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Abstract

Recently, some efforts were made towards capturing the security requirements from digital
signature schemes as an ideal functionality within a composable security framework. While this
modeling of digital signatures potentially has some significant analytical advantages (such as
enabling component-wise analysis of complex systems that use signature schemes, as well as
formal and automatable analysis of such systems), it turns out that formulating ideal function-
alities that capture the properties expected from signature schemes in a way that is both sound
and enjoys the above advantages is not a trivial task.

This work has several contributions. We first correct some flaws in the definition of the
ideal signature functionality of Canetti, 2001, and motivate the choices made in that definition.
Next we provide a minimal formalization of “ideal certification authorities” and show how
authenticated communication can be obtained using ideal signatures and an ideal certification
authority. Indeed, given ideal signatures, authenticated communication can be obtained in an
unconditional and errorless way; this facilitates potential formal and automated analysis.
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1 Introduction

Digital Signatures (first proposed by Diffie and Hellman in [dh76]) are widely used in a variety
of contexts. One main context is for binding between documents and “physical entities” such
as human individuals or organizations. This is essential in electronic financial transactions and
contracts. Another use is for guaranteeing authenticated communication over an unauthenticated
network. Here signature-based authenticated key exchange protocols plays a major role (see e.g.
[dow92, iso93, ipsec98]). Other uses include guaranteeing various integrity properties within
cryptographic protocols (see e.g., [ddn00]).

A widely accepted formalization of the security requirements from signature schemes was put
forth in [gmri88]. Essentially, the requirement it that, when the public and secret key are honestly
generated, then honestly generated signatures will always verify, and in addition it will be infeasible
for an adversary to come up with a message m that was not honestly signed, and an alleged signature
σ, such that σ will verify as a valid signature on m with respect to the given public key. This simple-
to-state notion (called existential unforgeability against chosen message attacks, or CMA-security
in short) has proven to be very useful, and in particular it seems appropriate in all the above
contexts.

Recently, some efforts were made toward defining the security requirements from signature
schemes using the approach of emulating an ideal process [c01, ck02, cr03, bpw03a]. (The first
three works use the framework of universally composable (UC) security; the last one uses the frame-
work of [pw00].) In this approach, one formulates an “ideal signature functionality” that captures
the desired security properties of signature schemes; a signature scheme is said to be secure if it
“emulates” the ideal signature functionality. The effort to provide ideal-process-based definitions of
security for signature schemes may seem surprising; indeed, ideal-process-based definitions of secu-
rity have been traditionally used for capturing the security of distributed protocols, rather than for
capturing the security of more basic cryptographic primitives such as digital signatures. The reason
that ideal-model based analysis for signature schemes is attractive is that such analysis provides
strong secure composability properties. Indeed, in both frameworks mentioned above, security was
shown to be preserved under universal composition [c01, bpw04]. This composability property
opens the door to a number of potential advantages over the “standard” notion of CMA-security.
Let us highlight two main ones.1

Enabling component-wise analysis of complex systems: A common design methodology for protocols
that use signature schemes is to have multiple instances of a protocol (or even multiple different
protocols) use the same instance of a signature scheme. Examples include authenticated key ex-
change protocols, authenticated broadcast protocols, and more. When the standard formulation of
CMA-security is used, we are forced to analyze all protocol instances that use the same instance of
the signature scheme as a single, complex unit. In contrast, using composable notions, it is possible
to analyze each protocol instance as stand alone, and then use a general composition theorem (such
as, say, universal composition with joint state [cr03]) to deduce the security of the entire, multi
instance system.
Sound realization of the “Dolev-Yao methodology”: Given an ideal signature functionality (and
using the universal composition theorem), it is possible to use the following modular approach
to protocol analysis: (a) Given a concrete, real-life protocol that uses a signature scheme, first
decompose the protocol into a “signature module” and a “high-level module”. (b) Prove that the

1Several other abstractions of the security requirements from signature schemes were of course made in the past,
e.g. [sm93, chh00]. However, none of these abstractions enjoy the secure composability property which is central to
our goals.
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“signature module” securely realizes the ideal signature functionality. (c) Prove that the “high-level
module” has the desired security properties when having access to the ideal signature functionality.
(d) Use a composition theorem to assert that the original (concrete) protocol maintains the same
security property as the “high-level module”. The crux of this analytical approach is that step (c),
namely the analysis of the “high-level module”, can often be carried out unconditionally, and is
representable within formal proof tools. Furthermore it seems amenable to eventual automation.
Indeed, Dolev and Yao [dy83] have proposed the approach of analyzing the “high-level module”
assuming access to an ideal signature oracle, and representing the high-level protocol in a language
that allows applying formal logic tools. Using the above approach, we can obtain a variant of the
“Dolev-Yao methodology” that guarantees security also for the original concrete protocol that does
not use idealized constructs.

It turns out that the task of providing a good ideal-process-based composable notion of security
for signature schemes is not trivial. There have been two main approaches to defining an “ideal
signature functionality” within a composable-security framework. The first one is the approach
of [c01]. This approach aims at capturing the basic security properties of a signature scheme as
a tool within other protocols, rather than as an application by itself. Here each instance of Fsig

corresponds to a single instance of a signature scheme (i.e., a single pair of signature and verification
keys). Furthermore, it was claimed that a signature scheme is CMA-secure if and only if the scheme
(or, rather, a simple protocol based on this scheme) securely realizes Fsig. This approach has a
number of advantages, including the above mentioned points of sound realization of the Dolev-Yao
paradigm and modular analysis of multi-protocol systems. However, the formalization in [c01], as
well as the subsequent re-formulations of Fsig in [ck02, cr03], contain a number of technical flaws
that make the claim of equivalence to CMA security incorrect.

An alternative approach to formalizing ideal signature schemes was subsequently formalized
in [bpw03a]. This formulation provides a more abstract (and somewhat restricted) modeling of
signatures. Furthermore, it captures, within a single copy of the functionality, all the signature
instances in the system, plus a number of other cryptographic services such as public-key encryption
and secure communication channels. (See more discussion on this modeling within. Let us only
remark here that this “monolithic” approach essentially loses much of the ability to carry out
modular analysis of systems and much of the applicability to sound realization of Dolev-Yao.)

The present work has several contributions. First, we present a corrected (and somewhat
simplified) formulation of the signature functionality of [c01, ck02, cr03]. While the corrections
are rather technical, they are necessary for the equivalence with CMA-security of signature schemes.
We identify three points; they are discussed within. We invite the scrutiny of the community to
verify the absence of flaws in the current formalization.

Next, we demonstrate the usefulness of the ideal signature functionality for realizing the tasks of
certification of documents (i.e., the binding of documents to identities of principals), and obtaining
authenticated communication. This is done in several steps, as follows. Recall that our signature
functionality is aimed at capturing the basic properties of a (single instance of) a CMA-signature
scheme. This essentially means that the functionality provides binding between a message m and a
public verification key v. (The binding is done via a signature string, s.) We first define a somewhat
“higher-level” functionality, that provides direct binding between messages and the identity of the
signer. We call this “ideal certification functionality” Fcert. It is intuitively clear that Fcert cannot
be realized in a bare communication model where there are no a-priori means for authenticating
the sender of a message. (We formalize and prove this statement, see below). We thus formulate
a minimal “set-up assumption” that allows realization of Fcert. Specifically, we assume existence
of a “certification authority” with which parties have ideally authenticated communication, and
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whose sole role is to register party identities together with public values provided by the registered
parties. We formulate this set-up assumption as an ideal functionality, called Fca. We show that
Fcert can be realizes in a natural way, given ideal access to Fca and to Fsig.

The next step is to show that ideally authenticated communication can be obtained given ideal
access to Fcert. For this purpose we recall the ideal message authentication functionality, Fauth,
of [c01], and show a natural protocol that realizes Fauth given ideal access to Fcert. Finally, to
complement this method of obtaining authenticated communication ,and to justify the use of Fca,
we show that Fauth (and consequently also Fcert) cannot be realized in the bare model of [c01]
by any “useful” protocol.

Several remarks are in order here. First, throughout the analysis we consider only protocols
for a single instance of a signature scheme, and for authenticating a single message. Security
for the multi-session case is obtained “automatically,” via the UC, and the UC with joint state
(JUC) theorems. (JUC is needed for demonstrating how multiple messages can be authenticated
using a single instance of a signature scheme.) Second, both the protocol for realizing Fcert given
(Fsig,Fca), and the protocol for realizing Fauth given Fcert, are unconditionally secure, with no
error probability. This fact greatly simplifies potential casting of these protocols and analyses (as
well as similar ones) within formal and automated analysis tools. (The above two points can be
regarded as manifestations of the above-mentioned advantages of our formalization of signature
schemes.)

Third, we note that an alternative way of using Fsig to provide authenticated communication
is provided in [ck02]. There, Fsig is used to realize key-exchange protocols, which are in turn
used to obtain secure communication sessions via symmetric encryption and authentication. That
formulation is considerably more complex than the present one. In particular, even when given
ideal signatures, the construction is still only computationally secure. We remark, however, that
the treatment of [ck02] can be simplified by using Fcert (as formalized here), rather than directly
using Fsig and making some set-up assumptions.

In addition to the above modular treatment of authentication given signatures, we provide a
somewhat unrelated alternative formalization of signature schemes. This formalization is aimed
at overcoming the following drawback of Fsig: The formulation of Fsig allows the adversary to
learn the values of all signed messages and signatures generated in the system, as soon as they are
generated. While this property is in accordance with the basic notion of CMA-security (which does
not make any secrecy requirements from signatures), it becomes problematic when coming to use
signatures in a context where the signature should be revealed only to a restricted set of parties.
The alternative formalization, denoted Fpriv-sig (for “privacy-preserving signatures”) guarantees
that signatures remains secret until explicitly publicized by the signer, while maintaining all the
other properties of Fsig.

