe is not only large, but also difficult to enumerate, making it difficult to even find the position
in the characteristic vector corresponding tox ∈ w. In that case, it is natural to enlarge the universe to a
well-understood class—for example, to include all possible strings of a certain length, whether or not they
are actual book titles. This has the advantage that the position ofx in the characteristic vector is simplyx
itself; however, because the universe is now even larger, the dependence of running time onn becomes even
more important.

FIXED VERSUS FLEXIBLE SET SIZE. In some situations, all objects are represented by feature sets of
exactly the same sizes, while in others the sets may be of arbitrary size. In particular, the original setw
and the corrupted setw′ from which we would like to recover the original need not be of the same size. We
refer to these two settings asfixedandflexibleset size, respectively. When the set size is fixed, the distance
dis(w,w′) is always even:dis(w,w′) = t if and only if w andw′ agree on exactlys − t

2 points. We will
denote the restriction ofSDif(U) to s-element subsets bySDifs(U).

SUMMARY . As a point of reference, we will see below thatlog
(
n
s

)
− logA(n, 2t+ 1, s) is a lower bound

on the entropy loss of any secure sketch for set difference (whether or not the set size is fixed). Recall that
A(n, 2t + 1, s) represents the size of the largest code for Hamming space with minimum distance2t + 1,
in which every word has weight exactlys. In the large universe setting, wheret � n, the lower bound is
approximatelyt log n. The relevant lower bounds are discussed at the end of Sections 6.1 and 6.2.

In the following sections we will present several schemes which meet this lower bound. The setting of
small universes is discussed in Section 6.1. We discuss the code-offset construction (from Section 5), as
well as a permutation-based scheme which is tailored to fixed set size. The latter scheme is optimal for this
metric, but impractical.

In the remainder of the section, we discuss schemes for the large universe setting. In Section 6.2 we
give an improved version of the scheme of Juels and Sudan [JS02]. Our version achieves optimal entropy
loss and storaget log n for fixed set size (notice the entropy loss doesn’t depend on the set sizes, although
the running time does). The new scheme provides an exponential improvement over the original parameters
(which are analyzed in Appendix D). Finally, in Section 6.3 we describe how to adapt syndrome decoding
algorithms for BCH codes to our application. The resulting scheme, called PinSketch, has optimal storage
and entropy losst log(n + 1), handles flexible set sizes, and is probably the most practical of the schemes
presented here. Another scheme achieving similar parameters (but less efficiently) can be adapted from
information reconciliation literature [MTZ03]; see Section 9 for more details.

We do not discuss fuzzy extractors beyond mentioning here that each secure sketch presented in this
section can be converted to a fuzzy extractor using Lemma 4.3. We have already seen an example of such
conversion in Section 5.

Table 1 summarizes the constructions discussed in this section.

6.1 Small Universes

When the universe size is polynomial ins, there are a number of natural constructions. The most direct one,
given previous work, is the construction of Juels and Sudan [JS02]. Unfortunately, that scheme requires a
fixed set size and achieves relatively poor parameters (see Appendix D).
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Entropy Loss Storage Time Set size Notes

Juels-Sudan t log n + log
“`

n
r

´
/

`
n−s
r−s

´”
+ 2 r log n poly(r log(n)) Fixed r is a parameter

[JS02] s ≤ r ≤ n

Generic n− log A(n, 2t + 1) n− log A(n, 2t + 1) poly(n) Flexible ent. loss≈ t log(n)
syndrome (for linear codes) whent � n

Permutation- log
`

n
s

´
− log A(n, 2t + 1, s) O(n log n) poly(n) Fixed ent. loss≈ t log n

based whent � n

Improved t log n t log n poly(s log n) Fixed
JS

PinSketch t log(n + 1) t log(n + 1) poly(s log n) Flexible See Section 6.3
for running time

Table 1: Summary of Secure Sketches for Set Difference.

We suggest two possible constructions: first, to represent sets asn-bit strings and use the constructions of
Section 5. The second construction, presented below, requires a fixed set size but achieves slightly improved
parameters by going through “constant-weight” codes.

PERMUTATION-BASED SKETCH. Recall the general construction of Section 4.2 for transitive metric spaces.
Let Π be a set of all permutations onU . Given π ∈ Π, make it a permutation onSDifs(U) naturally:
π(w) = {π(x)|x ∈ w}. This makesΠ is a family of transitive isometries onSDifs(U), and thus the results
of Section 4.2 apply.

Let C ⊆ {0, 1}n be any[n, k, 2t + 1] binary code in which all words have weight exactlys. Such
codes have been studied extensively (see, e.g., [AVZ00, BSSS90] for a summary of known upper and lower
bounds). View elements of the code as sets of sizes. We obtain the following scheme, which produces a
sketch of lengthO(n log n).

Construction 4 (Permutation-Based Sketch).On inputw ⊆ U of sizes, chooseb ⊆ U at random from
the codeC, and choose a random permutationπ : U → U such thatπ(w) = b (that is, choose a random
matching betweenw andb and a random matching betweenU − w andU − b). OutputSS(w) = π (say,
by listing π(1), ..., π(n)). To recoverw from w′ such thatdis(w,w′) ≤ t andπ, computeb′ = π−1(w′),
decode the characteristic vector ofb′ to obtainb, and outputw = π(b).

This construction is efficient as long as decoding is efficient (everything else takes timeO(n log n)).
By Lemma 4.5, its entropy loss islog

(
n
s

)
− k: here|Π| = n! andΓ = s!(n − s)!, so log |Π| − log Γ =

log n!/(s!(n− s)!).

COMPARING THE HAMMING SCHEME WITH THE PERMUTATION SCHEME. The code-offset construction
was shown to have entropy lossn − logA(n, 2t + 1) if an optimal code is used; the random permutation
scheme has entropy losslog

(
n
s

)
− logA(n, 2t + 1, s) for an optimal code. The Bassalygo-Elias inequality

(see [vL92]) shows that the bound on the random permutation scheme is always at least as good as the
bound on the code offset scheme:A(n, d) · 2−n ≤ A(n, d, s) ·

(
n
s

)−1
. This implies thatn− logA(n, d) ≥

log
(
n
s

)
− logA(n, d, s). Moreover, standard packing arguments give better constructions of constant-weight

codes than they do of ordinary codes.9 In fact, the random permutations scheme is optimal for this metric,
just as the code-offset scheme is optimal for the Hamming metric.

We show this as follows. Restrictt to be even, becausedis(w,w′) is always even if|w| = |w′|. Then
the minimum distance of a code overSDifs(U) that corrects up tot errors must be at least2t + 1.Indeed,

9This comes from the fact that the intersection of a ball of radiusd with the set of all words of weights is much smaller than
the ball of radiusd itself.
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suppose not. Then take two codewords,c1 andc2 such thatdis(c1, c2) ≤ 2t. There arek elements inc1
that are not inc2 (call their setc1 − c2), andk elements inc2 that are not inc1 (call their setc2 − c1), with
k ≤ t. Starting withc1, removet/2 elements ofc1 − c2 and addt/2 elements ofc2 − c1 to obtain a set
w (note that here we are using thatt is even; ifk < t/2, then usek elements). Thendis(c1, w) ≤ t and
dis(c2, w) ≤ t, and so if the received word isw, the receiver cannot be certain whether the sent word wasc1
or c2, and hence cannot correctt errors.

Therefore by Lemma C.1, we get that the entropy loss of a secure sketch must be at leastlog
(
n
s

)
−

logA(n, 2t+1, s), in the case of a uniform inputw. Thus in principle, it is better to use the random permuta-
tion scheme. Nonetheless, there are caveats. First, we do not know ofexplicitlyconstructed constant-weight
codes that beat the Elias-Bassalygo inequality and would thus lead to better entropy loss for the random
permutation scheme than for the Hamming scheme (see [BSSS90] for more on constructions of constant-
weight codes and [AVZ00] for upper bounds). Second, much more is known about efficient implementation
of decoding for ordinary codes than for constant-weight codes; for example, one can find off-the-shelf hard-
ware and software for decoding many binary codes. In practice, the Hamming-based scheme is likely to be
more useful.

6.2 Improving the Construction of Juels and Sudan

We now turn to the large universe setting, wheren is super-polynomial in the set sizes, and we would like
operations to be polynomial ins andlog n.

Juels and Sudan [JS02] proposed a secure sketch for the set difference metric with fixed set size (called
a “fuzzy vault” in that paper). We present their original scheme here with an analysis of the entropy loss in
Appendix D. In particular, our analysis shows that the original scheme has good entropy loss only when the
storage space is very large.

We suggest an improved version of the Juels-Sudan scheme which is simpler and achieves much better
parameters. The entropy loss and storage space of the new scheme are botht log n, which is optimal. (The
same parameters are also achieved by the BCH-based construction PinSketch in Section 6.3.) Our scheme
has the advantage of being even simpler to analyze, and the computations are simpler. As with the original
Juels-Sudan scheme, we assumen = |U| is a prime power and work overF = GF (n).

An intuition for the scheme is that the numbersys+1, ..., yr from the JS scheme need not be chosen at
random. One can instead evaluate them asyi = p′(xi) for some polynomialp′. One can then represent the
entire list of pairs(xi, yi) implicitly, using only a few of the coefficients ofp′. The new sketch is determin-
istic (this was not the case for our preliminary version in [DRS04]). Its implementation is available [HJR].

Construction 5 (Improved JS Secure Sketch for Sets of Sizes).
To computeSS(w):

1. Let p′() be the unique monic polynomial of degree exactlys such thatp′(x) = 0 for all x ∈ w.

(That is, letp′(z) def=
∏
x∈w(z − x).)

2. Output the coefficients ofp′() of degrees− 1 down tos− t.
This is equivalent to computing and outputting the firstt symmetric polynomials of the values inA,
i.e. if w = {x1, ..., xs}, then output

∑
i

xi,
∑
i6=j

xixj , . . . ,
∑

S⊆[s],|S|=t

(∏
i∈S

xi

)
.

