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Abstract

In this paper, we present a constant-round (specifically, 6-round) black-box concurrent zero-
knowledge argument of knowledge with concurrent soundness for NP in the bare public-key (BPK)
model under standard intractability assumptions. To our knowledge, our result is the first work
that achieves simultaneous concurrent security for zero-knowledge protocols in the BPK model. In
comparison with the rZK protocols of [10, 41], the rZK protocols of [10, 41] guarantee concurrent
(and more strongly, resettable) zero-knowledge (for concurrent prover security) but do not guarantee
concurrent soundness (for concurrent verifier security). Furthermore, the works of [10, 41] are based
on sub-exponential hardness assumptions. In comparison, our work provides both concurrent prover
security and concurrent verifier security for zero-knowledge protocols in the BPK model under stan-
dard intractability assumptions without assuming any sub-exponential or super-polynomial hardness
assumption.

Since the BPK model is very simple and also very reasonable and is in fact a weak version of the
frequently used public-key infrastructure (PKI) model, which underlies any public-key cryptosystem
or digital signature scheme, we suggest that zero-knowledge protocols with simultaneous concurrent
security in the BPK model may be of independent interests and can be used as a building block
in other applications in the BPK model (e. g. secure two-party and multi-party computation with
registered public-keys).
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1 Introduction

The notion of zero-knowledge (ZK) was introduced in the seminal paper of Goldwasser, Micali and
Rackoff [35] to illustrate situations where a prover reveals nothing other than the verity of a given
statement to an even malicious verifier. Since their introduction, zero-knowledge proofs have proven
to be very useful as a building block in the construction of cryptographic protocols, especially after
Goldreich, Micali and Wigderson [34] have shown that all languages in NP admit zero-knowledge
proofs. By now, zero-knowledge has played a central role in the field of cryptography and is the
accepted methodology to define and prove security of various cryptographic tasks.

With the emergence and far and wide sweeping popularity of the Internet, much recent research
attention, initiated by Dwork, Naor and Sahai [26], has been paid on the security threats of zero-
knowledge protocols when executing concurrently in an asynchronous network setting like the Internet.
In this scenario, many concurrent executions of the same protocol take place in an asynchronous network
setting. Honest players are assumed oblivious of each other’s existence, nor do they generally know the
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topology of the network, and thus cannot coordinate their executions. However, a malicious adversary
controlling all the verifiers can schedule all the executions concurrently at its wish.

Although non-constant-round black-box concurrent zero-knowledge proofs for NP exist in the plain
model under standard intractability assumptions [45, 38, 44], but they cannot be constant-round in the
black-box sense [11]. Constant-round non-black-box bounded concurrent zero-knowledge arguments and
arguments of knowledge for NP are achieved in [1, 4]. To achieve constant-round black-box concurrent
zero-knowledge, several computational models are introduced: the timing model [26], the preprocessing
model [17] and the bare public-key model [10].

The bare public-key (BPK) model is first introduced by Canetti, Goldreich, Goldwasser and Micali
[10] to achieve round-efficient resettable zero-knowledge (rZK) that is a generalization and strengthening
of the notion of concurrent zero-knowledge. But as stated by Micali and Reyzin [41], although introduced
with a specific application in mind, the BPK model applies to interactive systems in general, regardless of
their knowledge complexity. A protocol in BPK model simply assumes that all verifiers have deposited
a public key in a public file before any interaction takes place among the users. This public file is
accessible to all users at all times. Note that an adversary may deposit many (possibly invalid) public
keys in it, particularly, without even knowing corresponding secret keys or whether such exist. That
is, no trusted third party is assumed in the BPK model. The BPK model is very simple, and it is in
fact a weak version of the frequently used public-key infrastructure (PKI) model, which underlies any
public-key cryptosystem or digital signature scheme. Despite its apparent simplicity, the BPK model
is quite powerful. While rZK protocols exist both in the standard and in the BPK models [10], only in
the latter case can they be constant-round, at least in the black box sense.

