
Trading Inversions for Multiplications in

Elliptic Curve Cryptography

Mathieu Ciet ∗ (mathieu.ciet@innova-card.com)
InnovaCard, Avenue Coriandre, ZI Athélia II, 13600 La Ciotat, France
http: // www. innova-card. com/

Marc Joye (marc.joye@gemplus.com)
Gemplus S.A., Card Security Group, La Vigie, Avenue du Jujubier, ZI Athélia IV,
13705 La Ciotat Cedex, France
http: // www. gemplus. com/ smart/

Kristin Lauter (klauter@microsoft.com) and Peter L. Montgomery
(petmon@microsoft.com)
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
http: // research. microsoft. com/ crypto/

Abstract. Recently, Eisenträger et al. proposed a very elegant method for speeding
up scalar multiplication on elliptic curves. Their method relies on improved formulæ
for evaluating S = (2P + Q) from given points P and Q on an elliptic curve.
Compared to the naive approach, the improved formulæ save a field multiplication
each time the operation is performed.

This paper proposes a variant which is faster whenever a field inversion is more
expensive than six field multiplications. We also give an improvement when tripling
or quadrupling a point, and present a ternary/binary method to perform efficient
scalar multiplication.

Keywords: Elliptic curves, cryptography, fast arithmetic, radix-r decompositions,
affine coordinates.

1. Introduction

Elliptic curve cryptography was introduced in the mid-1980s indepen-
dently by Koblitz [11] and Miller [15] as a promising alternative for
cryptographic protocols based on the discrete logarithm problem in the
multiplicative group of a finite field (e.g., Diffie-Hellman key exchange
or ElGamal encryption/signature).

Efficient elliptic curve arithmetic is crucial for cryptosystems based
on elliptic curves. Such cryptosystems often require computing a scalar
multiple nP of a point P , where n might be 160 bits or more [1].
Various methods have been devised to this end [7]. The integer n

∗ This work was performed while Mathieu Ciet was with the UCL CryptoGroup,
Belgium (see http://www.dice.ucl.ac.be/crypto/), under Walloon region project
Milos.

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

2PplusQ13.tex; 16/12/2003; 11:27; p.1

2

can be decomposed and written either in an integer base or using an
endomorphism. In this paper we deal with the decomposition of n in
an integer base.
For general elliptic curves, an improved version of scalar multiplication
was proposed by Eisenträger et al. in [4] based on a savings obtained
when doubling a point and adding it to another point on the elliptic
curve. This method finds applications for decompositions signed or not,
in integer bases, as well as in simultaneous multiple exponentiation.

The current paper proposes another way to compute (2P +Q) from
given points P and Q. Our variant is faster whenever a field inversion
costs more than 6 field multiplications. We also propose a method for
computing the triple 3P of an elliptic curve point P . Computing 3P in
the new way is less costly than computing (2P +Q) for general Q, and
so we also propose a mixed ternary/binary method for scalar multipli-
cation to take advantage of this savings. Efficient scalar multiplication
is usually performed by expressing the exponent n as a sum of (possibly
negated) powers of 2 (radix-2) or another base. Here the ternary/binary
method we propose refers to expressing n as a sum of products of
powers of 2 and 3. We will compare the cost of a scalar multiplication
using various exponent representations. Sometimes, while comparing
two methods, we will assume that a field squaring costs 80% as much
as a field multiplication.

The idea of finding methods for trading field inversions for field
multiplications in elliptic curve cryptography has appeared previously
in several papers, including [8] and [19]. We will use and in some cases
improve upon those authors’ results.

The paper is organized as follows. The next section presents the
new methods for computing (2P +Q), 3P , and related operations over
(large) prime fields and binary fields. Sections 3 and 4 deal respectively
with radix-3 and radix-4 computations. Section 5 presents a method
for combined ternary/binary scalar multiplication. Finally, Section 6
concludes the paper.

2. Radix-2 Computations

Let K be a field. An elliptic curve over K is given by the generalized
Weierstraß equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

with a1, a2, a3, a4, a6 ∈ K. When the characteristic CharK 6= 2, 3, one
can complete the square in y and the cube in x. These transform (1)

2PplusQ13.tex; 16/12/2003; 11:27; p.2

3

into the (short) Weierstraß form

E : y2 = x3 + a4x+ a6 (2)

in which a1 = a2 = a3 = 0. Over binary (i.e., characteristic 2) fields,
the short (non-supersingular) form is [1]

E : y2 + xy = x3 + a2x
2 + a6 . (3)

Computing 2P +Q. Let O denote the identity element on the elliptic
curve, which is taken to be the point at infinity.

