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Abstract. A broadcast encryption scheme for stateless receivers is convenient to users since it never
updates their secret information and user revocations are done ¢mplicitly in the broadcast phase. How-
ever, it has a drawback that the system efficiency decreases with the growth of the number of revoked
users. Reciprocally, the efficiency in a rekeying scheme is not affected by the accumulated number of
revoking users since it revokes illegal users in an ezplicit and immediate way. But it may cause inconve-
nience to users since in many applications rekeying events may happen frequently. A hybrid approach
that appropriately combines these two types of mechanisms seems resulting in a good scheme. In this
paper, we suggest such a hybrid framework by proposing a rekeying algorithm for subset cover broadcast
encryption framework (for stateless receivers) due to Naor et al. Our rekeying algorithm can simulta-
neously revoke a number of users. As an important contribution, we formally prove that this hybrid
framework has a pre-CCA like security, based on three primitive conditions, where in addition to pre-
CCA power, the security definition allows the adversary to adaptively corrupt and remove users. Finally,
we realize the hybrid framework by two secure concrete schemes that are based on complete subtree
method and Asano method, respectively. To explicitly revoke r users, the first scheme needs computing
overhead 3r — 2+ 2r log(n/r) and the second scheme needs computing overhead =+ — 1 +ar log,_(n/r),

a—1

where n is the maximal number of users and a is a constant.

1 Introduction

Broadcast encryption is a mechanism that allows one party to securely distribute his data
to privileged users. Since its invention by Fiat and Naor [7], it has been extensively studied
[2,4-6,9,12].

A subset cover method based broadcast encryption scheme for stateless receivers was
studied by Naor, et al. [10]. Further work appeared in [1,6,12]. In this mechanism, a user’s
secret information is never updated, and user revocation is implicitly achieved by subset cover
technique in the broadcast phase. This method has an advantage of no key updating, while
it has a drawback that when the number of revoking users grows large, the system efficiency
decreases. For example, it takes more time to compute ciphertext, diminishes the effective
capacity of users and adds burdens to system management. A complementary mechanism
is a rekeying scheme [4, 11,14, 15] where a user’s secret information is explicitly updated for
each membership updating. Thus it avoids the weakness of a stateless scheme. However, it
may cause inconvenience to users due to frequent membership updatings.

Since the above two mechanisms have complementary features, a hybrid scheme that
appropriately combines them seems to be a good solution. Such a scheme should require
the possibility to update each user’s secret information. Although this is not the case for
applications like DVD, it is absolutely reasonable for applications such as stock quotes, online



database, etc. Thus in the sequel, we assume that this condition is always satisfied. The first
work along this hybrid approach was due to Garay, et al. [§]. In their method, implicit
revocation is achieved by the threshold sharing technique and the property of cover-free
family. When the number of the (implicit) revoking users reaches the threshold, it updates
affected users’ secret information explicitly by uni-cast approach.

In this paper, we realize the above tradeoff idea by a hybrid framework called Hyb. We
obtain this framework by proposing a rekeying algorithm to the subset cover framework for
stateless receivers [10]. Our rekeying algorithm can revoke a number of users simultaneously.
In the security definition, the adversary has the power of chosen ciphertext attack in the pre-
processing model (pre-CCA). As an important contribution, we prove that Hyb framework is
secure against such a pre-CCA like attack if three primitive conditions are satisfied: (1) en-
cryption algorithm E for session key protection is pre-CCA secure, (2) encryption algorithm
F for message protection is semantically secure against passive attack, and (3) (static) key
assignment satisfies key indistinguishability. Finally, we realize Hyb framework by two pre-
CCA secure concrete schemes, Hyb., and Hyb, that are based on complete subtree method
[10] and Asano method [1], respectively. Computing overhead is the number of ciphertexts
required to revoke a set of users by rekeying algorithm. To explictly revoke r users, Hyb,,
scheme needs computing overhead 3r — 24 2rlog(n/r) and Hyba needs computing overhead
L=t — 1+ arlog,(n/r), where n is the maximal number of users and a is a constant.

In contrast to the result in [8], we have the following advantages. First, they did not

a—

provide a provable security. Instead, they assume that encryption schemes are “perfect”.
Different from theirs, we only assume quite reasonable primitive conditions. We prove our
framework Hyb is secure under a definition that allows the adversary to have pre-CCA power
as well as capabilities of adaptively corruption and removing users both. Second, the rekeying
algorithm [8] is the uni-cast way. As a result, if a key needs updating, then the new key has to
be encrypted under each legal user’s uniquely shared key with the center. As a comparison,
in many realizations of Hyb, for example, Hyb.s and Hyba, in order to securely inform a
new key to its legal users, the number of different ciphertexts required for this key is merely
a constant.

This paper is organized as follows. In section 2 we introduce Hyb method. The security
of this method is proved in section 3. In section 4 we give two schemes based on complete
subtree method and Asano method, respectively. We end with some discussions in section 3.

2 A Framework for Hybrid Broadcast Encryption

In this section, we suggest a framework for hybrid broadcast encryption that captures the
advantages of a stateless scheme and a rekeying scheme both by extending the subset cover
framework for stateless receivers by Naor et al. [10]. Our contribution here is mainly a new
rekeying algorithm. To achieve this, we explicit define a user secret information I(u) instead
of an abstract symbol in [10]. We call this framework Hyb.

Preprocessing Phase

1. Let U be the set of all possible IDs. Broadcast Center (BC) defines a collection of subsets
of U: 5y,---,5., associates a master key [; and a secret key k; for S;,1 =1,---, z, where



z is polynomially bounded. Suppose that each singleton {u} is contained in the collection.
(Note: to enable implicitly revoking any subset of users in the broadcast phase. This is
necessary. See the broadcast phase.) [; implies k; (and probably also implies some [; with
S; 2 °5;). For security reason, we require that I; is not implied by I, for any S; D ;. (see
the decryption phase.)

2. Define K(u) = {kjlu € S;;i = 1,---,z} and let I(u) be the subset of {[;|u € S;,i =
1,---,z} obtained by removing all I; that are implied by another master key, say I;.

Note: throughout this paper, A D B means that A strictly contains B. Similar definition is
applied to C .

Join Phase When a new person wants to join, BC first checks whether there is a free ID.
If yes, he assigns this ID, say u, together with secret key information I(u) to this person.
Later, we refer this person by user w as long as he is not explicitly purged from the system.

