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Abstract:  Digital signature is one of the important tasks of modern cryptography, which is concerned with the 

“authenticity” of data on channel. In this paper, a hybrid encryption protocol for quantum digital signature is 

proposed and the realization of the algorithm needs the assistance of an arbitrator. The scheme uses private key 

algorithm to ensure the security of the message on channel and employs quantum public-keys to perform signature. 

By introducing redundancy information, we can sign a general unknown quantum state indirectly. The protocol 

using maximally entangled Greenberger-Horner-Zeilinger (GHZ) triplet states to realize the transmission of 

quantum state. The security of the scheme is based on so called quantum one-time-pad and the existence of quantum 

one-way functions. Based on quantum correct code, we also give an improved scheme. Security analysis show that 

the proposed quantum signature scheme is provable security.    
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1   Introduction 

A major future research theme for cryptography is to weaken the assumptions on which security 
proofs are based, in particular computational intractability assumptions [1]. Quantum cryptography is 
one candidate for exploring the unconditional security cryptosystems. The idea of introducing 
quantum mechanics to cryptography was traced to Wiesner in1970s and published till 1983 [2], 
which proposed that if single-quantum states could be stored for long periods of time they could be 
used as counterfeit-proof money. Bennett and Brassard [3] gave the first quantum key distribution 
protocol, called BB84, which is provable security [4,5]. 

Digital signature and message authentication play the important role in modern cryptography 
and are widely used in network communication systems [6]. The purpose of a digital signature is to 
provide a means for an entity to bind its identity to a piece of information. Many signature schemes 
could be constructed under some computational assumption and mathematics methods, such as 
Number Theory and Algebra. Quantum digital signature (QDS) systems, however, are more difficult 
to deal with than classical ones due to the fundamental feature of quantum information, such as no 
cloning [7] theorems and entanglement, which has no analogous classical counterpart. 
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Gottesman and Chuang proposed a quantum digital system [8] based on quantum one-way 
functions and the scheme is absolutely secure, even against powerful cheating strategies. The input 
of the scheme is a classical bit-string and the public key of the sender is quantum state. 
Unfortunately, the digital system couldn’t sign a general quantum superposition state, but only can 
deal with quantum basis state. 

Zeng GH provided an arbitrated quantum signature scheme, the security of which is due to the 
correlation of the GHZ triplet states and the use of quantum one-time pads [9]. The scheme requires 
that the signed quantum state is known to the signatory (always call Alice, and the receiver Bob). It 
seems impossible to sign a general unknown quantum state [8,10]. 

In this paper, we present a quantum digital signature scheme which is unconditional secure. 
The scheme could indirectly sign a general unknown quantum state by introducing classical 
redundancy information. The security of the algorithm is due to the quantum one-time-pad and the 
existence of quantum one-way functions. 

Section 1 introduces some preliminary knowledge about quantum computation and quantum 
cryptography we will use in this article. In Section 2, the quantum signature scheme is proposed and 
the security is considered in Section 3. Based on quantum error correction code, we give an 
improved scheme in Section 4. Conclusions and open questions are given in Section 5.    

Further information about quantum computation and quantum cryptography can refer to Ref. 
[11-13].                 

2   Preliminaries 

2.1   Quantum message encryption 

Quantum key distribution cares about how to use some special quantum state (such as EPR 
pair) secretly transferring classical keys along quantum channel. Quantum message encryption, 
however, considers how two parties could send quantum state with perfect security. Boykin gave a 
quantum one-time-pad encryption protocol, which using 2n bits classical secret keys to encrypt n 
qubit, and shown this scheme is optimal [14]. The encryption protocol described as below 

(1) Alice and Bob share some classical keys k nF 2
2∈ ，where ),,|,,()|( 11 nnk ββααβα LL== . 

(2) Suppose Alice has n-qubit state ρ . Alice applies unitary operation kU to ρ  according to 

k  and obtains the cipher text += kkc UU ρρ . Alice sends cρ to Bob. 
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(3) Bob applies unitary operation +
kU  specified by his secret key k  and obtains the plaintext 

ρ .   

For an eavesdropper Eve, what she always “sees” in the quantum channel is a totally mixed 
state and she can’t learn anything from the plaintext because two processes that output the same 
density matrices are indistinguishable. 