Consider the short GF(p) form (2). Given two points P = (x1, y1)
and Q = (x2, y2) in E \ {O} with x1 6= x2, their sum is the point
R = P + Q = (x3, y3) and is obtained by

λ1 =
y2 − y1

x2 − x1

, x3 = λ2

1 − x1 − x2, y3 = (x1 − x3)λ1 − y1 .

Then P is added to P +Q to form point S = 2P +Q = (x4, y4) whose
coordinates are given by

λ2 =
y3 − y1

x3 − x1

, x4 = λ2

2 − x1 − x3, y4 = (x1 − x4)λ2 − y1 .

The authors of [4] observe that the computation of y3 can be omitted
by evaluating λ2 as

λ2 = −λ1 −
2y1

x3 − x1

=
2y1

x1 − x3

− λ1 .

As a result, the computation of 2P + Q only requires 2 divisions,
2 squarings and 1 (field) multiplication.

We first remark that x4 can be obtained as

x4 = (λ2 − λ1)(λ1 + λ2) + x2 .

Furthermore, letting d := (x2−x1)
2(2x1 +x2)− (y2− y1)

2, we see that
d = (x2 − x1)

2(x1 − x3). Defining D := d(x2 − x1) and I := D−1, we
have

1

x2 − x1

= dI and
1

x1 − x3

= (x2 − x1)
3I .

Consequently, the value of x3 is not needed. The computation of d,D, I,
λ1 and λ2 requires 1 inversion, 2 squarings and 9 (field) multiplications.

Figure 2 adapts this algorithm to the more general (1). Its last two
columns count the operations (I = inversion, S = squaring, M =
multiplication) needed on each line. One column has the cost for GF(p)

2PplusQ13.tex; 16/12/2003; 11:27; p.3

4

Input: P = (x1, y1) 6= O and Q = (x2, y2) 6= O
Output: S = 2P + Q

if (x1 = x2) then

if (y1 = y2) then return 3P else return P

X ← (x2 − x1)
2; Y ← (y2 − y1)

2

d← X(2x1 + x2)− Y

if (d = 0) then return O

D ← d(x2 − x1); I ← D−1

λ1 ← dI(y2 − y1)

λ2 ← 2y1X(x2 − x1)I − λ1

x4 ← (λ2 − λ1)(λ1 + λ2) + x2; y4 ← (x1 − x4)λ2 − y1

return (x4, y4)

Figure 1. (2P + Q) algorithm.

fields using the short curve equation (2) and another has the cost for
binary fields using (3).

For both GF(p) and binary fields, this shows that the cost of com-
puting 2P + Q = (x4, y4) is at most 1 inversion, 2 squarings, and
9 (field) multiplications, which we abbreviate as 1I + 2S + 9M. Using
equation (2), only seven registers are needed (including two unchanged
registers for P and with the point Q updated in its dedicated register).
See the pseudo-code in Appendix A.

Cost of non-adjacent form. The non-adjacent form (NAF) of an ex-
ponent n is

n = 2ek ± 2ek−1 ± ...± 2e2 ± 2e1 ,

in which 0 ≤ e1 < e2 < . . . < ek, and no two ei are consecutive. The
value of k will be about log2(n)/3 and ek will be about log2(n).

Point doubling is done with 1 inversion, 2 squarings and 2 (field)
multiplications (assuming equation (2)). We will need ek doublings, of
which k − 1 are followed immediately by an add (or subtract). The
overall cost is

(k − 1)(I + 2S + 9M) + (ek − k + 1)(I + 2S + 2M)

= (k − 1)(7M) + ek(I + 2S + 2M)

which should be about

(log2(n)/3)(7M) + log2(n)(I + 2S + 2M) = log2(n)(I + 2S + (13/3)M) .

2PplusQ13.tex; 16/12/2003; 11:27; p.4

5

Input: P = (x1, y1) 6= O and Q = (x2, y2) 6= O
Output: S = 2P + Q

GF(p) Binary

a1 = 0 a1 = 1

N1 ← y2 − y1; D1 ← x2 − x1

if (D1 = 0) then

if (y1 = y2) then return 3P else return P

D2 ← D2
1(2x1 + x2 + a2)−N1(N1 + a1D1) SMS SMM

if (D2 = 0) then return O

I ← (D1D2)
−1 MI MI

λ1 ← D2IN1 MM MM

λ2 ← D3
1(2y1 + a1x1 + a3)I − λ1 − a1 MMM MMM

x4 ← (λ2 − λ1)(λ2 + λ1 + a1) + x2 M S

y4 ← (x1 − x4)λ2 − y1 − a1x4 − a3 M M

return (x4, y4)

I + 2S +
9M

I + 2S +
9M

Figure 2. (2P + Q) algorithm for generalized Weierstraß (1).