To computeRec(w′, p′), wherew′ = {a1, a2, . . . , as},
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1. Create a new polynomialphigh, of degrees which shares the topt + 1 coefficients ofp′, that is let

phigh(z)
def= zs +

∑s−1
i=s−t aiz

i.

2. Evaluatephigh on all points inw′ to obtains pairs(ai, bi).
3. Use[s, s − t, t + 1]U Reed-Solomon decoding (see, e.g., [Bla83, vL92]) to search for a polynomial
plow of degrees − t − 1 such thatplow(ai) = bi for at leasts − t/2 of the ai values. If no such
polynomial exists, then stop and output “fail.”

4. Output the list of zeroes (roots) of the polynomialphigh − plow (see, e.g., [Sho05] for root-finding
algorithms; they can be sped up by first factoring out the known roots—namely,(z−ai) for thes−t/2
values ofai that were not deemed erroneous in the previous step).

To see that this secure sketch can toleratet set difference errors, supposedis(w,w′) ≤ t. Let p′ be as in
the sketch algorithm, that isp′(z) =

∏
x∈w(z − x). The polynomialp′ is monic, that is its leading term is

zs. We can divide the remaining coefficients into two groups: the high coefficients, denotedas−t, ..., as−1,
and the low coefficients, denoted byb1, ..., bs−t−1:

p′(z) = zs +
s−1∑
i=s−t

aiz
i

︸ ︷︷ ︸
phigh(z)

+
s−t−1∑
i=0

biz
i

︸ ︷︷ ︸
q(z)

.

We can writep′ asphigh + q whereq has degrees − t − 1. The recovery algorithm gets the coefficients of
phigh as input. For any pointx in w, we have0 = p′(x) = phigh(x) + q(x). Thus,phigh and−q agree at all
points inw. Since the setw intersectsw′ in at leasts−t/2 points, the polynomial−q satisfies the conditions
of Step 3 inRec. That polynomial is unique, since no two distinct polynomials of degrees−t−1 can get the
correctbi on more thans− t/2 ais (else, they agree on at leasts− t points, which is impossible). Therefore,
the recovered polynomialplow must be−q; hencephigh(x) − plow(x) = p′(x). Thus,Rec computes the
correctp′ and therefore finds correctly the setw, which consists of the roots ofp′.

Since the output ofSS is t field elements, the entropy loss of the scheme is at mostt log n by Lemma 3.1.
(We will see below that this bound is tight, since any sketch must lose at leastt log n in some situations.)
We have proved:

Theorem 6.1 (Analysis of Improved JS).Construction 5 is an average-case(SDifs(U),m,m− t log n, t)
secure sketch. The entropy loss and storage of the scheme are at mostt log n, and both the sketch generation
SS() and the recovery procedureRec() run in time polynomial ins, t andlog n.

LOWER BOUNDS FORFIXED SET SIZE IN A LARGE UNIVERSE. The short length of the sketch makes this
scheme feasible for essentially any ratio of set size to universe size (we only needlog n to be polynomial in
s). Moreover, for large universes the entropy losst log n is essentially optimal for uniform inputs (i.e., when
m = log

(
n
s

)
). We show this as follows. As already mentioned in the Section 6.1, Lemma C.1 shows that

for a uniformly distributed input, the best possible entropy loss ism−m′ ≥ log
(
n
s

)
− logA(n, 2t+ 1, s).

By Theorem 12 of Agrellet al. [AVZ00], A(n, 2t + 2, s) ≤ ( n
s−t)

( s
s−t)

. Noting thatA(n, 2t + 1, s) =

A(n, 2t+ 2, s) because distances inSDifs(U) are even, the entropy loss is at least:

m−m′ ≥ log
(
n

s

)
− logA(n, 2t+ 1, s) ≥ log

(
n

s

)
− log

((
n

s− t

)/( s

s− t

))
= log

(
n− s+ t

t

)
.

Whenn� s, this last quantity is roughlyt log n, as desired.
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6.3 Large Universes via the Hamming Metric: Sublinear-Time Decoding

In this section, we show that the syndrome construction of Section 5 can in fact be adapted for small sets in
large universe, using specific properties of algebraic codes. We will show that BCH codes, which contain
Hamming and Reed-Solomon codes as special cases, have these properties. As opposed to the constructions
of the previous section, the construction of this section is flexible and can accept input sets of any size.

Thus we obtain a sketch for sets of flexible size, with entropy loss and storaget log(n + 1). We will
assume thatn is one less than a power of 2:n = 2m − 1 for some integerm, and will identifyU with the
nonzero elements of the binary finite field of degreem: U = GF (2m)∗.

SYNDROME MANIPULATION FOR SMALL -WEIGHT WORDS. Suppose now that we have a small set
w ⊆ U of size s, wheren � s. Let xw denote the characteristic vector ofw (see the beginning of
Section 6). Then the syndrome construction says thatSS(w) = syn(xw). This is an(n − k)-bit quantity.
Note that the syndrome construction gives us no special advantage over the code-offset construction when
the universe is small: storing then-bit xw + C(r) for a randomk-bit r is not a problem. However, it’s a
substantial improvement whenn� n− k.

If we want to usesyn(xw) as the sketch ofw, then we must choose a code withn − k very small. In
particular, the entropy ofw is at mostlog

(
n
s

)
≈ s log n, and so the entropy lossn− k had better be at most

s log n. Binary BCH codes are suitable for our purposes: they are a family of[n, k, δ]2 linear codes with
δ = 2t+ 1 andk = n− tm (assumingn = 2m − 1) (see, e.g. [vL92]). These codes are optimal fort� n
by the Hamming bound, which implies thatk ≤ n − log

(
n
t

)
[vL92].10 Using the syndrome sketch with a

BCH codeC, we get entropy lossn− k = t log(n+ 1), essentially the same as thet log n of the improved
Juels-Sudan scheme (recall thatδ ≥ 2t+ 1 allows us to correctt set difference errors).

The only problem is that the scheme appears to require computation timeΩ(n), since we must compute
syn(xw) = Hxw and, later, run a decoding algorithm to recoverxw. For BCH codes, this difficulty can be
overcome. A word of small weightw can be described by listing the positions on which it is nonzero. We
call this description thesupportof xw and writesupp(xw) (note thatsupp(xw) = w; see the discussion of
enlarging the universe appropriately at the beginning of Section 6).

The following lemma holds for general BCH codes (which include binary BCH codes and Reed-Solomon
codes as special cases). We state it for binary codes since that is most relevant to the application:

Lemma 6.2. For a [n, k, δ] binary BCH codeC one can compute:

• syn(x), givensupp(x), in time polynomial inδ, log n, and|supp(x)|
• supp(x), givensyn(x) (whenx has weight at most(δ − 1)/2), in time polynomial inδ andlog n.

The proof of Lemma 6.2 requires a careful reworking of the standard BCH decoding algorithm. The
details are presented in Appendix E. For now, we present the resulting secure sketch for set difference.

Construction 6 (PinSketch).
To computeSS(w) = syn(xw):

1. Let si =
∑

x∈w x
i (computations inGF (2m)).

2. OutputSS(w) = (s1, s3, s5, ..., s2t−1).
To recoverRec(w′, (s1, s3, . . . , s2t−1)):

10The Hamming bound is based on the observation that for any code of distanceδ, the balls of radiusb(δ − 1)/2c centered at
various codewords must be disjoint. Each such ball contains

`
n

b(δ−1)/2c

´
points, and so2k

`
n

b(δ−1)/2c

´
≤ 2n. In our caseδ = 2t+1

and so the bound yieldsk ≤ n− log
`

n
t

´
.
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1. Compute(s′1, s
′
3, . . . , s

′
2t−1) = SS(w′) = syn(xw′);

2. Let σi = s′i − si (in GF (2m), so “−” is the same as “+”).

3. Computesupp(v) such thatsyn(v) = (σ1, σ3, . . . , σ2t−1) and|supp(v)| ≤ t by Lemma 6.2.

4. If dis(w,w′) ≤ t, thensupp(v) = w4w′. Thus, outputw = w′4supp(v).

An implementation of this construction, including the reworked BCH decoding algorithm, is available [HJR].
The bound on entropy loss is easy to see: the output ist log(n+ 1) bits long, and hence the entropy loss

is at mostt log(n+ 1) by Lemma 3.1. We obtain:

Theorem 6.3.PinSketch is an average-case(SDif(U),m,m−t log(n+1), t) secure sketch for set difference
with storaget log(n+ 1). The algorithmsSS andRec both run in time polynomial int andlog n.

7 Constructions for Edit Distance

The space of interest in this section is the spaceF∗ for some alphabetF , with distance between two strings
defined as the number of character insertions and deletions needed to get from one string to the other. Denote
this space byEditF (n). LetF = |F|.

First, note that applying the generic approach for transitive metric spaces (as with the Hamming space
and the set difference space for small universe sizes) does not work here, because the edit metric is not
known to be transitive. Instead, we consider embeddings of the edit metric on{0, 1}n into the Hamming or
set-difference metric of much larger dimension. We look at two types: standard low-distortion embeddings,
and “biometric” embeddings as defined in Section 4.3.

For the binary edit distance space of dimensionn, we obtain secure sketches and fuzzy extractors cor-
rectingt errors with entropy loss roughlytno(1), using a standard embedding, and2.38 3

√
tn log n, using a

relaxed embedding. The first technique works better whent is small, sayn1−γ for a constantγ > 0. The
second technique is better whent is large; it is meaningful roughly as long ast < n

15 log2 n
.