2.2   Quantum Swap Test Circuit 

Unlike classical information, comparing of two unknown quantum state is difficult. Buhrman 
et al [15] proposed a quantum circuit (see fig.1), called quantum swap test circuit (QSTC), which 
could test whether two unknown quantum states are identical or not with one-sided error. The circuit 
is presented as Fig.1.   
                                                             

                  0                                          Measure   

                  1φ                                                                 

2φ                                                             

Fig.1：Quantum swap test circuit (QSTC) 

The function of the circuit is to test if 21 φφ =  or δφφ ≤21 |  by the procedure that 

measures and outputs the fist qubit of the state 210))()(( φφIHSWAPcIH ⊗−⊗ . Here H is the 

Hadmard transform, SWAP is to map 21 φφ  to 12 φφ , and C-SWAP is the controlled-SWAP. If 

the measurement result of the first qubit is 0 , the swap test is passed, which always happens if 

21 φφ = . If δφφ ≤21 | holds, the measurement result 0  happens with probability at most 

2/)1( 2δ+ . The result 1  occurs only when 21 φφ ≠  with probability 2/)1( 2δ− . The idea is that 

an equality test exists, but fails with nonzero probability. If there are k  copies of quantum state 
k⊗

1φ and k⊗
2φ , ))/1((log2 εOk = , QSTC is performed k times and the error probability of the test 

could be reduced to any 0>ε . 

2.3   Quantum stabilizer code 

Quantum error correction code (QECC) is a way of encoding quantum data (having m qubits) 
into n qubits (m<n), which protects quantum states against the effects of noise. A general theory of 
QECC was first established by Calderbank and Shor [16] and Stean [17], in which definitions and 
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constructions were given. Quantum stabilizer code was introduced by Gottesman [18] and 
independently Calderbank et al [19]. Quantum stabilizer code is an important class of QECC and has 
been used to the other subject of quantum information, such as quantum cryptography [20]. 

The Pauli operators { zyxI σσσ ±±±± ,,, } constitute a group of order 8. The n-fold tensor products 

of single qubit Pauli operators also form a group n
zyxn IG ⊕±= },,,{ σσσ , of order 122 +n . We refer to nG  

as the n-qubit Pauli group. Let S denote an abelian subgroup of the n-qubit Pauli group nG . Then the 

stabilizer code nHH S 22
⊆  satifies, 

SH∈ψ , iff ψψ =M  for all SM ∈ .                      (2) 

The group S is called the stabilizer of the code, since it preserves all of the codewords.  
For stabilizer code [[n, k, d]], the generators Mi and the errors Ea, write 

ia
s

ai MEEM ia)1(−= , kni −= ,,1L                           (3) 

The sia’s constitute a syndrome for the error Ea, as ias)1(− will be the result of measuring Mi if 

the error Ea happens. For a nondegenerate code, sia’s will be distinct for all ε∈aE , so that 

measuring the kn − stabilizer generators will diagnose the error completely. 

3   A Quantum Signature Scheme  

3.1   Security requirements  

In the paper, our scheme is a cryptographic primitive involving three entities: an signer Alice，
a receiver Bob of the signature, and an arbitrator Trent ,who authenticates and validates the signed 
message. The security of the signature scheme depends much on the trustworthiness of the arbitrator 
who has access to the contents of the messages. The existence of the arbitrator ensures that we can 
indirectly sign an unknown quantum state without Alice’s deceiving.  

 The general requirements for QDS discussed in this article should satisfy the following: 
(1) Each user (Alice) can efficiently generates his own signature on messages of his choice; 
(2) A receiver Bob can efficiently verify whether a given string is a signature of another user 

on specific message;  
(3) The signatory can’t disavow that he has signed a message; 
(4) It is infeasible to produce signatures of other users to message they didn’t sign. 
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3.2   Signature scheme 

3.2.1   Initialization phase 
(1) Key Generation. Alice and Bob agree on some random binary strings KA, KB, KC and KD. 

KA and KB are shared between Alice and Trent and between Bob and Trent for 
encrypting quantum message. KC and KD are shared between Alice and Bob and between 
Bob and Trent for encrypting classical message. Here we can also leave out KC and KD 
by enlarging the length of KA and KB, but the increased parts of KA and KB will be the 
double length of KC and KD. So we prefer the four-keys strings to two-key ones for 
economizing the key recourse. To ensure that the scheme is unconditional security, we 
can generate the keys using quantum key distribution protocols, such as BB84 or EPR 
protocol [11].  

(2) Triplet GHZ states distribution. Alice, Bob and Trent each have  mkks 2log++  

particles form  mkks 2log++  triplet GHZ pairs. The triplet GHZ state we selects in the 

article is 

)111000(
2

1
+=ψ                                 (4) 

To gain the unspoiled GHZ state, we can employ the entanglement purification protocol 
[21] to produce a high-quality fewer GHZ pairs by sacrificing some of the particles of 
the larger ones.  