Finally, we remark that the attempt to formulate an ideal process that captures the security
properties of signature schemes brings up a number of interesting issues pertaining to the expected
security properties from such schemes. Let us highlight three such issues (see more discussion
within):

• Is it OK for a signature scheme to allow an adversary, given a public key v, a message m, and
a signature s, to come up with a different signature s′ 6= s such that s′ is a valid signature on
m with respect to v?

• Is it OK for a signature scheme to allow an adversary, given a public key v, a message m, and
a signature s, to come up with a different public key v′ 6= v such that s is a valid signature
on m with respect to v′?
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• When registering a new (public key, identity) pair with a certification authority, does the
owner of the public key have to “prove possession of the private key” to the authority? If so,
then what exactly has to be proven?

Organization. The paper is organized as follows. Section 2 presents the corrected formulation
of the ideal signature functionality, Fsig, and re-proves the equivalence with CMA-security. Section
3 presents the ideal certification functionality, Fcert, and demonstrates how to realize it given Fsig

and a certification authority. Section 4 demonstrates how to realize authenticated communication
given Fcert, and proves that obtaining authenticated communication in the bare unauthenticated
model is impossible. Appendix A presents the privacy preserving signature functionality. Appendix
B reviews the UC framework, and presents some updates to it (specifically, to the notion of PPT
ITMs). Finally, Appendix C provides a critical review of the [bpw03a] formalization of an ideal
signature functionality.

2 The basic signature functionality

This section presents a corrected version ot the ideal signature functionality of [c01, ck02, cr03].
We also use this opportunity to provide an extended motivation for the definitional approach, as
well as the specific choices made. (Many of these considerations were already mentioned in these
works; still, we hope that the additional elaboration provided here will prove useful.) Section 2.1
informally discusses the considerations leading to the present formalization of the basic signature
functionality, Fsig. The discussion also describes and motivates some of the definitional choices.
Further motivation is provided in subsequent sections. Section 2 presents the updated formulation
of Fsig, which includes some corrections and simplifications.

2.1 First attempts

When presented in the most abstract way, a signature scheme provides a way to bind messages
to some publicly known entity, or a party. An immediate realization of this concept as an ideal
functionality may proceed as follows: The ideal functionality (which may be thought of as a “trusted
service” that is available to all parties) simply serves as a “depository of signed messages”. That
is, the functionality allows a single party, called the signer, to register messages as signed. Any
party can then ask the functionality whether some message m is registered as signed. Let us call
this ideal functionality F1.

Functionality F1 indeed captures a basic ideal concept of digital signatures. However, it is
somewhat “too ideal”, in a number of respects. One such respect is that F1 directly binds a message
to an identity of a party (the signer). Realizing this requires some prior communication among all
parties, including some global agreement or broadcast. Arguably, such communication need not
be part of the basic definition of digital signatures. (Rather, it is part of a “certification process”
that builds on top of digital signatures.) Another limitation of this direct binding of messages to
parties is that it excludes other uses of signature schemes, such as binding to organizations, or other
uses within cryptographic protocols. In addition, natural operations such as “‘certifying a public
key” by signing it using a different key cannot be modeled in a modular way. That is, both the
“certifying” and the “certified” public keys have to be part of the same copy of the functionality
(which in addition has to explicitly accommodate such recursive operations).

A second attempt at formulating an ideal signature functionality may thus make the notion
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of a “public key” an explicit part of the interface of the ideal functionality. That is, now the
ideal signature functionality behaves as F1 does, except that it incorporates an initial “registration
process”, where a party registers as a signer and obtains a “public verification key” from the
functionality. (Since we do not give any meaning to the actual value of the verification key, we
allow the adversary to choose it.) Verification queries now take the form of “is this message signed
with this public key”. Let us call this ideal functionality F2.

Functionality F2 better captures the basic properties of signature schemes, in that it leaves the
binding between the public key and an external identity out of scope. However, F2 is still somewhat
“over-idealized”, in that it ideally binds a signed message to a verification key without the mediation
of a “signature string”. To see where this becomes problematic, consider a real-life situation where
party A obtains a signature s on some message m from the signer, and then transfers (m, s) to
another party B. If the signature string s is treated as an internal “implementation detail” and is not
part of the functionality interface, then the signature protocol must take care of transferring s from
party A to party B. This means that the signature protocol has to be active whenever signatures
are transferred from one party to another. This of course does not correspond to our intuitive notion
of a signature scheme. (In addition, it mandates that a signature protocol employs authenticated
communication channels. This is a strange requirement, given that signature schemes are often used
to set up such channels.) The lack of explicit signature strings also causes some other modeling
problems. For instance, modeling natural operations such as sending an “encrypted signature”
that is usable only by the holders of the decryption key cannot be done in a modular way, i.e., in a
model where parties have access to an ideal signature functionality and a separate “ideal encryption
functionality”.

We conclude that in order to capture our intuitive notion of signature schemes, an ideal signature
functionality should make the “signature string” part of its interface. That is, the signing process
will generate a “signature string”, that will be presented at verification time. (Also here, since
we do not give any meaning to the actual value of the signature string, we allow the adversary to
choose it.) The ideal verification process will use the message, the signature string, and the public
key. We demonstrate that this process can be implemented by a real-life “verification algorithm”
that is local and does not require any extraneous communication. This indeed corresponds ot our
intuitive notion of a signature verification process.

The above discussion captures only few of the considerations that come into play when formu-
lating ideal signature functionalities. Other considerations include the wish to make sure that a
single copy of the functionality will correspond to a single instance of a signature scheme. This is
essential if one wants to use an ideal signature functionality within other cryptographic protocols
and maintain the feature that, at all levels, each protocol instance can be analyzed separately from
all others. A number of other considerations are discussed in subsequent sections.

We remark that the formalization of ideal signature schemes within the “ideal cryptographic
library” of [bpw03a] is reminiscent of the approach taken by functionality F1 above. See more
discussion on this formalization in Appendix C.

2.2 The basic signature functionality, Fsig

This section presents an ideal functionality that captures the basic properties of digital signature
schemes. Following the discussion in the previous sections, the functionality models signature
schemes as a process that allows a distinguished party (the signer) to attach tags (signatures) to
documents, so that everyone can verify, by locally running some public algorithm, that the signature
was generated by no one else but the signer. This is a more “low-level” abstraction that regards
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signature schemes as a “technical tool” within other protocols. We show that realizing Fsig is
essentially equivalent to existential unforgeability against chosen message attacks as in [gmri88].

Functionality Fsig is presented in Figure 1. The basic idea is to have Fsig provide a “registry
service” where a distinguished party (the signer, Pi in the figure) can register (message,signature)
pairs. Any party that provides the right verification key can check whether a given pair is registered.
Formalizing this idea in a way that is not over-restrictive and allows for natural realization (but
still guarantees the intuitive requirements from “ideal signature schemes”) requires some care.

The formulation here differs from the formulations in [c01, ck02, cr03] in two main respects.
First, the formulation here lets any party generate public keys and signatures (still, only the first
public key to be generated, and the signatures generated with respect to this public key, are
registered); in contrast, the previous formulations ignored all registration requests except for the
first one. Second, the formulation here explicitly allows a corrupted signer to assume any signature
as its own; in contrast, the previous formulations forced the verification procedure to reject messages
that were never signed, even if the signer is corrupted. Below we highlight and motivate these points,
as well as other the choices taken in the formulation of Fsig.2

Making the verification key part of the interface. Functionality Fsig provides the signing
party with a public verification key. This key has to be later presented by the verifier at
verification time. Furthermore, if the verification key presented by the verifier is not the
one provided by Fsig then there are no guarantees regarding the outcome of the verification
process. This modeling captures the fact that the basic functionality of a signature scheme
only binds messages and signatures to verification keys, rather than other entities such as
party identities. It is the responsibility of the protocol that uses Fsig to make sure that the
verifying party has the correct verification key. Jumping ahead, we remark that the binding of
signatures to party identities is provided by the “certification functionality”, Fcert, presented
in Section 3.

Determining the values of the verification key and the signatures. Functionality Fsig lets
the adversary determine the values of the verification key and the legitimate signatures. This
reflects the fact that the intuitive notion of basic security of signature schemes does not
make any requirements on these values. In particular, the signature values may depend in
an obvious way on the signed message (or on all the messages signed so far). An alternative
(and considerably more restrictive) formulation would require that signatures have some pre-
determined distribution. Such a requirement is reminiscent of verifiable random functions
[mrv99]; however, whereas verifiable random functions do not guarantee that the signature
value “appears random” to the signer, the above alternative formulation does.

Disclosing the signer identity. Note that Fsig discloses the identity of the signer to the adver-
sary. Indeed, there is nothing in the basic intuitive requirements from signature schemes that
requires that the identity of the signer remains secret. (See Appendix A for a formulation
that guarantees this privacy requirement.

Allowing public modification of signatures. When presented with a verification request for a
pair (m,σ), where m was legitimately signed but with a different signature σ′, Fsig lets the
adversary decide whether the verification should succeed. This reflects the fact that the basic

2A third point of difference from previous formalizations has to do with the formalization of probabilistic poly-
nomial time interactive Turing machines (PPT ITMs). Since this technical point is general to the framework, we
describe it together with the review of the framework in Appendix B.
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Functionality Fsig

Fsig proceeds as follows, running with parties P1, ..., Pn and an adversary.

