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Abstract

This paper presents an implementation of genus 2 and 3 hyperelliptic curves over prime fields,
with a comparison with elliptic curves. To achieve a fair comparison, we developed an ad-hoc
arithmetic library, designed to remove most of the overheads that penalise implementations
of curve-based cryptography over prime fields. These overheads get worse for smaller fields,
and thus for large genera. We also use techniques such as “lazy” and “incomplete” modular
reduction, originally developed for performing arithmetic in field extensions, to reduce the
number of modular reductions occurring in the formulae for the group operations.

The result is that the performance of hyperelliptic curves of genus 2 over prime fields is much
closer to the performance of elliptic curves than previously thought. For groups of 192 and
256 bits the difference is about 18% and 15% respectively.

Introduction

Background

In 1988 Koblitz [26] proposed to use the Jacobian varieties of hyperelliptic curves (HEC) as an
alternative to elliptic curves (EC) for constructing cryptographic systems (short: cryptosystems)
based on the discrete logarithm problem (DLP): Given a cyclic group G of order n, a generator D
of G, and E ∈ G, determine an integer k such that E = kD = D+D+ · · ·+D (k summands).

For the same security, elliptic curve cryptosystems (ECC) require a much shorter key than RSA
or systems based on the DLP in finite fields. A 160-bit ECC key is considered to offer security

∗The work described in this paper has been supported by the Commission of the European Communities through
the IST Programme under Contract IST-2001-32613 (see http://www.arehcc.com).
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equivalent to that of a 1024 bit RSA key [37]. This is due to the following facts: (i) The best known
algorithms for solving the DLP in EC have complexity exponential in the logarithm of the group
order [51, 48] – more precisely this complexity is O(

√
n); (ii) the best methods for solving the DLP

in finite fields [10, 19, 1] or for factoring integers [35, 36] are sub-exponential. Since solving the
DLP on HEC of genus smaller than 4 has complexity O(

√
n), these curves offer the same security

level as EC for the same key size. Curves of high genus are insecure [2, 6], and curves of smaller
genus, but greater than 3, are also weaker than EC [13, 62].

A vast amount of research has been devoted to cryptographic applications of EC, but the crypto-
graphic potential of HEC has not been investigated as thoroughly. In 1999, Smart [59] concluded
that HEC seemed not practical, because of the greater difficulty of finding suitable curves and their
poor performance with respect to EC.

In the subsequent years the landscape changed significantly.

Firstly, it is now possible to efficiently construct genus 2 and 3 HEC whose divisor class group has
almost prime order of cryptographic relevance. For curves over prime fields, a genus 2 analogue
of Schoof’s point counting algorithm can be used: The first version [14] was too slow, but the
improvements of [44] and further work by Gaudry and Schost made it possible to count points on
large enough curves [15].

In [16], the method is described and cryptographically suitable examples are given. Another tech-
nique is the complex multiplication method: The genus 2 case is handled by Mestre in [42], im-
provements and a partial extension to genus 3 can be found in [65].

For small characteristic, Satoh [55] proposed a fast point counting algorithm for elliptic curves,
later extended to higher genus and improved by many, including Satoh, Skjernaa and Taguchi [56],
Vercauteren [64, 63], Gaudry, Harley and Fouquet [12], Mestre [43], Kedlaya [25], Lauder and
Wan [34], and Gerkmann [17].

Secondly, the performance of the HEC group operations has been considerably improved. The first
explicit formulae for genus 2 [21, 45, 61] have been followed by the extensive work of Lange [30,
31, 32, 33]. For genus 3, there are formulae by Pelzl [49] (see also [50]), improving on [29].

HEC are attractive to designers of embedded hardware since they require smaller fields than EC to
attain the same security level. The order of the Jacobian of a HEC of genus g over a field with q
elements is ≈ qg. This means that a 160-bit group is given by an EC with q≈ 2160, by an HEC of
genus 2 with q≈ 280, and genus 3 with q≈ 253.

Recently, there has been also research on securing implementations of HEC-based cryptosystems
on embedded devices against differential power analysis [3].

Results

Because of the security considerations above, we made a thorough, fair and unbiased comparison
of the relative performance merits of generic EC and HEC of small genus 2 or 3 over prime fields.
We consider the different coordinate systems available for those curves. We are not interested in
comparing against very special classes of curves or in the use of prime moduli of special form
(such as p = 2192−264−1, for example).
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There have been several software implementations of HEC on personal computers and worksta-
tions. Most of those are in even characteristic [54, 53, 29, 49, 50, 66], some are over prime
fields [28, 53, 30], and a few over optimal extension fields (OEF) [45, 40]. It is now known that in
even characteristic, HEC can offer performance comparable to EC. Until now there have been no
concrete results showing the same for prime fields.

Traditional implementations such as [28, 30] are based on general purpose software libraries like
gmp [20], NTL [58], or similarly designed packages. They all introduce fixed overheads for ev-
ery procedure call and loop, which are usually negligible for very large operands, but become the
dominant part of the computations for small operands such as those occurring in curve cryptogra-
phy. The smaller the field becomes, the higher the time wasted in the overheads will be, and HEC
implementations usually suffer from a much bigger performance hit than EC. Furthermore, gmp
has no native support for fast modular reduction techniques such as Montgomery’s [46].

In our modular arithmetic library nuMONGO [4] we made every effort to avoid such overheads. A
description is given in Subsection 2.1. The current version is designed mainly for 32-bit CPUs and
is fairly portable. Our implementation has been tested on a PC with a 1 Ghz AMD Athlon Model
4 processor. We get a boost of a factor 2 to 5 over gmp for operations in fields of cryptographic
relevance (see Table 2 and also Tables 7 and 8). The larger speed-up is achieved in the smaller
fields, such as those used for HEC. We also exploit two techniques, called lazy and incomplete
modular reduction (see [5]), to reduce the number of modular reductions occurring in the formulae
for the group operations.

We thus show that the performance of genus 2 HEC over prime fields is much closer to
the performance of EC than previously thought. For groups of 192, resp. 256 bits the
difference is approximately 18%, resp. 15%. The gap with genus 3 curves has been
reduced too. For very large groups the performances of genus 2 and genus 3 curves
get close. More precise results are stated in Section 3.

While the only significant constraint in workstations and commodity PCs may be processing power,
the results of our work should also be applicable to other more constrained environments, such as
Palm platforms, which are also based on general-purpose processors.

The structure of the paper is the following. In the next section we review the arithmetic on EC
and HEC and all coordinate systems currently available for generic curves. The implementation is
documented in Section 2. We conclude with experimental results in Section 3, including timings
for EC and HEC both with gmp and with our library.

Acknowledgements. The author wishes to express his gratitude to Gerhard Frey, who introduced
him to the world of cryptographic applications of arithmetic geometry. Tanja Lange left many
marks on this paper, directly because of proofreading, and indirectly because of fruitful discus-
sions on the subject matter. She also implemented the elliptic curve group operations used in
the comparisons based on nuMONGO “for fun” (sic) following the example of our hyperelliptic
curve implementation. The author acknowledges the great feedback of Christophe Doche, Sylvain
Duquesne, Kim Nguyen, Christoph Paar, Jan Pelzl, Nicolas Thériault and Thomas Wollinger.
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1 Arithmetic

We use the following abbreviations: w is the bit length of the characteristic of the prime field. M, S
and I denote a multiplication, a squaring and an inversion respectively. m denotes a multiplication
of two w bit integers with a 2w bit result. R denotes a modular (or Montgomery) reduction of a 2w
bit integer with a w bit result.