7.1 Low-Distortion Embeddings

A (standard) embedding with distortionD is an injectionψ : M1 ↪→ M2 such that for any two points
x, y ∈M1, the ratiodis(ψ(x),ψ(y))

dis(x,y) is at least 1 and at mostD.
When the preliminary version of this paper appeared [DRS04], no non-trivial embeddings were known

mapping edit distance intò1 or the Hamming metric (i.e. known embeddings had distortionO(n)). Re-
cently, Ostrovsky and Rabani [OR05] gave an embedding of the edit metric overF = {0, 1} into `1 with
subpolynomial distortion. It is an injective, polynomial-time computable embedding, which can in be inter-
preted as mapping to the Hamming space{0, 1}d whered = poly(n). 11

Fact 7.1 ([OR05]). There is a polynomial-time computable embeddingψed : Edit{0,1}(n) ↪→ {0, 1}poly(n)

with distortionDed(n) def= 2O(
√

logn log logn).

We can compose this embedding with the fuzzy extractor constructions for the Hamming distance to
obtain a fuzzy extractor for edit distance which will be good whent, the number of errors to be corrected, is
quite small. Recall that instantiating the syndrome fuzzy extractor construction (Theorem 5.2) with a BCH
code allows one to correctt′ errors out ofd at the cost oft′ log d+ 2 log

(
1
ε

)
− 2 bits of entropy.

11The embedding of [OR05] produces strings of integers in the space{1, ..., O(log n)}poly(n), equipped with̀ 1 distance. One
can convert this into the Hamming metric with only a logarithmic blowup in length by representing each integer in unary.
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Construction 7. For any lengthn and error thresholdt, let ψed be the embedding given by Fact 7.1 from
Edit{0,1}(n) into {0, 1}d (whered = poly(n)) and letsyn be the syndrome of a BCH code correcting
t′ = tDed(n) errors in{0, 1}d. Let {Hx}x∈X be a family of universal hash functions from{0, 1}d to
{0, 1}` for somè . To computeGen on inputw ∈ Edit{0,1}(n), pick a randomx and output

R = Hx(ψed(w)) , P = (syn(ψed(w)), x) .

To computeRep on inputsw′ andP = (s, x), computey = Rec(ψed(w′), s), whereRec is from Construc-
tion 3, and outputR = Hx(y).

Becauseψed is injective, a secure sketch can similarly be constructed:SS(w) = syn(ψ(w)), and to
recoverw fromw′ ands, computeψ−1

ed (Rec(ψed(w′))). However, it is not known to be efficient, because it
is not known how to computeψ−1

ed efficiently.

Proposition 7.2. For any n, t,m, there is an average-case(Edit{0,1}(n),m,m′, t)-secure sketch and an

efficient average-case(Edit{0,1}(n),m, `, t, ε)-fuzzy extractor wherem′ = m− t2O(
√

logn log logn) and` =
m′− 2 log

(
1
ε

)
+2. In particular, for anyα < 1, there exists an efficient fuzzy extractor toleratingnα errors

with entropy lossnα+o(1) + 2 log
(

1
ε

)
.

Proof. Construction 7 is the same as the construction of Theorem 5.2 (instantiated with a BCH-code-based
syndrome construction), acting onψed(w). Becauseψed is injective, the min-entropy ofψed(w) is the
same as the min-entropym of w. The entropy loss in Construction 3 instantiated with BCH codes is is
t′ log d = t2O(

√
logn log logn) log poly(n). Because2O(

√
logn log logn) grows faster thanlog n, this is the

same ast2O(
√

logn log logn).

Note that the peculiar-looking distortion function from Fact 7.1 increases more slowly than any polyno-
mial inn, but still faster than any polynomial inlog n. In sharp contrast, the best lower bound states that any
embedding ofEdit{0,1}(n) into `1 (and hence Hamming) must have distortion at leastΩ(log n/ log log n)
[AK07]. Closing the gap between the two bounds remains an open problem.

GENERAL ALPHABETS. To extend the above construction to generalF , we represent each character of
F as a string oflogF bits. This is an embeddingFn into {0, 1}n logF , which increases edit distance by a
factor of at mostlogF . Thent′ = t(logF )Ded(n) andd = poly(n, logF ). Using these quantities, we get
the generalization of this Proposition 7.2 for larger alphabets (again, by the same embedding) by changing

the formula form′ tom′ = m− t(logF )2O(
√

log(n logF ) log log(n logF )).

7.2 Relaxed Embeddings for the Edit Metric

In this section, we show that a relaxed notion of embedding, called abiometric embeddingin Section 4.3,
can produce fuzzy extractors and secure sketches that are better than what one can get from the embedding
of [OR05] whent is large (they are also much simpler algorithmically, which makes them more practical).
We first discuss fuzzy extractors and later extend the technique to secure sketches.

FUZZY EXTRACTORS. Recall that unlike low-distortion embeddings, biometric embeddings do not care
about relative distances, as long as points that were “close” (closer thant1) do not become “distant” (farther
apart thant2). The only additional requirement of a biometric embedding is that it preserve some min-
entropy: we do not want too many points to collide together. We now describe such an embedding from the
edit distance to the set difference.
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A c-shingleis a length-c consecutive substring of a given stringw. A c-shingling [Bro97] of a string
w of lengthn is the set (ignoring order or repetition) of all(n − c + 1) c-shingles ofw. (For instance,
a 3-shingling of “abcdecdeah” is{abc, bcd, cde, dec, ecd, dea, eah}).Thus, the range of thec-shingling
operation consists of all nonempty subsets of size at mostn − c + 1 of Fc. Let SDif(Fc) stand for the set
difference metric over subsets ofFc andSHc stand for thec-shingling map fromEditF (n) to SDif(Fc). We
now show thatSHc is a good biometric embedding.

Lemma 7.3. For anyc, SHc is an average-case(t1, t2 = (2c−1)t1,m1,m2 = m1−dnc e log2(n− c+1))-
biometric embedding ofEditF (n) into SDif(Fc).

Proof. Let w,w′ ∈ EditF (n) be such thatdis(w,w′) ≤ t1 and I be the sequence of at mostt1 inser-
tions and deletions that transformsw into w′. It is easy to see that each character deletion or insertion
adds at most(2c − 1) to the symmetric difference betweenSHc(w) and SHc(w′), which implies that
dis(SHc(w),SHc(w′)) ≤ (2c− 1)t1, as needed.

Forw ∈ Fn, definegc(w) as follows. ComputeSHc(w) and store the resulting shingles in lexicographic
orderh1 . . . hk (k ≤ n − c + 1). Next, naturally partitionw into dn/ce c-shingless1 . . . sdn/ce, all disjoint
except for (possibly) the last two, which overlap bycdn/ce − n characters. Next, for1 ≤ j ≤ dn/ce, set
pj to be the indexi ∈ {0 . . . k} such thatsj = hi. In other words,pj tells the index of thej-th disjoint
shingle ofw in the alphabetically-orderedk-setSHc(w). Setgc(w) = (p1, . . . , pdn/ce). (For instance,
g3(“abcdecdeah”) = (1, 5, 4, 6), representing the alphabetical order of “abc”, “dec”, “dea” and “eah” in
SH3(“abcdecdeah”).) The number of possible values forgc(w) is at most(n − c + 1)d

n
c
e, andw can be

completely recovered fromSHc(w) andgc(w).
Now, assumeW is any distribution of min-entropy at leastm1 on EditF (n). Applying Lemma 2.2(b),

we getH̃∞(W | gc(W )) ≥ m1 − dnc e log2(n− c+ 1). SincePr(W = w | gc(W ) = g) = Pr(SHc(W ) =
SHc(w) | gc(W ) = g) (because givengc(w), SHc(w) uniquely determinesw and vice versa), by applying
the definition ofH̃∞, we obtainH∞(SHc(W )) ≥ H̃∞(SHc(W ) | gc(W )) = H̃∞(W | gc(W )). The same
proof holds for average min-entropy, conditioned on some auxiliary informationI.

By Theorem 6.3, for universeFc of sizeF c and distance thresholdt2 = (2c − 1)t1, we can construct
a secure sketch for the set difference metric with entropy losst2dlog(F c + 1)e (d·e because Theorem 6.3
requires the universe size to be one less than a power of 2). By Lemma 4.3, we can obtain a fuzzy extractor
from such a sketch, with additional entropy loss2 log

(
1
ε

)
−2. Applying Lemma 4.6 to the above embedding

and this fuzzy extractor, we obtain a fuzzy extractor forEditF (n), any input entropym, any distancet, and
any security parameterε, with the following entropy loss:⌈n

c

⌉
· log2(n− c+ 1) + (2c− 1)tdlog(F c + 1)e+ 2 log

(
1
ε

)
− 2

(the first component of the entropy loss comes from the embedding, the second from the secure sketch for
set difference, and the third from the extractor). The above sequence of lemmas results in the following
construction, parameterized by shingle lengthc and a family of universal hash functionsH = {SDif(Fc)→
{0, 1}l}x∈X , wherel is equal to the input entropym minus the entropy loss above.

Construction 8 (Fuzzy Extractor for Edit Distance).
To computeGen(w) for |w| = n:

1. ComputeSHc(w) by computingn− c+ 1 shingles(v1, v2, . . . , vn−c+1) and removing duplicates to
form the shingle setv fromw.
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2. Computes = syn(xv) as in Construction 6.

3. Select a hash functionHx ∈ H and output(R = Hx(v), P = (s, x)).
To computeRep(w′, (s, x)):

1. ComputeSHc(w′) as above to getv′.

2. UseRec(v′, s) from in Construction 6 to recoverv.

3. OutputR = Hx(v).

We thus obtain the following theorem.

Theorem 7.4. For any n,m, c and 0 < ε ≤ 1, there is an efficient average-case(EditF (n),m,m −
dnc e log2(n− c+ 1)− (2c− 1)tdlog(F c + 1)e − 2 log

(
1
ε

)
+ 2, t, ε)-fuzzy extractor.