Divide by log2(n) to get the average cost per bit using (2):

I + 2S + (13/3)M .

The comparisons in Table I neglect pre- and post-computations.

Table I. Table of comparison for NAF on (2).

System of coordinates Cost per bit S = 0.8M

Affine 4

3
I + 7

3
S + 8

3
M 1.33I + 4.54M

ELM method ([4]) 4

3
I + 2S + 7

3
M 1.33I + 3.93M

Our formulæ 1I + 2S + 13

3
M 1.00I + 5.93M

The graph of Figure 9 in Appendix B gives break-even points. Our
formulæ allow better performance than those in [4] if one inversion
costs more than six (field) multiplications.

2PplusQ13.tex; 16/12/2003; 11:27; p.5

6

Straus-Shamir trick. Another significant and useful application of the
‘2P +Q’ algorithm is with the Straus-Shamir trick [22, 6]. This method
allows computing aP +bQ with ` = log2(max(|a|, |b|, 1)) doublings and
fewer than ` point additions if P±Q are pre-computed and stored. If we
suppose that a and b have the same length and that a and b are in non-
adjacent form, then ` doublings and (5/9)` additions are needed. In the
following we refer to this decomposition as joint-NAF. In [21], Solinas
introduced the Joint-Sparse-Form (JSF) that reduces the number of ad-
ditions. Using the JSF, computation of aP +bQ is done with ` doublings
and `/2 additions. This is equivalent to `/2 applications of ‘2P +Q’ and
`/2 doublings. These joint decompositions are useful mainly for three
applications: for the verification part of ECDSA [1], for the Lim-Lee
method [13], and finally for the method using efficient endomorphisms
proposed by Gallant, Lambert and Vanstone [5]. Table II gives the cost
per bit with the various systems of coordinates and the various joint
integer decompositions.

Table II. Table of comparison for joint decompositions (cost per bit) using (2).

System of
Joint-NAF JSF

coordinates

Cost per bit S = 0.8M Cost per bit S = 0.8M

Affine 14

9
I + 23

9
S + 28

9
M 1.56I + 5.16M 3

2
I + 5

2
S + 3M 1.50I + 5.00M

ELM ([4]) 14

9
I + 23

9
S + 2M 1.56I + 4.04M 3

2
I + 2S + 5

2
M 1.50I + 4.10M

Our formulæ 1I + 2S + 53

9
M 1.00I + 7.49M 1I + 2S + 11

2
M 1.00I + 7.10M

The break-even point is still when one inversion is equivalent to six
(field) multiplications.

3. Radix-3 Computations

Computing 3P . When P = Q, Figure 2 does not tell us how to form
3P . The problem is rectified by initializing N1 = 3x2

1+2a2x1+a4−a1y1

and D1 = 2y1 + a1x1 + a3 (so N1/D1 is the tangent slope) rather than
N1 = y2 − y1 and D1 = x2 − x1. If D1 = 0, then P has order 2 and
3P = P . Otherwise the rest of Figure 2 applies. The computation of N1

takes one more squaring than when x1 6= x2, but the λ2 computation

λ2 = D3

1(2y1+a1x1+a3)I−λ1−a1 = D3

1D1I−λ1−a1 = (D2

1)
2I−λ1−a1

2PplusQ13.tex; 16/12/2003; 11:27; p.6

7

can substitute one squaring for two multiplies (D2
1 is known). Overall,

the cost of 3P is at most 1I + 4S + 7M, for both GF(p) and binary
fields. This is cheaper than evaluating 2P + Q for general Q.

Input: P = (x1, y1) 6= O
Output: T = 3P

if (y1 = 0) then return P

X ← (2y1)
2; Z = 3x2

1 + a4; Y ← Z2 SSS

d← X(3x1)− Y M

if (d = 0) then return O

D ← d(2y1); I ← D−1 MI

λ1 ← dIZ MM

λ2 ← X2I − λ1 SM

x4 ← (λ2 − λ1)(λ1 + λ2) + x1; y4 ← (x1 − x4)λ2 − y1 MM

return (x4, y4)

Figure 3. Tripling algorithm for GF(p) curves (2).

Moreover, only six registers are needed. See Appendix A.

Remark. Note that d = 3x4
1 +6a4x

2
1 +12a6x1−a

2
4 (= ψ3(x1, y1), the

3rd division polynomial).

Computing 3P +Q over GF(p) fields. We can combine the technique
to exchange an inversion for 6 (field) multiplications with the technique
from [4] to save a multiply in computing 3P + Q for curves (2). If
(x4, y4) are the coordinates of 2P + Q and (x5, y5) are the coordinates
of 3P + Q, and if λ3 = (y4 − y1)/(x4 − x1), then the coordinates of
3P + Q are given by x5 = λ2

3−x1− x4 and y5 = (x1−x5)λ3− y1. The
trick in [4] to save a multiply can be applied at this stage to avoid the
computation of y4 by computing λ3 via the formula:

λ3 = −λ2 − 2y1/(x4 − x1).