Broadcast Phase When BC wants to broadcast message M to all users U except those in
R, he first finds a set cover S;,,---,S5;  such that S; U---US; = U\R. Then he forms the
ciphertext as

H(M, R) == (i1, U, Ekil (k),- - By, (k), Fr(M)), (1)

where F and F' are two encryption algorithms and k is a random number of appropriate
length. (Note: if the scheme is enabled to implicitly revoke any subset of U, then each {u}
has to be contained in the collection Sy,---, 5, since otherwise there is no way to form a

subset cover for the case U\R = {u}.)

Decryption Phase When u € U\R receives H(M, R), he first finds j such that u € S;;,
then he computes k;; by using I(u) and gets M from it. (Note: If I; is implied by I; for some
S; D S;, then for R = U\S;, H(M, R) can be decrypted by an unprivileged user u € S;\ ;.
Thus it is necessary to require that I; should not be implied by I, for S; D S;.)

Rekeying Phase In this part, we propose a rekeying algorithm that updates legal users’
secret information in order to explicitly revoke some users.

Definition 1. Let Sy, -, 5. be defined as before. We say that S; has a level [ if there exists
a chain of length [:

S, CS;, C---CS;, C8,

where 11, -+, 11,1 are distinct; and there exists no such a chain of length [ + 1.

Definition 2. For two subsets S; and S; with S; C S;, if there is no Sy such that S; C Sy C
S;, then we say that S; is a child of 5.

Let I,---, I, be defined as before. We partition them into subsets Cy,---,C,, for some
integer p such that each C; is generated independently of the rest subsets and no C; can
be further partitioned to smaller such subsets. It follows that if C; is defined as the output
of an algorithm G; with random input string cn,;, then ecn; is independent of the rest en;’s.
We now define an equivalent relation on Iy,-- -, I.. We say that I;, I; are equivalent if there



exists a sequence I; (= I;), I,, - - -, [;,(= I;) such that generation procedures for any adjacent
keys I, I;, ., partially share random input string. It is clear from the definition of C; that
each C; is an equivalent class that is independent of the rest C,’s. We let C(I;) denote the
class C; with I, € C;.

Definition 3. We say that I; is dominated by R C U if there exists I; € I(u) for some
u € R such that C(I;) = C(I;). Define

D(R) = {S:|I; is dominated by R and I; € I(u) for some u € U }. (2)

From the discussion on the partition of I,---, 1., we know in order to update I; and
maintain the key assignment structure as well, it is sufficient and necessary to update C(I;)
(i.e., generate fresh I’ for each I; € C(I]) and inform its legal users). Thus to revoke all
the users in R, it is sufficient and necessary to update {[;|S; € D(R)}. In the following, we
present our new rekeying algorithm to achieve this goal where we suppose that the maximal

level for Sy,---,5. is L.

Rekeying Algorithm
1. BC first computes new I! for each S; € D(R);
2. For each S; € D(R) at level 1 do

Suppose S; = {u}. If u € R, then send Ey,(I]) to user w.
3. For{=2,--- L do

For each S; € D(R) at level [ do
For each child S; of S; broadcast Ek;(fl’) to all users in S, where k} = k; if I; is

not updated; otherwise £} is the new value.
4. Set IDs in R to be free.
Lemma 1.
1. FEvery set at level 1 has a form of {u},u € U.
2. All users not in R can update his secret information properly.

Proof. 1. This is an immediate consequence of the fact that any {u} is in the subset col-
lection.

2. We only need to show that any new information I! for any [; € I(u) for some u € U which
is dominated by R can be received by its desired users S;\R. By definition, if I, € I(u) is
dominated by R, then S; € D(R). Thus I; will be updated to I by Step 1. To show the
completeness, we only need to show that for each S; € D(R), I can be received by S;\R.
This is done by induction on level {. When [ = 1, §; has a form of {u}. By Step 2, if u € R,
then he can get I/ since he can compute k;. Assume that for any S; € D(R) at level lower
than [, its legal users can receive I!. We show that for any S; € D(R) at level [, its legal
users can receive I] too. Indeed, for each child S; of S;, S; has a level lower than [. Thus if
S; € D(R), all users in S;\R can compute the new version I}. If S; ¢ D(R) but dominated
by R, by definition of I(u), for each u € S;\R, there exists an I that implies I, for some
S; with lower level than S;. Therefore, I} can be computed by u. Thus he can obtain I;. If
I; is not dominated by R at all, then k; = k;. Thus S;\R can obtain I] too. On the other
hand, for any u € S;, there exists a child 5; of S; that contains u since u is contained in the
subset collection. Thus I} can be received by S;\ R. O



3 Security

In this section, we provide a proof of the security for Hyb method. We first introduce the
notion of key indistinguishability which is a variant of that in [10]. Our definition is to use
more information about user secret information I(u).

Definition 4. Let 51,5, -, 5. be defined as before. Consider the key assignment for C;. Let
B be a probabilistic polynomial time adversary that chooses I; € C; as his target and receives
Iy for all I, € C; with S; € S;. We say that key assignment C; satisfies key indistinguishability
iof B can not distinguish k; from a random value r; of the same length, i.e.

| Pr[B(Aj, kj) =1 for j < B] = Pr[B(Aj,r;) = 1 for j < B (3)

is negligible, where A;={L|I; € C;, S € S;}.
We say that the (static) key assignment of Hyb framework satisfies key indistinguishability
if C; satisfies this property for each 1 =1,--- pu.

Lemma 2. let 51,---,5. be defined as before. Suppose C;1 = 1,---, pu satisfies key indis-
tinguishability. Let S; ,---,S;, be all the subsets contained in S; such that I;, € C(I;),t =
L---,m. Then (ki ,-- -, ki, ) is indistinguishable for any probabilistic polynomial time adver-

sary that receives all I for I € C(I;) with Sy € S;.
The proof of the lemma is similar to that of Lemma 9 in [10]. So we omit it here.

Now we define the security of a Hyb scheme. This definition captures the threats from
explicitly revoked users, current legal users and their collusions. The adversary can schedule
any corruption, revocations of users of his choice and he also has a pre-CCA power to request
encryption/decryption of broadcast messages/ciphtexts of his choice. Formally,

Definition 5. Consider the following game between a challenger and an adversary A against
a Hyb scheme.

1. A can take the following actions:
(i) He can choose (M;, R;) of his choice and request for a ciphertext H(M;, R;);
(i1) He can ask for decryption of any ciphertest H(M!, R.) of his choice. As a result, he
will recetve the plaintext M!;
(111) He can request rekeying algorithm on a set R, of his choice;
(iv) He can corrupt any user u. And if a user u is corrupted, then I(u) is provided to A.
2. Suppose the set of users §2 are currently corrupted (still privileged). Then A chooses
(M, R) of his choice with 2 C R and gives it to the challenger.
3. The challenger picks M' = M or a random string of the same length and forms a cipher-
text H(M', R). Then he provides it to A, who tries to guess which is the case.