3.2.2   Signing phase  
(1) Alice’s Public key generation. 

(a) Generate 2k random secret strings jiu , , n
ji Fu 2, ∈ , }1,0{,1 =≤≤ jki . 

(b) Compute )( ijij ufy = , }1,0{,1 =≤≤ jki . The function )(uf is 

∑
=

⋅−=
m

l

uE l
m

uf l

1

)()1(1)( ,                                  (5) 

    where E: mn }1,0{}1,0{ →  is an error correcting code with fixed c>1, 0<δ<1 and 

m=cn. Here )(uf  can be regard as a class of quantum one-way function [8], which is 

easy to compute, but difficult to reverse.  

(c) Alice has k2  key pair ki
jjiji yu ≤≤
=

1
}1,0{,, },{  and then publicly announces ki

jjiy ≤≤
=

1
}1,0{, }{  as 

her public key and keeps ki
jjiu ≤≤
=

1
}1,0{, }{ as her private key. 
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(2) Introduce redundancy information. Suppose Alice has a quantum state sH∈ϕ (Hs 

represent s dimensional Hilbert space). Alice selects a random bit 

kxxx ,,1 L= )1,( 2 kiFxi ≤≤∈  and generates the signature according to her 

key }1,0,1|,{ ,, =≤≤∈ jkizyK jiji  

aaaayyxxxxQSig kxkxkK k
==== ,,,,,),,,( 21,,121 1

LLL             (6) 

Alice appends x  and the signature a  to the end of ϕ  and now has a whole state 

ψ in HN. Alice quantum encrypts (q-encrypts) ψ as ρ by KA and sends it to Trent. 

(3) Permutation. Trent receives ρ and q-decrypts it as ψ . Then he measures the quantum basis 

state x by Z basis ( 1,0 ) and keeps the measurement result. Trent can do these 

operations because we suppose he knows the construction of the state Alice gives him. 

Trent applies a random N bit permutation P to ψ as 'ψ , then uses KA to q-encrypt the 

state asτ and sends it back to Alice.  

(4) Measurement I. Alice q-decrypts τ as χ  by KA, but she doesn’t know the structure of the 

state and any change of the quantum state will later be detected by Trent and Bob with large 

probability. Alice then combines χ  with her GHZ particles, and measures the pair in the 

Bell basis 

)1100(
2
1

AAAa
+=Ψ± ;   )1001(

2
1

AAAa
+=Φ±                 (7) 

  For one qubit 10 βαχ +=i  of χ as example, we give the measurements procedure, 

which was used to construct quantum security sharing protocol in Ref.[22]. We can express 

the four-particle state 
4

Ω as 

 ++Ψ=Ω + )1100([
2
1

4 btbtAa
βα +−Ψ− )1100(

btbtAa
βα  

++Φ+ )1100(
btbtAa

αβ )]1100(
btbtAa

αβ +−Φ−                   (8) 

  Here β,a are complex numbers and satisfy 122 =+ βα .  After measurement, Alice will 

gain 2N classical bitω and encrypt them using KC as W by classical one-time-pad and sends 

them to Bob through classical channel. Here we use classical one-time-pad to ensure the 
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unconditional security.  

3.2.3   Verification phase 
(1) Measurement II. Bob receives W and decrypts it asω . Bob then measures each of his 

particles in the x  direction and obtains either 
b

x+ or 
b

x− , where )10(
2

1
±=± x . Bob 

encodes the measurement results r  as 'ω , 





=
,1
,0

'ω  
if
if

xr
xr

−=
+= .                               (9) 

Bob has N classical bit 'ω and encryptsω together with 'ω as 'W by KD. Bob sends 'W to 

Trent by classical channel. 
(2) Measurement III and Reverse permutation. Trent decrypts 'W and has Alice and Bob’s 

measurement information. Now he can reconstruct Alice’s qubit by performing some 
unitary transformation to each of his particles according to Alice and Bob’s measurement 
results. (See Table 1)  

Table 1 Trent’s operation rules 
 

Aa+Ψ
Aa−Ψ  

Aa+Φ  
Aa−Φ  

b
x+  I  zσ  xσ  zxσσ  

bx−  zσ  I  zxσσ  xσ  

    Here, 







=

10
01

I , xσ and zσ satisfies Eq. (1). Trent now has Alice’s quantum state 'ψ  and 

then applies the reverse bit permutation 1−P  and obtains ψ . Trent q-encrypts ψ using KB 

as π and sends the result to Bob.  