Various soundness notions of cryptographic protocols in public-key models are noted and clarified
by Micali and Reyzin [41]. In public-key models, a verifier V has a secret key SK, corresponding to
its public-key PK. A malicious prover P ∗ could potentially gain some knowledge about SK from an
interaction with the verifier. This gained knowledge might help him to convince the verifier of a false
theorem in another interaction. In this paper we focus on concurrent soundness which roughly means,
for zero-knowledge protocols, that a malicious prover P ∗ can not convince the honest verifier V of a
false statement even P ∗ is allowed multiple interleaved interactions with V . Resettable zero-knowledge
protocols with concurrent soundness are really desirable in most smart-card based applications over
Internet. Unfortunately, up to now we do not know how to construct resettable zero-knowledge protocols
with concurrent soundness for NP in the BPK model and it is suggested as an interesting and important
open problem in [10, 41]. Resettable zero-knowledge with concurrent soundness in some stronger version
of the BPK model can be found in [42, 49].

1.1 Our contributions

In this paper, we present a constant-round (specifically, 6-round) black-box concurrent zero-knowledge
argument of knowledge with concurrent soundness for NP in the bare public-key (BPK) model un-
der standard intractability assumptions. To our knowledge, our result is the first work that achieves
simultaneous concurrent security for zero-knowledge protocols in the BPK model. Note that the rZK
protocols of [10, 41] guarantee concurrent (and more strongly, resettable) zero-knowledge (for concurrent
prover security) but do not guarantee concurrent soundness (for concurrent verifier security). Further-
more, the works of [10, 41] are under sub-exponential hardness assumptions. In comparison, our work
provides both concurrent prover security and concurrent verifier security for zero-knowledge protocols
in the BPK model under standard intractability assumptions without assuming any sub-exponential
or super-polynomial hardness assumption. Our protocol is not resettable zero-knowledge because any
argument of knowledge protocol cannot be resettable zero-knowledge. Since the BPK model is very
simple and also very reasonable and is in fact a weak version of the frequently used public-key infras-
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tructure (PKI) model, which underlies any public-key cryptosystem or digital signature scheme, we
suggest that zero-knowledge protocols with simultaneous concurrent security in the BPK model may
be of independent interests and can be used as a building block in other applications in the BPK model
(e. g. secure two-party and multi-party computation with registered public-keys).

1.2 Organization

In Section 2, we quickly recall the major cryptographic tools used. In Section 3, we present the definitions
of concurrent zero-knowledge and concurrent soundness in the BPK model. In Section 4, we present the
constant-round black-box concurrent zero-knowledge argument of knowledge with concurrent soundness
for NP in the BPK model and prove its security under standard intractability assumptions.

2 Preliminaries

In this section, we quickly recall the major cryptographic tools used.
We use standard notations and conventions below for writing probabilistic algorithms and exper-

iments. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on inputs
x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the experiment of picking r at random and
letting y be A(x1, x2, · · · ; r). If S is a finite set then x ← S is the operation of picking an element
uniformly from S. If α is neither an algorithm nor a set then x ← α is a simple assignment statement.

2.1 Σ-protocols for proving the knowledge of commitment trapdoors

Σ-protocols are first introduced by Cramer, Damgard and Schoenmakers [14]. Informally, a Σ-protocol
is itself a 3-round public-coin special honest verifier zero-knowledge protocol with special soundness in
the knowledge-extraction sense. Since its introduction, Σ-protocols have been proved a very powerful
cryptographic tool and are widely used in numerous important cryptographic applications including
digital signatures (by using the famous Fiat-Shamir methodology [29] and efficient electronic payment
systems [13]. For a good survey of Σ-protocols and their applications, readers are referred to [18, 13].

Definition 2.1 (Σ-protocol [14]) A 3-round public-coin protocol < P, V > is said to be a Σ-protocol
for relation R if the following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input x and any pair of accepting conversations on input
x, (a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently computes w such that (x,w) ∈ R. Here
a, e, z stand for the first, the second and the third message respectively.

• Special honest verifier zero-knowledge (SHVZK). There exists a polynomial-time simulator S,
which on input x and a random challenge string e, outputs an accepting conversation of the form
(a, e, z), with the same probability distribution as conversations between the honest P , V on input
x.