Then A outputs a guess bit. A is said to be successful if his guess is correct. The Hyb scheme
is said to be secure if the success probability of A is negligible.



In the above definition, we do not authorize the adversary to control the join operation
since this does not result in a higher security. Indeed, our definition does not restrict the
join activity of potential users. Thus it contains the case where every user ID is always
in use. Especially, if a user is purged from the system, another person will join as this ID
immediately. Note security in this case implies the security in other cases no matter the
adversary controls the join operation or not since its view of the former covers the view of
the latter.

In the rest of this section, we will concentrate on the proof of the following theorem,
which claims our Hyb method is secure if three primitive conditions are satisfied.

Theorem 1. Assume that the key assignment on C; satisfies key indistinguishability for
1 = 1,---,pu, that encryption algorithm E is pre-CCA secure, and that F s semantically
secure against passive attack. Then the Hyb framework is secure.

We decompose a proof for the theorem into five lemmas below. If a Hyb scheme is insecure,
then there exists an adversary A that breaks the security in Definition 5. We show that
there is an adversary B that can break the security of E. We first consider the following
game between a challenger and an adversary B that makes use of A to achieve his goal.

1. B uniformly chooses j € {1,2,---,z} and t uniformly from {1,---,Q}, where @ is an
upperbound of the number of the cover subsets when computing the ciphertext in the
broadcast phase. Let the number of requests of rekeying algorithm on any set R’ with
R'NS(I;) # 0 be upperbounded by A — 1, where S(I;)=Up,ec(s;) Si- Finally B chooses d
uniformly from {0,1,---, A —1}.

2. B simulates Hyb scheme with Si,---, 5. defined before. And then he runs A against it.
We use d' to denote the number of requests up to date for running rekeying algorithm on
any set R’ with R' N S(I;) # 0. Initially, &' = 0.

3. If A asks for revoking R} with R:NS(I;) # 0, then B increases d’ by d' = d'+1. If d' > d,
B aborts. Otherwise, B uses his own random inputs to generate a fresh copy C(I]) for
Si € D(R.)(note if I; and Iy are within the same class, use the same fresh copy). Then
he forms the updating ciphertext of I; by using his own knowledge except for the special
case d = d. In this case, he first chooses a random number r,, of length |k, | for each
Sw C S; with I, € C(I;). Then if K, satisfying S, C S; and [, € C(I;), is required
as the encryption key, then instead of using k! he uses r, (fixed throughout the case
d' = d); and if £ is required in order to generate a ciphertext of I{, then he requests for
the ciphertext of I from his encryption oracle. Furthermore, in case for the first time it
reaches d’ = d, if it needs to encrypt I}, for S,, C S;, B encrypts a random string rd,, of
the same length instead.

If A asks for revoking R with R:NS(I;) = 0, then d’ is kept unchanged. The rest actions
are the same as in the case R. N S(I;) # 0 except for the case d’ = d. In this case, if £/,
satistying Sy, C S; and I, € C( I;), is required as an encryption key, he uses r,, chosen
before; if £ is required as an encryption key, then he queries his encryption oracle.

4. If A asks to corrupt u ¢ S;, then B provides I(u) to A by using his own knowledge.
If A asks to corrupt v € S and d’ < d, then B provides I(u) to A by using his knowledge
too.
If A asks to corrupt v € S; and d' = d, then B aborts.



5. When A requests encryption/decryption of an arbitrary (M;, R;)/ciphertext, B computes
it by using his knowledge if no k,, satisfying S, C S, and [, € C([;), is required
or if d < d. If d = d and k; is required for encryption/decryption, then in case of
encryption, he chooses the session k uniformly random of appropriate length and asks for
its encryption oracle and in case of decryption, he asks for his decryption oracle. If &' = d
and k,, satisfying S, C S; and I, € C([;), is required, then he uses r,, chosen before.

6. Suppose {2 is the set of users currently corrupted (i.e., corrupted but still priviledged) by
A.If A chooses (M, R), R O {2 for test, B finds a subset cover §; US;,,U---US; = U\R.
If iy = 7 and d’' = d, then B announces for a test. Otherwise, B aborts. If B does not
abort, he chooses a random number k of appropriate length and gives it to the challenger.
The challenger provides a € {E(k), E(x;)} randomly to B, where x; is a random string
of length |k|. Upon receiving o, B chooses M’ = M or a random string M" of length |M|
equally likely and forms the ciphertext

<i17"'7iM7Eki1 (‘Tl)v"'ka (xt—l)vakait+1 (k)v"'kaim(k)ka(M/)>v (4)

where x;,7 = 1,--+,¢t — 1 are uniformly random of the length |k|. And then B provides
the above ciphertext to A.

i1

If B does not abort, then in case M’ = M, B outputs whatever A outputs; in case M’ is
random, B complements the output of A. If B aborts somewhere, then it outputs 0, 1 equally
likely.

We denote the above game by I'"*"¢, We define a variant "% of game I'"*"¢ as follows.
Il is the same as I'""¢ with exception in the case of revoking some R; with R;NS(I;) # 0
and d' = d in Step 3. In I'"*¥, instead of generating new C(I}) by himself, B will receive all
Ii € C(I}) for Sy € S; and furthermore receive k;, for all S, C S; with I/, € C(I}). And he
does not need to generate r,, for S, € S; with I,, € C(I;) and later when required to use
ry, he uses k! that is received above. His encryption/decryption oracle will use the secret
key k) instead of a random number in [rand,

Our plan for the proof of security of Hyb is as follows.

1. The probability that B won’t abort in game I is negligibly close to ﬁ And it 1s
negligibly close to the probability in game I,

2. If an adversary in the Hyb scheme has a non-negligible advantage, then adversary B in
game I'"* has a non-negligible advantage, too.

3. If adversary B in game I'"*"¢ has a negligible advantage while it has a non-negligible
advantage in game I then there exists an adversary D that compromises the key
assignment indistinguishability of Hyb.

Based on the key assignment indistinguishability of Hyb scheme and items 2, 3, we conclude
that the pre-CCA security of E is compromised, a contradiction.
Lemma 3. d' is the number of times that C(I;) has been updated up to date.

Proof The proofs for both games I'"* and I'"*"? are identical. Note that if RiNS(I;) = 0,
C(I;) is not dominated by R,. Thus C([;) keeps unupdated. In this case, d’ remains un-
changed by description of the game. On the other hand, if R; N S(I;) # 0, then there exists



u € RINS(I;). Thus C(I;) is dominated by w. Thus C(I;) will be updated. By the description
of the game, d = d’ 4+ 1 in this case. O

Define Non — abort(/°) to be the event in game I'° in which the adversary B does not
abort, where ¢ € {real, rand}. We have the following lemma.