Note that the choice ofc is a parameter; by ignoringd·e and replacingn− c+ 1 with n, 2c− 1 with 2c
andF c + 1 with F c, we get that the minimum entropy loss occurs near

c =
(
n log n
4t logF

)1/3

and is about2.38 (t logF )1/3 (n log n)2/3 (2.38 is really 3
√

4+1/ 3
√

2). In particular, if the original string has
a linear amount of entropyθ(n logF ), then we can toleratet = Ω(n log2 F/ log2 n) insertions and deletions
while extractingθ(n logF )− 2 log

(
1
ε

)
bits. The number of bits extracted is linear; if the string lengthn is

polynomial in the alphabet sizeF , then the number of errors tolerated is linear also.

SECURE SKETCHES. Observe that the proof of Lemma 7.3 actually demonstrates that our biometric em-
bedding based on shingling is an embedding with recovery informationgc. Observe also that it is easy to
reconstructw from SHc(w) andgc(w). Finally, note that PinSketch (Construction 6) is an average-case
secure sketch (as are all secure sketches in this work). Thus, combining Theorem 6.3 with Lemma 4.7 we
obtain the following theorem.

Construction 9 (Secure Sketch for Edit Distance).For SS(w), computev = SHc(w) ands1 = syn(xv)
as in Construction 8. Computes2 = gc(w), writing eachpj as a string ofdlog ne bits. Outputs = (s1, s2).
ForRec(w′, (s1, s2)), recoverv as in Construction 8, sort it in alphabetical order, and recoverw by stringing
along elements ofv according to indices ins2.

Theorem 7.5. For any n,m, c and 0 < ε ≤ 1, there is an efficient average-case(EditF (n),m,m −
dnc e log2(n− c+ 1)− (2c− 1)tdlog(F c + 1)e, t) secure sketch.

The discussion about optimal values ofc from above applies equally here.

Remark 1. In our definitions of secure sketches and fuzzy extractors, we required the originalw and the
(potentially) modifiedw′ to come from the same spaceM. This requirement was for simplicity of exposi-
tion. We can alloww′ to come from a larger set, as long as distance fromw is well-defined. In the case of
edit distance, for instance,w′ can be shorter or longer thanw; all the above results will apply as long as it is
still within t insertions and deletions.
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8 Probabilistic Notions of Correctness

The error model considered so far in this work is very strong: we required that secure sketches and fuzzy
extractors accepteverysecretw′ within distancet of the original inputw, with no probability of error.

Such a stringent model is useful as it makes no assumptions on either the exact stochastic properties of
the error process or the adversary’s computational limits. However, Lemma C.1 shows that secure sketches
(and fuzzy extractors) correctingt errors can only be as “good” as error-correcting codes with minimum
distance2t+ 1. By slightly relaxing the correctness condition, we will see that one can tolerate many more
errors. For example, there is no good code which can correctn/4 errors in the binary Hamming metric:
by the Plotkin bound (see, e.g., [Sud01, Lecture 8]) a code with minimum distance greater thann/2 has at
most2n codewords. Thus, there is no secure sketch with residual entropym′ ≥ log n which can correct
n/4 errors with probability 1. However, with the relaxed notions of correctness below, one can tolerate
arbitrarily close ton/2 errors, i.e., correctn(1

2 − γ) errors for any constantγ > 0, and still have residual
entropyΩ(n).

In this section, we discuss three relaxed error models and show how the constructions of the previous
sections can be modified to gain greater error-correction in these models. We will focus on secure sketches
for the binary Hamming metric. The same constructions yield fuzzy extractors (by Lemma 4.1). Many of
the observations here also apply to metrics other than Hamming.

A common point is that we will only require that the a corrupted inputw′ be recovered with probability at
least1−α < 1 (the probability space varies). We describe each model in terms of the additional assumptions
made on the error process. We describe constructions for each model in the subsequent sections.

Random Errors. Assume there is aknowndistribution on the errors which occur in the data. For the
Hamming metric, the most common distribution is the binary symmetric channelBSCp: each bit of
the input is flipped with probabilityp and left untouched with probability1 − p. We require that for
any inputw, Rec(W ′,SS(w)) = w with probability at least1 − α over the coins ofSS and overW ′

drawn applying the noise distribution tow.

In that case, one can correct an error rate up to Shannon’s bound on noisy channel coding. This bound
is tight. Unfortunately, the assumption of a known noise process is too strong for most applications:
there is no reason to believe we understand the exact distribution on errors which occur in complex
data such as biometrics.12 However, it provides a useful baseline by which to measure results for other
models.

Input-dependent Errors. The errors are adversarial, subject only to the conditions that (a) the error mag-
nitudedis(w,w′) is bounded to a maximum oft, and (b) the corrupted worddepends only on the input
w, and not on the secure sketchSS(w). Here we require that for any pairw,w′ at distance at mostt,
we haveRec(w′,SS(w)) = w with probability at least1− α over the coins ofSS.

This model encompasses any complex noise process which has been observed to never introduce more
thant errors. Unlike the assumption of a particular distribution on the noise, the bound on magnitude
can be checked experimentally. Perhaps surprisingly, in this model we can tolerate just as large an
error rate as in the model of random errors. That is, we can tolerate an error rate up to Shannon’s
coding bound and no more.

12Since the assumption here only plays a role in correctness, it is still more reasonable than assuming we know exact distributions
on the data in proofs ofsecrecy. However, in both cases, we would like to enlarge the class of distributions for which we can
provably satisfy the definition of security.
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Computationally-bounded Errors. The errors are adversarial and may depend on bothw and the publicly
stored informationSS(w). However, we assume that the errors are introduced by a process of bounded
computational power. That is, there is a probabilistic circuit of polynomial size (in the lengthn) which
computesw′ fromw. The adversary cannot, for example, forge a digital signature and base the error
pattern on the signature.

It is not clear whether this model allows correcting errors up to the Shannon bound, as in the two mod-
els above. The question is related to open questions on the construction of efficiently list-decodable
codes. However, when the error rate is either very high or very low, then the appropriate list-decodable
codes exist and we can indeed match the Shannon bound.

ANALOGUES FOR NOISY CHANNELS AND THE HAMMING METRIC. Models analogous to the ones
above have been studied in the literature on codes for noisy binary channels (with the Hamming met-
ric). Random errors and computationally-bounded errors both make obvious sense in the coding con-
text [Sha48, MPSW05]. The second model — input-dependent errors — does not immediately make sense
in a coding situation, since there is no data other than the transmitted codeword on which errors could de-
pend. Nonetheless, there is a natural, analogous model for noisy channels: one can allow the sender and
receiver to share either (1) common, secret random coins (see [DGL04, Lan04] and references therein) or
(2) a side channel with which they can communicate a small number of noise-free, secret bits [Gur03].

Existing results on these three models for the Hamming metric can be transported to our context using
the code-offset construction:

SS(w;x) = w ⊕ C(x) .

Roughly, any code which corrects errors in the models above will lead to a secure sketch (resp. fuzzy
extractor) which corrects errors in the model. We explore the consequences for each of the three models in
the next sections.

8.1 Random Errors

The random error model was famously considered by Shannon [Sha48]. He showed that for any discrete,
memoryless channel, the rate at which information can be reliably transmitted is characterized by the maxi-
mum mutual information between the inputs and outputs of the channel. For the binary symmetric channel
with crossover probabilityp, this means that there exist codes encodingk bits inton bits, tolerating error
probabilityp in each bit if and only if

k

n
< 1− h(p)− δ(n)

whereh(p) = −p log p − (1 − p) log(1 − p) andδ(n) = o(1). Computationally efficient codes achieving
this bound were found later, most notably by Forney [For66]. We can use the code-offset construction
SS(w;x) = w ⊕ C(x) with an appropriate concatenated code [For66] or, equivalently,SS(w) = synC(w)
since the codes can be linear. We obtain:

Proposition 8.1. For any error rate0 < p < 1/2 and constantδ > 0, for large enoughn there exist
secure sketches with entropy loss(h(p)+ δ)n, which correct error rate ofp in the data with high probability
(roughly2−cδn for a constantcδ > 0).

The probability here is taken over theerrorsonly (the distribution on input stringsw can be arbitrary).

The quantityh(p) is less than 1 for anyp in the range(0, 1/2). In particular, one can get non-trivial
secure sketches even for a very high error ratep as long as it is less that1/2; in contrast, no secure sketch
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which corrects errors with probability 1 can toleratet ≥ n/4. Note that several other works on biometric
cryptosystems consider the model of randomized errors and obtain similar results, though the analyses
assume that the distribution on inputs is uniform [TG04, CZ04].

A M ATCHING IMPOSSIBILITY RESULT. The bound above is tight. The matching impossibility result also
applies to input-dependent and computationally-bounded errors, since random errors are a special case of
both more complex models.

We start with an intuitive argument: If a secure sketch allows recovering from random errors with high
probability, than it must contain enough information aboutw to describe the error pattern (since givenw′ and
SS(w), one can recover the error pattern with high probability). Describing the outcome ofn independent
coin flips with probabilityp of heads requiresnh(p) bits, and so the sketch must revealnh(p) bits aboutw.

In fact, that argument simply shows thatnh(p) bits of Shannon information are leaked aboutw, whereas
we are concerned with min-entropy loss as defined in Section 3. To make the argument more formal, letW
be uniform over{0, 1}n and observe that with high probability over the output of the sketching algorithm,
v = SS(w), the conditional distributionWv = W |SS(W )=v forms a good code for the binary symmetric
channel. That is, for most valuesv, if we sample a random stringw fromW |SS(W )=v and send it through a
binary symmetric channel, we will be able to recover the correct valuew. That means there exists somev
such that both (a)Wv is a good code and (b)H∞(Wv) is close toH̃∞(W |SS(W )). Shannon’s noisy coding
theorem says that such a code can have entropy at mostn(1− h(p) + o(1)). Thus the construction above is
optimal:

Proposition 8.2. For any error rate0 < p < 1/2, any secure sketchSS which corrects random errors (with
rate p) with probability at least2/3 has entropy loss at leastn(h(p) − o(1)); that is H̃∞(W |SS(W )) ≤
n(1− h(p)− o(1)) whenW is drawn uniformly from{0, 1}n.

