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Abstract

In this paper, we present both practical and general 4-round concurrent and resettable zero-
knowledge arguments with concurrent soundness in the bare public-key (BPK) model. To our knowl-
edge, our result is the first work that achieves concurrent soundness for ZK protocols in the BPK
model and stands for the current state-of-the-art of concurrent zero-knowledge with setup assump-
tions. Since the BPK model is very simple and also very reasonable and is in fact a weak version
of the frequently used public-key infrastructure (PKI) model, which underlies any public-key cryp-
tosystem or digital signature scheme, we suggest that zero-knowledge protocols with simultaneous
concurrent security in the BPK model may be of independent interests and can be used as a building
block in other applications in the BPK model (e. g. secure two-party and multi-party computation
with registered public-keys).
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1 Introduction

The notion of zero-knowledge (ZK) was introduced in the seminal paper of Goldwasser, Micali and
Rackoff [35] to illustrate situations where a prover reveals nothing other than the verity of a given
statement to an even malicious verifier. Since their introduction, zero-knowledge proofs have proven
to be very useful as a building block in the construction of cryptographic protocols, especially after
Goldreich, Micali and Wigderson [34] have shown that all languages in NP admit zero-knowledge
proofs. By now, zero-knowledge has played a central role in the field of cryptography and is the
accepted methodology to define and prove security of various cryptographic tasks.

With the emergence and far and wide sweeping popularity of the Internet, much recent research
attention, initiated by Dwork, Naor and Sahai [26], has been paid on the security threats of zero-
knowledge protocols when executing concurrently in an asynchronous network setting like the Internet.
In this scenario, many concurrent executions of the same protocol take place in an asynchronous network
setting. Honest players are assumed oblivious of each other’s existence, nor do they generally know the
topology of the network, and thus cannot coordinate their executions. However, a malicious adversary
controlling all the verifiers can schedule all the executions concurrently at its wish.

Although non-constant-round black-box concurrent zero-knowledge proofs for NP exist in the plain
model under standard intractability assumptions [45, 38, 44], but they cannot be constant-round in the
black-box sense [11]. Constant-round non-black-box bounded concurrent zero-knowledge arguments and
arguments of knowledge for NP are achieved in [1, 4]. To achieve constant-round black-box concurrent
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zero-knowledge, several computational models are introduced: the timing model [26], the preprocessing
model [17] and the bare public-key model [10].

The bare public-key (BPK) model is first introduced by Canetti, Goldreich, Goldwasser and Micali
[10] to achieve round-efficient resettable zero-knowledge (rZK) that is a generalization and strengthening
of the notion of concurrent zero-knowledge. But as stated by Micali and Reyzin [41], although introduced
with a specific application in mind, the BPK model applies to interactive systems in general, regardless of
their knowledge complexity. A protocol in BPK model simply assumes that all verifiers have deposited
a public key in a public file before any interaction takes place among the users. This public file is
accessible to all users at all times. Note that an adversary may deposit many (possibly invalid) public
keys in it, particularly, without even knowing corresponding secret keys or whether such exist. That
is, no trusted third party is assumed in the BPK model. The BPK model is very simple, and it is in
fact a weak version of the frequently used public-key infrastructure (PKI) model, which underlies any
public-key cryptosystem or digital signature scheme. Despite its apparent simplicity, the BPK model
is quite powerful. While rZK protocols exist both in the standard and in the BPK models [10], only in
the latter case can they be constant-round, at least in the black box sense.

Various soundness notions of cryptographic protocols in public-key models are noted and clarified
by Micali and Reyzin [41]. In public-key models, a verifier V has a secret key SK, corresponding to
its public-key PK. A malicious prover P ∗ could potentially gain some knowledge about SK from an
interaction with the verifier. This gained knowledge might help him to convince the verifier of a false
theorem in another interaction. In this paper we focus on concurrent soundness which roughly means,
for zero-knowledge protocols, that a malicious prover P ∗ can not convince the honest verifier V of a
false statement even P ∗ is allowed multiple interleaved interactions with V . Resettable zero-knowledge
protocols with concurrent soundness are really desirable in most smart-card based applications over
Internet. Unfortunately, up to now we do not know how to construct resettable zero-knowledge protocols
with concurrent soundness for NP in the BPK model and it is suggested as an interesting and important
open problem in [10, 41]. Resettable zero-knowledge with concurrent soundness in some stronger version
of the BPK model can be found in [42, 49].