1.1 Elliptic Curves

In this subsection we follow [9]. An elliptic curve E defined over a field F of characteristic zero or
greater than 3 can be given by an equation in Weierstrass form

E : Y 2Z = X3 +a4XZ2 +a6Z3 (1)

with 4a2
4 +27a2

6 6= 0. The last condition is equivalent to requiring that the polynomial x3 +a4x+a6

has no multiple roots. The set of points of an elliptic curve over (any extension of) the field F
forms a group. The triples (X : Y : Z) satisfying (1) represent the points in projective space. We
can normalize the points by dividing through the Z-coordinate (X : Y : Z) 7→ (x,y) := (X/Z,Y/Z),
and by introducing the special symbol O for the point (0 : 1 : 0). The group law on these affine
points is depicted in Figure 1. This rule is easily transformed into an explicit formula which
manipulates the coordinates. To double a point P, we consider the tangent line to the curve at P
instead of the secant.

Figure 1: Addition on EC

P1

P2

−P1−P2

P1 +P2

Affine coordinates (A). Let P1 = (x1,y1), P2 = (x2,y2) and P3 =
(x3,y3). Then

x3 = λ2− x1− x2, y3 = λ(x1− x3)− y1

where λ = (y1 − y2)/(x1 − x2). For doubling set λ = (3x2
1 +

a4)/(2y1). Thus an addition and a doubling require respectively
I+2M+S and I+2M+2S.

Projective coordinates (P ). The coordinates are (X : Y : Z) and
the equation is (1). Let P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) and
P3 = (X3 : Y3 : Z3). The addition is

X3 = vA, Y3 = u(v2X1Z2−A)− v3Y1Z2, Z3 = v3Z1Z2 ,

where u =Y2Z1−Y1Z2, v = X2Z1−X1Z2, and A = u2Z1Z2−v3−
2v2X1Z2. The doubling is

X3 = 2hs, Y3 = w(4B−h)−8Y 2
1 s2, Z3 = 8s3 ,

where w = a4Z2
1 +3X2

1 , s = Y1Z1, B = X1Y1s and, h = w2−8B. No inversions are needed and the
operation counts are 12M+2S and 7M+5S respectively.
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Jacobian and Chudnovsky Jacobian coordinates (J and J c). In Jacobian coordinates the equa-
tion of E is

E : Y 2 = X3 +a4XZ4 +a6Z6 ,

where x = X/Z2 and y = Y/Z3. Let (Xi,Yi,Zi) be the coordinates of the point Pi. The addition
P3 = P1 +P2 is given by

X3 =−H3−2U1H2 + r2, Y3 =−S1H3 + r(U1H2−X3), Z3 = Z1Z2H ,

where U1 = X1Z2
2 , U2 = X2Z2

1 , S1 = Y1Z3
2 , S2 = Y2Z3

1 , H = U2−U1 and r = S2−S1. The doubling
is given by

X3 = T, Y3 =−8Y 4
1 +M(S−T ), Z3 = 2Y1Z1 ,

where S = 4X1Y 2
1 , M = 3X2

1 + a4Z4
1 and T = −2S + M2. The operation counts are 12M+ 4S and

4M+6S respectively.

For a point Pi, the quintuple (Xi,Yi,Zi,Z2
i ,Z3

i ) are the Chudnovsky (Jacobian) coordinates. The
same formulae as for J are used, and we do not have to compute Z2

1 , Z2
2 , Z3

1 and Z3
2 , but we must

compute Z2
3 and Z3

3 . The operation counts become 11M+3S and 5M+6S.

Modified Jacobian coordinates (J m). This set of coordinates was introduced by Cohen et al. [9].
It is based on J but the internal representation of a point P is the quadruple (X ,Y,Z,a4Z4). The
formulae are almost the same as for J , the main difference being the introduction of U = 8Y1

4 so
that Y3 = M(S−T )−U and a4Z4

3 = 2U(a4Z4
1). An addition takes 13M+6S and a doubling 4M+4S.

Since I takes on average between 9 and 40M and S is about 0.5M to 0.8M, this system provides the
fastest doubling in practice.

Mixed Coordinate Systems. Different coordinate systems can be used together to perform scalar
multiplications. It is always advantageous to keep the base point and all precomputed points in A ,
since additions by those points will be less expensive. For the doublings one should choose the
coordinate system which has the fastest doubling. More refined strategies are possible: see [9],
where detailed operation counts for group operations with mixed coordinates are given. The same
approach can be followed for genus 2 HEC (see Subsubsection 2.3.1 and Subsection 2.4).

1.2 Hyperelliptic Jacobians

An excellent, low brow, introduction to hyperelliptic curves is given in [41], including proofs of
the facts used below. Our notation is slightly different, but conform to that of [30, 31, 32, 33, 50].

1.2.1 Equation and Divisor Representation

A hyperelliptic curve C of genus g over a finite field Fq of odd characteristic is defined by a
Weierstrass equation

C : y2 = f (x) , (2)

where f is a monic square-free polynomial of degree 2g + 1 in x. Let ∞ be the point at infinity
on the curve. In general, the points on a hyperelliptic curve do not form a group. Instead, the
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divisor class group of C is used: We briefly recall its main properties. The divisor class group is
isomorphic to the variety called the Jacobian of C , which we do not define nor study here.

A divisor D is a formal sum of points on the curve, considered with multiplicities, or, in other
words, any element of the free Abelian group Z[C (Fq)]. Its degree is the sum of those multiplici-
ties, and its support the set of points with nonzero multiplicity. We are interested in the divisors of
degree zero given by sums of the form

m

∑
i=1

Pi−m∞ : Pi ∈ C r{∞} . (3)

The degree of the associated effective divisor is the integer m. The points Pi form the finite support
of D. The principal divisors are the divisors of functions, i. e. those whose points are the poles
and zeros of a rational function on the curve, the multiplicity of each point being the order of the
zero or minus the order of the pole at that point. The divisor class group is the quotient group of
the degree zero divisors modulo the principal divisors. In each divisor class there exists a unique
element of the form (3) with (effective) degree m≤ g.

Figure 2: Addition on genus 2 HEC

P1

P2

Q1

Q2

−R1

−R2

R1

R2

(P1 +P2−2∞)+(Q1 +Q2−2∞) =

= R1 +R2−2∞

To add two classes c1, c2 we formally add the rep-
resenting divisors D1, D2. In general, this sum has
degree > g, in which case it must be reduced to the
equivalent divisor of effective degree ≤ g. To do
this, we consider a plane curve passing through the
finite points of D1 and D2, counted with their mul-
tiplicities – i. e. we determine a function f on the
curve vanishing on the points on D1 +D2, with mul-
tiplicities taken into account, the only pole being at
∞. Put D3 the divisor whose (finite) support con-
sists of the other points of intersection of the curve
(with multiplicities). The class c3 of D3 satisfies
c1 + c2 + c3 = 0. It suffices to replace each point in
D3 with its opposite (i.e. invert the y–coordinates) to
get a divisor equivalent to D1 +D2, but with smaller
degree. We might have to repeat this step more than
once to get the reduced element. This addition is
depicted in Figure 2 for a genus 2 curve “geomet-
rically”.