8.2 Randomizing Input-dependent Errors

Assuming errors distributed randomly according to a known distribution seems very limiting. In the Ham-
ming metric, one can construct a secure sketch which achieves the same result as with random errors for
every error process where the magnitude of the error is bounded, as long as the errors are independent of
the output ofSS(W ). The same technique was used previously by Bennett et al. [BBR88, p. 216] and, in a
slightly different context, Lipton [Lip94, DGL04].

The idea is to choose a random permutationπ : [n] → [n], permute the bits ofw before applying the
sketch, and store the permutationπ along withSS(π(w)). Specifically, letC be a linear code tolerating ap
fraction of random errors with redundancyn− k ≈ nh(p). Let

SS(w;π) = (π, synC(π(w))) ,

whereπ : [n]→ [n] is a random permutation and, forw = w1 · · ·wn ∈ {0, 1}n, π(w) denotes the permuted
stringwπ(1)wπ(2) · · ·wπ(n). The recovery algorithm operates in the obvious way: it first permutes the input
w′ according toπ, then runs the usual syndrome recovery algorithm to recoverπ(w).

For any particular pairw,w′, the differencew ⊕ w′ will be mapped to a random vector of the same
weight byπ, and any code for the binary symmetric channel (with ratep ≈ t/n) will correct such an error
with high probability.

Thus we can construct a sketch with entropy lossn(h(t/n) − o(1)) which corrects anyt flipped bits
with high probability. This is optimal by the lower bound for random errors (Proposition 8.2), since a
sketch for data-dependent errors will also correct random errors. It is also possible to reduce the amount of
randomness, so that thesizeof the sketch meets the same optimal bound [Smi07].
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An alternative approach to input-dependent errors is discussed in the last paragraph of Section 8.3.

8.3 Handling Computationally-Bounded Errors Via List Decoding

As mentioned above, many results on noisy coding for other error models in Hamming space extend to
secure sketches. The previous sections discussed random, and randomized, errors. In this section, we
discuss constructions [Gur03, Lan04, MPSW05] which transform alist decodablecode, defined below,
into uniquely decodable codes for a particular error model. These transformations can also be used in the
setting of secure sketches, leading to better tolerance of computationally bounded errors. For some ranges
of parameters, this yields optimal sketches, that is, sketches which meet the Shannon bound on the fraction
of tolerated errors.

L IST-DECODABLE CODES. A codeC in a metric spaceM is calledlist-decodablewith list sizeL and
distancet if for every pointx ∈M, there are at mostL codewords within distancet ofM. A list-decoding
algorithm takes as input a wordx and returns the corresponding listc1, c2, ... of codewords. The most
interesting setting is whenL is a small polynomial (in the description sizelog |M|), and there exists an
efficient list-decoding algorithm. It is then feasible for an algorithm to go over each word in the list and
accept if it has some desirable property. There are many examples of such codes for the Hamming space;
for a survey see Guruswami’s thesis [Gur01]. Recently there has been significant progress in constructing
list-decodable codes for large alphabets, e.g. [PV05, GR06].

Similarly, we can define alist-decodable secure sketchwith sizeL and distancet as follows: for any pair
of wordsw,w′ ∈ M at distance at mostt, the algorithmRec(w′,SS(w)) returns a list of at mostL points
inM; if dis(w,w′) ≤ t, then one of the words in the list must bew itself. The simplest way to obtain a
list-decodable secure sketch is to use the code-offset construction of Section 5 with a list-decodable code for
the Hamming space. One obtains a different example by running the improved Juels-Sudan scheme for set
difference (Construction 5), replacing ordinary decoding of Reed-Solomon codes with list decoding. This
yields a significant improvement in the number of errors tolerated at the price of returning a list of possible
candidates for the original secret.

SIEVING THE L IST. Given a list-decodable secure sketchSS, all that’s needed is to store some additional in-
formation which allows the receiver to disambiguatew from the list. Let’s suggestively name the additional
informationTag(w;R), whereR is some additional randomness (perhaps a key). Given a list-decodable
codeC, the sketch will typically look like:

SS(w;x) = ( w ⊕ C(x), Tag(w) ).

On inputsw′ and(∆, tag), the recovery algorithm consists of running the list decoding algorithm onw′⊕∆
to obtain a list of possible codewordsC(x1), . . . , C(xL). There is a corresponding list of candidate inputs
w1, ..., wL, wherewi = C(xi)⊕∆, and the algorithm outputs the firstwi in the list such thatTag(wi) = tag.
We will choose the functionTag() so that the adversary can not arrange to have two values in the list with
valid tags.

We consider twoTag() functions, inspired by [Gur03, Lan04, MPSW05].

1. Recall that for computationally bounded errors, the corrupted stringw′ depends onbothw andSS(w),
butw′ is computed by a probabilistic circuit of size polynomial inn.

ConsiderTag(w) = hash(w), wherehash is drawn from a collision-resistant function family. More
specifically, we will use some extra randomnessr to choose a keykey for a collision-resistant hash
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family. The output of the sketch is then

SS(w;x, r) = ( w ⊕ C(x), key(r), hashkey(r)(w) ).

If the list-decoding algorithm for the codeC runs in polynomial time, then the adversary succeeds
only if he can find a valuewi 6= w such thathashkey(wi) = hashkey(w), that is only by finding a
collision for the hash function. By assumption, a polynomially-bounded adversary succeeds only with
negligible probability.

The additional entropy loss, beyond that of the code-offset part of the sketch, is bounded above by the
output length of the hash function. Ifα is the desired bound on the adversary’s success probability,
then for standard assumptions on hash functions this loss will be polynomial inlog(1/α).

In principle this transformation can yield sketches which achieve the optimal entropy lossn(h(t/n)−
o(1)), since codes with polynomial list sizeL are known to exist for error rates approaching the
Shannon bound. However, in order to use the construction the code must also be equipped with a
reasonably efficient algorithm for finding such a list. This is necessary both so that recovery will be
efficient and, more subtly, for the proof of security to go through (that way we can assume that the
polynomial-time adversary knows the list of words generated during the recovery procedure). We do
not know ofefficient(i.e. polynomial-time constructible and decodable) binary list-decodable codes
which meet the Shannon bound for all choices of parameters. However, when the error rate is near1

2
such codes are known [GS00]. Thus, this type of construction yields essentially optimal sketches when
the error rate is near1/2. This is quite similar to analogous results on channel coding [MPSW05].
Relatively little is known about the performance of efficiently list-decodable codes in other parameter
ranges for binary alphabets [Gur01].

2. A similar, even simpler, transformation can be used in the setting of input-dependent errors (i.e.,
when the errors depend only on the input and not on the sketch, but the adversary is not assumed
to be computationally bounded). One can storeTag(w) = (I, hI(w)) where{hi}i∈I comes from a
universal hash family mapping fromM to {0, 1}`, wherè = log

(
1
α

)
+logL andα is the probability

of an incorrect decoding.

The proof is simple: the valuesw1, ..., wL do not depend onI, and so for any valuewi 6= w, the prob-
ability thathI(wi) = hI(w) is 2−`. There are at mostL possible candidates, and so the probability
that any one of the elements in the list is accepted is at mostL · 2−` = α The additional entropy loss
incurred is at most̀ = log

(
1
α

)
+ log(L).

In principle, this transformation can do as well as the randomization approach of the previous section.
However, we do not know of efficient binary list-decodable codes meeting the Shannon bound for
most parameter ranges. Thus, in general, randomizing the errors (as in the previous section) works
better in the input-dependent setting.

9 Secure Sketches and Efficient Information Reconciliation

Suppose Alice holds a setw and Bob holds a setw′ that are close to each other. They wish to reconcile the
sets: to discover the symmetric differencew4w′ so that they can take whatever appropriate (application-
dependent) action to make their two sets agree. Moreover, they wish to do this communication-efficiently,
without having to transmit entire sets to each other. This problem is known as set reconciliation and naturally
arises in various settings.
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Let (SS,Rec) be a secure sketch for set difference that can handle distance up tot; furthermore, suppose
that |w4w′| ≤ t. Then if Bob receivess = SS(w) from Alice, he will be able to recoverw, and therefore
w4w′, from s andw′. Similarly, Alice will be able findw4w′ upon receivings′ = SS(w′) from Bob.
This will be communication-efficient if|s| is small. Note that our secure sketches for set difference of
Sections 6.2, 6.3 are indeed short—in fact, they are secure precisely because they are short. Thus, they also
make good set reconciliation schemes.

Conversely, a good (single-message) set reconciliation scheme makes a good secure sketch: simply
make the message the sketch. The entropy loss will be at most the length of the message, which is short
in a communication-efficient scheme. Thus, the set reconciliation scheme CPISync of [MTZ03] makes a
good secure sketch. In fact, it is quite similar to the secure sketch of Section 6.2, except instead of the topt
coefficients of the characteristic polynomial it uses the values of the polynomial att points.

PinSketch of Section 6.3, when used for set reconciliation, achieves the same parameters as CPISync
of [MTZ03], except decoding is faster, because instead of spendingt3 time to solve a system of linear
equations, it spendst2 time for Euclid’s algorithm. Thus, it can be substituted wherever CPISync is used,
such as PDA synchronization [STA03] and PGP key server updates [Min]. Furthermore, optimizations that
improve computational complexity of CPISync through the use of interaction [MT02] can also be applied
to PinSketch.