Now suppose that 2P + Q had been computed via the new method
using 1 inversion, 2 squarings, and 9 (field) multiplications. Then we
can still compute (x5, y5) without computing y4. So one multiply is
saved, computing λ3 costs 1 inversion and 1 (field) multiplication, x5

costs 1 squaring, and y5 costs 1 (field) multiplication. So the total cost
to compute 3P + Q this way is: 2 inversions, 3 squarings, 10 (field)

2PplusQ13.tex; 16/12/2003; 11:27; p.7

8

multiplications, and the same trade-off applies: this is better if one
inversion costs more than six (field) multiplications.

Alternatively, 3P +Q can be computed with 2 inversions, 4 squarings
and 9 (field) multiplications by sharing an inversion when computing
2P and P + Q, and then adding the results. We have: 3P + Q =
(2P) + (P + Q). Let (x3, y3) := 2P , (x4, y4) := P + Q and (x5, y5) :=

3P + Q, then x3 = λ2
1− 2x1, y3 = (x1−x3)λ1− y1 with λ1 =

3x2
1 + a

2y1

,

and x4 = λ2
2
− x1 − x2, y4 = (x1 − x4)λ2 − y1 with λ2 =

y1 − y2

x1 − x2

.

Computing λc := ((2y1)(x1 − x2))
−1, λ1 and λ2 are obtained by saving

one inversion and doing some extra multiplies. This approach is better
than the one above since in general a squaring is less costly than a
multiply.

Input: P = (x1, y1) 6= O and Q = (x2, y2) 6= O
Output: T = 3P + Q

if (y1 = 0) then return P + Q

if (x1 = x2) if (y1 = y2) then return 4P else return 2P

λc ← ((2y1)(x1 − x2))
−1

MI

λ1 ← (x1 − x2)(3x
2
1 + a4)λc MMS

λ2 ← 2y1(y1 − y2)λc MM

x3 ← λ2
1 − 2x1; y3 ← (x1 − x3)λ1 − y1 MS

x4 ← λ2
2 − x1 − x2; y4 ← (x1 − x4)λ2 − y1 MS

if (x3 = x4) then return O

λ3 ← (y3 − y4)/(x3 − x4) IM

x5 ← λ2
3 − x3 − x4; y5 ← (x3 − x5)λ3 − y3 MS

return (x5, y5)

Figure 4. Triple and add algorithm for GF(p) curves (2).

Computing 3P + Q over binary fields. The expansion 3P + Q =
(2P)+(P + Q) works well for binary curves (3) too. This is illustrated
in Figure 5. Because 2P takes one fewer squaring for binary curves
than for GF(p) curves, this cost is 2I + 3S + 9M, one fewer squaring
than in Figure 4.

2PplusQ13.tex; 16/12/2003; 11:27; p.8

9

Input: P = (x1, y1) 6= O and Q = (x2, y2) 6= O
Output: T = 3P + Q

if (x1 = 0) then return P + Q

if (x1 = x2) if (y1 = y2) then return 4P else return 2P

λc ← (x1(x1 + x2))
−1

MI

λ1 ← x1 + (x1 + x2)y1λc MM

λ2 ← x1(y1 + y2)λc MM

x3 ← λ2
1 + λ1 + a2 ; y3 ← x3 + (x1 + x3)λ1 + y1 SM

x4 ← λ2
2 + λ2 + a2 + x1 + x2; y4 ← x4 + (x1 + x4)λ2 + y1 SM

if (x3 = x4) then return O

λ3 ← (y3 + y4)/(x3 + x4) IM

x5 ← λ2
3 + λ3 + x3 + x4; y5 ← x5 + (x3 + x5)λ3 + y3 SM

return (x5, y5)

Figure 5. Triple and add algorithm for binary curves (3).

4. Radix-4 Computations

Computing 4P for GF(p) curves. In [19], the authors gave a method
to compute 4P in 1 inversion, 9 squarings and 9 (field) multiplications.
The algorithm is given in Figure 6. One multiplication has a4 as an
operand — if the curve is chosen so that a4 is numerically small, then
this multiplication can be replaced by additions.