Mumford [47] introduced a representation of the elements of the divisor class group as polynomial
pairs, for which Cantor [7] provided an explicit arithmetic algorithm. Let D = ∑m

i=1 Pi−m∞ be a
divisor with m≤ g. The ideal class associated to D is represented by a unique pair of polynomials
U(x),V (x) ∈ Fq[x] with g≥ degU > degV , U monic and such that: U(x) = ∏m

i=1(x− xPi) (i.e. the
roots of U(x) are the x–coordinates of the points belonging to the divisor); V (xPi) = yPi for all
1≤ i≤ m (i.e. the polynomial V (t) interpolates those points); and U(x) divides V (x)2− f (x). We
say that the pair [U(x),V (x)] represents the reduced divisor D.
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1.2.2 Composition Algorithms

We consider the group operations on curves of arbitrary genus here. For explanations and proofs
we refer the interested reader to [7]. The operation is split into two algorithms.

The first algorithm composes two divisors, and the result is in semi-reduced form: the output is a
divisor D = [U,V ] where the condition g≥ degt U is not necessarily satisfied, but degt U > degt V .
This corresponds to the addition two divisors in the geometric way.

Algorithm 1: Divisor Composition

Input: D1 = [U1,V1],D2 = [U2,V2],
Output: D = [u,v] semi-reduced with D≡ D1 +D2.

1. compute d1,e1,e2 : d1 = gcd(U1,U2) = e1U1 + e2U2;

2. compute d,c1,c2 : d = gcd(d1,V1 +V2) = c1d1 + c2(V1 +V2);
3. s1← c1e1, s2← c1e2, s3← c2; [i.e. d = s1U1 + s2U2 + s3(V1 +V2)]
4. u← (U1U2)/(d2);

v← (s1U1V2 + s2U2V1 + s3(V1V2 + f ))/d mod U.

The second algorithm computes the Mumford representation of the unique representant of effective
degree at most g in the divisor class of the input.

Algorithm 2: Divisor Reduction

Input: D = [U,V ] semi-reduced.
Output: D′ = [U ′,V ′] reduced with D≡ D′.

1. U ′← ( f −V 2)/U , V ′←−V mod U ′;
2. if degU ′ > g then put U ←U ′,V ←V ′; goto 1;
3. make U ′ monic.

1.2.3 Coordinate Systems

1.2.3.1 The general case

Let a reduced divisor D of a genus g curve be represented by two polynomials U(x),V (x) ∈ Fq[x]

with g≥ degU > degV , and U monic. In the most common case, write U(x) = xg +∑g−1
i=0 Uixi and

V (x) = ∑g−1
i=0 Vixi. The affine coordinates of D are the 2g-tuple [Ug−1, . . . ,U1,U0,Vg−1, . . . ,V1,V0].

For genus 3 this is the only coordinate system available.
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1.2.3.2 Genus 2

For genus 2 there are two more coordinate systems besides affine (A).

Miyamoto, Doi, Matsuo, Chao, and Tsuji [45] introduced projective coordinates (P ): a quintu-
ple [U1,U0,V1,V0,Z] corresponds to the divisor class represented by [t2 +U1/Z t +U0/Z,V1/Z t +
V0/Z]. Lange improved the operation counts of [45] and extended the work to even characteristic.
To convert to the system A we need I+4M.

Lange’s new coordinates [32] (N ) are a weighted system, in the spirit of elliptic Jacobian co-
ordinates: The sextuple [U1,U0,V1,V0,Z1,Z2] corresponds to the divisor class [t2 + U1/Z2

1 t +
U0/Z2

1 ,V1/Z3
1Z2 t +V0/Z3

1Z2]. The system N provides the fastest doubling, and is therefore impor-
tant in scalar multiplications, where the doublings are the most common operation.

The operation counts for the different operations are given in Table 1, courtesy of Lange. We do
not list the group operations here. Full details are given in [33].

Table 1: Addition and Doubling in Different Systems, genus 2

Doubling Addition
operation costs operation costs operation costs
2N = P 7S, 38M N +N = P 7S, 51M A +N = P 5S, 41M
2P = P 6S, 38M N +P = P 4S, 51M A +P = P 3S, 40M
2N = N 7S, 34M N +N = N 7S, 47M A +N = N 5S, 36M
2P = N 6S, 34M N +P = N 5S, 45M A +P = N 3S, 35M
2A = P 5S, 25M P +P = P 5S, 45M A +A = N 3S, 25M
2A = N 5S, 21M P +P = N 5S, 41M
2A = A 1I, 5S, 22M A +A = A 1I, 3S, 22M

2 Implementation

2.1 Prime Field Library

We already mentioned in the introduction that standard software libraries for performing arith-
metic computations introduce several types of overheads. One is the fixed function call overhead.
Other ones come from the fact they process operands of variable length in loops: They are usually
negligible for very large operands, since the conditional branches in the loops in the code are most
of the time taken for free. In fact, the branch prediction unit of the CPU will almost always guess
the right branch, and the only misprediction shall occur when exiting the loop, i.e. the only time
the branch is not taken. For operands of size relevant for curve cryptography the CPU will spend
more time performing jumps and paying big penalties because of branch mispredictions than doing
arithmetic. Thus, The smaller the field becomes, the higher will be the time wasted in the over-
heads. Because of the larger number of field operations in smaller fields, HEC suffer from a much
larger performance loss than EC.
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Our software library nuMONGO was designed to allow efficient reference implementations of EC and
HEC over prime fields. It actually implements arithmetic operations in rings Z/NZ with N odd,
where the elements are stored in Montgomery’s representation [46], and the reduction algorithm is
Montgomery’s REDC. It is written in the programming language C++ in order to take advantage of
inline functions, operator and function overloading, but it contains no classes. All data structures
are as simple and spartan as possible. The routines aim at the atomicity of assembler operations,
and in this sense this is a RISC-like software library: The least possible number of routines are
implemented which still allow to perform all desired field operations, and are heavily optimized.

All operations are built from elementary operations working on single words. These elementary
operations are available as C macros and as assembler macros for Intel and AMD x86 processors
(support for more CPUs is planned). They assume a CPU able to work on 32-bit operands and not
a 32-bit CPU – the library in fact worked also on an Alpha. As mentioned in the introduction, we
wanted to reduce as much as possible the overhead associated with each function call. Therefore,
inlining was used extensively to build all multi-precision routines from the single word operations
mentioned above. There are almost no conditional branches, so the CPU will seldom make very
expensive branch mispredictions.

There are separate addition, subtraction, multiplication and modular inversion routines for all
operand sizes, in steps of 32 bits from 32 to 256 bits, as well as for 48–bit fields (80 and 112-
bit fields have been implemented too, but gave no speed advantage with respect to the 96 and
128-bit routines). All elements of Z/NZ are stored in vectors of the same length of 32-bit words.

With the exception of 32-bit operands, inversion is based on the extended binary GCD, and uses
an almost-inverse like algorithm [24, 57] with final multiplication from a table of precomputed,
reduced, powers of 2. This is usually the fastest approach up to about 192 bits. For 32-bit operands
better performance is attained with an implementation of the extended Euclidean algorithm with
separate consideration of small quotients. Inversion was not sped up further for larger input sizes
because of the intended usage of the library. In the case of elliptic curves, inversion-free coordinate
systems are much faster than affine coordinates, so there is need, basically, only for one inversion
at the end of a scalar multiplication. In the case of hyperelliptic curves, fields are quite small (32
to 128 bits in most cases) in which case our inversion routines have optimal performance anyway.
Hence, Lehmer’s method or the recent improvements by Jebelean [22, 23] or Lercier [38] have not
been included.

In Table 2 on the following page we show some timings of basic operations with gmp version
4.1 and nuMONGO. The timings have been measured on a PC with a 1 Ghz AMD Athlon Model
4 processor, as all other timings in this paper, under the Linux operating system (kernel version
2.4.18). Our programs have been compiled with the GNU Compiler Collection (gcc) version
2.95.3. We now describe the meaning of the table entries.