Definition 2.2 (trapdoor commitment scheme TC) A trapdoor commitment scheme (TC) is a
quintuple of probabilistic polynomial-time (PPT) algorithms TCGen, TCCom, TCVer, TCKeyVer and
TCFake, such that

• Completeness. ∀n, ∀v, Pr[(TCPK, TCSK) R← TCGen(1n); (c, d) R← TCCom(TCPK, v) :
TCKeyVer(TCPK, 1n) = TCVer(TCPK, c, v, d) = YES] = 1.
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• Computational Binding. For all sufficiently large n and for all PPT adversaries A, the following
probability is negligible in n: Pr[(TCPK, TCSK) R← TCGen(1n); (c, v1, v2, d1, d2)

R← A(1n, TCPK) :

TCVer(TCPK, c, v1, d1) = TCVer(TCPK, c, v2, d2) = YES and v1 6= v2].

• Perfect Hiding. ∀TCPK such that TCKeyVer(TCPK, 1n) = YES and ∀v1, v2 of equal length,
the following two probability distributions are identical: [(c1, d1)

R← TCCom(TCPK, v1) : c1] and
[(c2, d2)

R← TCCom(TCPK, v2) : c2].

• trapdoorness. ∀(TCPK, TCSK) ∈ {TCGen(1n)}, ∀v1, v2 of equal length, the following two prob-
ability distributions are identical:
[(c, d1)

R← TCCom(TCPK, v1); d′2
R← TCFake(TCPK, TCSK, c, v1, d1, v2) : (c, d′2)] and

[(c, d2)
R← TCCom(TCPK, v2) : (c, d2)].

The following is a construction of trapdoor commitment scheme based on DLP intractability as-
sumption [8]: On a security parameter n, the receiver selects uniformly an n-bit prime p so that
q = (p− 1)/2 is a prime, an element g of order q in Z∗p. Then the receiver uniformly selects w in Z∗q and
sets h = gw mod p. The receiver publishes (p, q, g, h) as its public-key and keeps w as its secret-key (i. e.
the trapdoor). To commit a bit σ, the sender first checks that (p, q, g, h) is of the right form (otherwise
it halts announcing that the receiver is cheating), uniformly selects s ∈ Zq, and sends gshσ mod p as its
commitment.

And the following is a Σ-protocol < P, V > suggested by Schnorr [47] for proving the knowledge of
trapdoor secret-key, w, for a public-key of the above form (p, q, g, h) such that h = gw mod p:

• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed such that 2t < q.

• P sends z = r + ew mod p to V , who checks that gz = ahe mod p, that p, q are prime and that
g, h have order q, and accepts iff this is the case.

The OR-proof of Σ-protocols. As shown in [14], any public-coin SHVZK protocol is itself
witness indistinguishable (WI). Although for languages that each instance has a single witness, Σ-
protocols for that languages is trivially WI, one basic construction with Σ-protocols allows a prover to
show that given two inputs x0, x1 that each of them has a single witness, he knows w such that either
(x0, w) ∈ R or (x1, w) ∈ R, BUT without revealing which is the case.

So we assume we are given a Σ-protocol < P, V > for R with random challenges of length t. Assume
also that (x0, x1) are common input to P , V , and that w is private input to P , where (xb, w) ∈ R for
b = 0 or 1. Roughly speaking, the idea is that we will ask the prover to complete two instances of
< P, V >, with respect to x0, x1 respectively. For xb, he can do this for real, for x1−b he will have to
fake it using the SHVZK simulator. However, if we give him a little freedom in choosing the challenges
to answer, he will be able to complete both instances. More precisely, consider the following protocol,
which we call ΣOR:

• P computes the first message ab in < P, V > , using xb, w as private inputs. P chooses e1−b at
random and runs the SHVZK simulator S on input x1−b, e1−b, let (a1−b, e1−b, z1−b) be the output.
P finally sends a0, a1 to V .

• V chooses a random t-bit string s and sends it to P .
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• P sets eb = s⊕ e1−b and computes the answer zb to challenge eb using (xb, ab, eb, w) as input. He
sends (e0, z0, e1, z1) to V .

• V checks that s = e0⊕e1 and that conversations (a0, e0, zo), (a1, e1, z1) are accepting conversations
with respect to inputs x0, x1, respectively.

Theorem 2.1 [18] The protocol ΣOR above is a Σ-protocol for ROR, where ROR = {((x0, x1), w)|(x0, w) ∈
R or (x1, w) ∈ R}. Moreover, for any verifier V ∗, the probability distribution of conversations between
P and V ∗, where w is such that (xb, w) ∈ R, is independent of b. That is, ΣOR is perfectly witness
indistinguishable.

2.2 Other cryptographic tools

We proceed to present other cryptographic tools used in this paper.