Lemma 4. Pr[Non — abort(I"*)] ~ X, where &~ means “negligibly close”.

Proof Suppose (S;,,5;,), -+,(Si,,5;,) are all the possible pairs of subsets, satisfying S;, C
S; and S;, is a child of S;,, or satisfying ¢; = 7; and S;, = {u} for some u € S, where
t=1,---,q. Suppose these pairs are arranged such that |S; | <[5, <--- <[5}, |. In game
'l when reaching the case d’ = d for the first time, B is supposed to send the rekeying
ciphertexts, Ekit(jgl‘t) and actually he sends Ekgt(rdjt) in game I for ¢t = 1,---,q. Note
here k! is the currently used key (before receiving this ciphertext), i.e., ki, = k;, if it has not
been updated (for example, at level one, we always have k! = ;.

We then define a sequence of hybrid games of I"“*  which we denote by I7¢, where
[ = 0,1,--+,q. Then the main difference between I and I7° is in the above special
event when B is supposed to send Ekit(jgl‘t)vt =1,---,¢q. In I'"* B sends Ek;t(rdjt) for all
t =1,---,q. However, in I7° B sends Ekgt(rdjt) for 1 <t <[ and he sends Ekit(jgl‘t) for
[ <t < q. Furthermore, to enable him to do this, B will receive I! for all S,,  5,,, together
with all k], satisfying S, C S}, and I, € C(I;). Note that I} = I And Iy is the
game where B actually know C(I}). Since Ireal actually does not relate to ¢, we simply write
it as I’ In the following, we show that the probabilities of non-abort events in I"** and
I'meal are negligibly close. If this were not true, we show that there exists an adversary D
that can compromise the key assignment indistinguishability of C'(;) for some j. The action
of D can be described as follows.

1. D chooses j from {1,---,z} uniformly and then he selects [ uniformly from {1,---,v},
where v is the upperbound of ¢. If [ > ¢, then D exits with 1 or 0 equally likely; otherwise,
D announces ki, as his target. As a response, he will receive all I}, € C(I}) for all S,, € S,
as well as o, € {k} 7y} for S, C S;,, where all are taken from the first component or all
are taken from the second componenet and the probability is 1/2.

2. D follows the decription of I7< except when reaching the special case d' = d for the
first time. In this case, if required to send Ekil(IJ/j)7 D sends Eq, (I},) or Eq, (rd;) with
probability 1/2 if 5| > 1; he sends Eq, (rd;,) if [S;,| = 1.

3. It D does not abort, the in case he sent Eail(I]‘) in the exception he outputs 1; in case
he sent Eq; (rd;,) in the exception, he outputs 0. If D does abort, then in case he sent
Eail(I]’j) in the exception, he outputs 0; in case he sent Eail(rdjl) in the exception, he
ouputs 1.

Now we calculate the advantage Adv(D) of D. Let p/(j) be the non-abort probability
in game I}, for a fixed j. Also define p{(j) be the non-abort probability for a fixed j in
the avariant game of 7 where in the special case ki, is replaced by r;, for all ¢ satisying

Si, € Sjand I, € C(I;). Define [; to be the number ¢ such that |S;,| =1 but |S,,,,| > 1 for

t+1



a fixed choice j. Then we have
z 0—141_04 z 1_1'1—1'
i ijl Z;I:lj+1 IM - i Zj:l Z;]:lj-l—l IM
1 z . . . .
20 2= (1, (7) = P (5)) = (P, (4) = ()]
o 2= (P, () = (G))
- (Pr[Non — abort(I"*)] — Pr[Non — abort(I)].

Adv(D)

Y

Here the first /&~ holds since p?j (J) ~ pg(j), which can be proved using standard argument to
reduce the pre-CCA security of E; the second & holds since pj(j) ~ p}l N R p}lj, which

can be proved by noticing the following facts :

. |S,t| = 1 fOI’t: 1,"',l]‘.

- If there exists two adjacent probabilities p;(j) and p;,, with a non-negligible gap, then
i.y1 With a non-negligible gap,
which can be done by noticing that the rekeying ciphertexts here can be simulated in

one can easily compromise the indistinguishability of k

both of these two games.

Thus we have D has a non-negligible advantage, contradiction to the assumption of the key
assignment indistinguishability of C(I;) for all j =1,---,z.

Consider a variant I'"**" of game I'"**’. For case d’ = d at Step 4, suppose that in game
e instead of abortion, B responses faithfully. He can do this because he knows C(I3).
The rest of the action is unchanged (although B can compute k; already, we consider the
case B still follows its described action. Our point is A can realize whether B is normal or
not). We show that B aborts in e if and only if it aborts in game I'"*™". Suppose
is a transcript in I7*? in which B aborts at Step 4 and 2’ is the transcript in "¢ with
prefix being = while instead of abortion at Step 4 B continues his action described above. If
B won’t abort in #/, then when A announces for a test by providing (M, R), d' = d since if
d" > d then B will abort at Step 3. It follows that u is not revoked (i.e., currently he is a
privileged user). Since we assume that A is a valid attacker, it follows that « ¢ R. Thus for
any subset cover S;, U S, U---US,; = U\R, there exists no ¢ such that i, = j. Therefore,
B must abort, a contradiction. Thus Pr[Non — abort(I"*"")] = Pr[Non — abort(I7")].

Now we consider Pr[Non — abort(I7¢")]. Let IT“°"(D) denote the set of the views
of adversary A in the real world (i.e. in Defintion 5) with restriction that the number of
requests of rekeying algorithm on revoking set R’ with R’ N S(I;) # 0 is D. Note that the
view of adversary A in Step 1-5 in game I"°®" before his abortion is distributed exactly
the same as in the real world since B’s action is according to the real world. If instead of
abortion when d' > d at Step 3, B continues the normal action as described in the real world,
the adversary view in Step 1-5 will be distributed exactly the same as in the real world. It
follows that given d chosen by B, if B won’t abort in Step 1-5, the view of A during Step 1-5
is distributed exactly the same as in the real world conditional on D < d, where D is the
number defined before. And therefore, the non-abort probability in Step 1-5 in game I'me*”
is 3. peg Pr[IT¥°"(D)], where Pr[ ] is according to distribution of the view of adversary A in
the real world.