There are three groups of five rows, grouped account to the library used to benchmark the following
operations: multiplication of two integers (Mul), modular or Montgomery reduction (Rec or REDC),
modular or Montgomery inversion (Inv). Also the ratios of a reduction to a multiplication ( REDC

Mul

and Red

Mul
) and of an inversion to the time of a multiplication together with a reduction ( Inv

Mul+REDC
and

Inv

Mul+Red
) are given: The first ratio tells how many “multiplications” we save each time we save a

reduction using the techniques described in the next subsection; the second ratio is the cost of a
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Table 2: Timings of basic operations in µsec (1 Ghz AMD Athlon PC) and ratios

Lib / Op / Bits 32 48 64 96 128 160 192 224 256
n
u
M
O
N
G
O

Mul 0.0071 0.0223 0.0386 0.054 0.098 0.153 0.23 0.302 0.409
REDC 0.0267 0.0573 0.0618 0.092 0.153 0.214 0.306 0.382 0.489
Inv 0.63 1.75 1.95 4.89 8.2 12.3 17.8 25.1 31.8
REDC

Mul 3.761 2.569 1.601 1.704 1.561 1.399 1.33 1.265 1.196
Inv

Mul+REDC 18.64 21.98 19.42 33.56 32.67 33.51 33.21 36.69 35.77

g
m
p

v.
4.

1
(s

to
ck

) Mul 0.094 0.155 0.16 0.206 0.238 0.308 0.354 0.44 0.508
Red 0.234 0.419 0.423 0.65 0.81 0.986 1.154 1.264 1.528
Inv 2.53 4.74 6.41 9.77 13.3 17.2 21.26 25.84 29.6
Red

Mul 2.489 2.703 2.644 3.155 3.403 3.201 3.26 2.873 3.008
Inv

Mul+Red 7.713 8.258 10.99 11.41 12.69 13.29 14.1 15.16 14.54

g
m
p

si
m

pl
ifi

ed

Mul 0.106 0.287 0.315 0.501 0.728 1.02 1.404 1.832 2.268
Red 0.247 0.411 0.46 0.682 0.934 1.266 1.742 2.196 2.664
Inv 3.15 5.65 7.57 12.3 17.72 23.12 29.08 36.2 42.64
Red

Mul 2.33 1.432 1.46 1.361 1.283 1.241 1.241 1.199 1.175
Inv

Mul+Red 8.923 8.129 9.768 10.39 10.66 10.11 9.243 8.987 8.646

field inversion in multiplications. The columns correspond to the bit lengths of the operands.

Note that gmp is very heavily optimized in assembler for the considered architecture, whereas the
inner loops of nuMONGO are far less optimized. The timings corresponding to this stock, highly
optimized version of gmp are given in the group labeled gmp version 4.1 (stock). It is possible to
recompile gmp using only C with some assembler macros, i.e. the same type of approach used for
nuMONGO, thus losing performance: This fact has been observed also in [5] in a slightly different
contexts. The corresponding timings are given in the group labeled gmp simplified.

A few remarks:

(1) nuMONGO can perform better than a far more optimized, but general purpose library.

(2) The disparity with a general purpose library compiled with the same optimization level as
nuMONGO is considerable.

(3) For larger operands gmp catches up with nuMONGO, the modular reduction remaining slower
because it is not based on Montgomery’s algorithm.

(4) nuMONGO has the highest ratio of a field inversion to a field multiplication. This shows how big
the overheads in general purpose libraries are for such small inputs. In particular, such ratios
are quite close to those in hardware implementation of field arithmetic.

2.2 Lazy and Incomplete reduction

Lazy and incomplete modular reduction are described in [5]. Here, we give a short treatment. Let
p be a prime number smaller than 2w, where w is a fixed integer. We consider the evaluation of
expressions of the form ∑d−1

i=0 aibi mod p given ai and bi with 0 ≤ ai,bi < p. Such expressions
occur in polynomial multiplication, hence in the explicit formulae for HEC.

10



To use most modular reduction algorithms or Montgomery’s reduction procedure [46] at the end
of the summation, we have to make sure that all partial sums of ∑aibi are smaller than p2w.
Some authors (see for example [39]) suggested to use small primes, to guarantee that the condition
∑aibi < p2w is always satisfied in a given situation. However, doing this would contradict the
main design principle of nuMONGO, which is to have no restriction on p except that it must fit in the
available number of machine words allocated for it.

What we do instead is to ensure that the number obtained by removing the least significant w bits
of any intermediate result remains < p. We do this by adding the products aibi in succession, and
checking if there has been an overflow or if the most significant half of the intermediate sum is
≥ p : if so we subtract p2w. The last subtraction is in practice performed as follows: since the
internal representation of the intermediate result can be seen as x2w + y, with y ≤ 2w but x ≥ p,
we subtract p from x. This requires as many operations as allowing intermediate results in triple
precision, but either less memory accesses are needed, or less registers have to be allocated: In
practice this leads to a faster approach, and at the end we have to reduce a number bounded by
p2w, making the modular reduction easier (or, in Montgomery’s case, possible).

Algorithm 3: Incomplete reduction

Input: p < 2w, ai and bi < p for i = 0, . . . , t,
Output: x with x≡ ∑t

i=0 aibi mod p2w and 0≤ x≤ p2w

Notation: x = xhi ·2w + xlo where xhi,xlo < 2w

1. Initialise x← a0b0
for i = 1 to t do {

2. carry ·22w + x← x+aibi (with x < 22w and carry ∈ {0,1})
3. if carry or xhi ≥ p then xhi← xhi− p mod 2w }
4. return x

We implemented some APIs in nuMONGO for supporting Lazy (i.e. delayed) and Incomplete (i.e.
limited to the most significant half of the considered operands) modular reduction. They can also
be used in the implementation of the arithmetic of extension fields.

A straightforward implementation of complex expressions, such as the formulae for elliptic and
hyperelliptic curves, would simply replace any arithmetic operation by a sequence of operands
between data in registers, as in the following example. Suppose that we want to compute ab+ cd,
and that the registers a, b, c, d contain a,b,c and d respectively. The functions Add, Sub, Mul take
3 operands: the third input is added, subtracted, respectively multiplied to/from/by the second one,
and the the result is put in the variable indicated by the first parameter.

Mul(a, a,b); Mul(c, c,d); Add(a, a,c);

The original contents of the registers a and c are overwritten, the result is found in a.

There is a faster way of implementing the computation above. First, we allocate two registers L
and M whose width in bits is twice that of a. In other words, L and M are capable of containing
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integers up to 22w− 1. We call such registers wide. Registers capable of containing only integers
up to 2w−1 are called short.

In nuMONGO there are routines for implementing incomplete reduction, namely AddDbl and SubDbl

for adding wide registers while keeping the result smaller than p2w, MulNoREDC(L, a,b) for mul-
tiplying a and b without adopting Montgomery’s reduction to the product (that is, MulNoREDC just
computes a product of integers), and REDC(r, L) for putting in the short register r the reduction
of the content of the wide register L. A Mul is implemented as a MulNoREDC followed by a REDC.

The example computation above is then implemented as

MulNoREDC(L, a,b); MulNoREDC(M, c,d); AddDbl(L, L,M); REDC(a,L);

The gain is clear, as we need only one modular reduction instead of two. A modular reduction is at
least as expensive as a multiplication, and often much more, see Table 2 on page 10. The overhead
introduced by the wide addition in place of the short one is negligible in practice.