Definition 2.3 (system for proof of knowledge) Let R be a binary relation and κ : N → [0, 1].
We say that a probabilistic polynomial-time (PPT) interactive machine V is a knowledge verifier for
the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x, y) ∈ R all possible
interactions of V with P on common input x and auxiliary input y are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive machine P ∗, every x ∈ LR, and every y, r ∈ {0, 1}∗, machine K satisfies
the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by P ∗

x,y,r (where P ∗
x,y,r denotes the strategy of P ∗ on common

input x, auxiliary input y and random-tape r). If p(x, y, r) > κ(|x|), then, on input x and with
oracle access to P ∗

x,y,r, machine K outputs a solution s ∈ R(x) within an accepted number of steps
bounded by

q(|x|)
p(x, y, r)− κ(|x|)

The oracle machine K is called a knowledge extractor.

An interactive proof system (P, V ) such that V is a knowledge verifier for a relation R and P is a
machine satisfying the non-triviality condition (with respect to V and R) is called a system for proof of
knowledge for the relation R. The proof system (P, V ) is a system of zero-knowledge proof of knowledge
(ZKPOK) if it is also zero-knowledge.

For more clarifications on the definition of proof of knowledge, readers are referred to [31]. More recent
advances of zero-knowledge arguments of knowledge can be found in [39, 4].

Definition 2.4 (witness indistinguishability WI) Let < P, V > be an interactive proof system for
a language L ∈ NP, and let RL be the fixed NP witness relation for L. That is x ∈ L if there exists
a w such that (x, w) ∈ RL. We denote by view

P (w)
V ∗(z)(x) a random variable describing the transcript of

all messages exchanged between V ∗ and P in an execution of the protocol on common input x, when P
has auxiliary input w and V ∗ has auxiliary input z. We say that < P, V > is witness indistinguisha-
bility for RL if for every PPT interactive machine V ∗, and every two sequences W 1 = {w1

x}x∈L and
W 2 = {w2

x}x∈L, so that (x, w1
x) ∈ RL and (x, w2

x) ∈ RL, the following two probability distributions are
computationally indistinguishable: {x, view

P (w1
x)

V ∗(z) }x∈L, z∈{0, 1}∗ and {x, view
P (w2

x)
V ∗(z) }x∈L, z∈{0, 1}∗.
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In this paper we use 3-round public-coin witness indistinguishability proofs of knowledge (WIPOK)
for NP. Such protocols exists under the existence of one-way functions, e. g. the parallel repetitions of
Blum’s 3-round proof of knowledge for HC [7]. We remark that 2-round public-coin WI proofs for NP
do exist under the existence of one-way permutations [25].

Definition 2.5 (non-interactive zero-knowledge NIZK) Let NIP and NIV be two interactive
machines and NIV is also probabilistic polynomial-time, and let NIσLen be a positive polynomial. We
say that 〈NIP, NIV 〉 is an NIZK proof system for an NP language L, if the following conditions hold:

• Completeness. For any x ∈ L of length n, any σ of length NIσLen(n), and NP-witness w for x,
it holds that

Pr[Π R←− NIP (σ, x, w) : NIV (σ, x, Π) = YES] = 1.

• Soundness. ∀x /∈ L of length n,

Pr[σ R←− {0, 1}NIσLen(n) : ∃ Π s.t. NIV (σ, x, Π) = YES] is negligible in n.

• Zero-Knowledgeness. ∃ a PPT simulator NIS such that, ∀ sufficiently large n, ∀x ∈ L of length
n and NP-witness w for x, the following two distributions are computationally indistinguishable:

[(σ′, Π′) R←− NIS(x) : (σ′, Π′] and [σ R←− {0, 1}NIσLen(n); Π R←− NIP (σ, x, w) : (σ, Π)].

Non-interactive zero-knowledge proof systems for NP can be constructed based on any one-way per-
mutation [27]. An efficient implementation based on any one-way permutation is presented in [37] and
readers are referred to [22] for recent advances of NIZK.

Definition 2.6 (NIZK proof of knowledge [23]) An NIZK proof system 〈NIP, NIV 〉 for a lan-
guage L ∈ NP with witness relation RL (as defined above) is NIZK proof of knowledge (NIZKPOK) if
there exists a pair of PPT machines (E1, E2) and a negligible function ε such that for all sufficiently
large n:

• Reference-String Uniformity. The distribution on reference strings produced by E1(1n) has statis-
tical distance at most ε(n) from the uniform distribution on {0, 1}NIσLen(n).