Of course, secure sketches for other metrics are similarly related to information reconciliation for those
metrics. In particular, ideas for edit distance very similar to ours were independently considered in the
context of information reconciliation by [CT04].
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A Proof of Lemma 2.2

Recall, Lemma 2.2 considered random variablesA,B,C and consisted of two parts, which we prove one
after another.
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Part (a) stated that for anyδ > 0, the conditional entropyH∞(A|B = b) is at least̃H∞(A|B)−log(1/δ)
with probability at least1 − δ (the probability here is taken over the choice ofb). Let p = 2−H̃∞(A|B) =
Eb
[
2−H∞(A|B=b)

]
. By the Markov inequality,2−H∞(A|B=b) ≤ p/δ with probability at least1− δ. Taking

logarithms, part (a) follows.
Part (b) stated that ifB has at most2λ possible values, theñH∞(A | (B,C)) ≥ H̃∞((A,B) | C)−λ ≥

H̃∞(A | C) − λ. In particular,H̃∞(A | B) ≥ H∞((A,B)) − λ ≥ H∞(A) − λ. Clearly, it suffices to
prove the first assertion (the second follows from takingC to be constant). Moreover, the second inequality
of the first assertion follows from the fact thatPr[A = a∧B = b | C = c] ≤ Pr[A = a | C = c], for anyc.
Thus, we only prove that̃H∞(A | (B,C)) ≥ H̃∞((A,B) | C)− λ.

H̃∞(A | (B,C)) = − log E(b,c)←(B,C)

[
max
a

Pr[A = a | B = b ∧ C = c]
]

= − log
∑
(b,c)

max
a

Pr[A = a | B = b ∧ C = c] Pr[B = b ∧ C = c]

= − log
∑
(b,c)

max
a

Pr[A = a ∧B = b | C = c] Pr[C = c]

= − log
∑
b

Ec←C
[
max
a

Pr[A = a ∧B = b | C = c]
]

≥ − log
∑
b

Ec←C
[
max
a,b′

Pr[A = a ∧B = b′ | C = c]
]

= − log
∑
b

2−H̃∞((A,B)|C) ≥ − log 2λ2−H̃∞((A,B)|C) = H̃∞((A,B) | C)− λ .

The first inequality in the above derivation holds since taking the maximum over all pairs(a, b′) (instead of
over pairs(a, b) whereb is fixed) increases the the terms of the sum, and hence decreases the negative log
of the sum.

B On Smooth Variants of Average Min-Entropy and the Relationship to
Smooth Ŕenyi Entropy

Min-entropy is a rather fragile measure: a single high-probability element can ruin the min-entropy of an
otherwise good distribution. This is often circumvented within proofs by considering a distribution which is
close to the distribution of interest, but which has higher entropy. Renner and Wolf [RW04] systematized this
approach with the notion ofε-smoothmin-entropy (they use the term “Rényi entropy of order∞” instead of
“min-entropy”), which considers all distributions that areε-close:

Hε
∞(A) = max

B: SD(A,B)≤ε
H∞(B) .

Smooth min-entropy very closely relates to the amount of extractable nearly-uniform randomness: if one
can mapA to a distribution that isε-close toUm, thenHε

∞(A) ≥ m; conversely, from anyA such that

Hε
∞(A) ≥ m, and for anyε2, one can extractm−2 log

(
1
ε2

)
bits that areε+ε2-close to uniform (see [RW04]

for a more precise statement; the proof of the first statement follows by considering the inverse map, and
the proof of the second from the leftover hash lemma, which is discussed in more detail in Lemma 2.4). For
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some distributions, considering the smooth min-entropy will improve the number and quality of extractable
random bits.

A smooth version of average min-entropy can also be considered, defined as

H̃ε
∞(A | B) = max

(C,D): SD((A,B),(C,D))≤ε
H̃∞(C | D) .

It similarly relates very closely to the number of extractable bits that look nearly-uniform to the adversary
who knows the value ofB, and is therefore perhaps a better measure for the quality of a secure sketch that
is used to obtain a fuzzy extractor. All our results can be cast in terms of smooth entropies throughout,
with appropriate modifications (if input entropy isε-smooth, then output entropy will also beε-smooth,
and extracted random strings will beε further away from uniform). We avoid doing so for simplicity of
exposition. However, for some input distributions, particularly ones with few elements of relatively high
probability, this will improve the result by giving more secure sketches or longer-output fuzzy extractors.

Finally, a word is in order on the relation of average min-entropy to conditional min-entropy, introduced
by Renner and Wolf in [RW05], and defined asH∞(A | B) = − log maxa,b Pr(A = a | B = b) =
minbH∞(A | B = b) (anε-smooth version is defined analogously by considering all distributions(C,D)
that are withinε of (A,B) and taking the maximum among them). This definition is too strict: it takes
the worst-caseb, while for randomness extraction (and many other settings, such as predictability by an
adversary), average-caseb suffices. Average min-entropy leads to more extractable bits. Nevertheless, after
smoothing the two notions are equivalent up to an additivelog

(
1
ε

)
term: H̃ε

∞(A | B) ≥ Hε
∞(A | B)

andH∞ε+ε2(A | B) ≥ H̃ε
∞(A | B) − log

(
1
ε2

)
(for the case ofε = 0, this follows by constructing

a new distribution that eliminates allb for which H∞(A | B = b) < H̃∞(A | B) − log
(

1
ε2

)
, which

will be within ε2 of the (A,B) by Markov’s inequality; forε > 0, an analogous proof works). Note that
by Lemma 2.2(b), this implies a simple chain rule forHε

∞ (a more general one is given in [RW05, Section

2.4]): H∞ε+ε2(A | B) ≥ H̃ε
∞((A,B))−H0(B)− log

(
1
ε2

)
, whereH0(B) is the logarithm of the number

of possible values ofB.

C Lower Bounds from Coding

Recall that an(M,K, t) code is a subset of the metric spaceM which cancorrect t errors (this is slightly
different from the usual notation of coding theory literature).

LetK(M, t) be the largestK for which there exists an(M,K, t)-code. Given any setS of 2m points
inM, we letK(M, t, S) be the largestK such that there exists an(M,K, t)-code all of whoseK points
belong toS. Finally, we letL(M, t,m) = log(min|S|=2m K(n, t, S)). Of course, whenm = log |M|, we
getL(M, t, n) = logK(M, t). The exact determination of quantitiesK(M, t) andK(M, t, S) is a central
problem of coding theory, and is typically very hard. To the best of our knowledge, the quantityL(M, t,m)
was not explicitly studied in any of three metrics that we study, and its exact determination seems hard as
well.

We give two simple lower bounds on the entropy loss (one for secure sketches, the other for fuzzy extrac-
tors) which show that our constructions for the Hamming and set difference metrics output as much entropy
m′ as possible when the original input distribution is uniform. In particular, because the constructions have
the same entropy loss regardless ofm, they are optimal in terms of the entropy lossm−m′. We conjecture
that the constructions also have the highest possible valuem′ for all values ofm, but we do not have a good
enough understanding ofL(M, t,m) (whereM is the Hamming metric) to substantiate the conjecture.
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Lemma C.1. The existence of(M,m,m′, t) secure sketch implies thatm′ ≤ L(M, t,m). In particular,
whenm = log |M| (i.e., when the password is truly uniform),m′ ≤ logK(M, t).

Proof. AssumeSS is such a secure sketch. LetS be any set of size2m inM, and letW be uniform over
S. Then we must havẽH∞(W | SS(W )) ≥ m′. In particular, there must be some valuev such that
H∞(W | SS(W ) = v) ≥ m′. But this means that conditioned onSS(W ) = v, there are at least2m

′
points

w in S (call this setT ) which could produceSS(W ) = v. We claim that these2m
′
values ofw form a code

of error-correcting distancet. Indeed, otherwise there would be a pointw′ ∈ M such thatdis(w0, w
′) ≤ t

anddis(w1, w
′) ≤ t for somew0, w1 ∈ T . But then we must have thatRec(w′, v) is equal to bothw0 and

w1, which is impossible. Thus, the setT above must form an(M, 2m
′
, t)-code insideS, which means that

m′ ≤ logK(M, t, S). SinceS was arbitrary, the bound follows.

Lemma C.2. The existence of(M,m, `, t, ε)-fuzzy extractors implies that` ≤ L(M, t,m)− log(1− ε). In
particular, whenm = log |M| (i.e., when the password is truly uniform),` ≤ logK(M, t)− log(1− ε).

Proof. Assume(Gen,Rep) is such a fuzzy extractor. LetS be any set of size2m inM, letW be uniform
overS and let(R,P ) ← Gen(W ). Then we must haveSD ((R,P ), (U`, P )) ≤ ε. In particular, there
must be some valuep of P such thatR is ε-close toU` conditioned onP = p. In particular, this means
that conditioned onP = p, there are at least(1 − ε)2` pointsr ∈ {0, 1}` (call this setT ) which could be
extracted withP = p. Now, map everyr ∈ T to some arbitraryw ∈ S which could have producedr with
nonzero probability givenP = p, and call this mapC. C must define a code with error-correcting distance
t by the same reasoning as in Lemma C.1.

Observe that, as long asε < 1/2, we have0 < − log(1−ε) < 1, so the lower bounds on secure sketches
and fuzzy extractors differ by less than a bit.

D Analysis of the Original Juels-Sudan Construction

In this section we present a new analysis for the Juels-Sudan secure sketch for set difference. We will assume
thatn = |U| is a prime power and work over the fieldF = GF (n). On input setw, the original Juels-Sudan
sketch is a list ofr pairs of points(xi, yi) in F , for some parameterr, s < r ≤ n. It is computed as follows:

Construction 10 (Original Juels-Sudan Secure Sketch [JS02]).
Input: a setw ⊆ F of sizes and parametersr ∈ {s+ 1, ..., n} , t ∈ {1, ..., s}

1. Choosep() at random from the set of polynomials of degree at mostk = s− t− 1 overF .
Writew = {x1, ..., xs}, and letyi = p(xi) for i = 1, ..., s.