Remark 2.1. We cannot add a reduced element to an unreduced element in Montgomery’s repre-
sentation. This is due to the fact that Montgomery’s representation â of the integer a ∈ [0 .. p−1 ]
is aR mod p, where R is a power of 2 larger than p. Now, âb̂ is congruent to abR2 modulo p, not
to âb. Therefore, adding a number in Montgomery’s representation to âb̂ would give meaningless
results.

For most small values of w, all above operations are inlined, so the code size of the second imple-
mentation will be actually smaller than in the first implementation, due to the reduced number of
modular reductions. This makes it even more likely that the code implementing group operations
will fit entirely in the CPU’s level 1 cache. For large w (w≤ 192) the operators Add, Sub, Mul, etc.
are never inlined to keep the code of the whole group operations in the level 1 cache of the target
CPU.

2.3 Implementation of the Explicit Formulae

To derive explicit formulae, one starts with Cantor’s algorithm and “unrolls” the steps in order.
First, one must consider which cases can occur, which depend on the degrees of the input divisors
and, in the case of the addition, whether the supports of the two divisors to be added contain
points with the same x–coordinates. The cases that almost always occur (with probability 1−
O(p−1)) are those when the divisors have maximal degree g and the points in the supports all have
different x–coordinates. The other cases can be handled, e.g. by Cantor’s algorithm without loss of
performance. The techniques used to turn the addition and doubling algorithms into a procedural
list of operations are: Use of the resultant in the inversion of polynomials and computation of
the resultant using Bezout’s matrix; Montgomery’s trick for computing several inverses with a
single inversion; using short convolutions for polynomial multiplication, and the computation only
of those coefficients which are really used; recovering the second polynomial of the result using
one step of Newton iteration or the Chinese Remaindering Theorem; and reorganization of the
normalization of polynomials [61]. The usage of these tricks is detailed in [30, 49, 33].
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In the next subsubsections, we analyse the extent of applicability of lazy and incomplete reduction
in the formulae for the types of curves which we consider.

2.3.1 Genus 2

We now see in a concrete case – namely a particular genus 2 formula – how wide operations are
used in practice. Table 3 is derived from results in [30], but restricted to the odd characteristic case.
Also we do not distinguish between squarings and multiplications. The detailed breakdown of the

Table 3: Addition, degu1 = degu2 = 2

Input: [u1,v1], [u2,v2], with degu1 = degu2 = 2, and f = x5 + f3x3 + f2x2 + f1x+ f0

Output: [u3,v3] = [u1,v1]+ [u2,v2]
Notation: ui = x2 +ui1x+ui0 and vi = vi1x+ vi0

Step Expression Cost
1 compute resultant r of u1,u2: 4M

z1 = u11−u21, z2 = u20−u10, z3 = u11z1 + z2;
r = z2z3 + z2

1u10;
2 compute almost inverse of u2 modulo u1 (ı = ı1x+ ı0 = r/u2 mod u1): -

ı1 = z1, ı0 = z3;
3 compute s′ = rs≡ (v1− v2)ı mod u1: 5M

w0 = v10− v20, w1 = v11− v21, w2 = ı0w0, w3 = ı1w1;
s′1 = (ı0 + ı1)(w0 +w1)−w2−w3(1+u11), s′0 = w2−u10w3;
If s1 = 0 handle exceptional case (e.g. with Cantor’s algorithm)

4 compute s′′ = x+ s0/s1 = x+ s′0/s′1 and s1: I, 7M

w1 = (rs′1)
−1(= 1/r2s1), w2 = rw1(= 1/s′1), w3 = s′21w1(= s1);

w4 = rw2(= 1/s1), w5 = w2
4;

s′′0 = s′0w2;
5 compute l′ = s′′u2 = x3 + l′2x2 + l′1x+ l′0: 2M

l′2 = u21 + s′′0 , l′1 = u21s′′0 +u20, l′0 = u20s′′0
6 compute u3 = (s(l +2v2)− k)/u1: 3M

u30 = (s′′0−u11)(s′′0− z1)−u10 + l′1 +(2v21)w4 +(2u21 + z1)w5;
u31 = 2s′′0− z1−w5;

7 compute v3 ≡−(l + v2) mod u3: 4M
w1 = l′2−u31, w2 = u31w1 +u30− l′1, v31 = w2w3− v21;
w2 = u30w1− l′0, v30 = w2w3− v20;

total I, 25M

reductions saved due to the use of wide operands follows:

1. In Step 1 we can save one REDC in the computation of r, since we do not need the reduced
value of z2z3 and z2

1u10 anywhere else.

2. In Step 3 we do not reduce w2 = ı0w0. Since it is used in the computation of s′1 and s′0, which
are sums of products of two elements. So only 3 REDCs are required to implement Step 3:
for w3 and for the final results of s′1 and s′0. This is a saving of 2 REDCs.
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3. In Step 5, it would be desirable to leave the coefficients l ′1 and l′0 of l′ unreduced, since they
are used in the following two Steps only in additions with other products of two elements.
But l′1 = u21s′′0 +u20 is a problem: we cannot add reduced and unreduced quantities (see Re-
mark 2.1). We circumvent this by computing the wide products L1 = u21s′′0 and L0 = u20s′′0 .

4. In Step 6, we have u′0 = (s′′0 − u11)(s′′0 − z1)+ L1 + 2v21w4 +(2u21 + z1)w5 + z2. We need
only one REDC (instead of four) to compute the (reduced) sum of the first four products. Note
that, at this point, L1 is already known. Then, we add z2.

5. Step 7: only one further saved REDC (the apparent additional ones come from L1 and L0).

Summarizing, to implement addition for genus 2 curves in affine coordinates in the most common
case, we need 12 Muls, 13 MulNoREDCs and 6 REDCs. Thus, we save 7 REDCs.

We implemented addition and doubling in all coordinate systems. In order to speed-up scalar
multiplication, we also implemented addition in the cases where one of the two points to be added
is given in A and the other one in P or N , with result in P or N respectively.

In Table 4 we show the operation counts of the operations implemented, by counting multiplica-
tions and squarings together, but separating the number of REDCs.

Table 4: Costs of Group Operations

Doubling Addition
operation costs operation costs

genus 2
2A = A 1I, 27m, 22R A +A = A 1I, 25m, 18R
2P = P 44m, 38R P +P = P 51m, 42R

A +P = P 43m, 33R
2N = N 41m, 37R N +N = N 54m, 50R

A +N = N 41m, 37R
genus 3

2A = A 1I, 71m, 57R A +A = A 1I, 76m, 55R

The table contains also the counts for the genus 3 case, which we will discuss in the next Paragraph.
One sees at once that the number of modular reductions is always significantly smaller than the
total number of multiplications.

2.3.2 Genus 3

For the genus three case our starting point are the explicit formulae for the genus 3 affine coordi-
nates developed by Pelzl in [49]. These formulae, as well as those in [50], contain some errors in
the most general case if one wants to use them in odd characteristic. This has not been a problem in
the reported implementation since it was in even characteristic only, for which the formulae have
been verified to be correct. The author corrected these formulae together with Jan Pelzl. After the
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resulting formulae have been verified to work correctly – and have been already optimised using
lazy reduction and wide operands – they have been compared again to those in [66], which are for
general curves of the form y2 +h(x)y = f (x), and are implemented only in even characteristic with
h(x) = 1. In Table 5 and Table 6 on the next page we report the correct formulae for addition and
doubling in genus 3 in odd characteristic and on curves of equation y2 = f (x), where the second
most significant coefficient of f vanishes.