• Witness Extractability. For all adversaries A, we have that Pr[ExptE
A(n) = 1] > Pr[ExptA(n) =

1]− ε(n), where the experiments ExptA(n) and ExptE
A(n) are defined as follows:

ExptA(n):
σ

R←− {0, 1}NIσLen(n)

(x,Π) ←− A(σ)
return NIV (x, σ,Π)

ExptE
A(n):

(σ, τ) ←− E1(1n)
(x,Π) ←− A(σ)
w ←− E2(σ, τ, x,Π)
return 1 if (x,w) ∈ RL

NIZK proofs of knowledge for NP can be constructed assuming the existence of one-way permutations
and dense secure public-key cryptosystems [23].
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3 Definitions of concurrent zero-knowledge and concurrent sound-
ness in the BPK model

In this section, we present the formal definitions of concurrent zero-knowledge and concurrent soundness
in the BPK model.

Concurrent zero-knowledge in the BPK model. Let x̄ = {x1, x2, · · · , xq}, where |x1| = |x2| =
· · · = |xq| and q is a polynomial in n. Upon x̄, an adversary V ∗ in the BPK model firstly outputs
an arbitrary public-file F that includes a list of (without loss of generality) q public-keys pk1, · · · , pkq.
Then V ∗ concurrently interacts with q2 instances of the honest prover: P (xi, pkj), 1 6 i, j 6 q, and
schedules all the concurrent executions at its wish. We remark that each instance of the honest prover
uses independent random strings. Without loss of generality we also assume that messages from V ∗ are
immediately answered by the honest prover instances.

Definition 3.1 We say that a proof or argument system < P, V > for a language L in the BPK model is
black-box concurrent zero-knowledge if there exists a probabilistic polynomial-time (PPT) oracle machine
S (the simulator) such that for any polynomial q in n and for any PPT adversary V ∗, the distributions
< P, V ∗ > (x̄) and SV ∗(x̄) are computationally indistinguishable for any sequence of common inputs
x̄ = x1, x2, · · · , xq ∈ L ∩ {0, 1}n.

Concurrent soundness in the BPK model. For an honest verifier V with public-key PK
and secret-key SK, an (s, t)-concurrent malicious prover P ∗ in the BPK model, for a pair positive
polynomials (s, t), be a probabilistic t(n)-time Turing machine that, on a security parameter 1n and
PK, performs concurrently at most s(n) interactive protocols (sessions) with V as follows.

If P ∗ is already running i − 1 (0 ≤ i − 1 < s(n)) sessions, it can select on the fly a common input
xi ∈ {0, 1}n (which may be equal to xj for 1 ≤ j < i) and initiate a new session with V (SK, xi). We
note that in different sessions V uses independent random-tapes.

We then say a protocol satisfies concurrent soundness in the BPK model if for any honest verifier
V , for all positive polynomials (s, t), for all (s, t)-concurrent malicious prover P ∗, the probability that
there exists i (1 ≤ i ≤ s(n)) such that V (SK, xi) outputs “accept xi” while xi 6∈ L is negligible in n.

4 Constant-Round Concurrent Zero-Knowledge With Concurrent Sound-
ness in the BPK model

In this section, we present the main result of this paper: a constant-round (specifically, 6-round) con-
current zero-knowledge argument of knowledge with concurrent soundness for NP in the BPK model,
< P, V >, which is depicted in Figure 1 (page 7).

7



The protocol < P, V >

Key Generation. For a security parameter n, let (TCPK0, TCSK0)
R← TCGen(1n, r0),

(TCPK1, TCSK1)
R← TCGen(1n, r1), where r0 and r1 are two independent random strings used

by TCGen. (TCPK0, TCPK1) is the public-key of the verifier V . But for its secret-key, the
verifier V randomly selects a bit b

R← {0, 1} and keeps TCSKb in secret as its secret-key while
discards TCSK1−b.
The public file F in the BPK model is a collection of records (id, PKid), where
PKid = (TCPK

(id)
0 , TCPK

(id)
1 ) is the alleged public-key of the verifier with identity id,

Vid. The secret-key of Vid, SKid, is TCSK
(id)
b for a random bit b in {0, 1}.