2. Chooser − s distinct pointsxs+1, ..., xr at random fromF − w.

3. For i = s+ 1, ..., r, chooseyi ∈ F at random such thatyi 6= p(xi).
4. OutputSS(w) = {(x1, y1), ..., (xr, yr)} (in lexicographic order ofxi).

The parametert measures the error-tolerance of the scheme: givenSS(w) and and a setw′ such that
w4w′ ≤ t, one can recoverw by considering the pairs(xi, yi) for xi ∈ w′ and running Reed-Solomon
decoding to recover the low-degree polynomialp(·). When the parameterr is very small, the scheme
corrects approximately twice as many errors with good probability (in the “input-dependent” sense from
Section 8). Whenr is low, however, we show here that the bound on the entropy loss becomes very weak.
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The parameterr dictates the amount of storage necessary, one on hand, and also the security of the
scheme (that is, forr = s the scheme leaks all information and for larger and largerr there is less information
aboutw). Juels and Sudan actually propose two analyses for the scheme. First, they analyze the case where
the secretw is distributed uniformly over all subsets of sizes. Second, they provide an analysis of a
nonuniform password distribution, but only for the caser = n (that is, their analysis only applies in the
small universe setting, whereΩ(n) storage is acceptable). Here we give a simpler analysis which handles
nonuniformity and anyr ≤ n. We get the same results for a broader set of parameters.

Lemma D.1. The entropy loss of the Juels-Sudan scheme is at mostt log n+ log
(
n
r

)
− log

(
n−s
r−s
)

+ 2.

Proof. This is a simple application of Lemma 2.2(b).H∞((W,SS(W ))) can be computed as follows.
Choosing the polynomialp (which can be uniquely recovered fromw andSS(w)) requiress − t random
choices fromF . The choice of the remainingxi’s requireslog

(
n−s
r−s
)

bits, and choosing they′is requires

r−s random choices fromF−{p(xi)}. Thus,H∞((W,SS(W ))) = H∞(W )+(s− t) log n+log
(
n−s
r−s
)
+

(r − s) log(n − 1). The output can be described inlog
((
n
r

)
nr
)

bits. The result follows by Lemma 2.2(b)
after observing that(r − s) log n

n−1 < n log n
n−1 ≤ 2.

In the large universe setting, we will haver � n (since we wish to have storage polynomial ins). In
that setting, the bound on the entropy loss of the Juels-Sudan scheme is in fact very large. We can rewrite
the entropy loss ast log n− log

(
r
s

)
+ log

(
n
s

)
+ 2, using the identity

(
n
r

)(
r
s

)
=
(
n
s

)(
n−s
r−s
)
. Now the entropy

of W is at most
(
n
s

)
, and so our lower bound on the remaining entropy is(log

(
r
s

)
− t log n − 2). To make

this quantity large requires makingr very large.

E BCH Syndrome Decoding in Sublinear Time

We show that the standard decoding algorithm for BCH codes can be modified to run in time polynomial
in the length of the syndrome. This works for BCH codes over any fieldGF (q), which include Hamming
codes in the binary case and Reed-Solomon for the casen = q − 1. BCH codes are handled in detail in
many textbooks (e.g., [vL92]); our presentation here is quite terse. For simplicity, we only discuss primitive,
narrow-sense BCH codes here; the discussion extends easily to the general case.

The algorithm discussed here has been revised due to an error pointed out by Ari Trachtenberg. Its
implementation is available [HJR].

We’ll use a slightly non-standard formulation of BCH codes. Letn = qm − 1 (in the binary case
of interest in Section 6.3,q = 2). We will work in two finite fields: GF (q) and a larger extension field
F = GF (qm). BCH codewords, formally defined below, are then vectors inGF (q)n. In most common
presentations, one indexes then positions of these vectors by discrete logarithms of the elements ofF∗:
positioni, for 1 ≤ i ≤ n, corresponds toαi, whereα generates the multiplicative groupF∗. However, there
is no inherent reason to do so: they can be indexed by elements ofF directly rather than by their discrete
logarithms. Thus, we say that a word has valuepx at positionx, wherex ∈ F∗. If one ever needs to write
down the entiren-character word in an ordered fashion, one can choose arbitrarily a convenient ordering of
the elements ofF (e.g., by using some standard binary representation of field elements); for our purposes
this is not necessary, as we do not store entiren-bit words explicitly, but rather represent them by their
supports:supp(v) = {(x, px) | px 6= 0}. Note that for the binary case of interest in Section 6.3, we can
definesupp(v) = {x | px 6= 0}, becausepx can take only two values: 0 or 1.

Our choice of representation will be crucial for efficient decoding: in the more common representa-
tion, the last step of the decoding algorithm requires one to find the positioni of the error from the field
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elementαi. However, no efficient algorithms for computing discrete logarithm are known ifqm is large
(indeed, a lot of cryptography is based on the assumption that such efficient algorithm does not exist). In
our representation, the field elementαi will in fact be the position of the error.

Definition 8. The (narrow-sense, primitive) BCH code of designed distanceδ overGF (q) (of lengthn ≥ δ)
is given by the set of vectors of the form

(
cx
)
x∈F∗ such that eachcx is in the smaller fieldGF (q), and the

vector satisfies the constraints
∑

x∈F∗ cxx
i = 0, for i = 1, . . . , δ − 1, with arithmetic done in the larger

fieldF .

To explain this definition, let us fix a generatorα of the multiplicative group of the large fieldF∗. For
any vector of coefficients

(
cx
)
x∈F∗ , we can define a polynomial

c(z) =
∑

x∈GF (qm)∗

cxz
dlog(x)

wheredlog(x) is the discrete logarithm ofx with respect toα. The conditions of the definition are then
equivalent to the requirement (more commonly seen in presentations of BCH codes) thatc(αi) = 0 for
i = 1, . . . , δ − 1, because(αi)dlog(x) = (αdlog(x))i = xi.

We can simplify this somewhat. Because the coefficientscx are inGF (q), they satisfycqx = cx. Using
the identity(x + y)q = xq + yq, which holds even in the large fieldF , we havec(αi)q =

∑
x6=0 c

q
xxiq =

c(αiq). Thus, roughly a1/q fraction of the conditions in the definition are redundant: we only need to check
that they hold fori ∈ {1, ..., δ − 1} such thatq 6 |i.

The syndrome of a word (not necessarily a codeword)(px)x∈F∗ ∈ GF (q)n with respect to the BCH
code above is the vector

syn(p) = p(α1), . . . , p(αδ−1), where p(αi) =
∑
x∈F∗

pxx
i.

As mentioned above, we do not in fact have to include the valuesp(αi) such thatq|i.

COMPUTING WITH LOW-WEIGHT WORDS. A low-weight wordp ∈ GF (q)n can be represented either as
a long string or, more compactly, as a list of positions where it is nonzero and its values at those points. We
call this representation the support list ofp and denote itsupp(p) = {(x, px)}x:px 6=0.

Lemma E.1. For a q-ary BCH codeC of designed distanceδ, one can compute:

• syn(p) from supp(p) in time polynomial inδ, log n, and|supp(p)|, and

• supp(p) from syn(p) (whenp has weight at most(δ − 1)/2), in time polynomial inδ andlog n.

Proof. Recall thatsyn(p) = (p(α), ..., p(αδ−1)) wherep(αi) =
∑

x6=0 pxx
i. Part (1) is easy, since to

compute the syndrome we only need to compute the powers ofx. This requires aboutδ · weight(p) multi-
plications inF . For Part (2), we adapt Berlekamp’s BCH decoding algorithm, based on its presentation in
[vL92]. LetM = {x ∈ F∗|px 6= 0}, and define

σ(z) def=
∏
x∈M

(1− xz) and ω(z) def= σ(z)
∑
x∈M

pxxz

(1− xz)

Since(1 − xz) dividesσ(z) for x ∈ M , we see thatω(z) is in fact a polynomial of degree at most|M | =
weight(p) ≤ (δ − 1)/2. The polynomialsσ(z) andω(z) are known as the error locator polynomial and
evaluator polynomial, respectively; observe thatgcd(σ(z), ω(z)) = 1.
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We will in fact work with our polynomials modulozδ. In this arithmetic the inverse of(1 − xz) is∑δ
`=1(xz)

`−1, that is

(1− xz)
δ∑
`=1

(xz)`−1 ≡ 1 mod zδ.

We are givenp(α`) for ` = 1, ..., δ. Let S(z) =
∑δ−1

`=1 p(α
`)z`. Note thatS(z) ≡

∑
x∈M px

xz
(1−xz)

mod zδ. This implies that
S(z)σ(z) ≡ ω(z) mod zδ.

The polynomialsσ(z) andω(z) satisfy the following four conditions: they are of degree at most(δ−1)/2
each, they are relatively prime, the constant coefficient ofσ is 1, and they satisfy this congruence. In fact,
let w′(z), σ′(z) be any nonzero solution this congruence, where degrees ofw′(z) andσ′(z) are at most
(δ − 1)/2. Thenw′(z)/σ′(z) = ω(z)/σ(z). (To see why this is so, multiply the initial congruence byσ′()
to getω(z)σ′(z) ≡ σ(z)ω′(z) mod zδ. Since the both sides of the congruence have degree at mostδ − 1,
they are in fact equal as polynomials.) Thus, there is at most one solutionσ(z), ω(z) satisfying all four
conditions, which can be obtained from anyσ′(z), ω′(z) by reducing the resulting fractionω′(z)/σ′(z) to
obtain the solution of minimal degree with the constant term ofσ equal to 1.

Finally, the roots ofσ(z) are the pointsx−1 for x ∈M , and the exact value ofpx can be recovered from
ω(x−1) = px

∏
y∈M,y 6=x(1 − yx−1) (this is only needed forq > 2, because forq = 2, px = 1). Note that

it is possible that a solution to the congruence will be found even if the input syndrome is not a syndrome
of anyp with weight(p) > (δ − 1)/2 (it is also possible that a solution to the congruence will not be found
at all, or that the resultingσ(z) will not split into distinct nonzero roots). Such a solution will not give
the correctp. Thus, if there is no guarantee thatweight(p) is actually at most(δ − 1)/2, it is necessary to
recomputesyn(p) after finding the solution, in order to verify thatp is indeed correct.