1.1 Our contributions

In this paper, we present a constant-round (specifically, 6-round) black-box concurrent zero-knowledge
argument of knowledge with concurrent soundness for NP in the bare public-key (BPK) model un-
der standard intractability assumptions. To our knowledge, our result is the first work that achieves
simultaneous concurrent security for zero-knowledge protocols in the BPK model. Note that the rZK
protocols of [10, 41] guarantee concurrent (and more strongly, resettable) zero-knowledge (for concurrent
prover security) but do not guarantee concurrent soundness (for concurrent verifier security). Further-
more, the works of [10, 41] are under sub-exponential hardness assumptions. In comparison, our work
provides both concurrent prover security and concurrent verifier security for zero-knowledge protocols
in the BPK model under standard intractability assumptions without assuming any sub-exponential
or super-polynomial hardness assumption. Our protocol is not resettable zero-knowledge because any
argument of knowledge protocol cannot be resettable zero-knowledge. Since the BPK model is very
simple and also very reasonable and is in fact a weak version of the frequently used public-key infras-
tructure (PKI) model, which underlies any public-key cryptosystem or digital signature scheme, we
suggest that zero-knowledge protocols with simultaneous concurrent security in the BPK model may
be of independent interests and can be used as a building block in other applications in the BPK model
(e. g. secure two-party and multi-party computation with registered public-keys).
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1.2 Organization

In Section 2, we quickly recall the major cryptographic tools used. In Section 3, we present the definitions
of concurrent zero-knowledge and concurrent soundness in the BPK model. In Section 4, we present the
constant-round black-box concurrent zero-knowledge argument of knowledge with concurrent soundness
for NP in the BPK model and prove its security under standard intractability assumptions.

2 Preliminaries

In this section, we quickly recall the major cryptographic tools used.
We use standard notations and conventions below for writing probabilistic algorithms and exper-

iments. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on inputs
x1, x2, · · · and coins r. We let y ← A(x1, x2, · · · ) denote the experiment of picking r at random and
letting y be A(x1, x2, · · · ; r). If S is a finite set then x ← S is the operation of picking an element
uniformly from S. If α is neither an algorithm nor a set then x ← α is a simple assignment statement.

2.1 Σ-protocols for proving the knowledge of commitment trapdoors

Σ-protocols are first introduced by Cramer, Damgard and Schoenmakers [14]. Informally, a Σ-protocol
is itself a 3-round public-coin special honest verifier zero-knowledge protocol with special soundness in
the knowledge-extraction sense. Since its introduction, Σ-protocols have been proved a very powerful
cryptographic tool and are widely used in numerous important cryptographic applications including
digital signatures (by using the famous Fiat-Shamir methodology [29] and efficient electronic payment
systems [13]. For a good survey of Σ-protocols and their applications, readers are referred to [18, 13].

Definition 2.1 (Σ-protocol [14]) A 3-round public-coin protocol < P, V > is said to be a Σ-protocol
for relation R if the following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input x and any pair of accepting conversations on input
x, (a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently computes w such that (x,w) ∈ R. Here
a, e, z stand for the first, the second and the third message respectively.

• Special honest verifier zero-knowledge (SHVZK). There exists a polynomial-time simulator S,
which on input x and a random challenge string e, outputs an accepting conversation of the form
(a, e, z), with the same probability distribution as conversations between the honest P , V on input
x.

Definition 2.2 (trapdoor commitment scheme TC) A trapdoor commitment scheme (TC) is a
quintuple of probabilistic polynomial-time (PPT) algorithms TCGen, TCCom, TCVer, TCKeyVer and
TCFake, such that

• Completeness. ∀n, ∀v, Pr[(TCPK, TCSK) R← TCGen(1n); (c, d) R← TCCom(TCPK, v) :
TCKeyVer(TCPK, 1n) = TCVer(TCPK, c, v, d) = YES] = 1.