Common input. An element x ∈ L∩{0, 1}n. Denote by RL the corresponding NP-relation for
L.

P private input. An NP-witness y for x ∈ L.
Stage 1. The verifier V proves the knowledge that: he knows either TCSK0 or TCSK1 with

respect to his public-key (TCPK0, TCPK1), by using the ΣOR protocol of Schnorr’s Σ-
protocol (described in Section 2.1) for proving commitment trapdoors. The witness used by
V is its secret-key TCSKb.

Stage 2. The prover P uniformly selects two independent random strings r
(0)
P

R← {0, 1}NIσLen(n)

and r
(1)
P

R← {0, 1}NIσLen(n), and for two independent random strings s(0), s(1), computes
α0 = TCCom(TCPK0, r

(0)
P , s(0)) and α1 = TCCom(TCPK1, r

(1)
P , s(1)) using the trapdoor

commitment scheme TC. Finally, the left player sends (α0, α1) to the right player.

Stage 3. The verifier V uniformly selects rV
R← {0, 1}NIσLen(n) and sends rV to P .

Stage 4. P sends r = r
(i)
P ⊕ rV to the right player for i

R←− {0, 1}.
Stage 5. Using a 3-round public-coin WIPOK for NP, P proves that either α0 or α1 commits

to r ⊕ rV . That is, P proves the knowledge of (i, r ⊕ rV , s) such that i ∈ {0, 1} and
αi = TCCom(TCPKi, r ⊕ rV , s). The witness used by P is (i, r(i)

P , s(i)) for.

Stage 6. Using r as the common input, P gives a NIZKPOK that he knows y such that (x, y) ∈
RL. a

aWe remark it is not necessarily to use NIZK proof of knowledge in Stage 6. Actually, a NIZK argument of
knowledge for NP does also work here. For example, we can adopt the robust NIZK (presented in [22]) that is
a same-string unbounded non-malleable NIZK argument of knowledge for NP. Here same-string NIZK means
that the reference string generated by the simulator of robust NIZK is a uniformly random string rather than a
pseudorandom one as usual. The same-string property can be used to simplify future security analyses.

Figure 1. A constant-round concurrent zero-knowledge argument of knowledge with concurrent
soundness for NP in the BPK model

We remark the protocol depicted in Figure 1 runs in 8 rounds. But it can be reduced into 6 rounds
by accordingly combining some rounds. Specifically, the Stage 2 and Stage 3 can be combined into the
Stage 1.
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Theorem 4.1 Under Discrete Logarithm assumption and the existence of trapdoor one-way permuta-
tions and dense secure public-key cryptosystems, the protocol depicted in Figure 1 is a constant-round
concurrent zero-knowledge argument of knowledge with concurrent soundness for NP in the BPK model.

Proof. The completeness of the protocol can be easily checked. Below, we focus on the properties
of concurrent zero-knowledge and concurrent soundness.

Black-box concurrent zero-knowledge

For any adversary V ∗ described in Section 3.1, we need to construct a PPT simulator S such that the
output of SV ∗ is computationally indistinguishable from the view of V ∗ in its real concurrent interactions
with honest-prover instances.

The simulation procedure is similar to (but simpler than) the simulation procedure presented in [10]
for resettable zero-knowledge. Specifically, S works in at most q + 1 rounds, where q is the number
of public-keys registered by V ∗ in the public-key file. In each round, S either successfully gets a
simulated transcript or “breaks” a new public-key in the sense that S can extract the corresponding
secret-key TCSKb (according to the special soundness of Σ-protocol, this is achieved by rewinding
V ∗ to get two accepting conversations of Stage 1). Once a public-key is broken (that is S learns
TCSKb), then in any session with respected to this broken public-key S works as follows: S runs
accordingly just as a honest prover in Stage 1-3; Let (α0, α1) be the message sent by S in Stage 2
(that commit to two independent random values, r

(0)
P and r

(1)
P , respectively) and rV ∗ be the message

sent by V ∗ in Stage 3; In Stage 4, S runs the NIZK simulator to get a random string, denoted σ,
and sends σ to V ∗; In Stage 5, S uses (b, σ ⊕ rV ∗ , s

′) as its witness to give a WIPOK, where s′ R←
TCFake(TCPKb, TCSKb, αb, r

(b)
P , s(b), σ⊕rV ∗). Finally, S using the NIZK simulator to give a simulated

NIZK (on σ) in Stage 6.
Since S runs in at most q rounds, at during each round S also works in expected polynomial time,

it is easy to see that S also runs in expected polynomial time in toto. Below, we show that the output
of S is indistinguishable from the view of V ∗ in real interactions.