Representing coefficients ofσ′(z) andω′(z) as unknowns, we see that solving the congruence requires
only solving a system ofδ linear equations (one for each degree ofz, from 0 toδ−1) involving δ+1 variables
overF , which can be done inO(δ3) operations inF using, e.g., Gaussian elimination. The reduction of the
fractionω′(z)/σ′(z) requires simply running Euclid’s algorithm for finding the g.c.d. of two polynomials of
degree less thanδ, which takesO(δ2) operations inF . Suppose the resultingσ has degreee. Then one can
find the roots ofσ as follows. First test thatσ indeed hase distinct roots by testing thatσ(z)|zqm − z (this
is a necessary and sufficient condition, because every element ofF is a root ofzq

m − z exactly once). This
can be done by computing(zq

m
mod σ(z)) and testing if it equalsz mod σ; it takesm exponentiations of a

polynomial to the powerq, i.e.,O((m log q)e2) operations inF . Then apply an equal-degree-factorization
algorithm (e.g., as described in [Sho05]), which also takesO((m log q)e2) operations inF . Finally, after
taking inverses of the roots ofF and findingpx (which takesO(e2) operations inF), recomputesyn(p) to
verify that it is equal to the input value.

Becausem log q = log(n+ 1) ande ≤ (δ− 1)/2, the total running time isO(δ3 + δ2 log n) operations
in F ; each operation inF can done in timeO(log2 n), or faster using advanced techniques.

One can improve this running time substantially. The error locator polynomialσ() can be found in
O(log δ) convolutions (multiplications) of polynomials overF of degree(δ − 1)/2 each [Bla83, Section
11.7] by exploiting the special structure of the system of linear equations being solved. Each convolution
can be performed asymptotically in timeO(δ log δ log log δ) (see, e.g., [vzGG03]), the total time required to
find σ gets reduced toO(δ log2 δ log log δ) operation inF . This replaces theδ3 term in the above running
time.

While this is asymptotically very good, Euclidean-algorithm-based decoding [SKHN75], which runs
in O(δ2) operations inF , will find σ(z) faster for reasonable values ofδ (certainly forδ < 1000). The
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algorithm findsσ as follows:

set Rold(z)← zδ−1, Rcur(z)← S(z)/z, Vold(z)← 0, Vcur(z)← 1.
while deg(Rcur(z)) ≥ (δ − 1)/2:

divide Rold(z) by Rcur(z) to get quotient q(z) and remainder Rnew(z);
set Vnew(z)← Vold(z)− q(z)Vcur(z);
set Rold(z)← Rcur(z), Rcur(z)← Rnew(z), Vold(z)← Vcur(z), Vcur(z)← Vnew(z).

set c← Vcur(0); set σ(z)← Vcur(z)/c and ω(z)← z ·Rcur(z)/c

In the above algorithm, ifc = 0, then the correctσ(z) does not exist, i.e.,weight(p) > (δ − 1)/2. The
correctness of this algorithm can be seen by observing that the congruenceS(z)σ(z) ≡ ω(z) (mod zδ) can
havez factored out of it (becauseS(z), ω(z) andzδ are all divisible byz) and rewritten as(S(z)/z)σ(z) +
u(z)zδ−1 = ω(z)/z, for someu(z). The obtainedσ is easily shown to be the correct one (if one exists at all)
by applying [Sho05, Theorem 18.7] (to use the notation of that theorem, setn = zδ−1, y = S(z)/z, t∗ =
r∗ = (δ − 1)/2, r′ = ω(z)/z, s′ = u(z), t′ = σ(z)).

The root finding ofσ can also be sped up. Asymptotically, detecting if a polynomial overF =
GF (qm) = GF (n + 1) of degreee hase distinct roots and finding these roots can be performed in
timeO(e1.815(log n)0.407) operations inF using the algorithm of Kaltofen and Shoup [KS95], or in time
O(e2 + (log n)e log e log log e) operations inF using the EDF algorithm of Cantor and Zassenhaus13.
For reasonable values ofe, the Cantor-Zassenhaus EDF algorithm with Karatsuba’s multiplication algo-
rithm [KO63] for polynomials will be faster, giving root-finding running time ofO(e2 + elog2 3 log n) oper-
ations inF . Note that if the actual weighte of p is close to the maximum tolerated(δ − 1)/2, then finding
the roots ofσ will actually take longer than findingσ.

A DUAL V IEW OF THE ALGORITHM. Readers may be used to seeing a different, evaluation-based formu-
lation of BCH codes, in which codewords are generated as follows. LetF again be an extension ofGF (q),
and letn be the length of the code (note that|F∗| is not necessarily equal ton in this formulation). Fix
distinctx1, x2, . . . , xn ∈ F . For every polynomialc over the large fieldF of degree at mostn − δ, the
vector(c(x1), c(x2), . . . c(xn)) is a codeword if and only if every coordinate of the vector happens to be in
the smaller field:c(xi) ∈ GF (q) for all i. In particular, whenF = GF (q), then every polynomial leads to
a codeword, thus giving Reed-Solomon codes.

The syndrome in this formulation can be computed as follows: given a vectory = (y1, y2, . . . , yn)
find the interpolating polynomialP = pn−1x

n−1 + pn−2x
n−2 + · · · + p0 overF of degree at mostn − 1

such thatP (xi) = yi for all i. The syndrome is then the negative topδ − 1 coefficients ofP : syn(y) =
(−pn−1,−pn−2, . . . ,−pn−(δ−1)). (It is easy to see that this is a syndrome: it is a linear function that is zero
exactly on the codewords.)

Whenn = |F| − 1, we can index then-component vectors by elements ofF∗, writing codewords as
(c(x))x∈F∗ . In this case, the syndrome of(yx)x∈F∗ defined as the negative topδ − 1 coefficients ofP
such that∀x ∈ F ∗, P (x) = yx is equal to the syndrome defined following Definition 8 as

∑
x∈F yxx

i for
i = 1, 2, . . . , δ− 1. 14 Thus, whenn = |F| − 1, the codewords obtained via the evaluation-based definition

13See [Sho05, Section 21.3], and substitute the most efficient known polynomial arithmetic. For example, the procedures de-
scribed in [vzGG03] take timeO(e log e log log e) instead of timeO(e2) to perform modular arithmetic operations with degree-e
polynomials.

14 This statement can be shown as follows: because both maps are linear, it is sufficient to prove that they agree on a vector
(yx)x∈F∗ such thatya = 1 for somea ∈ F∗ andyx = 0 for x 6= a. For such a vector,

P
x∈F yxxi = ai. On the other hand,

the interpolating polynomialP (x) such thatP (x) = yx is −axn−1 − a2xn−2 − · · · − an−1x − 1 (indeed,P (a) = −n = 1;
furthermore, multiplyingP (x) by x− a givesa(xn − 1), which is zero on all ofF∗; henceP (x) is zero for everyx 6= a).
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areidenticalto the codewords obtain via Definition 8, because codewords are simply elements with the zero
syndrome, and the syndrome maps agree.

This is an example of a remarkable duality between evaluations of polynomials and their coefficients:
the syndrome can be viewed either as the evaluation of a polynomial whose coefficients are given by the
vector, or as the coefficients of the polynomial whose evaluations are given by a vector.

The syndrome decoding algorithm above has a natural interpretation in the evaluation-based view. Our
presentation is an adaptation of Welch-Berlekamp decoding as presented in, e.g., [Sud01, Chapter 10].

Supposen = |F | − 1 andx1, ..., xn are the non-zero elements of the field. Lety = (y1, y2, . . . , yn) be
a vector. We are given its syndromesyn(y) = (−pn−1,−pn−2, . . . ,−pn−(δ−1)), wherepn−1, . . . , pn−(δ−1)

are the top coefficients of the interpolating polynomialP . Knowing onlysyn(y), we need to find at most
(δ − 1)/2 locationsxi such that correcting all the correspondingyi will result in a codeword. Suppose that
codeword is given by a degree-(n−δ) polynomialc. Note thatc agrees withP on all but the error locations.
Let ρ(z) be the polynomial of degree at most(δ − 1)/2 whose roots are exactly the error locations. (Note
thatσ(z) from the decoding algorithm above is the sameρ(z) but with coefficients in reverse order, because
the roots ofσ are the inverses of the roots ofρ.) Thenρ(z) · P (z) = ρ(z) · c(z) for z = x1, x2, . . . , xn.
Sincex1, .., xn are all the nonzero field elements,

∏n
i=1(z − xi) = zn − 1. Thus,

ρ(z) · c(z) = ρ(z) · P (z) mod
n∏
i=1

(z − xi) = ρ(z) · P (z) mod (zn − 1) .

If we write the left-hand side asαn−1x
n−1 + αn−2x

n−2 + · · · + α0, then the above equation implies
thatαn−1 = · · · = αn−(δ−1)/2 = 0 (because the degree ifρ(z) · c(z) is at mostn − (δ + 1)/2). Because
αn−1, . . . , αn−(δ−1)/2 depend on the coefficients ofρ as well as onpn−1, . . . , pn−(δ−1), but not on lower
coefficients ofP , we obtain a system of(δ − 1)/2 equations for(δ − 1)/2 unknown coefficients ofρ. A
careful examination shows that it is essentially the same system as we had forσ(z) in the algorithm above.
The lowest-degree solution to this system is indeed the correctρ, by the same argument which was used
to prove the correctness ofσ in Lemma E.1. The roots ofρ are the error-locations. Forq > 2, the actual
corrections that are needed at the error locations (in other words, the light vector corresponding to the given
syndrome) can then be recovered by solving the linear system of equations implied by the value of the
syndrome.
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