Input: P = (x1, y1) 6= O
Output: T = 4P

A1 ← x1; B1 ← 3x2
1 + a4; C1 ← y1; D1 ← 12A1C

2
1 −B

2
1 SMSS

A2 ← B2
1 − 8A1C

2
1 ; B2 ← 3A2

2 + 16a4C
4
1 SMS

C2 ← B1(4A1C
2
1 −A2)− 8C4

1 ; D2 ← 12A2C
2
2 −B

2
2 MSMS

if (C1C2 = 0) then return O

I ← (4C1C2)
−1 MI

x4 ← (B2
2 − 8A2C

2
2)I2; y4 ← (B2D2 − 8C4

2)I2I SMSMMM

return (x4, y4)

Figure 6. Quadrupling algorithm for GF(p) curves (2).

2PplusQ13.tex; 16/12/2003; 11:27; p.9

10

Computing 4P +Q over GF(p) fields. We compute 4P +Q as 2 (2P)+
Q using our new formulæ for 2P + Q. This is done with 2 inversions,
4 squarings and 11 (field) multiplications.

Total cost. The density of a such signed expansion is 3/5 (see [7]),
and the length of the expansion is half that of NAF. The cost per bit
is thus

0.8I + 3S + (51/10)M .

Computing 4P for binary curves. In this subsection we propose an
improvement of formulæ presented in [8]. The method proposed by
Guajardo and Paar gives 4P with 1I + 6S + 9M, whereas repeated
doubling has complexity 2I + 4S + 4M. In characteristic two, if normal
bases are used, field squarings can be neglected.

Let E be a curve with the short binary form (3) over a field of
characteristic 2. Let P = (x1, y1),Q = (x2, y2) ∈ E\{O}. The negative
of P is −P = (x1, x1 + y1). If P 6= −Q then the sum of P and Q is
given by R = (x3, y3) with

x3 = λ2 + λ+ x1 + x2 + a2, y3 = λ(x1 + x3) + x3 + y1

where λ = (y2 + y1)/(x2 +x1) if P 6= Q, or λ = x1 +(y1/x1) if P = Q.
Let P = (x1, y1). Then 2P = (x2, y2) is given by

x2 = (x1 +
y1

x1

)2 + (x1 +
y1

x1

) + a2, y2 = x2

1 + (x1 +
y1

x1

)x2 + x2 ,

and 4P = (x3, y3) is then given by

x3 = (x2 +
y2

x2

)2 + (x2 +
y2

x2

) + a2, y3 = x2

2 + (x2 +
y2

x2

)x3 + x3 .

That means that
1

x1

and
1

x2

are needed. However, it is simple to see

that
1

x2

=
x2

1

x4
1
+ a6

. (4)

Let λc be defined as

λc :=
1

x1(x4
1
+ a6)

. (5)

Then λ1 := x1 +
y1

x1

and λ2 := x2 +
y2

x2

can be obtained as

λ1 = λc · (x
4

1 + a6) · y1 + x1, λ2 = x1 · y2 · x
2

1 · λc + x2 .

2PplusQ13.tex; 16/12/2003; 11:27; p.10

11

Input: P = (x1, y1) 6= O
Output: T = 4P

if (x1(x
4
1
+ a6) = 0) then return O

λc ← (x1(x
4
1 + a6))

−1 SSMI

λ1 ← λc(x
4
1
+ a6)y1 + x1 MM

x2 ← λ2
1 + λ1 + a2; y2 ← x2

1 + λ1x2 + x2 SM

λ2 ← x1y2x
2
1
λc + x2 MMM

x3 ← λ2
2 + λ2 + a2; y3 ← x2

2 + λ2x3 + x3 SSM

return (x3, y3)

Figure 7. Quadrupling algorithm over binary field using (3).

Finally, the computation of λ1 and λ2 requires 1 inversion, 6 (field)
multiplications and 2 squarings. This means that computation of 4P re-
quires 1I+5S+8M. If squarings are neglected, one (field) multiplication
has been saved, and the break-even point is now I > 4M.

5. Scalar Multiplication

The fact that tripling a point is cheaper than a double and add using
our techniques suggests using the operation of tripling more often while
performing scalar multiplication of a point on an elliptic curve.
Table III summarizes the results from Sections 2 through 4, using the
short form (2) or (3).

Table III. Table of costs for different operations.

Operation GF(p) cost Binary field cost

P + Q 1I + 1S + 2M 1I + 1S + 2M

2P 1I + 2S + 2M 1I + 1S + 2M

2P + Q 1I + 2S + 9M 1I + 2S + 9M

3P 1I + 4S + 7M 1I + 4S + 7M

3P + Q 2I + 4S + 9M 2I + 3S + 9M

4P 1I + 9S + 9M 1I + 5S + 8M

4P + Q 2I + 4S + 11M

2PplusQ13.tex; 16/12/2003; 11:27; p.11

12

We propose elliptic curve scalar multiplication algorithms for the situ-
ation where we want speed and aren’t worried about timing attacks
on the exponent (perhaps the exponent is public). Examples occur
during the ECM method of factorization and while verifying an ECDSA
signature.