Key Generation: Upon receiving a value (KeyGen, sid) from some party Pi, hand (KeyGen, sid)
to the adversary. Upon receiving (Verification Key, sid, v) from the adversary, send
(Verification Key, sid, v) to Pi, and request the adversary to deliver this message imme-
diately. In addition, if this is the first activation then record the pair (Pi, v); otherwise the
generated verification key v is discarded.

Signature Generation: Upon receiving a value (Sign, sid, m) from some Pj , hand
(Sign, sid, Pj ,m) to the adversary. Upon receiving (Signature, sid, Pj ,m, σ) from the ad-
versary, set sm = σ, send (Signature, sid, m, σ) to Pj , and request the adversary to deliver
this message immediately. In addition, if Pj = Pi then record the pair (m, sm); otherwise do
nothing.

Signature Verification: Upon receiving a value (verify, sid, m, σ, v′) from some party Pj , first
determine the value of the verification bit f :

1. If v′ = v (i.e., if the verification key in the verification request equals the recorded
verification key), and the pair (m,σ) is recorded, then set f = 1.

2. If v′ = v, the signer is not corrupted, and no pair (m,σ′) for any σ′ is recorded (i.e., m
was never before singed), then set f = 0.

3. In all other cases (i.e., if v′ 6= v, or m is recorded with a signature σ′ 6= σ, or (m,σ) is not
recorded and the signer is corrupted), let the adversary decide on the value of f . That
is, hand (Verify, sid, m, σ, v′) to the adversary. Upon receiving (Verified, sid, m, φ)
from the adversary let f = φ.

Once the value of f is set, send (verified, id, m, f) to Pj , and request the adversary to
deliver this message immediately.

Figure 1: The basic signature functionality, Fsig.

notion of security of signature schemes makes no requirement on the verification procedure
in such a case. In particular, it may be possible to publicly generate new signatures for a
message from existing ones. An alternative (and more restrictive) formulation would force
rejection of any pair (m,σ) that is not explicitly recorded. This would exclude signature
schemes that allow generating new signatures from old ones. This stronger requirement is
considered in e.g. [go92].

Allowing multiple signatures for a message. When the singer activates Fsig multiple times
for signing the same message, Fsig allows the adversary to generate multiple different signa-
tures for that message. This reflects the fact that the standard security requirement from
signature schemes does not prohibit schemes that, in different activations, generate different
signatures for the same message. A more restrictive variant would mandate that each mes-
sage may have at most a single valid signature. (This more restricted variant makes sense
only if public modification of signatures is prohibited, as described in the previous paragraph.
Indeed, this variant also has the flavor of verifiable random functions.)

Allowing Corrupted signers to claim any signature as their own. If the signer is corrupted,
and Fsig is asked to verify a signature σ on a message m and public-key v, then Fsig allows the
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ideal-process adversary to force the answer to be “1”, even if m was never before singed and v
is the correct verification key. This feature captures the fact that the basic security properties
from signature schemes do not prevent a corrupted signer from claiming any signature to be
its own. Let us clarify this point via an example. Take any “secure” signature scheme S and
modify it into a signature scheme S′ that is identical to S except that a bit b is perpended
to the verification key. If b = 0 then the verification procedure remains unchanged. But if
b = 1 then the verification procedure always accepts its input signature as a valid signature
for its input message. We claim that the scheme S′ is still “secure”. (In particular, if S is
CMA-secure then so is S′.) Still, S′ allows a a corrupted party P to register with a public
key that begins with a “1”. In this case, P can claim any signature on any message as “its
own”.3

We remark that the following additional property of signature schemes was recently proposed
[ms03]. Given a public verification key v, a message m and a signature s on m that was
“honestly generated” using the signing key that corresponds to v, it should be infeasible to
come up with a different verification key v′ 6= v such that s passes as a legitimate signature
on m with respect to public key v′. Functionality Fsig does not guarantee this property.
Indeed, while this property may be convenient in some specific uses, it is arguably not a basic
requirement from signature schemes in general protocol settings.

Immediate message delivery. Functionality Fsig asks the adversary to deliver the output values
to the (dummy) parties immediately. This represents the fact that typically in signature
schemes we expect the key generation, signature, and verification algorithms to run locally and
provide output immediately, without waiting for any incoming messages from other parties.
Of course, if any of these three activities is realized by a distributed protocol then Fsig would
have to be relaxed accordingly.

Dealing with multiple signers. Fsig distinguishes a single party (the first to activate Fsig with
a (KeyGen, sid) message) as the legitimate signer; That is, only signature generation requests
made by this party are recorded. Yet, Fsig allows any party to generate verification keys and
to obtain signatures for messages. These verification keys and associated signatures carry no
security guarantee, since the verification process allows the adversary to decide on whether
such “signatures” verify in case that the verification key in the verification request differs
from the recorded verification key.

It may appear at first glance that this additional provision is redundant, and that Fsig can
safely ignore requests for key and signature generation by parties other than the legitimate
signer. (Indeed, the formalizations of Fsig in [c01, ck02, cr03] did not have this provision.)
However, without such a provision, Fsig would be unrealizable by “natural” signature proto-
cols, or more specifically by protocols where the key generation and signature activities are
performed locally by the signer without any interaction, for the following “technical” reason.
In a multiparty setting, if different parties locally activate the key generation and signature
modules, independently of each other, then they would all obtain legitimate verification keys
and signatures. This of course holds even if all parties happen to use the same session id.
Thus, had Fsig ignored the key and signature generation requests made by parties other than

3As artificial as the scheme S′ may look, similar properties are shared by existing signature schemes. For instance
when using any RSA-based signature scheme, a corrupted party can publish a verification key that specifies an RSA
modulus N=1. In this case, the verification algorithm would accept any message-signature pair.

8



the signer, then an environment could have easily distinguished between the real execution
and the ideal one.

We remark that this seemingly “technical” aspect of the formulation of Fsig in fact highlights
a real concern regarding the use of signature schemes: It is pointless to use signature schemes
without being certain about the validity of the verification key. Indeed, if the verification
process is given a verification key that is not the valid one then there is no guarantee of
security. Furthermore, the verification process cannot figure out by itself whether the given
verification key is valid; this information has to be obtained by means external to the protocol.

2.3 Equivalence with the [gmri88] notion of security

Recall that [c01] asserts that realizing Fsig is equivalent to resilience against existential forgery
by chosen message attacks as in [gmri88]. However, the proof there relates only to non-adaptive
adversaries (i.e., to the case where the identities of the corrupted parties are fixed in advance).
Furthermore, the proof there is flawed in that it overlooks the flaws in the [c01] formulation Fsig.
This section presents a corrected and extended version of that proof, that addresses the above
issues, and in addition addresses also adaptive adversaries. (The overall structure of the proof
remains unchanged; the modifications are all local in nature.)

First, we describe how to translate a signature scheme S = (gen, sig, ver) as in [gmri88]
into a protocol πS in the present setting. This is done as follows: When Pi, running πS , re-
ceives an input (KeyGen,sid), it executes algorithm gen, keeps the signing key s and outputs the
verification key v. When the signer receives an input (Sign,sid,m), it sets σ = sig(s,m) and
outputs (Signature,sid,m, σ). When a party gets an input (verify,sid,m, σ, v′), it outputs
(verified,sid,m, ver(v′,m, σ)).

Claim 1 Let S = (gen, sig, ver) be a signature scheme as in [gmri88]. Then πS securely realizes
Fsig if and only if S is existentially unforgeable against chosen message attacks.

Proof: For the “only if” direction, let S = (gen, sig, ver) be a signature scheme, and assume
that πS securely realizes Fsig. We show that S is existentially unforgeable against chosen message
attacks. That is, assume that there is a [gmri88] forger G against S. We construct an environment
Z and an real-life adversary A such that, for any ideal-process adversary S, environment Z can
tell whether it is interacting with Fsig and S in the ideal process, or with πS and A in the real-life
model.

Environment Z proceeds as follows. It first activates some uncorrupted party Pi with input
(KeyGen,sid) for some value of sid (say, sid = 0), and forwards the returned key v to A. From
now on, whenever A asks Z to sign a message m, Z activates the signer with input (Sign,sid,m),
and reports the output to A. When A asks Z to verify a pair (m, σ), Z Proceeds as follows. If
m was signed before then Z outputs 0 and halts. Else, Z activates some uncorrupted party with
input (verify,sid,m, σ, v) and outputs whatever that party outputs.

The real-life adversary A first waits to hear some party Pi send a public verification key v.
(This will happen when Z activates Pi to be the signer.) Then, A runs G on input v. Whenever
G generates a message m to be signed, A asks Z to sign m. When A obtains the signature σ from
Z, it hands σ to G. When G outputs a pair (m∗, σ∗) (supposedly a new message and its forged
signature), A asks Z to verify (m∗, s∗).

It can be seen that whenever G succeeds (i.e., whenever ver(m∗, σ∗) = 1 and m∗ was not
previously signed by Pi), Z outputs 1. Thus, under the assumption that G succeeds with non-
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negligible probability, in the real-life model Z outputs 1 with non-negligible probability. However,
in the ideal process with Fsig Z never outputs 1, regardless of what the ideal-process adversary
does.

For the “if” direction, assume that there is a real-life adversary A such that for any ideal-process
adversary S there exists an environment Z that can tell whether it is interacting with Fsig and S
in the ideal process, or with πS and A in the real-life model. We construct a [gmri88] forger G
against S.

Let us first consider the following ideal-process adversary (simulator), S. Simulator S runs a
simulated copy of A. In addition:

1. Any input from Z is forwarded to A. Any outputs of A is copied to S’s output (to be read
by Z).

2. Whenever S receives a message (KeyGen,sid, Pi) from Fsig, it proceeds as follows. If this is
not the first request from Pi then S ignores this request. Otherwise, S runs the key generation
algorithm gen, obtains a pair (s, v) of keys, returns (Verification Key,sid, v) to Z, and
records (Pi, si, vi).