We consider four classes of transcripts: they differ according to the value sent in Stage 4 (r(i)
P ⊕ rV ∗

or σ generated by NIZK simulator), the witness used in Stage 5, the Stage-6 message (real NIZK or
simulated NIZK).

1. Stage-4 message is r
(i)
P ⊕ rV ∗ for i

R←− {0, 1}, Stage-5 witness is (αi, r
(i), s(i)) . Stage-6 message is

a real NIZK.

2. Stage-4 message is rP ⊕ rV ∗ , Stage-5 witness is (αb, rP , s
(b)
rP ), where b is the secret information of

V ∗ in its secret-key TCSKb. Stage-6 message is a real NIZK.

3. Stage-4 message is σ, Stage-5 witness is (αb, σ ⊕ rV ∗ , s
′). Stage-6 message is a real NIZK.

4. Stage-4 message is σ, Stage-5 witness is (αb, σ ⊕ rV ∗ , s
′). Stage-6 message is a simulated NIZK.

The real transcripts are the first class. The simulator outputs the fourth class. It is easy to see that
Class 3 and Class 4 are computationally indistinguishable. Class 1 and Class 2 are computationally
indistinguishable by the witness indistinguishability of Stage 5. We note that Class 3 and Class do not
make (non-negligibly) noticeable distinguishability gap. Actually, if we adopt robust NIZK in Stage 6
as suggested in the protocol construction, the distributions of Class 2 and Class 3 are identical. The
reason is that the σ generated by the simulator of robust NIZK is uniformly distributed. This means
σ, σ ⊕ rV ∗ , rP and rP ⊕ rV ∗ are all uniformly random strings. Furthermore, according to the trapdoor
property of the trapdoor commitment scheme used, s

(b)
rP and s′ are also independent random strings.
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Concurrent soundness and argument of knowledge

We first note that a computational power unbounded prover can easily convince the verifier of a
false statement since he can get the secret-keys if his computational power is unbounded. Hence the
protocol < P, V > depicted in Figure 1 constitutes an argument system rather than a proof system.

We now proceed to prove that the protocol < P, V > is concurrent soundness and argument of
knowledge. The following proof uses standard reduction and knowledge-extraction techniques . That is,
if the protocol < P, V > does not satisfy concurrent soundness in the BPK model then we will construct
a non-uniform algorithm S that breaks the discrete logarithm assumption in expected polynomial-time.

Suppose the protocol < P, V > does not satisfy concurrent soundness in the BPK model, then
according to the definition of concurrent soundness in the BPK model (described in Section 3), then in
a concurrent attack issued by an (s, t)-concurrent malicious prover P ∗ against an honest verifier V with
public-key (TCPK0, TCSK1) and secret-key TCSKb for b

R←− {0, 1}, with non-negligible probability
p(n) there exists an i, 1 6 i 6 s(n), such that V outputs “accept xi” while xi 6∈ L. Then we will construct
a non-uniform algorithm S that takes (TCPK0, TCPK1, TCSKb) as input and outputs either a witness
w such that (xi, w) ∈ RL or TCSK1−b with probability p4(n)

4s(n) in polynomial-time. For this purpose, S

has oracle access to P ∗ and plays the role of V by running V (TCPK0, TCPK1, TCSKb) to emulate
the real concurrent interactions between P ∗ and V (TCPK0, TCPK1, TCSKb).

For any i, 1 6 i 6 s(n), denote by ki ∈ {0, 1} the first component in the witness used by P ∗ in
Stage-5 of i-th session. We first have the following lemma:

Proposition 4.1 For any i, 1 6 i 6 s(n), ki is independent of b. That is, Pr[ki = b] = 1
2 , where the

probability is over the coin flips of P ∗ and V .

Proof. We can view the honest V in two parts: the first part, denoted V1, only works in Stage-1. That
is, V1 takes TCSKb as its secret input and proves that he knows one of the secret-key with respect to
the public-key (TCPK0, TCPK1) in Stage-1. Note that V1 is itself perfectly witness indistinguishable;
the second part, denote V2, works in other stages and has no secret information.