5.1. Ternary/binary approach

The proposed algorithms evaluate expressions of the form 6P ±Q. We
can compute this as 2(3P)±Q or 3(2P)±Q. When using (2), the latter
takes an extra inversion but saves 5 (field) multiplications. We assume
2(3P) ± Q is better. For binary curves, the costs are 3I + 4S + 11M
and 2I + 6S + 16M, so the trade-off is 1 inversion for 2 squarings and 5
(field) multiplications.

Suppose you want nP where P is a point and n > 0. A possible
recursive algorithm is given in Figure 8.

if n = 1 then return P

switch (n mod 6)

cases 0 mod 6, 3 mod 6: return 3((n/3)P)

cases 2 mod 6, 4 mod 6: return 2((n/2)P)

case 1 mod 6, n = 6m+ 1: return 2((3m)P) + P

case 5 mod 6, n = 6m− 1: return 2((3m)P)− P

Figure 8. Possible ternary/binary algorithm.

5.2. Example

As an example, compare the cost to form 314159P using this ternary/
binary approach as opposed to the standard binary NAF method. Note
that for these comparisons, the costs for various operations are taken
from Table III.

Using the combined ternary/binary mod 6 approach from Figure 8:

314159 = 6 · 52360 − 1 triple, double-subtract

52360 = 8 · 6545 3 doublings

6545 = 6 · 1091 − 1 triple, double-subtract

1091 = 12 · 91 − 1 triple, double, double-subtract

91 = 18 · 5 + 1 triple, triple, double-add

5 = 6 − 1 triple, double-subtract

6T, 4D, 5DA

2PplusQ13.tex; 16/12/2003; 11:27; p.12

13

Total cost is 15 inversions, 42 squarings, 95 (field) multiplications when
working over GF(p). Compare this to the binary NAF method:

314159 = 16 · 19635 − 1

19635 = 4 · 4909 − 1

4909 = 4 · 1227 + 1

1227 = 4 · 307 − 1

307 = 4 · 77 − 1

77 = 4 · 19 + 1

19 = 4 · 5 − 1

5 = 4 + 1

Using that the cost to compute 4P +Q is 2 inversions, 4 squarings, and
11 (field) multiplications, the total cost is 17 inversions, 41 squarings,
97 (field) multiplications.

The combined ternary/binary gives a 5% savings over the binary
NAF method, window size 2, if one inversion costs the same as six
(field) multiplications.

Remark. The combined ternary/binary can be improved by comput-
ing 5P as 2(2P)+P . Another improvement computes the intermediate
6545P using 6545 = 16(409) + 1 and 409 = 24(17) + 1, costing: (9I,
41S, 65M) instead of the (10I, 30S, 73M) from above.

Remark. For 17P , 16P +P (3I, 13S, 20M) comes out slightly better
than 18P − P , (3I, 10S, 23M), trading 3 multiplies for 3 squarings.

6. Conclusion

In this paper, we have proposed various strategies for efficiently evaluat-
ing 2P +Q on an elliptic curve. This outperforms a previous proposal by
Eisenträger et al. whenever a field inversion is more expensive than six
field multiplications. From this, a fast algorithm for tripling a point on
an elliptic curve was derived. Furthermore, a fast algorithm for quadru-
pling a point was presented, improving an earlier proposal by Guajardo
and Paar. Finally, we have introduced a mixed ternary/binary represen-
tation to take advantage of the aforementioned improvements, resulting
in efficient methods for elliptic curve scalar multiplication, as used in
ECDSA or ECDH.

2PplusQ13.tex; 16/12/2003; 11:27; p.13

14

References

1. IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptog-
raphy, IEEE Computer Society, August 29, 2000.

2. Michael Brown, Darrel Hankerson, Julio López, and Alfred Menezes. Software
implementation of the NIST elliptic curves over prime fields. In D. Naccache,
editor, Topics in Cryptology – CT-RSA 2001, vol. 2020 of Lecture Notes in
Computer Science, pp. 250–265. Springer-Verlag, 2001.

3. Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart. Elliptic Curves in Cryp-
tography, vol. 265 of London Mathematical Society Lecture Note Series.
Cambridge University Press, Cambridge, 2000.

4. Kirsten Eisenträger, Kristin Lauter, and Peter L. Montgomery. Fast elliptic
curve arithmetic and improved Weil pairing evaluation. In M. Joye, editor,
Topics in Cryptology – CT-RSA 2003, vol. 2612 of Lecture Notes in Computer
Science, pp. 343–354. Springer-Verlag, 2003.

5. Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point
multiplication on elliptic curves with efficient endomorphisms. In J. Kilian,
editor, Advances in Cryptology – CRYPTO 2001, vol. 2139 of Lecture Notes
in Computer Science, pp. 190–200. Springer-Verlag, 2001.

6. Taher El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

7. Daniel M. Gordon. A survey of fast exponentiation methods. Journal of
Algorithms, 27(1):129–146, 1998.

8. Jorge Guajardo and Christof Paar. Efficient algorithms for elliptic curve cryp-
tosystems. In B.S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO ’97,
vol. 1294 of Lecture Notes in Computer Science, pp. 342–356. Springer-Verlag,
1997.

9. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography, CRC Press Series on Discrete Mathematics and its
Applications. CRC Press, Boca Raton, FL, 1997.

10. Burton S. Kaliski Jr., The Montgomery inverse and its applications, IEEE
Transactions on Computers, 44(8):1064–1065, 1995.

11. Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48:203–209, 1987.

12. Çetin K. Koç and Erkay Savaş. Architectures for unified field inversion with
applications in elliptic curve cryptography. In 9th IEEE International Confer-
ence on Electronics, Circuits and Systems (ICECS 2002), Dubrovnik, Croatia,
September 15–18, 2002, vol. 3, pp. 1155–1158.

13. Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precom-
putation. In Y.G. Desmedt, editor, Advances in Cryptology – CRYPTO ’94,
vol. 839 of Lecture Notes in Computer Science, pp. 95–107. Springer-Verlag,
1994.

14. Róbert Lórencz. New algorithm for classical modular inverse. In
B.S. Kaliski Jr., Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems – CHES 2002, vol. 2523 of Lecture Notes in Computer
Science, pp. 57–70. Springer-Verlag, 2003.

15. Victor S. Miller. Use of elliptic curves in cryptography. In H.C. Williams,
editor, Advances in Cryptology – CRYPTO ’85, vol. 218 of Lecture Notes in
Computer Science, pp. 417–426. Springer-Verlag, 1986.

16. Bodo Möller, private communication.

2PplusQ13.tex; 16/12/2003; 11:27; p.14

15

17. Peter L. Montgomery. Modular multiplication without trial division. Mathe-
matics of Computation, 44(170):519–521, 1985.

18. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48(177):243–264, 1987.

19. Yasuyuki Sakai and Kouichi Sakurai, Efficient scalar multiplications on elliptic
curves with direct computations of several doublings. IEICE Transactions
Fundamentals, E84-A(1):120–129, 2001.

20. Erkay Savaş and Çetin K. Koç. The Montgomery modular inverse - revisited,
IEEE Transactions on Computers, 49(7):763–766, 2000.

21. Jerome A. Solinas. Low-weight binary representations for pairs of integers.
Tech. Report CORR 2001/41, CACR, Waterloo, 2001.

22. Ernst G. Straus. Addition chains of vectors (problem 5125). American
Mathematical Monthly, 70:806–808, 1964.

2PplusQ13.tex; 16/12/2003; 11:27; p.15

16

Appendix

A. Pseudo-code

Let (x1, y1) and (x2, y2) be two points on the short GF(p) curve (2). The
following algorithm updates (x1, y1) with 2(x1, y1) + (x2, y2). Registers
are denoted by Ti.
T1 ← x1; T2 ← y1; T3 ← x2; T4 ← y2

T5 ← 2T1; T5 ← T5 + T3 (= 2x1 + x2)

T1 ← T3 − T1 (= x2 − x1)

T6 ← T1
2 (= (x2 − x1)

2)

T5 ← T5 · T6 (= (2x1 + x2)(x2 − x1)
2)

T6 ← T1 · T6 (= (x2 − x1)
3)

T4 ← T4 − T2 (= y2 − y1)

T7 ← T4
2 (= (y2 − y1)

2)

T5 ← T5 − T7 (= d)

T7 ← T5 · T1; T7 ← T7
−1 (= I)

T5 ← T5 · T7; T5 ← T5 · T4 (= λ1)

T6 ← T6 · T7 (= (x2 − x1)
3I)

T7 ← 2T2; T7 ← T7 · T6; T7 ← T7 − T5 (= λ2)

T4 ← T3 − T1 (= x1)

T6 ← T7 − T5 (= λ2 − λ1)

T5 ← T7 + T5 (= λ2 + λ1)

T1 ← T6 · T5; T1 ← T1 + T3 (= x4)

T4 ← T4 − T1; T4 ← T4 · T7

T2 ← T4 − T2 (= y4)

It is worth noticing that only seven registers are needed. This count
omits registers needed internally by the field arithmetic codes.

Let (x1, y1) be a point on the short GF(p) curve (2). The following
algorithm updates registers with 3(x1, y1).