3. Whenever S receives a message (Sign,sid, Pi,m) from Fsig, it looks for a recorded triple
(Pi, si, vi). If such triple is found, then S computes σ = sig(si,m), records (Pi,m, σ), and
hands (Signature,sid,m, σ) back to Fsig. Otherwise, it does nothing.

4. Whenever S receives (Verify, sid, m, σ, v) from Fsig, it returns (Verified, sid, m, φ) where
φ = ver(v,m, σ).

5. When A corrupts some Pi, S corrupts Pi in the ideal process. If Pi is the signer, then S
reveals the signing key s as the internal state of Pi.

Let B denote the event that, in a run of πS , ver(vi,m, σ) = 1 for some message m and signature
σ, but Pi is the legitimate signer (i.e., Pi was the first to be activated with input (KeyGen, sid)),
is uncorrupted, and never signed m during the execution of the protocol. Observe that, as long
as event B does not occur, Z’s view of an interaction with A and parties running the protocol
is statistically close to its view of an interaction with A and Fsig in the ideal process.4 However,
we are guaranteed that there exist a real-life adversary A and environment Z that distinguishes
between the two interactions with non-negligible probability. Thus, we are guaranteed that in the
real-life model event B occurs with non-negligible probability.

We turn to constructing the [gmri88] forger G. G runs a simulated copy of Z, and simulates
an interaction of Z with S in the ideal process for Fsig (where G plays the role of S). This is
done as follows. Like S, G runs a simulated copy of A. However, in the first activation, instead
of running gen to obtain the keys (si, vi), G hands A the public verification key v in its input.
Instead of running the signing algorithm to obtain σ = sig(si,m), G asks its oracle to sign m and
obtains the signature σ. Whenever the simulated Z activates some uncorrupted party with input
(Verify,sid,m, σ, v), G checks whether m was never signed before and ver(v,m, σ) = 1. Once
such a pair (m,σ) is found, G outputs that pair and halts. (If A asks to corrupt the signer than G
halts with a failure output.)

4The views may differ if in the run of πS a message m was signed by Pi with a legitimately generated signature σ,
and the verification algorithm rejects (vi, m, σ). But this event has negligible probability when S is a valid signature
scheme.
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Notice that, from the point of view of A and Z, the interaction with G looks the same as
an interaction in the real-life model with πS . Thus, we are guaranteed that event B (and, thus,
successful forgery by G) will occur with non-negligible probability. 2

We remark that the adversary A constructed in the proof of the “only if” direction is non-
adaptive, whereas the adversary A considered in the proof of the “if” direction can be adaptive.
This means that a protocol π securely realizes Fsig against adaptive adversaries if and only if π
securely realizes Fsig against non-adaptive adversaries. Also, it is interesting to note that the proof
of Claim 1 does not involve any data erasures.

3 Using signatures to provide certification

This section studies an abstraction of signature schemes that is geared towards the task of binding
documents (or,messages) to “physical entities,” such as parties in a network. We use the term
certification to describe such binding. We first formulate an ideal functionality, Fcert, that provides
ideal binding of messages to party identities. Next, we demonstrate how to realize Fcert given
ideal access to Fsig. However, even given Fsig, it is impossible to realize Fcert in a completely
unauthenticated communication model, such as the bare model provided by the UC framework.
(We prove this fact in the next section.) Therefore, we make the minimal set-up assumption that
the parties have access to a rudimentary “certification authority” that registers party identities
together with public values provided by the registered party. We formalize this set-up assumption
via an ideal functionality, Fca, and show a natural protocol for realizing Fcert given ideal access
to Fsig and Fca. We note that this protocol is errorless, and unconditionally secure. That is, it
realizes Fcert perfectly, and even for unbounded adversary and environment.

Section 3.1 presents and motivates the ideal certification functionality, Fcert. Section 3.2 for-
mulates Fca and shows how Fcert can be realized given Fsig and Fca.

3.1 The certification functionality, Fcert

The ideal certification functionality, Fcert, is presented in Figure 2. It is similar to Fsig, except
that it provides direct binding between a signature on a message and the identity of the signer. (In
contrast, Fsig provides binding only to a verification key.) Using common terminology, this corre-
sponds to providing signatures accompanied by “certificates” that bind the verification process to
the signer’s identity. Consequently, in Fcert the generation of public keys becomes an “implemen-
tation detail” and is not part of the interface with the environment. Some of the choices regarding
the formulation of Fcert are highlighted and motivated below. In addition, most of the discussion
regarding the formulation of Fsig is relevant here as well.

Encoding the signer identity in the session ID. Functionality Fcert does not involve a ver-
ification key in the interface with the environment. Instead, it provides ideal and direct
binding between the signed messages and the present copy of Fcert. This binding is provided
via the session ID. Indeed, the session ID is assumed to include the identity of the signer, thus
any verifier can read the identity of the signer off of the session ID. (Said otherwise, if the
verifier associates the signature with a different signer identity, then it would use a different
copy of Fsig.)5

5We remark that it is not essential to encode the identity of the signer within the session ID: An alternative,
equivalent formulation would carry the signer’s identity as an additional parameter; the functionality would then
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Functionality Fcert

Fcert proceeds as follows, running with parties P1, ..., Pn and an adversary.

Signature Generation: Upon receiving a value (Sign, sid, m) from Pi, first verify that sid =
(Pi, s) for some identifier s; if not, then ignore this input. (This verifies that Pi is the
authorized signer for this instance of Fcert.) Then, send (Sign, sid, m) to the adversary.
Upon receiving (Signature, sid, m, σ) from the adversary, send (Signature, sid, m, σ) to Pi.
Record the pair (m,σ).

Signature Verification: Upon receiving a value (Verify, sid, m, σ) from Pj , do:

1. If the pair (m,σ) is recorded then set f = 1.

2. If the signer is not corrupted, and no pair (m,σ′) for any σ′ is recorded (i.e., m was
never before singed), then set f = 0.

3. In all other cases, let the adversary decide on the value of f . That is, hand
(Verify, sid, Pj ,m, σ) to the adversary. Upon receiving (Verified, sid, m, φ) from the
adversary let f = φ.

Once the value of f is set, send (Verified, sid, m, f) to Pj .

Figure 2: The certification functionality, Fcert.

Non-immediate message delivery. Functionality Fcert does not require immediate message
delivery, for either the signature generation or verification processes. Furthermore, the ad-
versary is notified whenever some party makes a verification request. This reflects the fact
that the need for binding the signature to a party ID implies that some interaction is needed
for message generation and verification. Indeed, in protocol cas below for realizing Fcert

given Fsig the signature generation and the verification procedures are sometime interactive.
It is possible to strengthen Fcert to allow interaction only periodically, or in, say, the first
verification by each party.

Dealing with revocations. Functionality Fcert does not deal with identity revocations. Indeed,
modeling revocations requires more involved structures that include a trusted revocation
entity. We leave it out of scope.

3.2 Functionality Fca and realizing Fcert

We present a simple protocol that realizes Fcert given Fsig, with the aid of ideally authenticated
communication with a “trusted certification authority.” This set-up assumption is formalized as
an ideal functionality, Fca. We start by presenting Fca. Next we present the protocol and prove
its security. (It should be remarked that there of course exist methods for realizing Fcert without
using Fca, for instance using direct out-of-band exchange of public verification keys. Still, as shown
in Claim 4, Fcert cannot be realized in the bare unauthenticated model; some set-up assumption
is necessary.)

ignore signing requests by parties other than the legitimate signer, and would reject verification requests that do not
have the correct signer identity in them. The reason to encode the signer’s ID within the session ID is to simplify
the formulation and use of Fcert.
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The certificate authority functionality. The ideal certificate authority functionality, Fca, is
presented in Figure 3. As in functionality Fcert, each copy ofFca is bound to a single party identity;
for ease of presentation we unify the party identity with the session identity of the functionality.
Fca accepts only the first registered value, and does not allow for modification or “revocation.”
Such more advanced features are of course useful, but are not necessary for our basic use. We
stress that Fca does not perform any checks on the registered value; it simply acts as a public
bulletin board. (In particular, no “proof of possession of secret key” is required.) Consequently,
when running in the Fca-hybrid model, a party can register with some copy of Fca using the same
public value as that of some other party, in another copy of Fca. Still, as seen below, the present
minimal formulation suffices for realizing Fcert and subsequently Fauth.

Functionality Fca

Fca proceeds as follows, running with parties P1, ..., Pn and an adversary S.

1. Upon receiving the first message (register, sid, v) from party Pi, send (registered, sid, v)
to the adversary; upon receiving ok from the adversary, and if id = Pi and this is the first
request from Pi, then record the pair (Pi, v).

2. Upon receiving a message (retrieve, sid) from party Pj , send (retrieve, sid, Pj) to the
adversary. If there is a recorded pair (sid, v) then send (retrieve, sid, v) to Pj . Else return
(retrieve, sid,⊥).

Figure 3: The ideal certification authority functionality, Fca

Realizing Fcert in the (Fsig,Fca)-hybrid model. We present a protocol, cas (for “certificate-
authority-assisted signatures”), that realizes Fcert in the (Fsig,Fca)-hybrid model in a straightfor-
ward way. See Figure 4.

Claim 2 Protocol cas securely realizes functionality Fcert in the (Fsig,Fca)-hybrid model.

Proof: Let A be an adversary that interacts with parties running cas in the (Fsig,Fca)-hybrid
model. We construct an ideal-process adversary (simulator) S such that the view of any environ-
ment Z of an interaction with A and cas is distributed identically to its view of an interaction
with S in the ideal process for Fcert. As usual, simulator S runs a copy of A, and forwards all
messages from Z to A and back. In addition, S proceeds as follows.