• Computational Binding. For all sufficiently large n and for all PPT adversaries A, the following
probability is negligible in n: Pr[(TCPK, TCSK) R← TCGen(1n); (c, v1, v2, d1, d2)

R← A(1n, TCPK) :

TCVer(TCPK, c, v1, d1) = TCVer(TCPK, c, v2, d2) = YES and v1 6= v2].
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• Perfect Hiding. ∀TCPK such that TCKeyVer(TCPK, 1n) = YES and ∀v1, v2 of equal length,
the following two probability distributions are identical: [(c1, d1)

R← TCCom(TCPK, v1) : c1] and
[(c2, d2)

R← TCCom(TCPK, v2) : c2].

• trapdoorness. ∀(TCPK, TCSK) ∈ {TCGen(1n)}, ∀v1, v2 of equal length, the following two prob-
ability distributions are identical:
[(c, d1)

R← TCCom(TCPK, v1); d′2
R← TCFake(TCPK, TCSK, c, v1, d1, v2) : (c, d′2)] and

[(c, d2)
R← TCCom(TCPK, v2) : (c, d2)].

The following is a construction of trapdoor commitment scheme based on DLP intractability as-
sumption [8]: On a security parameter n, the receiver selects uniformly an n-bit prime p so that
q = (p− 1)/2 is a prime, an element g of order q in Z∗p. Then the receiver uniformly selects w in Z∗q and
sets h = gw mod p. The receiver publishes (p, q, g, h) as its public-key and keeps w as its secret-key (i. e.
the trapdoor). To commit a bit σ, the sender first checks that (p, q, g, h) is of the right form (otherwise
it halts announcing that the receiver is cheating), uniformly selects s ∈ Zq, and sends gshσ mod p as its
commitment.

Feige-Shamir Trapdoor Commitments
The following one-way function based (computational hiding and computational binding) trapdoor

commitment scheme is firstly introduced by Feige and Shamir [?], which is based on the zero-knowledge
proof for DHC (directed Hamiltonicity cicle) of Blum [?].

Key Generation. Let f be a one-way function, then on a security parameter n, the commitment
verifier randomly chooses x ∈ {0, 1}n and computes y = f(x). Then by using the (Cook-Levin)
NP-reduction the commitment verifier reduces the language {y|∃xs.ty = f(x)} to Hamiltonicity,
to obtain a graph G (with p(n) nodes) so that finding a Hamiltonian cycle in G is equivalent to
finding the preimage x of y, where p(n) is a positive polynomial in n. Note that the one-wayness
of f implies the difficulty of finding a Hamiltonian cycle in G. The commitment verifier published
the graph G, or equivalently the string y, as its public-key and keeps x in secret as its secret-key.
Note that, from x it is easy to generate a Hamiltonian cycle in G.

Commitments and decommitments. To commit to 0, the commitment prover chooses a random
permutation π, permutes the nodes of G, and commits to the entries of the resulting adjacency
matrix by using the one-round OWF-based perfect-binding commitment scheme defined in ?. The
commitment prover reveals the committed bit ’0’ by revealing π and the entries of the matrix.

To commit to 1, the commitment prover chooses the p(n) node clique and commits to its adjacency
matrix (which is all 1) by using the one-round OWF-based perfect-binding commitment scheme.
The commitment prover reveals the committed bit ’0’ by openning a random cycle in this matrix.

Trapdoorness. Given a Hamiltonian cycle in G, it is possible to generates commitments that are
indistinguishable from legal ones, and yet have the property that one can decommit to both 0 and
1. In particular, after committing to a random permutation of G, it is possible to decommit to
0 in the same ways. However, it is also possible to decommit to 1 by only revealing the (known)
Hamiltonian cycle in G.

We remark that since the underlying OWF-based one-round perfect-binding commitment scheme
is only computationally hiding, the above trapdoor commitment scheme is also computationaly hiding.
In the rest of this paper, we denote by FSTC the above OWF-based (both computational binding and
computational hiding) trapdoor commitment scheme.

And the following is a Σ-protocol < P, V > suggested by Schnorr [47] for proving the knowledge of
trapdoor secret-key, w, for a public-key of the above form (p, q, g, h) such that h = gw mod p:
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• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed such that 2t < q.

• P sends z = r + ew mod p to V , who checks that gz = ahe mod p, that p, q are prime and that
g, h have order q, and accepts iff this is the case.