2PplusQ13.tex; 16/12/2003; 11:27; p.16

17

T1 ← x1; T2 ← y1; T5 ← a4

T3 ← 2T2; T3 ← T 2
3

(=X)

T4 ← T 2
1 ; T4 ← 3T4; T4 ← T4 + T5 (=Z)

T5 ← T 2
4

(=Y)

T6 ← 3T1; T6 ← T6 · T3; T5 ← T5 − T6 (=−d)

T4 ← T4 · T5; T6 ← 2T2; T5 ← T5 · T6 (=−D)

T5 ← T−1

5
(=−I)

T4 ← T4 · T5 (=λ1)

T3 ← T 2
3 ; T5 ← T3 · T5; T3 ← T5 + T4 (=−λ2)

T4 ← (T3 + T4); T4 ← T4 · T5;T1 ← T4 + T1 (=x4)

T3 ← T4 · T3; T2 ← T3 − T2 (=y4)

Tripling a point is done with only six intermediate registers.

B. Break-even Point

Affine
ELM
New 2P+Q

4
6
8

10
12
14
16
18
20

0 2 4 6 8 10 12x

Figure 9. Comparison for NAF.

C. Radix-4 Computation: Right-to-left

Assume we are using (2). As illustrated in the above technique for
computing 3P + Q, a point addition P + Q and a doubling 2P can be
done simultaneously, exchanging two inversions for 1 inversion and 3

2PplusQ13.tex; 16/12/2003; 11:27; p.17

18

(field) multiplications. This was pointed out in [18], [4], and in [16]. In
this way, computing both P + Q and 2Q can be done in 1 inversion,
3 squarings and 7 (field) multiplications. Then, the cost per bit is

1I + (7/3)S + (11/3)M .

However, this does not take into account the fact that we have a NAF.
This especially implies that the update of Q into 2Q can be replaced
by updating Q into 4Q and then not jumping to the next bit but the
following. Then, the following cost per bit is obtained

2/3I + 4S + (16/3)M .

If we consider that S = 0.8M, the break-even point is I > 9M.

Remark. This is not surprising since we use the results of Sakai-
Sakurai [19] to compute 4Q and the break-even point compared with
repeated doubling is I > 9M.

D. Inversion over a Finite Field

This section briefly deals with inversion of a finite field element. Let a
be a nonzero element of GF(p), where p is prime. Let a−1 denote its
multiplicative inverse. There are several ways to compute this inverse.

One method uses a table of length p − 1. This is feasible only for
small p. It can be fast if the table fits in cache.

Another is based on Fermat’s theorem: a−1 = ap−2. At first glance
this ‘trivial’ method seems to be much too costly. However, it has some
interesting aspects. No extra routine is needed. Moreover, p can be
a Mersenne or generalized Mersenne prime for increased efficiency of
modular reduction [1]. Further, if we suppose that p is a generalized
Mersenne prime, say p = 2κ1 − 2κ2 − 1, then a−1 = a2κ1−2κ2−3 and
smart-card routines can be used to speed-up repeated squarings.

A third method is based on the extended Euclidean algorithm, which
given two integers a and p, outputs u and v such that au + pv =
gcd (a, p). If a is invertible modulo p and if 0 ≤ u < p, then gcd(a, p) = 1
and a−1 = u. An improvement to the extended Euclidean algorithm due
to Lehmer is explained in [9, p. 607].

A fourth method proceeds in two steps and is based on the well-
known Montgomery multiplication. Let a and b be two integers between
0 and p− 1. Montgomery multiplication fixes an exponent k such that

2PplusQ13.tex; 16/12/2003; 11:27; p.18

19

p < 2k and returns a b 2−k mod p. The Montgomery inverse is defined
(by Kaliski in [10] based on [17], see also [20]) as

x := a−12k .

The regular inverse a−1 is obtained by computing the Montgomery
product of x and 1 (see [20] for variants), see also [14]. If one has an
algorithm for a−1, then one can get x = (a2−k)−1 by inverting the
Montgomery product of x and 1.

Estimates for the cost of a field inversion in terms of field multipli-
cations dramatically depend on the architecture used and the size and
type of the field. Equivalences for field element inversion vary between
4 field multiplications in [4] and [12] to 80 field multiplications in [2].
The ratio of 80 takes into account the use of special modular reduction
routines to speed multiplication in prime fields where the prime is of
a special form (generalized Mersenne prime), and does not take into
account Lehmer’s method for speeding modular inversion. A discussion
of the ratio in various contexts can also be found in [3, p. 72].

2PplusQ13.tex; 16/12/2003; 11:27; p.19

2PplusQ13.tex; 16/12/2003; 11:27; p.20