Simulating signature generation. When S receives in the ideal process a message (Sign, sid, m)
from Fcert, where sid = (Pi, s) and Pi is uncorrupted, it proceeds as follows:

1. If this is the first time that Pi generates a signature, then simulate for A the process
of key generation. That is, send to A (in the name of Fsig) the message (KeyGen, sid),
obtain the response (Verification Key, sid, v) from A, and send to A the message
(registered, sid, v) from Fca. When A sends ok to Fca, mark the pair (sid, v) as
recorded.

2. Simulate for A the process of signing m. That is, send to A (in the name of Fsig) the
message (Sign, sid, m), forward the response (Signature, sid, m, σ) to Fcert.
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Protocol cas

Signing protocol: When activated with input (Sign, sid, m), party Pi does:

1. Pi verifies that sid = (Pi, s) for some identifier s; if not, then the input is ignored. (That
is, Pi verifies that it is the legitimate signer for this sid.)

2. If this is the first activation then Pi first generates a verification key, i.e., it sends
(KeyGen, sid) to Fsig. Once it obtains (Verification Key, sid, v), it sends (Pi, v) to
Fca.

3. Pi sends (Sign, sid, m) to Fsig. Upon receiving (Signature, sid, m, σ) from Fsig, Pi

outputs (Signature, sid, m, σ).

Verification protocol: When activated with input (Verify, sid, m, σ), party Pj checks whether
it has a pair (sid, v) recorded. If not, then Pj sends (retrieve, sid) to Fca, and ob-
tains a response (retrieve, sid, v). If v =⊥ then Pj rejects the signature, i.e. it outputs
(Verified, sid, m, 0). Else it records (sid, v), sends (Verify, sid, m, σ, v) to Fsig, and outputs
the response (Verified, sid, m, f) from Fsig.

Figure 4: A protocol for realizing Fcert in the (Fsig,Fca)-hybrid model.

Simulating the interaction of a corrupted signer proceeds as follows. If A instructs a corrupted
Pi to send (KeyGen, sid) to Fcert then proceed in the natural way. That is, if sid is different
than the sid of the first message received from Fcert in this run, or sid 6= (Pi, s) for some s,
then ignore this instruction. Else, send to A (in the name of Fsig) the message (KeyGen, sid);
when A responds with (Verification Key, sid, v), send (Verification Key, sid, v) to Pi.
The process of generating a signature by Fsig is simulated in a similar way, with the addition
that S records the generated (message,signature) pairs. Finally, When Pi sends (sid, v′) to
Fca, send to A the message (registered, sid, v′) from Fca. When A sends ok to Fca, then
mark the pair (sid, v′) as recorded. (Note that v′ may be different than v; still the simulation
remains valid.)

Simulating signature verification. When notified by Fcert that some uncorrupted party Pj

made a verification request, proceed as follows.

1. If this is the first verification request made by Pj , then simulate for A the exchange
between Pj and Fca. That is, simulate for A a message (retrieve, sid, Pj) coming
from Fca. If Fca has a pair (sid, v) recorded then simulate a response (sid, v) from Fca

to Pj . Otherwise, simulate a response (sid,⊥) from Fca to Pj .

2. If a message (Verify, sid, Pj ,m, σ) arrives from Fsig, then forward this message to A
(in the name of Fsig). Forward A’s response back to Fcert.

If the verifier Pj is corrupted then the simulation is modified in the natural way. That is,
when Pj sends a message (Verify, sid, m, σ, v) to to Fsig, generate a response following the
instructions of Fsig.

Simulating party corruptions. When A corrupts a party, S corrupts that party in the ideal
process, and forwards the obtained information to A. This poses no problem since none of
the parties maintains any secret information.
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It is straightforward to verify that the simulation is perfect. That is, for any (even computa-
tionally unbounded) environment Z and A, it holds that Z’s view of an interaction with S and
Fcert is distributed identically to its view of an interaction with parties running protocol cas in
the (Fsig,Fca)-hybrid model. 2

Remark: In protocol cas each party contacts Fca only once, and records the verification key
it receives for future verifications. Alternatively, a verifier may obtain the verification key from
Fca upon each signature verification. This would make sense in settings where identities can be
revoked, or when the verifier does not maintain state between verifications.

4 Using Fcert to obtain authenticated communication

We exemplify the usefulness of Fcert by demonstrating how it can be used to obtain authenti-
cated communication. Specifically, we recall the message authentication functionality, Fauth, from
[c01], and show a simple protocol that realizes Fauth in the Fcert-hybrid model. (The protocol is
essentially the signature-based authenticator from [bck98].)

We complete this section by proving a complementary claim: Fauth cannot be realized in
the bare unauthenticated model. This claim formalize then intuitive notion that authenticated
communication cannot be “bootstrapped” without some initial, out-of-band, authentication of the
entities involved. Furthermore, it implies that Fcert cannot be realized in the bare, unauthenticated
model.

We first recall Fauth in Figure 5. Recall that each copy of Fauth handles a single message; this
simplifies the presentation and analysis of protocols for realizing it. Section 4.1 demonstrates how
to realize Fauth given Fcert. Section 4.2 demonstrates the impossibility of realizing Fauth in the
bare model.

Functionality Fauth

Fauth proceeds as follows, running with parties P1, ..., Pn and an adversary.

1. Upon receiving a message (send, sid, Pj ,m) from party Pi, send (sent,sid, Pi, Pj ,m) to Pj

and to the adversary, and halt.

Figure 5: The message authentication functionality, Fauth

4.1 Realizing Fauth given Fcert

We present a protocol for realizing Fauth given ideal access to Fcert. The protocol is very simple:
To send an authenticated message m to party Pj , with session identifier sid, party Pi simply signs
(m, Pj) and sends the signed message to Pj . A more complete description appears in Figure 6.

Several remarks are in order before setting to prove security of the protocol. First, notice that
the protocol contains no explicit mechanisms to protect against adversarial replay of messages. In-
deed, the protocol relies on the uniqueness of the session-identifier for each instance of the protocol.
This in essence puts the burden of protecting from replay on the protocol that uses sba (or, rather,
on an “operating system” that verifies uniqueness of sid’s). Specifically, it is assumed that if the
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Protocol sba

1. Upon receiving an input (send, sid, Pj ,m), party Pi sets sid′ = (Pi, sid), sets m′ =
(m,Pj), sends (Sign, sid′,m′) to Fcert, obtains the response (Signed, sid′,m′, s), and sends
(sid, Pi,m, s) to Pj .

2. Upon receiving (sid, Pi,m, s), Pj sets sid′ = (Pi, sid), sets m′ = (m,Pj), sends
(Verify, sid′,m′, s) to Fcert, and obtains a response (Verified, sid′,m′, s, f). If f = 1
then Pj outputs (sent,sid, Pi, Pj ,m) and halts. If f = 0 then Pj halts with no output.

Figure 6: The signature-based authentication protocol, sba

receiver Pj obtains outputs from two different copies of sba, and these two copies have the same sid,
then the second output is discarded. While we do not specify how this provision is implemented,
we mention two popular ways to do so. One method is to have the recipient maintain a list of past
session-identifiers of instances of sba (potentially grouped by sender identities, and expected to be
increasing in value, for more efficient storage). A second method is to have the recipient contribute
to the sid by having the parties exchange randomly chosen nonces prior to the initiation of the
protocol, and using the concatenation of the nonces as the sid. This method involves an additional
round-trip prior to the one-message protocol, and also introduces a small error probability, but
has the advantage that no state needs to be kept across protocol instances. See [blr03] for more
discussion and formalization of general methods for guaranteeing uniqueness of sid’s. It should
also be noted that the protocol obtained by using sba with the above nonce-based method for
guaranteeing uniqueness of the sid is essentially the signature-based authenticator of [bck98].

Second, observe that a separate instance of sba is invoked for each message transmission. This
simplifies the protocol and analysis (e.g., there is no need to sign the session identifier), but it also
means that a separate copy of Fcert is used per message. Using the construction from Section 3, we
have that a different instance of a signature scheme is needed for each message, which is of course
highly wasteful. However, as shown in [cr03], it is possible to realize multiple instances of Fcert

(with the same signer) using a single copy of Fcert, by including the session identifier in the signed
text. Using universal composition with joint state, we have that multiple instances of protocol sba
can use the same instance of Fcert.

Third, we note that functionality Fcert can be used also for session-based message authenti-
cation. Specifically, the formalization in [ck02] can be readily adapted to use Fcert. This would
simplify the current formalization that uses Fsig plus initially authenticated communication be-
tween any pair of parties. In addition, using Fcert and Fca better models the practice of using
certificate authorities.

Finally, we note that the security of protocol sba is unconditional, with no computational
assumptions and no error probability.

Claim 3 Protocol sba securely realizes Fauth in the Fcert-hybrid model.

Proof: Let A be an adversary that interacts with parties running sba in the Fcert-hybrid model.
We construct an ideal-process adversary (simulator) S such that the view of any environment Z of
an interaction with A and sba is distributed identically to its view of an interaction with S in the
ideal process for Fauth. As usual, simulator S runs a copy of A, and forwards all messages from Z
to A and back. In addition, S proceeds as follows.
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Simulating the sender. When an uncorrupted party Pi is activated with input (send, sid, Pj ,m),
S obtains this value from Fauth. Then, S simulates for A the expected interaction with Fcert;
that is, S sends to A the message (Sign, (Pi, sid), (m, Pj)) from Fcert, and obtains a value
s from A. Next, S hands A the message (sid, Pi,m, s) sent from Pi to Pj .