The OR-proof of Σ-protocols. As shown in [14], any public-coin SHVZK protocol is itself
witness indistinguishable (WI). Although for languages that each instance has a single witness, Σ-
protocols for that languages is trivially WI, one basic construction with Σ-protocols allows a prover to
show that given two inputs x0, x1 that each of them has a single witness, he knows w such that either
(x0, w) ∈ R or (x1, w) ∈ R, BUT without revealing which is the case.

So we assume we are given a Σ-protocol < P, V > for R with random challenges of length t. Assume
also that (x0, x1) are common input to P , V , and that w is private input to P , where (xb, w) ∈ R for
b = 0 or 1. Roughly speaking, the idea is that we will ask the prover to complete two instances of
< P, V >, with respect to x0, x1 respectively. For xb, he can do this for real, for x1−b he will have to
fake it using the SHVZK simulator. However, if we give him a little freedom in choosing the challenges
to answer, he will be able to complete both instances. More precisely, consider the following protocol,
which we call ΣOR:

• P computes the first message ab in < P, V > , using xb, w as private inputs. P chooses e1−b at
random and runs the SHVZK simulator S on input x1−b, e1−b, let (a1−b, e1−b, z1−b) be the output.
P finally sends a0, a1 to V .

• V chooses a random t-bit string s and sends it to P .

• P sets eb = s⊕ e1−b and computes the answer zb to challenge eb using (xb, ab, eb, w) as input. He
sends (e0, z0, e1, z1) to V .

• V checks that s = e0⊕e1 and that conversations (a0, e0, zo), (a1, e1, z1) are accepting conversations
with respect to inputs x0, x1, respectively.

Theorem 2.1 [18] The protocol ΣOR above is a Σ-protocol for ROR, where ROR = {((x0, x1), w)|(x0, w) ∈
R or (x1, w) ∈ R}. Moreover, for any verifier V ∗, the probability distribution of conversations between
P and V ∗, where w is such that (xb, w) ∈ R, is independent of b. That is, ΣOR is perfectly witness
indistinguishable.

2.2 Other cryptographic tools

We proceed to present other cryptographic tools used in this paper.

Definition 2.3 (system for proof of knowledge) Let R be a binary relation and κ : N → [0, 1].
We say that a probabilistic polynomial-time (PPT) interactive machine V is a knowledge verifier for
the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x, y) ∈ R all possible
interactions of V with P on common input x and auxiliary input y are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive machine P ∗, every x ∈ LR, and every y, r ∈ {0, 1}∗, machine K satisfies
the following condition:
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Denote by p(x, y, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by P ∗

x,y,r (where P ∗
x,y,r denotes the strategy of P ∗ on common

input x, auxiliary input y and random-tape r). If p(x, y, r) > κ(|x|), then, on input x and with
oracle access to P ∗

x,y,r, machine K outputs a solution s ∈ R(x) within an accepted number of steps
bounded by

q(|x|)
p(x, y, r)− κ(|x|)

The oracle machine K is called a knowledge extractor.

An interactive proof system (P, V ) such that V is a knowledge verifier for a relation R and P is a
machine satisfying the non-triviality condition (with respect to V and R) is called a system for proof of
knowledge for the relation R. The proof system (P, V ) is a system of zero-knowledge proof of knowledge
(ZKPOK) if it is also zero-knowledge.

For more clarifications on the definition of proof of knowledge, readers are referred to [31]. More recent
advances of zero-knowledge arguments of knowledge can be found in [39, 4].

Definition 2.4 (witness indistinguishability WI) Let < P, V > be an interactive proof system for
a language L ∈ NP, and let RL be the fixed NP witness relation for L. That is x ∈ L if there exists
a w such that (x, w) ∈ RL. We denote by view

P (w)
V ∗(z)(x) a random variable describing the transcript of

all messages exchanged between V ∗ and P in an execution of the protocol on common input x, when P
has auxiliary input w and V ∗ has auxiliary input z. We say that < P, V > is witness indistinguisha-
bility for RL if for every PPT interactive machine V ∗, and every two sequences W 1 = {w1

x}x∈L and
W 2 = {w2

x}x∈L, so that (x, w1
x) ∈ RL and (x, w2

x) ∈ RL, the following two probability distributions are
computationally indistinguishable: {x, view

P (w1
x)

V ∗(z) }x∈L, z∈{0, 1}∗ and {x, view
P (w2

x)
V ∗(z) }x∈L, z∈{0, 1}∗.