(3) Verification. Bob receives the N qubits and q-decrypts π as axϕψ = . Bob keeps 

Alice’s message ϕ  and uses a and the quantum basis state x  to verify the validity of 

the signature according to Alice’s public key ki
jjiy ≤≤
=

1
}1,0{, }{ . 

ii xixiK yufTrueaxQVer ,, )(),( =⇔=                           (10) 

      We can use the QSTC described in 1.2 to compare whether )( iaf and xiy , are the same or 

not. Because there are k qubits to be compared, so the error probability of the test can be 

reduced to 
k








 +
2

1 2δ , where δ≤ji ff  with ji ≠ , and k is the security parameter. Let the 
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number of the incorrect keys be je , and then rejects it as invalid signature if cMe j > . Here 

c is a threshold for reject and acceptance in the protocol. 
Theorem 1. (Correctness) Suppose all the entities involved in the scheme follow the 

protocol, then Eq. (10) holds.  
   Proof. The correctness of the scheme can be seen by inspection. In the absence of 

intervention, Alice, Bob and Trent will share the GHZ triple state at the end of the initialization 
phase. Similar to teleportation, after Trent sends the Alice’s state recovered to Bob, Bob’s output 
will be exactly the state of Alice’s. Because Alice signs her message according to Eq. (6), it’s easy 
to verify that Eq. (10) holds.                                                      □    

4   Analysis of the signature Scheme 

4.1   Forgery 

Theorem 2.Other entities forge Alice’s signature with a success probability at most  ]log[ 22 mn−− , 
even when they knows Alice and Trent’s keys KA, P and KD.  

Proof. First we consider that Bob is dishonest and want to forger Alice’s signature. Because 

Bob doesn’t know Alice’s private key ki
jjiu ≤≤
=

1
}1,0{, }{ , so Bob has difficulties to sign a legal signature of 

Alice. By Holevo’s theorem[11], Bob can gain at most  m2log  bit of classical information from 

Alice’s public key. Since he lack  mn 2log−  bits of information about any public key which Alice 

hasn’t revealed, he will only guess correctly at most on about  ]log[ 22 mn−− . Even In the worst case that 
Bob knows Alice and Trent’s keys KA, P and KC, his successful probability to forge Alice’s signature 

is at most  ]log[ 22 mn−− . But, in fact, Bob doesn’t know anything about Alice and Trent’s keys KA, P 
and KC.                                  

For attacker Eve, because she doesn’t share the GHZ triple state with Alice and Trent, so she 
has much more trouble to forger Alice’s signature than Bob does.                          □ 

4.2   Repudiation 

Alice can’t denial for her signature. When dispute between Alice and Bob happens, they will 

resort to Trent. Because Trent has one copy of Alice’s public key and the information x , he could 

tests the validity of Alice’s signature and reveals Alice’s cheating. 

Theorem 3. Alice’s success probability of replacing ϕ with another quantum state ϕ) without 

Bob and Trent’s detection is at most  )!log/(! 2 mkkss ++ . 
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Proof. Consider Alice replaces ϕ with another quantum state ϕ) before her measurement. In 

the scheme, however, Trent applies bit permutation P in (3) of the signing phase could prevent Alice 
from doing replacement because Alice doesn’t know anything about the structure of the state after 

Trent’s permutation. Alice’s random change of 'ψ  will unavoidably disturb the information 

x and her signature a , which could be detected in the verification phase by Bob and Trent with 

probability    )!log/()!log( 22 mkksmkk +++ . So Alice’s success probability of replacement is at 

most  )!log/(! 2 mkkss ++ . Alice’s successful cheating probability decreases exponentially in the 

security parameter k.                                                              □ 
Bob can’t denial receiving Alice’s message because Bob can’t obtain Alice’s whole qubits 

without Trent’s help.  

4.3   Notes of the Scheme 

(1) Encryption is necessary in quantum digital scheme. What should point out is, for 

quantum digital signature, plaintext ϕ  can’t be present on channel, but for the 

classical digital signature, this restriction is not required. For classical digital signature, 
the signatory always sends the message together with the signature )}(,{ mSigm to Bob. 

Consider in the quantum case Alice sends })({ ϕϕ Sig⊗ to Bob without encryption. 

Suppose Eve controls the quantum channel and holds the information on channel, she 

can prepare a state entangled with ϕ  by the operation ψϕϕ =0U  and keeps ψ . 

After Bob’s verifying of the signature, Eve measures every qubit of ψ with z bases, 

which leads that Bob’s state destroys beyond his notice. So encryption is necessary in 
the quantum digital systems due to the entanglement-based attack. As declared in 
initialization phase, the “four-key” scheme KA, KB, KC and KD can be reduced to 
“two-key” one which includes only KA, KB, but the cost is to “transferring” the double 
length of KC and KD to KA, KB. 