If the sender is corrupted, then all that S has to do is to simulate for A the interaction with
Fcert. That is, whenever a corrupted Pi sends a message (Sign, sid′′,m′′) to Fcert, S re-
sponds with (Sign, sid′′,m′′) to A, obtain a signature s′′, and sends (Signature, sid′′,m′′, s′′)
to Pi in the namer of Fcert.

Simulating the recipient. When A delivers a message (sid, Pi,m, s) to an uncorrupted party
Pj , S first simulates for A the interaction with Fcert: if the logic of Fcert would instruct
it to send (Verify, sid′ = (Pi, sid),m′ = (m,Pj), s) to A (that is, if Pi is corrupted, or
m′ was signed in the past but with a signature different than s) then send this message to
A, and record the response of A. Next, if the logic of Fcert would instruct it to output
(Verified, sid′,m′, s, f = 1) to Pj (that is, if A responded with f = 1 or the message m′

was recorded with signature s) then deliver the message (receivedsid, Pi, Pj ,m) which was
sent in the ideal process from Fauth to Pj . Otherwise, do nothing.

Simulating party corruptions. Whenever A corrupts a party, S corrupts the same party in
the ideal process, and provides A with the internal state of the corrupted party. This is
straightforward to do, since the protocol maintains no secret state at any time.

It can be readily seen that the combined view of Z and A in an execution of sba is distributed
identically to the combined view of Z and the simulated copy of A within S in the ideal pro-
cess. Indeed, the only case where the two views may potentially differ is if the receiver obtains
(Verified, sid′,m′, s, f = 1) from Fcert for an incoming message (sid, Pi,m, s), while Pi is un-
corrupted and never sent the message (sid, Pi,m, s). However, if Pi never sent (sid, Pi,m, s), then
the message m′ = (m,Pj) was never signed by the copy ofFcert with session id (Pi, sid); thus,
according to the logic to Fcert, Pj would always obtain (Verified, sid′,m′, s, f = 0) fromFcert.
2

4.2 Realizing Fauth in the bare model

This section demonstrates that it is impossible to realize Fauth in the bare unauthenticated model
by any “useful” protocol. A corollary from this fact is that there exist no protocols that realize
Fcert in the plain model. More precisely, say that a multiparty protocol is terminating if, whenever
the adversary corrupts no party and delivers all messages unmodified and with no delay6, then at
least one party generates output with non-negligible probability. We show:

Claim 4 There exist no terminating protocols that realize Fauth in the bare unauthenticated model
in a network with at least two parties.

Proof: Let π be a protocol (that is geared towards realizing Fauth), and consider a network with
parties P1, P2. We construct the following environment Z and real-life adversary A. Z activates
no party with any input. If party P2 generates output (received, sid = 0, P1,m = 0), then Z

6Delivery with no delay can of course be interpreted in a number of ways. To be specific, we stick to “first come
first serve” delivery, where the earliest undelivered message is the next to be delivered. The claim holds with respect
to other reasonable delivery method.
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outputs 1. Otherwise Z outputs 0.7 Adversary A simulates for P2 an execution of π on input
(send, sid = 0, P2,m = 0) for P1, where no party is corrupted, and all messages are delivered
without delay. Note that A can do so successfully, since it can feed P2 with any incoming messages,
and P2 shares no prior state with any other party.

Since protocol π is terminating, with non-negligible probability P2 outputs (received, 0, P1, 0)
in the real execution of π. However, in the ideal process P2 never generates any output. 2

Corollary 5 There exist no terminating protocols that realize Fcert in the bare unauthenticated
model, in a network with at least two parties.

Proof: If there exist protocols that realize Fsig then the corollary follows from Claims 4 and 3.
Otherwise, the corollary follows from the fact that Fsig can be (trivially) realized in the Fcert-hybrid
model. 2
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A Guaranteeing privacy of signatures

As mentioned in the Introduction, allowing the adversary to determine the signature values has
the consequence that the adversary learns the values of all the messages signed and signatures
generated even if the signer never disclosed these values to anyone. This formulation is in accord
with the basic security requirements of digital signatures (as in, say, [gmra89]), which do not make
any secrecy requirements from signatures or from the signature generation process. Still, it does not
capture the fact that, when the signature generation process is local within the signer, the signature
value remains secret until explicitly made public by the signer. Consequently, functionality Fsig

may become inadequate in applications where the signer wants to disclose the signature or the
signed message only to certain parties.

This appendix describes an alternative formulation of Fsig, denoted Fpriv-sig (for “private signa-
tures”), that does not disclose the values of the signatures or the signed messages to the adversary.
In fact, the adversary does not even learn whether signatures were generated at all. Similarly, the
adversary does not learn which signatures were verified by honest parties, and of course it does not
learn the outcomes of these verifications.

Functionality Fpriv-sig is identical to Fsig with the following exceptions. When providing
Fpriv-sig with the verification key v, the adversary hands Fpriv-sig a “signature generation al-
gorithm” (namely an ITM G), and a “signature verification algorithm” (namely an ITM V ). Now,
in the signature generation process, instead of asking the adversary to generate each signature value
σ, Fsig keeps a running instance of G and generates each signature by running M on the signed
message. Similarly, Fpriv-sig keeps a running copy of machine V . Whenever Fsig asks S for the
value of f , Fpriv-sig invokes machine V on the message and signature, and adopts the answer of
V .8

Functionality Fpriv-sig is presented in Figure 7. All the discussion pertaining to functionality
Fsig is relevant here as well. In addition, as discussed above, Fpriv-sig guarantees that the adversary
does not learn anything about which messages are signed or verified, or on the values of the signa-
tures. We remark that the technique of having the ideal-process adversary supply the functionality
with descriptions of ITMs to run was first used in [ck02] in the context of key-exchange protocols.
Indeed, this technique is quite general and powerful. In particular, it allows capturing, within a
simulation-based definitional framework, requirements such as “any protocol is allowed as long as
the protocol satisfies a given property P ,” where property P need not necessarily be defined in a

8We assume that both G and V are (unbounded) PPT ITMs. That is, there is a fixed polynomial p() associated
with each of the machines, and in each activation the machine makes only up to p(n) steps, where n is the maximum
between the security parameter and the length of the message m.
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Functionality Fpriv-sig

Fpriv-sig proceeds as follows, running with parties P1, ..., Pn and an adversary.

Key Generation: Upon receiving a value (KeyGen, sid) from some party Pi, hand (KeyGen, sid)
to the adversary. Upon receiving (Verification Key, sid, v, G, V ) from the adversary, send
(Verification Key, sid, v) to Pi, and request the adversary to deliver this message imme-
diately. Interpret G, V as descriptions of two polytime ITMs, and invoke a copy of G and a
copy of V .
In addition, if this is the first activation then record the pair (Pi, v); otherwise the generated
verification key v is discarded.

Signature Generation: Upon receiving a value (Sign, sid, m) from some Pj , let sm = G(m), send
(Signature, sid, m, sm) to Pj , and request the adversary to deliver this message immediately.
In addition, if Pj = Pi then record the pair (m, sm).

Signature Verification: Upon receiving a value (verify, sid, m, σ, v′) from some party Pj , first
determine the value of the verification bit f :

1. If v′ = v (i.e., if the verification key in the verification request equals the recorded
verification key) and the pair (m,σ) is recorded then set f = 1.

2. If v′ = v, the signer is not corrupted, and no pair (m,σ′) for any σ′ is recorded (i.e., m
was never before singed) then set f = 0.

3. In all other cases, let f = V (v′,m, σ).

Once the value of f is set, send (verified, id, m, f) to Pj , and request the adversary to
deliver this message immediately.

Figure 7: The privacy preserving signature functionality, Fpriv-sig.

simulation-based way. Here the property P is essentially “unconditional unforgeability” cast in a
multiparty protocol setting.

An analogous claim to Claim 1 holds also with respect to Fpriv-sig. That is, recall the trans-
formation from a signature scheme S into a protocol πS . Then, we have:

Claim 6 Let S = (gen, sig, ver) be a signature scheme as in [gmri88]. Then πS securely realizes
Fpriv-sig if and only if S is existentially unforgeable against chosen message attacks.

Proof (sketch): The proof is very similar to the proof of Claim 1. The main difference is that
here the simulator S has to provide Fpriv-sig with the algorithms G and V . This is done as follows:
Algorithm G is sigsk (i.e., the signing algorithm of S with the secret key generated by S together
with the public key given to Fpriv-sig.) Algorithm V is vervk, the verification algorithm of S. It
can be easily seen that the simulation remains valid. We omit further details. 2

A conclusion from Claims 1 and 6 is that for any signature scheme S, the protocol πS securely
realizes Fsig if and only if it securely realizes Fpriv-sig. We remark that this equivalence of course
does not hold for general protocols that realize Fsig. In fact, given any protocol that realizes Fsig,
it is easy to construct a protocol that realizes Fsig and does not realize Fpriv-sig (say, by having
the signer publicize the value of each message signed and the corresponding signature).
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B Universally Composable Security: A review

We provide a review of the UC security framework. The text is somewhat informal for clarity
and brevity, and is mostly taken from the overview section of [c01], with some local updates and
modifications. Full details (as well as a history of works leading to that framework) appear there.
We present the real-life model of computation, the ideal process, and the general definition of
securely realizing an ideal functionality. Next we present the hybrid model and the composition
theorem.

Protocol syntax. Following [gmra89, g01], a protocol is represented as a system of interactive
Turing machines (ITMs), where each ITM represents the program to be run within a different
party. Specifically, the input and output tapes model inputs and outputs that are received from
and given to other programs running on the same machine, and the communication tapes model
messages sent to and received from the network. Adversarial entities are also modeled as ITMs. We
concentrate on a model where the adversaries have an arbitrary additional input, or an “advice”.
From a complexity-theoretic point of view, this essentially implies that adversaries are non-uniform
ITMs.