Furthermore, in Step 6, since A is assumed to be valid, it follows that if B won’t abort
till B receives A’s test query (M, R), the adversary view of A is distributed the same as in



the real world conditional on D < d. And since at this point B won’t abort if and only if
iy = j and d' = d, it follows that conditional on that B won’t abort, the adversary view till
just before he reads the test ciphertext is distributed the same as = € I1°?"(d) in the real

=]
world, where Hfﬁg’(d) is the subset of [1%°"!(d) with the restriction 7; = j. Thus given ¢, we
have

Pr[Non — abort (")) X 00 Saerrveri( y Prli = j, 2]

)\ anorl Prl:lt — ]7 ]

= Pr[ it = 7]
- z)\7
where [1V"'=U)~; II**"!(d). Therefore, we have Pr[Non — abort(I"*)] = L. O

Lemma 5. Pr[Non — abort(I"°?)] is negligibly close to Pr[Non — abort(I*")].

Proof If the conclusion were not true, by using adversary B, we show that there would
exist 7 such that key assignment C([;) does not satisfy key mdlstlngulshablhty We denote
such an attacker by O. He acts as follows.

1. O runs algorithm adversary B described in game '™,
2. When B chooses j, O announces to have a test on S;. As a response, he will receive all
I for I, € C(I;) with S; € S; as well as (o, a4y, -+, ay, ) taken from (k;,, ki, -+, k;, ) or
(ro,r1,---,rp) uniformly random. Here r; is uniformly random of length |k;,| and k;, is
the key associated with 9;,, where 19 = j and 5;,,---,5;, are all proper subsets of S; with
L, € C(I;),t =1,---,h. Then O forwards all such information except «;, to adversary
B. Then O answers the encryption/decryption queries of B by using «;, .
3. If B does not abort, then O outputs 1 with probabilit = Pr[Non — abort(I"?)]

and p,=Pr[Non — abort(I°*)]. Otherwise, it outputs 1 with probability e

Now we analyze the probabilities. Note that if (o, o, -, ;) = (kig, kiy, - ki),
then the game initiated by B is exactly I, Thus the non-abort probability is exactly p;.
On the other hand, if {(cy, -+, ;) = (ro,---,r4), the game initiated by B is distributed
exactly the same as game I, Let Adv(Q) be the advantage of O in breaking the key
indistinguishability of Cy,-- -, C,. Then we have

AdV(O) = E Z;:l(Pr[O(rov y Thy AJ) =1: .]] - Pr[o(kiov te klh? A; ) .]])|

- ‘ [p1+p2p1 + p1+p2(1 _pl)] - [p1+p2p2 + p1+p2(1 _pz)] ‘

= p1+p2 Pt 4 P2 — pip2 — prp2 — p2 + p3
- p1+p2(p1 pz)
(Pl p2)*.

Since p; — p2 is non-negligible, it follows that Adv(O) is non-negligible, a contradiction to
Lemma 2. O



Lemma 6. Suppose that key assignment on C(I;) for all j satisfies key indistinguishability,
that F' is semantically secure against passive attack, and that E is pre-CCA secure. If Hyb
framework is insecure, then adversary B has a non-negligible advantage in game I,

Proof We first prove that the output advantages in I and I'"** are negligibly close. If
this were not true, then there exists adversary D that can compromise the key assignment
indistinguishability of C(I;) for some j. The action is similar to that in Lemma 4. The only
difference is the output. In the special case, if D sent Ekgl (rd;,) then he follows the output

rule of B in game I'"*; otherwise, he complements the output rule of B in game I'"*™ (recall
that in all variants of I B has the same output rule). Immediately, we have that the
advantage Adv(D) of D is as follows.

v realy__ v real
Adv(D) =37, Adv(l; )ZVAd =)

- Adv([‘real)_Adv(Freal/)
- 2v ’

non-negligible, contradiction.

Suppose a Hyb scheme is insecure. Let A be the algorithm that is against Hyb scheme.
We can separate A as (Aj, A3). The job of A; is to do the first part of the attack, which
outputs (M, R) for test and as well as some auxiliary information «, where R contains all
the users that are corrupted currently. And A, is the second part of A, which will receive
the challenge ciphertext H(M', R) from the challenger and auxiliary information o from A4,
where M’ = M or a random number of length |M| equally likely. Then A, outputs a guess
bit for M'.

Define

Hj(Mv R) = <i17 R Ekil (rl)v ) Ekij (rj)v Ekij+1 (k)v ) Ekim (k)v Fk(M)> (5)

to be a random variable over the distribution of R and its internal coins, where R is the
output of A;. If j > m, let H;(M,R) = H,,(M, R).
Define

€; = Pr[Ay(H;(M,R), o) =1 for o, M, R < A,|—Pr[A(H;(M",R),a) =1 for o, M, R + A,],

where M" is a random string of length |M|,7 = 0, -, Q. Here Q) is an upperbound of m.
Note that € is exactly the advatage of A in security definition of Hyb scheme. Thus it is non-
negligible according to the assumption. On the other hand, eg is negligible by the semantic
security of F' against passive attack and the fact that k& happened to occur somewhere else
during the attack only with negligible probability (since it is uniformly random).

Now let us analyze the advantage of B in game I'"*’. For simplicity, we also separate B
into two parts (By,Bz). The job of By is to output k for test and some auxiliary information
B. On receiving the challenge ciphertext v € {Ey;(k), Ex;(r;)} and 3, the job of B, is to
output a guess bit.

From the proof of Lemma 4, we know that for given d,t¢,7, if B won’t abort, then
the view of adversary A in case “y € Ei; (k)" is distributed exactly the same as in the
real world conditional on the set of events II*?"!(d) except that the challenge ciphertext

=7

H(M', R) is replaced by H;—1(M’', R). Note that H(M’, R) is one-one correspondent to a set



{Hi1(M',R)|r1,- -, r4—1}, where the random bits used in H;—1(M’, R) for given rq,---r_y
are the same as in H(M’, R). Thus, for any such a view x in the real world, let T;_q(x)
be the set of views in I that corresponds to x with parameter ¢ such that By, (k) is

contained in the challenge instead of Ej, (r:). Then the probability that there exists an oc-
Pr([z]

P (@)

curence of view in T;_;(x) conditional on fixed d, ¢, and non-abortion event is

Note Pr[II}?2H(d)] = ¢ uerta) Prlic = J, ).
Define A(t, j, d)=Pr[Bay(Ey;(k),3) = 1 for k, 3 « Bil|d,t,j] to be the probability that
B outputs bit 1 conditional on non-abortion event and fixed d, 7,¢ in Step 1 of the game.

Similarly, define Ay(t, j, d)=Pr[By(Ey; (1), B) = 1 for k, B < Bi|d, t, j].
We have

At 5, d) = Loemsoriao %Pf[v‘lz(l‘ € Tia(x) =1: 2]
+ Dyermpera) W Pr[Ax(y’ € Ti-1(y)) = 02y,

where IT1"'!(d,a) denotes the subset of II2"!(d) such that if M is used in the challenge

=3 =3
ciphertext then ¢ = 0; otherwise, a = 1.