Now, suppose there exists an i, 1 6 i 6 s(n), such that ki is not independent of b, then we can
construct a PPT algorithm A that works as follows to violate the perfect witness indistinguishability
of V1: A interacts with V1 on common input (TCPK0, TCPK1) and runs P ∗ and V2 to emulate the
concurrent interactions between P ∗ and V . After the simulation, A randomly guess the “bad” i and
outputs ki as its output. Suppose P ∗ distinguishes b with probability p then A will distinguish b with
probability p/s(n), which violates the perfect WI property of V1. ¤

For future reference convenience, below we denote by Stage 5.1, 5.2 and 5.3 the first, the second
and the third message of Stage 5 in protocol < P, V > respectively, where Stage 5.2 is supposed to be a
random string. Let (E1, E2) be the pair of PPT algorithms guaranteed in the definition of NIZKPOK.
Now, consider the following algorithm SP ∗(1n, TCPK0, TCPK1, TCSKb) depicted in Figure 2 (page
11).

First, we note that P ∗ cannot distinguish (except with statistically negligible probability) whether he
is interacting with honest verifier V or with S since the distribution of σ generated by E1 is statistically
distinguishable from the uniform distribution on {0, 1}NIσLen(n). This means that , in the concurrent
interactions between the (s, t)-concurrent malicious P ∗ and S, with the same non-negligible probability
p(n) there exists an i, 1 6 i 6 s(n), such that S outputs “accept xi” while xi 6∈ L. Furthermore,
conditioned on P ∗ always succeeds in completing its interactions with S, then Pr[ki = k′i = 1− b] = 1

4
according to the proposition 4.1. Since i is uniformly selected by S from {1, 2, · · · , s(n)}, we conclude

10



The algorithm SP ∗(1n, TCPK0, TCPK1, TCSKb)

i
R←− {1, 2, · · · , s(n)}.

Runs P ∗ and acts accordingly by running V (TCPK0, TCPK1, TCSKb) in any session other
than the i-th session. In the i-th session, denote by (α(i)

0 , α
(i)
1 ) the Stage-2 message of the i-th

session, S acts as follows:

• Uniformly selects rV
R← {0, 1}NIσLen(n) and sends rV to P ∗ as the Stage-3 message of the

i-th session.

• When running into the WIPOK phase (Stage 4-5) of the i-th session, denoted by r the
Stage-4 message (from P ∗) of the i-th session, S uses the knowledge-extractor of WIPOK
to extract the witness used by P ∗ in Stage-5 of the i-th session. This needs to rewind P ∗

once and such a rewinding is called the first knowledge rewinding. If the extracted value is
(ki, ti, si) such that α

(i)
ki

= TCCom(TCPKki
, ti, si) and ti = r ⊕ rV , where ti is of length

NIσLen(n) and ki ∈ {0, 1}, then S does the following:

1. runs E1 to get (σ, τ) ←− E1(1n).

2. rewinds P ∗ to the point P ∗ just sent (α(i)
0 , α

(i)
1 ) and sends back σ ⊕ ti to P ∗ as a new

Stage-3 message. Such a rewinding is called the major rewinding.

3. Runs P ∗ further (from the major rewinding point). When running into again the
WIPOK phase (Stage 4-5), if the Stage-4 message from P ∗ is not σ then S uses the
knowledge-extractor of WIPOK again to extract the witness used by P ∗ in this WIPOK
phase. This needs to knowledge-rewind P ∗ once more. Denote by (k′i, t

′
i, s

′
i) the witness

extracted in the second knowledge-rewinding.

4. If P ∗ successfully gives an NIZKPOK Π on σ for xi at Stage-6, S runs E2(σ, τ, xi,Π)
to get a witness w.

Figure 2. The algorithm SP ∗(1n, TCPK0, TCPK1, TCSKb)

11



that with probability at least p4

4s(n) , S either get a witness w such that (xi, w) ∈ RL or two different

decommitments to α
(i)
1−b from which the secret-key TCSK1−b can be easily extracted. This contradicts to

the assumption that xi 6∈ L and discrete logarithm is hard. Thus the protocol < P, L > is concurrently
sound in the BPK model.

That the system is an argument of knowledge is immediately from the extraction procedure of S. ¤
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