We assume that all ITMs run in probabilistic polynomial time (PPT). In fact, we formulate
two different notions of PPT ITMs. Say that an ITM is strict PPT if there exists a constant c
such that: (a) M completes each activation within nc steps, where n is the maximum between
the security parameter k (which is written on a special tape) and the length of the input to this
activation, and (b) the machine halts altogether after at most kc steps. If only the first condition
is guaranteed then the ITM is unbounded PPT (UPPT). (Jumping ahead, we assume that all the
adversarial entities considered, namely the environment and all adversaries, are strict PPT. The
parties running the protocols and the ideal functionalities are only assumed to be UPPT.)9

B.1 The Basic Framework

Protocols that securely carry out a given task (or, protocol problem) are defined in three steps, as
follows. First, the process of executing a protocol in the presence of an adversary and in a given
computational environment is formalized. Next, an “ideal process” for carrying out the task at
hand is formalized. In the ideal process the parties do not communicate with each other. Instead
they have access to an “ideal functionality”, which is essentially an incorruptible “trusted party”
that is programmed to capture the desired functionality of the task at hand. A protocol is said to
securely realize an ideal functionality if the process of running the protocol amounts to “emulating”
the ideal process for that ideal functionality. We overview the model for protocol execution (called
the real-life model), the ideal process, and the notion of protocol emulation.

9We remark that the formalization in [c01] requires that all entities, including the parties running the protocol
and the ideal functionalities, are strict PPT ITMs. This formalization is indeed adequate for capturing the notion
of “polynomial time protocols” for tasks where the number of activations expected from a party, and the length of
the input per activation, are a-priori bounded. (For instance, secure function evaluation is a class of such tasks.)
However, this notion of PPT ITMs is too restrictive for capturing the notion of “polynomial time protocols” for
reactive tasks where the number of activations expected from a party, and the length of the input per activation,
may not be a-priori bounded. As an example, consider the intuitive notion of a signature scheme. This notion
assumes that the number and lengths of messages to be signed are not a-priori bounded. Rather, these numbers
are determined by the adversary with which the scheme interacts; while they are always polynomially bounded, the
polynomial may depend on the adversary. In particular, the ideal signature functionality Fsig described above is not
strict PPT ITM, and cannot be realized by strict PPT ITMs. We thank Dennis Hofheinz, Joern Mueller-Quade, and
Rainer Steinwandt for pointing this issue to us in [hms03].
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The presentation below concentrates on the following model, aimed at representing current
realistic communication networks (such as the Internet). The network is asynchronous without
guaranteed delivery of messages. The communication is public and unauthenticated. (That is, the
adversary may delete, modify, and generate messages at wish.) Parties may be broken into (i.e.,
become corrupted) throughout the computation, and once corrupted their behavior is arbitrary
(or, Byzantine). Finally, all the involved entities are restricted to probabilistic polynomial time (or,
“feasible”) computation. The framework can be adapted in natural ways to present other models
of computation (e.g., synchronous or authenticated communication). See more details in [c01].

Protocol execution in the real-life model. We sketch the process of executing a given protocol
π (run by parties P1, ..., Pn) with some adversary A and an environment machine Z with input z.
All parties have a security parameter k ∈ N and are polynomial in k. The execution consists of a
sequence of activations, where in each activation a single participant (either Z, A, or some Pi) is
activated. The environment is activated first. In each activation it may read the contents of the
output tapes of all parties, and may write information on the input tape of either one of the parties
or of the adversary. Once the activation of the environment is complete (i,e, once the environment
enters a special waiting state), the entity whose input tape was written on is activated next.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or corrupt a party. There are no restrictions on the messages
delivered. Upon corrupting a party, the adversary gains access to all the tapes of that party and
controls all the party’s future actions. Finally, the adversary may write arbitrary information on
its output tape. In addition, whenever a party is corrupted the environment is notified (say, via a
message that is added to the output tape of the adversary). If the adversary delivered a message
to some uncorrupted party in its activation then this party is activated once the activation of the
adversary is complete. Otherwise the environment is activated next.

Once a party is activated (either due to an input given by the environment or due to a message
delivered by the adversary), it follows its code and possibly writes local outputs on its output
tape and outgoing messages on its outgoing communication tape. Once the activation of the
party is complete the environment is activated. The protocol execution ends when the environment
completes an activation without writing on the input tape of any entity. The output of the protocol
execution is the output of the environment. Without loss of generality we assume that this output
consists of only a single bit.

Let realπ,A,Z(k, z, ~r) denote the output of environment Z when interacting with adversary A
and parties running protocol π on security parameter k, input z and random input ~r = rZ , rA, r1 . . . rn

as described above (z and rZ for Z, rA for A; ri for party Pi). Let realπ,A,Z(k, z) denote the
random variable describing realπ,A,Z(k, z, ~r) when ~r is uniformly chosen. Let realπ,A,Z denote
the ensemble {realπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

The ideal process. Security of protocols is defined via comparing the protocol execution in the
real-life model to an ideal process for carrying out the task at hand. A key ingredient in the ideal
process is the ideal functionality that captures the desired functionality, or the specification, of that
task. The ideal functionality is modeled as another ITM that interacts with the environment and
the adversary via a process described below. More specifically, the ideal process involves an ideal
functionality F , an ideal process adversary S, an environment Z with input z, and a set of dummy
parties P̃1, ..., P̃n.
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As in the process of protocol execution in the real-life model, the environment is activated first.
As there, in each activation it may read the contents of the output tapes of all (dummy) parties, and
may write information on the input tape of either one of the (dummy) parties or of the adversary.
Once the activation of the environment is complete the entity whose input tape was written on is
activated next.

The dummy parties are fixed and simple ITMs: Whenever a dummy party is activated with
input x, it forwards x to the ideal functionality F , say by writing x on the incoming communication
tape of F . In this case F is activated next. Whenever a dummy party is activated due to delivery
of some message it copies this message to its output. In this case Z is activated next.

Once F is activated, it reads the contents of its incoming communication tape, and potentially
sends messages to the parties and to the adversary by writing these messages on its outgoing
communication tape. Once the activation of F is complete, the entity that was last activated
before F is activated again.

Once the adversary S is activated, it may read its own input tape and in addition it can read
the destinations of the messages on the outgoing communication tape of F . That is, S can see the
identity of the recipient of each message sent by F , but it cannot see the contents of this message
(unless the recipient of the message is S). S may either deliver a message from F to some party
by having this message copied the party’s incoming communication tape or corrupt a party. Upon
corrupting a party, the adversary learns whatever is specified by the functionality.10 In addition,
from the time of corruption on, the adversary controls the party’s actions. Also, both Z and F
are notified that the party is corrupted. If the adversary delivered a message to some uncorrupted
(dummy) party in an activation then this party is activated once the activation of the adversary is
complete. Otherwise the environment is activated next.

As in the real-life model, the protocol execution ends when the environment completes an
activation without writing on the input tape of any entity. The output of the protocol execution is
the (one bit) output of Z.

Let idealF ,S,Z(k, z, ~r) denote the output of environment Z after interacting in the ideal process
with adversary S and ideal functionality F , on security parameter k, input z, and random input
~r = rZ , rS , rF as described above (z and rZ for Z, rS for S; rF for F). Let idealF ,S,Z(k, z) denote
the random variable describing idealF ,S,Z(k, z, ~r) when ~r is uniformly chosen. Let idealF ,S,Z
denote the ensemble {idealF ,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Securely realizing an ideal functionality. We say that a protocol ρ securely realizes an ideal
functionality F if for any real-life adversary A there exists an ideal-process adversary S such that
no environment Z, on any input, can tell with non-negligible probability whether it is interacting
with A and parties running ρ in the real-life process, or it is interacting with S and F in the
ideal process. This means that, from the point of view of the environment, running protocol ρ is
‘just as good’ as interacting with an ideal process for F . (In a way, Z serves as an “interactive
distinguisher” between the two processes. Here it is important that Z can provide the process in
question with adaptively chosen inputs throughout the computation.) A distribution ensemble is
called binary if it consists of distributions over {0, 1}. We have:

Definition 7 Two binary distribution ensembles X and Y are indistinguishable (written X ≈ Y ) if
10Past formulations have specified that,upon corruption, the adversary learns all the past inputs and outputs of

the party. The present, more general formulation allows capturing also properties such as forward secrecy, etc.
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for any c ∈ N there exists k0 ∈ N such that for all k > k0 and for all a we have

|Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < k−c.

Definition 8 Let n ∈ N. Let F be an ideal functionality and let π be an n-party protocol. We say
that π securely realizes F if for any adversary A there exists an ideal-process adversary S such that
for any environment Z we have:

idealF ,S,Z ≈ realπ,A,Z .

B.2 The Composition Theorem

The Hybrid Model. In order to state the composition theorem, and in particular in order to
formalize the notion of a real-life protocol with access to multiple copies of an ideal functionality,
the hybrid model of computation with access to an ideal functionality F (or, in short, the F-hybrid
model) is formulated. This model is identical to the real-life model, with the following additions.
On top of sending messages to each other, the parties may send messages to and receive messages
from an unbounded number of copies of F . Each copy of F is identified via a unique session
identifier (SID); all messages addressed to this copy and all message sent by this copy carry the
corresponding SID.

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, once a party sends a message m to a copy of F with SID s, that copy is
immediately activated to receive this message. (If no such copy of F exists then a new copy of F
is created and immediately activated to receive m.) Furthermore, although the adversary in the
hybrid model is responsible for delivering the messages from the copies of F to the parties, it does
not have access to the contents of these messages.