Similarly,

Az(tv.jv d) = erﬂfzoﬁl(d,o) Pr [Hw[orl PI’[.AQ(J} € Tt( )) =1: l‘]
+ Lyenperta % Pr[Ax(y € Tiy)) = 0 : yl.

Notice that when B aborts, he will output 0 or 1 uniformly random. Thus the advantage
of B comes from non-abort event only. Also notice that Pr[II}*?!(d,a)] = Pr[II*!(d)]/2.

it=7 it=7
Thus the advantage Adv(B) of B is exactly the following
Adv(B) = 3 Prft. . d(Du(t.j.d) — Aol . d)) Pe[ITE! (]2 (6)
t.3d
We further have
Adv(B)=X;,4Pr[t, 5, d] ernworl(do) Prlz] Pr[Asy(a’ € Tioq(x)) =1: 2]/2
+2td Prt, 5, d] Zyenwoﬂ(d 1) Prly] Pr[Ax(y' € Tioi(y)) = 0 : y]/2
— >, 0aPr[t,7,4d] ernwor Hd,0) Prlz] Pr[Ay(2’ € Ty(x)) =1: z]/2
Zt]dPr[t J»d] Zyeﬂwo”(dl) Prly] Pr[Ax(y" € Ti(y)) = 0: y]/2
= ZQZ)\ 2, dzxeﬂwm’l d,0) Pr[:z; 1: 2]

+s5ox ZQZ)\ Zt,],d Zyenjwzolrtl(dJ) Pr
1
T 220X 2d erﬂ;gj(d,o) Pr

1
_—ZZQA Zt,j,d Zyeﬂjwzolrtl(dJ) Pr

For a fixed ¢, any x € II" has a unique j such that j = 7; ( recall 7; is defined as i, if
t > m). Thus U; T2 (d,0) is the subset of IT%°"(d) in which M is used in the challenge

J=t
ciphertext for A. Denote the union by I1*°"(d,0). Furthermore, subsets in this union are



pairwise disjoint. Similar observations are applied to other three cases. Thus we have

Adv(B) = mﬁ Ytd Laemweri(ao) Pr[z] PrAy(2’ € T y(x)) = ]
‘|‘2Qﬁ td Lyerrwort(a) Pr[y] Pr[As(y’ € T;- 1(9))
_z;ﬁ th ernworl(d70) PI’ l‘] PI’[.AQ(J}/ E Tt(:ﬁ)) =
Prly] P

=0:y]
1
r[Ax(y" € Ti(y)) = 0 : y]

.

- 2le>\ Zt,d Zyeﬂwm’l(d,n ry
Further notice that any = € IT%°"! has a unique D. Thus

AdV(B) — ZQﬁ Zt ernworl( )
—I-Z,Qﬁ Dot 2yerrrert(1)

]
Prly] Pr[Asy(y' € Ti—1(y)) =0 : y]
—ﬁ Yt Leermert(o) Pr[z] Pr[Ax(2" € Ti(x)) = 1 : 2]
_ﬁ ot Cyerrwert(ry Prly] Pr[Aa(y’ € Ti(y)) = 0 : y]
= 305 2t Leemuori(o) Pr[e] PrlAy (2’ € Tioy(w)) = 1 : 2]
2Q=) 2t 2yerreni(1) Prly] Pr[Ax(y’ € Tica(y)) =1 : y]
2:0X 2 ernwm‘l(o) Pr[z] Pr[Ay(2’ € Ty(z)) =1 : 2]
720 2t Lyerreerny Prly] PrlAa(y’ € Ti(y)) =1 1 ],

where IT%"'(a) = Ugl1%"(d,a) for a € {0,1}. Note that IT%°(0) N II*°*"'(1) = § and
o' (0) (resp. ITY°'(1)) is the subset of I such that M (resp. M") is used in the
challenge ciphertext. Therefore,

Adv(B) = 75 Sl (e1 — &)

= ﬁ(ﬁo —€g).

Thus B has a non-negligible advantage. O

Lemma 7. If adversary B in game I'"™ has a negligible advantage while it has a non-
negligible advantage in game I then there exists an adversary D that compromises the
key assignment indistinguishability of Hyb.

Proof The action of D is the same as O in Lemma 5 except the output. Here D does the
following:

1. If B aborts in z, then D outputs 0, 1 equally likely.
2. If B does not aborts in = and outputs 1, then D outputs 1 with probability —£zeal . if

PreqltPrand ’
B won’t abort and outputs 0, then D outputs 1 with probability 5 p;’_l‘j;d ~, where prea

(resp. Prand) is the probability B outputs 1 in game I (resp. I'"*"?) which is not due
to abortion event.

For ch € {real,rand}, let II$" denote the set of views of A in game ' with the abortion of
B and II¢" denote the set of views of A in game I'" with non-abortion of B. For simplicity,
let D = (D,D3), where the job of Dy is to output j and the job of D is to do the rest job.



Then we have

Adv(D) = |Pr[Dy(ro, -+, rh, A;) = 1 for j « D1| — Pr[Dy(kiy, -+, ki, Aj) = 1 for j < D4

= |Pr[B(x € II*) = 1] - —Lreal__ 4 (1 — Pr[Non — abort(I"))/2

PrealtPrand

—(Pr[B(z € ™) = 1] - — P 1 (1 — Pr[Non — abort(I7*%)])/2)

PrealtPrand

‘|‘PI’[B(J; c H{eal) — 0] . __Prand  __ PI’[B(Q? c H{and) _ 0] . M7nd|

PrealtPrand PrealtPrand

~ |(Pr[B(z € II7*¥) = 1] — Pr[B(x € ") = 1]) - Breal—Prand

PrealtPrand

— (preal _prand)2
PrealtPrand

. (Advreal(B)_Advrand(B))2
- 4(preal+prand) ’

Ad realB_Ad randB2
Z( v ()8 v ())7

where ~ means “negligibly close” and Adv™(B) is the advantage of B in game I'", for
ch € {real,rand}. Therefore, Adv(D) is non-negligible. O

Proof of Theorem 1 The theorem directly follows from Lemmas 5, 6 and 7. O

4 Two Concrete Schemes

4.1 Hyb_, scheme

Now we realize the Hyb framework by a concrete construction Hyb., scheme. This scheme
is based on a complete subtree method for stateless receivers [10].

Preprocessing Phase

1. BC builds a binary complete tree TR with n leaves. Let these leaves from left to right
be users uy,---,u,. And let the internal nodes be vy, ---,v,_; in width first order. For
simplicity, we also identify node u; with v;1,_1,2 = 1,---,n. Define S; to be the set
of users rooted at node v;,2 = 1,---,2n — 1. BC picks a secret random number k; of
appropriate length and associates it to S;,¢ =1,---,2n — 1. Define [; simply to be k;.