(2) In the signing phase, the quantum public keys of Alice may be generated several copies. 
In our protocol, two copies of the public keys are enough, one for Bob and one for the 
arbitrator. What should point out is that the increase of the copies of the public keys will 
compromise the security of the system, so the copies must be limited to a lower number. 
Another disadvantages of public keys are that it is impossible to be distributed by a 
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broadcast channel, so we must resort to special key distribution policy.  
(3) The permutation P by Trent is necessary. To ensure that if the state Bob received is the 

original quantum state ϕ , several means could be considered. One way is sending a 

copy of ϕ  to Bob， which requires that Alice must know ϕ . Even this requires met, 

comparing of two unknown quantum states by Bob is still difficult and fails with 

noticeable probability. Sending k copies of ϕ , comparing by the quantum swap test 

circuit, to Bob will inevitably cause information leakage and the uncontrolled increases 

of keys. In our scheme, the quantum state ϕ  can be an unknown state for Alice. The 

permutation P employed by Trent can prevent Alice from changing the state because 

Alice can’t distinguish ϕ  from x and the signature a . Alice’s replacements of the 

quantum state will be detected by Bob and Trent in the verification phase. 

5   An improved protocol 

 From Theorem 3, we find that the probability of Alice’s successful cheating isn’t still 
satisfactory, even Bob and Trent can reveal her falsification with noticeable probability. Here we 
give an improved protocol using QECC to reduce the soundness error of the protocol.  

Quantum error correcting code is not only a useful tool to combat noise in quantum 
computation, but also it plays an important role in some of unconditionally quantum key 
distribution schemes. Here, we use quantum stabilizer code to ensure that the completeness of the 
message and prevent Alice’s cheating. The improved protocol is described as bellow. 

(1) In the initialization phase, the bit permutation P is replaced by a stabilizer code {Qk} 
and a random bit string z shared by Trent and Bob. KA, KB, KC and KD are conserved 
except adjusting their length according to the corresponding length of the encrypted 
message. The step (2) is the same as the protocol of section 2 but distributing many 
more GHZ triplet state to the three entities.   

(2) In signing phase, the bit permutation P by Trent in step (3) is superseded by the 

stabilizer code {Qk} and secret key z. After Trent decrypts (q-decrypts) ρ  as ψ  and 

measures the quantum basis state x by Z basis, he encodes ψ  as 'ψ  according to 

Qk for the code Qk with syndrome z. He uses KA to q-encrypt the state asτ and sends it 

back to Alice. Here, we note that the length KA has been added. In step (2) of signing 
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phase, Alice sent the encrypted ψ using parts of KA are adequate.  

(3) What needs to be reconsidered in verification phase is step (2) and (3). In step (2), after 

Trent reconstructs Alice’s encoded qubit and q-encrypts 'ψ  using KB as π , then he 

sends π  to Bob. 

(4) Bob receives and decrypts π as 'ψ . Bob measures the syndrome 'y  of the code Qk on 

'ψ . Bob compares if 'y and y are equal. Then Bob verifies Alice’s signature as 

described in section 2. If Bob’s verification of the signature is passed, but Bob finds 

that 'y and y are not equal, then he can decide Alice’s cheating occurs during step (4) of 

the signing phase. 

From the improved protocol, we can see that the change of Alice’s quantum message will 
be unavoidably detected by Bob due to the quantum stabilizer code introduced.  

6   Conclusion 

Because of quantum no-cloning theorem and entanglement property, it is difficult to construct 
quantum digital signature. Several difficulties should be conquered when constructing a secure QDS 
scheme.  

First, copies of general unknown quantum message are forbidden due to the no-cloning 
theorem; 

Second, it’s important to construct private quantum channels among entities to avoid the 
entanglement-based attack.  

Third, it must be cautious to compare two unknown quantum state, because the comparing 
results are not always definite.  

Considering the difficulties, a quantum digital signature scheme is proposed in this article. One 
feature of the protocol is that the signatory can sign a general unknown quantum state by 
introducing redundancy information. The privacy key algorithm ensures that the security of the 
information on channel and the quantum public keys are used to sign message. The authenticity of 
the quantum information is obtained by a random bit permutation or stabilizer code. The security of 
the protocol is studied and the results show that it is provable security.  

An open problem is that it’s still not known whether there exists a general quantum message 
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signature scheme that doesn’t need the present of an arbitrator. 
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