Table 5: Explicit addition formula on a genus three Jacobian over Fq

Input: [u1,v1], [u2,v2], with degu1 = degu2 = 3, and f = x7 + f5x5 + f4x4 + f3x3 + f2x2 + f1x+ f0

Output: [u3,v3] = [u1,v1]+ [u2,v2]
Notation: ui = x3 +ui2x2 +ui1x+ui0; vi = vi2x2 + vi1x+ vi0; for 1≤ i≤ 3

Step Expression Cost
1 Compute resultant r of u1 and u2 (Bezout): 12M, 2S

t1 = u12u21; t2 = u11u22; t3 = u11u20; t4 = u10u21; t5 = u12u20; t6 = u10u22;
t7 = (u20−u10)

2; t8 = (u21−u11)
2; t9 = (u22−u12)(t3− t4);

t10 = (u22−u12)(t5− t6); t11 = (u21−u11)(u20−u10);
r = (u20−u10 + t1− t2)(t7− t9)+(t5− t6)(t10−2t11)+ t8(t3 + t4);

2 Compute almost inverse inv = r/u1 mod u2: 4M
ı2 = (t1− t2−u10 +u20)(u22−u12)− t8;
ı1 = ı2u12− t10 + t11; ı0 = ı2u11 +u12(t10− t11)+ t9− t7

3 Compute s′ = rs≡ (v2− v1)inv mod u2 : 11M
t12 = (ı1 + ı2)(v12− v22 + v11− v21); t13 = (v11− v21)ı1;
t14 = (ı0 + ı2)(v12− v22 + v10− v20); t15 = (v10− v20)ı0;
t16 = (ı0 + ı1)(v11− v21 + v10− v20); t17 = (v12− v22)ı2;
r′0 = t15; r′1 = t13 + t15 + t16; r′2 = t13 + t14 + t15 + t17;
r′3 = t12 + t13 + t17; r′4 = t17; t18 = u22r′4− r′3;
s′0 = r′0 +u20t18; s′1 = r′1− (u21 +u20)(r′4− t18)+u21r′4−u20t18; s′2 = r′2−u21r′4 +u22t18;
If s′2 = 0 handle exceptional case (e.g. with Cantor’s algorithm)

4 Compute s = (s′/r), and make it monic: I, 6M, 2S

w1 = (rs′2)
−1; w2 = rw1; w3 = w1s′2

2; w4 = rw2; w5 = w2
4; s0 = w2s′0; s1 = w2s′1;

5 Compute z = su1: 6M
z0 = s0u10; z1 = s1u10 + s0u11; z2 = s0u12 + s1u11 +u10; z3 = s1u12 + s0 +u11;
z4 = u12 + s1;

6 Compute u′ = [s(z+2w4v1)−w5( f − v2
1)/u1)]/u2: 15M

u′3 = z4 + s1−u22; u′2 =−u22u′3−u21 + z3 + s0 +w4 + s1z4;
u′1 = w4(2v12 + s1)+ s1z3 + s0z4 + z2−w5−u22u′2−u21u′3−u20;
u′0 = w4(2v11 +2s1v12 + s0)+ s1z2 + z1 + s0z3 +w5u12−u22u′1−u21u′2−u20u′3

7 Compute v′ =−(w3z+ v1) mod u′: 8M
t1 = u′3− z4; v′0 = w3(u′0t1 + z0)+ v10;
v′1 = w3(u′1t1−u′0 + z1)+ v11; v′2 = w3(u′2t1−u′1 + z2)+ v12; v′3 = w3(u′3t1−u′2 + z3);

8 Reduce u′, i.e. u3 = ( f − v′2)/u′: 5M, 2S

u32 =−u′3− v′3
2 + v′3; u31 =−u′2−u32u′3 + f5−2v′2v′3− v′2;

u30 =−u′1−u32u′2−u31u′3 + f4−2v′1v′3− v′2
2− v′1;

9 Compute v3 =−v′ mod u3: 3M
v32 = v′2− (v′3 +1)u32; v31 = v′1− (v′3 +1)u31; v30 = v′0− (v′3 +1)u30;

total I, 70M, 6S

A pleasant aspect of the genus three formulae is that a large proportion of modular reductions can
be saved: at least 21 in the addition and 14 in the doubling (see Table 4 on the facing page).
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Table 6: Explicit doubling formula on a genus three Jacobian over Fq

Input: [u1,v1] with degu1 = 3, and f = x7 + f5x5 + f4x4 + f3x3 + f2x2 + f1x+ f0

Output: [u2,v2] = 2 · [u1,v1]
Notation: ui = x3 +ui2x2 +ui1x+ui0; vi = vi2x2 + vi1x+ vi0; for 1≤ i≤ 2

Step Expression Cost
1 Compute resultant r of u1 and 2v1 (Bezout): 6M, 2S

t1 = 2u12v11; t2 = 2u11v12; t3 = 2u11v10; t4 = 2u10v11; t5 = 2u12v10; t6 = 2u10v12;
t7 = (2v10−u10)

2; t8 = (2v11−u11)
2; t9 = (2v12−u12)(t3− t4);

t10 = (2v12−u12)(t5− t6); t11 = (2v11−u11)(2v10−u10);
r = (2v10−u10 + t1− t2)(t7− t9)+

+(t5− t6)[(t5− t6)(2v12−u12)−2(2v11−u11)]+ t8(t3− t4);
2 Compute almost inverse inv = r/(2v1) mod u1: 4M

ı2 =−(t1− t2−u10 +2v10)(2v12−u12)− t8;
ı1 = ı2u12− t10 + t11; ı0 = ı2u11 +u12(t10− t11)+ t9− t7

3 Compute z = (( f − v2
1)/u1) mod u1: 7M, 2S

t12 = v2
12; z′3 =−u12; t13 = z′3u11;

z′2 = f5− v12−u11−u12z′3; z′1 = f4− v11− t12−u10− t13− z′2u12;
z2 = f5− v12−2u11 +u12(u12−2z′3); z1 = z′1− t13 +u12u11−u10;
z0 = f3−2v12v11− v10− z′3u10− z′2u11− z′1u12;

4 Compute s′ = zı mod u1: 11 M
t12 = (ı1 + ı2)(z1 + z2); t13 = z1ı1; t14 = (ı0 + ı2)(z0 + z2); t15 = z0ı0;
t16 = (ı0 + ı1)(z0 + z1); t17 = z2ı2;
r′0 = t15; r′1 = t13 + t15 + t16; r′2 = t13 + t14 + t15 + t17;
r′3 = t12 + t13 + t17; r′4 = t17; t18 = u12r′4− r′3;
s′0 = r′0 +u10t18; s′1 = r′1− (u11 +u10)(r′4− t18)+u11r′4−u10t18; s′2 = r′2−u11r′4 +u12t18;
If s′2 = 0 handle exceptional case (e.g. with Cantor’s algorithm)

5 Compute s = (s′/r) and make s monic: I, 6M, 2S
w1 = (rs′2)

−1; w2 = w1r; w3 = w1(s′2)
2; w4 = w2r; w5 = w2

4 s0 = w2s′0; s1 = w2s′1;
6 Compute G = su1: 6M

g0 = s0u10; g1 = s1u10 + s0u11; g2 = s0u12 + s1u11 +u10; g3 = s1u12 + s0 +u11; g4 = u12 + s1;
7 Compute u′ = u−2

1 [(G+w4v1)
2−w5 f ]: 5M, 2S

u′3 = 2s1; u′2 = s2
1 +2s0 +w4; u′1 = 2s0s1 +w4(2v12 + s1−u12)−w5;

u′0 = w4[2v11 + s0−u11 +u12(u12−2v12− s1)]+2w5u12 + s2
0;