2. I(u):={Lju € S;;e = 1,---,2n — 1}. In other words, I(u) is the set of k; lying on the
path from u to the root.

Join Phase The same as in the framework.

Broadcast Phase If BC wants to broadcast message M to all users U excluding R, then
BC first finds a Steiner tree Steiner(R) (i.e., the smallest subtree of TR that covers users R



and the root vy). Let v, , v, -+, v, be all the nodes that hang off Steiner(R). Then since
S, US,U---US;, =U\R, BC forms the ciphertext as follows

H(M, R) = (i1, 12, im, Ekil (k) By, (k), Fi(M)), (7)

Decryption Phase When receiving H(M, R), a user v € U\ R first finds j such that v € .S;,.
Since u has k;; he can get message M.

Rekeying Phase The maximal level among that of subsets Si,---,S5,_1 1s L = 1 + logn.
For each internal node j with two children j;, j;, we have that S; has exactly two children:
S .9, Since that S; has level [ is equivalent to say v; at depth L — [, where the depth of
a node is defined as the distance from the root to this node, the rekeying algorithm can be
written as follows. This algorithm can be looked as an extension® of that in [3, 14] to achieve
simultaneous revocations. Suppose that R is the set of users to be revoked.

1. BC finds Steiner(R) in TR.
2. For each v; € Steiner(R) at depth L — 1,
BC updates k; to a random number k! of the same length.
3. Fory=L—-2,---,0
For each node v; € Steiner(R) at depth j,
BC updates k; to a random key k! of the same length;
let v;, and v;, be the two children of v;, then
sends Ej; (ki) to all users rooted at v, ; sends Ey;, (ki) to all users rooted at v,,,
where ki (reps. ki) is the current associated random number for v;, (resp. v;,) if it
is updated; otherwise, kj = k;, (reps. ki, = ki, ).
4. BC sets IDs in R to be free.

Lemma 8. we have C(I;) = {L} and key assignment indistinguishability holds for C(I;),1 =
1o 2n—1.

Proof Since each k; is uniformly random, it follows C(I;) = {I;}. Key indistinguishability
holds since C(I;) is not dominated by U\S;. O

By using Theorem 1, we have

Corollary 1. If encryption algorithm E s pre-CCA secure and F is semantically secure
against passive attack, then Hyb., is secure.

Now we briefly discuss the performance of Hyb.s. Each user has a key size |I(u)] = 1 +
log n. To implicitly revoke r users in the broadcast phase, communication overhead has a
upperbound rlog(n/r), which was proved in [10]. To explicitly revoke r users in the rekeying
phase, the number of ciphertexts required is upperbounded by 3r —2+2r log(n/r), where the
proof is essentially to show that the number of internal nodes in Steiner(R) is upperbounded
by r — 1+ rlog(n/r).

! The simultanous revocation problem for HLK rekeying scheme appeared in the assignement question in the course

[13].



4.2 Hyb, Scheme

In this subsection, we realize Hyb framework by a scheme called Hyb, scheme. This scheme
is based on a subset cover scheme for stateless receivers, which we call Asano method [1]. Our
main contribution here is an efficient simultaneous rekeying algorithm and a formal proof of
the security.

Preprocessing Phase

1. BC chooses a RSA composite N = pg and primes P, h € {0,1}*\{0}, where p,q are
two large primes and « is a constant number. Then he makes N and P, h € {0,1}*\{0}

public.
2. BC constructs an a-ary complete tree with n leaves. Let these leaves from left to right
denote users uy, - - -, u,, let the internal nodes be vy, - -+, vs=1 in width first order. Identify
a—1

u; with UH_%,Z' =1,---,n. Foreachi=1,---, 2= and h = hy -+ - h, € {0,1}*\{0}, let
Sini={uj|3 t s.t. hy =1 and u; is rooted at the tth child of u; from left to right }. (8)

Let To=[Ineqo,1}a\{oy Pn- For each internal node v;, BC chooses a random number &; and

then associates S; ;, with key k@h::f(kiTO/Ph) and secret information [; 5, = kiTO/B(h), where

f() is a hash function and B(h)=TI,< Ps. Here “h < b” means that the ith bit h; of h is
less than or equal to the ¢th bit b; of bforall: =1,---,a.
3. Now we define I(u) for a user u as follows

n—1

Ta—1

I(u):={I;.,|u is rooted at the jth child of v;,j =1,---,a,0=1,---

5o (9)

where e; 1s an a-bit string and each of its component is 0 except the jth bit.

Join Phase User join is done the same as in the framework.

Broadcast Phase If BC wants to broadcast message M to all U except R, then he first
finds a Steiner tree Steiner(R) in TR. Let {v;,v,,---,v;,} be all the internal nodes in
Steiner(R). Associate an a-bit number H(j) with each node v; € {v;,---,v;,}, where the
tth bit of H(y) is 1 iff the tth child of v; is not in Steiner(R). Remove v; from {v;,,---, v, }
it H(j) =0. WLOG, we still let v;,---,v;,, denote the remaining nodes. Then

Sil,H(il) u---u Sim,H(im) = U\R. (10)
Thus the ciphertext is defined as follows.

H(M,R):=(i1, - im, Ey k), B, k), FL(M)). (11)

i 7H(i1)( m,H(im)(

Decryption Phase When receiving H(M, R), user v € U\R first finds j such that
u € Sy, 1(i;)- Then he can compute k;; p(;;) from I,'j7ej,, where we suppose that u is rooted at

the j'th child of v;;. Then he can get M.

Rekeying Phase Now we present the rekeying algorithm. Our algorithm is a compact
version from rekeying algorithm in the framework. Let R be the set of users to be revoked.



1. BC finds Steiner tree Steiner(R),

2. For each node v; at depth L — 1 of Steiner(R) (assume the maximal depth is L),
he changes k; on node v; to a random number k! of the same length;
For j =1,---,a,let u be the jth child of v;, BC sends Eki,ej (I{7€j) to u if u € R, where
I; ., is the fresh version of [;;.

3. Define an a-bit number e = 11--- 1.

Forl=L—-2,---,0do

For each node v; in Steiner(R) at depth [, change k; to a random number k! of the
same length.
For j=1,---,a, do
Let the jth child of v; be v;. Then he broadcasts Ek/t,e(]—l(7€j) to all users rooted at node
v, where kj  is the new value if it is updated; otherwise ki, = ki.. Here I} . is the
fresh version of I; ;.