Note that the hybrid model does not specify how the SIDs are generated, nor does it specify
how parties “agree” on the SID of a certain protocol copy that is to be run by them. These tasks
are left to the protocol in the hybrid model. This convention seems to simplify formulating ideal
functionalities, and designing protocols that securely realize them, by freeing the functionality from
the need to choose the SIDs and guarantee their uniqueness. In addition, it seems to reflect common
practice of protocol design in existing networks.

Let hybFπ,A,Z(k, z) denote the random variable describing the output of environment machine
Z on input z, after interacting in the F-hybrid model with protocol π, adversary A, analogously to
the definition of realπ,A,Z(k, z). (We stress that here π is a hybrid of a real-life protocol with ideal
evaluation calls to F .) Let hybFπ,A,Z denote the distribution ensemble {hybFπ,A,Z}k∈N,z∈{0,1}∗ .

Replacing a call to F with a protocol invocation. Let π be a protocol in the F-hybrid
model, and let ρ be a protocol that securely realizes F (with respect to some class of adversaries).
The composed protocol πρ is constructed by modifying the code of each ITM in π so that the
first message sent to each copy of F is replaced with an invocation of a new copy of ρ with fresh
random input, with the same SID, and with the contents of that message as input. Each subsequent
message to that copy of F is replaced with an activation of the corresponding copy of ρ, with the
contents of that message given to ρ as new input. Each output value generated by a copy of ρ is
treated as a message received from the corresponding copy of F .

If protocol ρ is a protocol in the real-life model then so is πρ. If ρ is a protocol in some G-hybrid
model (i.e., ρ uses ideal evaluation calls to some functionality G) then so is πρ.
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Theorem statement. In its general form, the composition theorem basically says that if ρ se-
curely realizes F in the G-hybrid model for some functionality G, then an execution of the composed
protocol πρ “emulates” an execution of protocol π in the F-hybrid model. That is, for any ad-
versary H there exists an adversary H′ in the F-hybrid model such that no environment machine
Z can tell with non-negligible probability whether it is interacting with H and πρ in the G-hybrid
model or it is interacting with H′ and π in the F-hybrid model.

A corollary of the general theorem states that if π securely realizes some functionality I in the
F-hybrid model, and ρ securely realizes F in the real-life model, then πρ securely realizes I in
the G-hybrid model.(Here one has to define what it means to securely realize functionality I in
the F-hybrid model. This is done in the natural way.) We first formalize the notion of protocol
emulation:

Definition 9 (Protocol emulation) Let F1, F2 be ideal functionalities and let π1, π2 be multi-
party protocols. We say that π1 in the F1-hybrid model emulates π2 in the F2-hybrid model if for any
adversary A1 there exists an adversary A2 such that for any environment machine Z we have

hybF1
π1,A1,Z ≈ hybF2

π2,A2,Z .

The case where π1 (resp., π2) runs in the real-life model of computation is captured by setting
F1 (resp., F2) to be the functionality that does nothing. Note that emulation is transitive. That is,
if π1 in the F1-hybrid model emulates π2 in the F2-hybrid model, and π2 in the F2-hybrid model
emulates π3 in the F3-hybrid model, then π1 in the F1-hybrid model emulates π3 in the F3-hybrid
model.

Theorem 10 (Universal composition [c01]) Let F , G be ideal functionalities. Let π be an n-
party protocol in the F-hybrid model, and let ρ be an n-party protocol that securely realizes F in
the G-hybrid model. Then protocol πρ in the G-hybrid model emulates protocol π in the F-hybrid
model. In particular, if π securely realizes some ideal functionality I in the F-hybrid model then
πρ securely realizes I in the G-hybrid model.

C On the [bpw03a] modeling of signatures

Backes, Pfitzmann and Waidner [bpw03a] propose a “library” of idealized cryptographic primitives,
within the framework of [pw00].11 The main goal of this library is similar to one of the goals
of this work, namely to realize the “Dolev-Yao paradigm” (sketched in the introduction) in a
computationally sound way. Since this library provides, among other things, an alternative abstract
modeling of digital signatures, we review it here in terminology that facilitates comparison and
provide some critique.

The [bpw03a] library is essentially an ideal functionality that provides, within a single copy,
multiple instances of an ideal signature service, as well as multiple instances of an ideal public-
key encryption scheme, multiple instances of secure or authenticated communication channels, and
ideal nonce generation. We concentrate here on the details relevant to the signature service. The
service has the following interfaces: 12

11This framework has many similarities to the UC framework, although the formalization is somewhat different.
In particular, the universal composition theorem of [c01] essentially holds also in that framework; see [bpw04] for
details. (We remark that a limited version of this theorem was proven in [pw00].)

12We note that the description of the library interface in [bpw03a] is much more detailed. In fact, the level of detail
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• Registration: In order to register as a signer, a party sends a registration request to the
library. It then receives a “key-handle”, which is essentially the current value of a “key-
handle counter”; in addition, the library internally registers the party as the signer for this
handle.

• Signature generation: In order to sign a message m with respect to some key-handle, the
signer sends m and the key-handle to the library. In response, the library records m as
signed, and provides the signer with a “signature-handle”, which is again the current value of
some counter. Finally, the library internally records the signer as a “legitimate verifier” for
this signature-handle.

• Signature verification: When a party that is registered as a “legitimate verifier” for some
signature-handle wishes to verify the signature, it sends a verification request to the library
(together with the message and the handle). The library then verifies that the party is
registered as a “legitimate verifier”. If so, then it reports back whether the (message, handle)
pair is recorded. Otherwise, the request is ignored.

These are the basic interface functions of the signature scheme. Notice, however, that these func-
tions do not allow any party other than the signer to verify signatures. Transferring the ability to
verify signatures is provided via other functions of the library, namely the secure and authenticated
communication functions. That is:

• Signature transmission: When a party A that is registered as a “legitimate verifier” for some
signature-handle sends the signature-handle to another party B via a secure or authenticated
channel provided by the library, the library sends the signature-handle to B and adds B to
the list of “legitimate verifiers” for this signature-handle.13

Critique. Before proceeding with our critique of the definition of the [bpw03a] library, we wish
to re-iterate that, like any other definition of security, ideal functionalities can never be “mathe-
matically wrong”. Furthermore, there may of course be more than a single valid way to capture the
security properties of a given informal primitive, and different formalizations may have complemen-
tary properties. Still we believe that the present formalization of the library has some shortcomings;
here we attempt to bring those forth. We start with some specific issues and then draw a more
general conclusion.

First, notice that the above definition of the library forces the user of the library to use the
secure/authenticated channels provided by the library to transmit signature handles. Indeed, it
is impossible to use other secure channels mechanisms (or even secure channels that are provided
by a different copy of the library), and maintain the ability to verify signatures. Furthermore,
this means that any protocol that uses the signature module of the library must also assume that
idealized secure/authenticated channels are already provided. In particular, it does not make sense
to model protocols that try to realize secure/authenticated channels using signature schemes as
protocols with ideal access to the library.

and the density of notation make it somewhat hard to follow. To improve readability, the sketch here is much more
high-level and informal. Still, to the best of our understanding it provides an accurate depiction of the [bpw03a]
formalism.

13We remark that this “list of legitimate verifiers,” while somewhat hidden inside the [bpw03a] formalism, is
essential for making the functionality realizable. Indeed, it is easy to see that if parties could verify validity of a
signature without being explicitly given the corresponding signature handle via the library then the library would
not be realizable at all. See Section 2.1 for more discussion on these issues.
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Another consequence of this formalization is that any implementation of the signature part of
the library is incomplete unless it implements also the secure/authenticated channels interface. (We
remark that the same holds also with respect to the encryption functions of the library, which are
not reviewed here.)14 Another consequence is that the library is unable to model more general ways
of communicating signatures to other parties. For instance, consider a (real-life) protocol where
a party wishes to secret-share the signature among several parties, and then have another party
determine who will be able to reconstruct the signature. Such use of signature scheme cannot be
modeled within the present formulation.

Finally, we observe that the present formalization of the library is inherently inadequate for
realizing the “Dolev-Yao paradigm” as sketched in the introduction, at least with respect to the
type of protocols which are traditionally analyzed using this paradigm. Indeed, recall that the
paradigm starts with a concrete protocol that uses some cryptographic primitive (say, a signature
scheme), de-composes the protocol into a “high-level module” that uses an abstraction of the
primitive and a module that realizes the abstract primitive, analyzes each module separately, and
then uses a composition theorem to deduce that the original protocol is secure. However, if the
present library is used, then already the first step fails: We need to de-compose the given protocol
into a module that realizes the library, plus a “high-level module” that uses the library. But most
cryptographic protocols do not contain any module that realizes the entire library, and thus cannot
be de-composed as needed. This criticism is of course relevant also to works that use the [bpw03a]
library to perform “Dolev-Yao style analysis”, such as [bp03, bpw03b].15

In conclusion, we point out that all the issues discussed here are related to the fact that the
library models all instances of all primitives within a single copy of an ideal functionality. Indeed,
a formalization where each copy of the functionality captures only a single instance of a single
primitive seems more conducive towards effective realization of the Dolev-Yao paradigm, and better
suited for modular analysis of large, multi-user, multi-module systems.

14In the [bpw03a] implementation of the library, the secure/authenticated channels functions are not actually
implemented; rather they are assumed to be provided by the underlying network. A complete implementation of
their library would of course have to realize also secure and authenticated channels.

15One can informally claim that it is “essentially enough” to find a module within the given protocol that realizes
the “corresponding module in the library”. Of course, this claim has to be made rigorous in order to make sense;
Furthermore, it seems unlikely that such a claim can be made rigorous since. as demonstrated above, the functions
of the library themselves are not well-separated.
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