8 Compute v′ =−(Gw3 + v1) mod u′: 8M
t1 = u′3−g4; v′3 = (t1u′3−u′2 +g3)w3; v′2 = (t1u′2−u′1 +g2)w3 + v12;
v′1 = (t1u′1−u′0 +g1)w3 + v11; v′0 = (t1u′0−g0)w3 + v10;

9 Reduce u′, i.e. u2 = ( f − v′2)/u′: 5M, 2S

u22 =−u′3− v′3
2 + v′3; u21 =−u′2−u22u′3 + f5−2v′2v′3− v′2;

u20 =−u′1−u22u′2−u21u′3 + f4−2v′1v′3− v′2
2− v′1;

10 Compute v2 =−v′ mod u2: 3M
v22 = v′2− (v′3 +1)u22; v21 = v′1− (v′3 +1)u21; v20 = v′0− (v′3 +1)u20;

total I, 61M, 10S

2.3.3 Elliptic Curves

For EC explicit formulae, no savings in REDCs are possible in the cases which we consider. This is
due to the fact that the formulae are much simpler and whenever expressions of the form ab + cd
appear, then ab, say, must be later multiplied by another field element – or is “reused” in an
expression involving other products which must, sooner or later, be reduced anyway. This implies
that it can as well be reduced immediately, and one gains more by reducing also cd and adding ab
and cd as short operands instead of wide ones.
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Let us work out an example, namely, the addition of a point in A coordinates to a point in P , with
result in P . Let P1 = (X1,Y1), P2 = (X2 : Y2 : Z2) and P3 = (X3 : Y3 : Z3). The addition P3 = P1 +P2

is done by performing the following operations in the given order

u = Y2−Y1Z2, v = X2−X1Z2, A = u2Z2− v3−2v2X1Z2 ,

X3 = vA, Y3 = u(v2X1Z2−A)− v3Y1Z2, Z3 = v3Z2 .

For the computation of u and v no savings are possible. The expression A = u2Z2− v3−2v2X1Z2

is a bit more complex. We could hope to save reduction in its computation, but: We need v3

reduced anyway for Z3, and also A must be reduced to get X3. In the computation of Y3 we have
the subexpression v2X1Z2 − A: Since A will be reduced anyway for other computations, there
is no saving here from keeping ` := v2X1Z2 unreduced (say, multiplying reduced v2 with X1Z2),
subtracting an unreduced copy of A and then reducing. At this point we can either keep ` unreduced
and reduce A and `−A separately, or reduce it right away. But then there is no saving in computing
A using lazy reduction.

This case, together with P + P = P , is perhaps the one where it is most difficult to see that lazy
reduction cannot be applied to EC.

2.4 Scalar Multiplication

There are many methods for performing a scalar multiplication in a generic group, which can be
used for EC and HEC. See [18] for a survey.

A simple method for computing s ·D for an integer s and a divisor D is based on the binary
representation of s. If s = ∑n−1

i=0 si2i where each si = 0 or 1, then n ·D can be computed as

sD = 2(2(· · ·2(2(sn−1D)+ sn−2D)+ · · ·)+ s1D)+ s0D. (4)

This requires n−1 doublings and on average n/2 additions on the curve.

On EC and HEC, the computation of the inverse of a given group element is for free. In other
words, adding and subtracting a point has the same cost. Hence one can use the non adjacent form
(NAF) [52], which is an expansion s = ∑n

i=0 si2i where each si ∈ {0,±1} and sisi+1 = 0. This leads
to a method needing n doublings and on average n/3 additions or subtractions.

A generalization of the NAF comes from using “sliding windows”. The wNAF [60, 8] of the integer
s is a representation s = ∑n

j=0 s j 2 j where the integers s j satisfy the following two conditions: (i) ei-
ther s j = 0 or s j is odd and |s j| ≤ 2w; (ii) of any w+1 consecutive coefficients s j+w, . . . ,s j at most
one is nonzero.

The 1NAF coincides with the NAF. The wNAF has average density 1/(w+2). To compute a scalar
multiplication based on the wNAF one must first precompute the divisors D, 3D, . . . ,(2w− 1)D,
and then perform a double-and-add step like (4).
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3 Results and Comparisons

Table 7 on page 20 reports the timings of our implementation. Since nuMONGO provides support
only for moduli up to 256 bits, EC are tested only on fields up to that size. For genus 2 curves on
a 256 bit field, a group up to 512 bits is possible: We choose this group size as a limit also for our
tests of genus 3 curves.

All benchmarks were performed on a 1 Ghz AMD Athlon (Model 4) PC, under the Linux operating
system (kernel version 2.4.18). The compiler used was the GNU Compiler Collection (gcc) version
2.95.3. The elliptic curves all have almost prime order and have been found by point counting on
random curves. The genus 2 and 3 curves have rational divisor class groups of almost prime order
and have been costructed by complex multiplication.

For each combination of group type (EC and HEC of genus 2 and 3), coordinate system and bit size
of the group (not of the field!), we averaged the timings of several thousands scalar multiplications
with random scalars, and performed the scalar multiplication using three different recodings of the
scalar: the binary representation, the NAF, and the wNAF. For the wNAF we report only the best
timing and the value of w for which is was attained. When using the various coordinate systems,
we always keep the base divisor and its multiples in affine coordinates, since adding an affine point
to a point in any coordinate system is faster than adding two points in that coordinate system. In
the timings for the wNAF the timings for the precomputations are always included in the results.

For comparison with our timings, Lange [30] reported timings of 8.232 and 9.121 milliseconds for
genus 2 curves with group order ≈ 2160 and 2180 respectively on a gmp-based implementation of
affine coordinates on a Pentium IV processor running at 1.5 Ghz, and for a ntl-based the timings
are 11.326 and 16.324 for the two curves above. The scalar multiplication in [30] is based on the
double-and-add algorithm based on the unsigned binary representation. In [53], a timing of 98
milliseconds for a genus 3 curve of about 180 bits (p≈ 260) on an Alpha 21164A CPU running at
600MHz is reported. The speed of these two CPUs is close to that of the machine we used for our
tests.

In Table 8 on page 20 we provide timings for ecc and hec using gmp (with the highest optimization
possible) and the double-and-add scalar multiplication is based on the unsigned binary representa-
tion. In Table 9 on page 21 we show the timings of the nuMONGO genus 2 and 3 hec implementation
without lazy and incomplete reduction.

A summary of the results follows:

(1) Using a specialised software library one can get a speed-up by a factor of 3 to 4.5 for EC with
respect to a traditional implementation. The speed-up for genus 2 and 3 curves is up to 8.

(2) Lazy and incomplete modular reduction alone brings a speed-up from 3% to 7%.

(a) The speed-up is larger for genus 3 curves, since a larger proportion of reductions is saved.

(b) For genus 2, the amount of modular reductions saved with new coordinates is smaller
than with projective coordinates. As a result, the performance difference between the two
coordinate systems is smaller than without lazy and incomplete reduction (for example,
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for 256-bit curves, the gain is 5.3% instead of 9.7%). It would be interesting to rewrite
the explicit formulae for N to allow more savings in reduction.

(3) HEC over prime fields are still slower than EC, but the gap has been narrowed.

(a) Affine coordinates for genus 2 HEC are significantly faster than those for EC. Those for
genus 3 are faster from 144 bits upwards.

(b) Comparing the best coordinate systems and scalar multiplication algorithms for genus 2
HEC and EC, we see that:

(i) For 192 bit, resp. 256 bit curves, HEC is slower than EC by only 18%, resp. 15%.