4. BC sets IDs in R to be free.

Now we have the following lemma.

Lemma 9. For each i and a non-zero a-bit string h, C(I; ) = {Ls|b € {0,1}°\{0}}. And if

we assume f() is a random oracle, then key assignment indistinguishability holds for C (I, 1).

Proof The first conclusion follows from the fact: k; is uniform and independent of
{k;|7 # 1}. Now we show the key assignment indistinguishability of C(I; ) holds. For given
1, Sip C Sip if and only if b < h. Thus for an adversary B that attempts to break the
key indistinguishability of C(I; ), he will receive I, for all b such that b £ h,i.e., 3t s.t.
hy = 0 and b, = 1, where h; (resp. b;) is the tth bit of h (resp. b). Notice the following
fact: assume that k is a random number and «, ¢ are two numbers less than N. Assume
that ged(a,c) = d. Then for given k¢ (mod N) and k¢ (mod N), one can compute k?
(mod N) in O(log”® N).

This fact can be easily }DI’OVGd by using the Euclidean algorithm. Now we come back to our
proof. Notice [;, = kiTO B®) 1t follows from the above fact that for given I;; for all b with

o b
b 4 h, one can efficiently compute k"™ P4 swhich in fact is kl»HO#Hh ", Here LCM() is

P
the least common multiple function. On the other hand, for given kl»HO#Hh b, one can easily

P
compute I for all b with b £ h. Thus we only need to show that for given kl»HO#Hh b, Eip is

indistinguishable to B. Actually, we show that if there exists algorithm B that distinguishes
E; p from a random string of the same length with non-negligible advantage, then there exists
an algorithm Znv that inverts RSA function #'* with non-negligible probability. Now upon
input a = 2™, Inv does the following

0. Zno finds @, and @, efficiently such that Q1 P, + Q2To/ P, = 1 by using the Euclidean
algorithm.

1. Znv chooses a random number r and computes 8 = ooz )/Pr Then he provides
together with r to B.

2. To answer B’s queries for f() function, Znv maintains a f—list. Initially, this list is empty.
For each query y;, Znv checks in f—list whether y; was queried before. If yes, he provides
the answer recorded in the list to B. Otherwise, Znv computes y;:=a?! - le2 and checks



whether %Ph = a. If yes, he announces success and outputs ;. If y; is not queried before,
he chooses a random number ¢; of length [ and provides it to B, where [ is the output
length of f. At the same time, he adds the pair (y;, ¢;) into his f—list.

3. Finally, B outputs a bit b’ for a guess whether his challenge is random or not. If Znv does
not announce for success in the experiment, then he quits with failure.

First, 8 = wllozo<n o Since f() is a random oracle, it follows that (f,r) is distributed the
same as in the real world. By calculation, we can verify ’yiph = o if and only if y; = 2To/Pn,
Thus the responses to queries from B are distributed the same as the responses from f()
oracle of B. If 70/P» is not queried before he outputs the guess bit, the guess ¥’ is correct
with probability exactly 1/2. Assume the probability that =70/ is queried is €, then the
advantage of B is at most e+ 15 — 155 = €. Since we assume his advantage is non-negligible,
it follows that e is non-negligible. On the other hand, once z7/P» is queried, Znv will suc-
ceed. It follows that the success probability of Znwv is €, non-negligible, a contradiction to the

hardness of inverting RSA function. O

Now we investigate the security Hyb. Since the rekeying algorithm here does not directly
follow the framework, we can not directly apply Theorem 1. We modify the definitions of
level and child. In Hyb4 scheme, if an internal node v; is the jth child of another internal
node vy, then S;. = Sy ;. Here when we define notion of level and child for each S5y,---, 5.,
we “pretend” S;. is a proper subset of S; ;. Under this modification, then our rekeying
algorithm for Hyb, is a simple application of rekeying algorithm in Hyb framework. One
can check line by line that this modification does not affect the the proof of completeness
lemma, i.e. Lemma 1 and the proof of the security theorem, i.e. Theorem 1. Thus we have

Corollary 2. If encryption algorithm E is pre-CCA secure, F' s semantically secure against
passive attack and f() is a random oracle, then Hyba scheme is secure.

Now we briefly discuss the performance of Hyb. The size of a user’s personal information
I(u) is log, n. To implicitly revoke r users, the communication overhead in the broadcast
phase is r(1+4log,(n/r)), as proved in [1]. To explicitly revoke r users by rekeying algorithm,
the number of the required ciphertexts is upperbounded by Zj —1+arlog,(n/r), where the

proof is essentially to show that the number of internal nodes in Steiner(R) is upperbounded

by ==L 4 rlog,(n/r).

a—1

5 Discussions

In this section, we give some discussions.

1. On independence of Cy,---,C,. Previously, we suppose the random bits used to
generate each C([;) are independent of anything else. In reality, to flip a long sequence of
random bits in order to satisfy this condition is not practical. However, we stress that in
fact this is not necessary. We can replace the long sequence of coin flips by a pseudorandom
sequence. And the security of this framework still holds if the original version is secure.
The proof is by standard argument. Specifically, if the security is compromised due to
this replacement, then we can distinguish this pseudorandom sequence from a random
sequence of the same length.



2.

Traceability. Traitor tracing is to find out the illegal users that help construct a pirate
decoder. In [10], Naor, et al. proposed a binary search like tracing algorithm. Since Hyb
method is also based on subset-cover method, it follows that their tracing algorithm is
applicable if the considered scheme is secure and a bifurcation property is satisfied.

On unlimited number of users. For a fixed subset cover method, the maximal number
of users it can support is set in advance. We claim it is easy to obtain a system that
supports unlimited number of users. For simplicity, suppose that 7; is a realization of
Hyb, which can support 2' users. We construct a system 7 as follows. Initially, T is set
to To. When a user joins in, BC first checks whether every user ID in 7 is in use. If not,
it assigns a free ID to the new user. If yes, BC independently generates 7; and assigns an
ID to the new user. At some moment, let 7 be composed of 7o, ---,7;. If at this time, a
new user joins in, then BC similarly first tries to find a free ID from 7;,¢ = 0, - - -, 7. If yes,
he assigns a free ID and corresponding secret information to the new user. Otherwise,
he independently generates 7;41 and assigns a free ID and secret information to the new
user. Broadcast and rekeying operations are done for each 7; in T individually. For the
security, we claim that if 7; is secure, then 7 is pre-CCA too. The proof is by a simple
hybrid argument. For the efficiency, if we take T; by Hyb., with maximal number of users
2i then communication overhead and cost of rekeying algorithm only additively increase
by at most O(logn). A similar construction is applied to the case 7; taken as Hybs with
a maximum a' users.
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