(ii) For other group sizes the difference is often around 50%.

(c) Genus 3 curves are slower than genus 2 ones. Whereas with gmp the difference is 80% to
100% for 160 to 512 bit groups, using nuMONGO the difference is often as small as 50%.

(4) Using nuMONGO we can successfully eliminate most of the overheads associated to function
calls and to the processing of short operands. This proves the soundness of our approach.

(a) In the gmp-based implementation (see Table 8) the timings with different coordinate sys-
tems are closer to each other than with nuMONGO because of the big amount of time lost
in the overheads. For HEC we even have the paradoxical result that P and N are slower
than A , because of they require significantly more function calls for each group operation
than A . Therefore, with gmp in some cases the overheads dominate the running time.

(b) For affine coordinates the dominant part of the operation is the field inversion, hence the
speed-up given by nuMONGO is not big, and is close to that in Table 2 on page 10 for the
inversion alone. For the other coordinate systems, the speed-up becomes significant.

(5) If the field size for a given group is not close to a multiple of the machine word size, there is a
relative drop in performance with respect to other groups where the field size is nicer.

(a) This is seen, for example, for 160-bit groups. For genus 2 this means a 80-bit field, but
then 96-bit arithmetic must be used on a 32-bit CPU. For genus 3 (53-bit field) this is
even worse. For 144-bit groups, genus 3 curves can exploit 48-bit arithmetic, which has
been made faster by suitable implementation tricks (an approach which did not work for
80 and 112 bit fields), and thus the gap to genus 2 is only 50%.

(b) A similar phenomenon occurs when comparing 224-bit EC and genus 2 HEC groups.
The performance loss of HEC is about 50%, due to the 112-bit field arithmetic, which
is not a multiple of the native word size of the CPU. However, 192 bit and 256 bit HEC
perform much better in comparison with EC.

In practice, the performance of hyperelliptic curves is satisfactory enough to be considered as a
valid alternative to elliptic curves, especially if relatively large point groups are desired.
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Table 7: Comparison of running times, in msec (1 Ghz AMD Athlon PC)

scalar Bitlength of group order
curve coord.

mult. 128 144 160 192 224 256 320 512

binary 1.82 2.824 3.396 5.946 9.27 13.638

A NAF 1.61 2.504 3.044 5.31 8.283 12.147

wNAF 1.49 2.272 2.768 4.788 7.451 10.795
(w = 3) (w = 3) (w = 4) (w = 4) (w = 4) (w = 4)

binary 0.72 1.04 1.224 2.094 3.001 4.592

P NAF 0.635 0.92 1.108 1.88 2.713 4.123

wNAF 0.615 0.884 1.056 1.781 2.59 3.876
(w = 3) (w = 3) (w = 3) (w = 3) (w = 4) (w = 3)

binary 0.65 0.916 1.12 1.897 2.708 4.095

ec J NAF 0.57 0.817 1.04 1.683 2.425 3.598

wNAF 0.535 0.78 0.936 1.567 2.22 3.399
(w = 3) (w = 3) (w = 2) (w = 3) (w = 3) (w = 3)

binary 0.675 0.976 1.172 2.001 2.805 4.354

J c NAF 0.63 0.864 1.06 1.752 2.579 3.916

wNAF 0.585 0.816 1.004 1.688 2.456 3.631
(w = 2) (w = 2) (w = 3) (w = 3) (w = 4) (w = 3)

binary 0.545 0.912 1.096 1.816 2.631 4.036

J m NAF 0.505 0.764 0.924 1.555 2.25 3.399

wNAF 0.5 0.7 0.844 1.423 2.053 3.06
(w = 3) (w = 3) (w = 3) (w = 3) (w = 3) (w = 4)

binary 0.99 1.78 2.08 2.696 4.884 5.783 11.675 42.463

A NAF 0.907 1.57 1.94 2.399 4.365 5.212 10.325 38.457

wNAF 0.82 1.44 1.72 2.166 3.92 4.662 9.27 33.709
(w = 3) (w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 5) (w = 5)

binary 1.073 1.55 1.82 2.174 4.095 4.718 9.225 31.928
hec P NAF 0.966 1.37 1.62 1.945 3.677 4.245 8.275 28.219
g=2 wNAF 0.906 1.29 1.533 1.786 3.339 3.841 7.37 25.104

(w = 3) (w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 5)

binary 1.051 1.5 1.72 2.075 3.891 4.447 8.6 29.981

N NAF 0.946 1.3 1.51 1.846 3.447 3.959 7.25 26.468

wNAF 0.867 1.21 1.41 1.676 3.085 3.528 6.85 23.323
(w = 3) (w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 4) (w = 5)

binary 2.332 2.612 4.7 5.653 5.67 6.82 13.22 47.843
hec A NAF 1.936 2.16 3.807 4.577 5.06 6.008 11.72 42.348
g=3 wNAF 1.604 1.808 2.792 3.538 4.53 5.343 10.28 36.209

(w = 4) (w = 4) (w = 5) (w = 5) (w = 5) (w = 5) (w = 5) (w = 5)

Table 8: Timings with gmp, in msec (1 Ghz AMD Athlon PC)

ec 160 192 256

A 5.468 8.305 15.354
P 4.306 5.845 9.16
J 3.775 5.4 8.878
J c 4.029 5.75 9.67
J m 3.75 5.182 9.075

hec 160 192 256 320 512

A 9.292 12.082 18.873 29.5 72.09
g=2 P 12.15 14.961 23.442 32.212 81.586

N 11.349 13.278 20.4 28.93 74.389

g=3 A 19.799 22.452 40.39 59.691 129.541
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Table 9: Timings with nuMONGO without lazy and
incomplete reduction, in msec (1 Ghz AMD Athlon PC)

hec 160 192 256 320 512

A 2.22 2.88 6.253 11.832 44.596
g=2 P 1.967 2.393 4.93 9.625 33.915

N 1.77 2.267 4.493 8.772 31.073

g=3 A 5.961 7.138 7.29 13.959 49.977
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[48] P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic applications, Journal of Cryptology,
12 (1999), pp. 1–28.

[49] J. Pelzl. Fast Hyperelliptic Curve Cryptosystems for Embedded Processors. Master’s thesis, Ruhr-University of
Bochum, 2002.

[50] J. Pelzl, T. Wollinger, J. Guajardo, J. and C. Paar. Hyperelliptic Curve Cryptosystems: Closing the Performance
Gap to Elliptic Curves. In: Proceedings of CHES 2003. LNCS 2779, pp. 351–365.

[51] J. Pollard. Monte Carlo methods for index computation mod p. Mathematics of Computation, 32 (1978), pp. 918–
924.

[52] G.W. Reitwiesner. Binary arithmetic. Advances in Computers 1, 231–308, 1960.

[53] Y. Sakai, and K. Sakurai. On the Practical Performance of Hyperelliptic Curve Cryptosystems in Software Im-
plementation. In IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences.
Vol. E83-A NO.4. 692–703. IEICE Trans.

[54] Y. Sakai, K. Sakurai, and H. Ishizuka. Secure Hyperelliptic Cryptosystems and their Performance. In Public Key
Cryptography. LNCS 1431, pp. 164–181. Springer, Berlin.

[55] T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its point counting. J. Ramanujan
Math. Soc., 15 (2000), pp. 247–270.

[56] T. Satoh, B. Skjernaa and Y. Taguchi. Fast computation of canonical lifts of elliptic curves and its application to
point counting. 2001, Preprint available by email to pprtserv@rimath.saitama-u.ac.jp with u0108.1.1
as subject.
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