In this paper we use 3-round public-coin witness indistinguishability proofs of knowledge (WIPOK)
for NP. Such protocols exists under the existence of one-way functions, e. g. the parallel repetitions of
Blum’s 3-round proof of knowledge for HC [7]. We remark that 2-round public-coin WI proofs for NP
do exist under the existence of one-way permutations [25].

Definition 2.5 (non-interactive zero-knowledge NIZK) Let NIP and NIV be two interactive
machines and NIV is also probabilistic polynomial-time, and let NIσLen be a positive polynomial. We
say that 〈NIP, NIV 〉 is an NIZK proof system for an NP language L, if the following conditions hold:

• Completeness. For any x ∈ L of length n, any σ of length NIσLen(n), and NP-witness w for x,
it holds that

Pr[Π R←− NIP (σ, x, w) : NIV (σ, x, Π) = YES] = 1.

• Soundness. ∀x /∈ L of length n,

Pr[σ R←− {0, 1}NIσLen(n) : ∃ Π s.t. NIV (σ, x, Π) = YES] is negligible in n.

• Zero-Knowledgeness. ∃ a PPT simulator NIS such that, ∀ sufficiently large n, ∀x ∈ L of length
n and NP-witness w for x, the following two distributions are computationally indistinguishable:

[(σ′, Π′) R←− NIS(x) : (σ′, Π′] and [σ R←− {0, 1}NIσLen(n); Π R←− NIP (σ, x, w) : (σ, Π)].
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Non-interactive zero-knowledge proof systems for NP can be constructed based on any one-way per-
mutation [27]. An efficient implementation based on any one-way permutation is presented in [37] and
readers are referred to [22] for recent advances of NIZK.

Definition 2.6 (NIZK proof of knowledge [23]) An NIZK proof system 〈NIP, NIV 〉 for a lan-
guage L ∈ NP with witness relation RL (as defined above) is NIZK proof of knowledge (NIZKPOK) if
there exists a pair of PPT machines (E1, E2) and a negligible function ε such that for all sufficiently
large n:

• Reference-String Uniformity. The distribution on reference strings produced by E1(1n) has statis-
tical distance at most ε(n) from the uniform distribution on {0, 1}NIσLen(n).

• Witness Extractability. For all adversaries A, we have that Pr[ExptE
A(n) = 1] > Pr[ExptA(n) =

1]− ε(n), where the experiments ExptA(n) and ExptE
A(n) are defined as follows:

ExptA(n):
σ

R←− {0, 1}NIσLen(n)

(x,Π) ←− A(σ)
return NIV (x, σ,Π)

ExptE
A(n):

(σ, τ) ←− E1(1n)
(x,Π) ←− A(σ)
w ←− E2(σ, τ, x,Π)
return 1 if (x,w) ∈ RL

NIZK proofs of knowledge for NP can be constructed assuming the existence of one-way permutations
and dense secure public-key cryptosystems [23].

3 Definitions of concurrent zero-knowledge and concurrent sound-
ness in the BPK model

In this section, we present the formal definitions of concurrent zero-knowledge and concurrent soundness
in the BPK model.

Concurrent zero-knowledge in the BPK model. Let x̄ = {x1, x2, · · · , xq}, where |x1| = |x2| =
· · · = |xq| and q is a polynomial in n. Upon x̄, an adversary V ∗ in the BPK model firstly outputs
an arbitrary public-file F that includes a list of (without loss of generality) q public-keys pk1, · · · , pkq.
Then V ∗ concurrently interacts with q2 instances of the honest prover: P (xi, pkj), 1 6 i, j 6 q, and
schedules all the concurrent executions at its wish. We remark that each instance of the honest prover
uses independent random strings. Without loss of generality we also assume that messages from V ∗ are
immediately answered by the honest prover instances.

Definition 3.1 We say that a proof or argument system < P, V > for a language L in the BPK model is
black-box concurrent zero-knowledge if there exists a probabilistic polynomial-time (PPT) oracle machine
S (the simulator) such that for any polynomial q in n and for any PPT adversary V ∗, the distributions
< P, V ∗ > (x̄) and SV ∗(x̄) are computationally indistinguishable for any sequence of common inputs
x̄ = x1, x2, · · · , xq ∈ L ∩ {0, 1}n.

Concurrent soundness in the BPK model. For an honest verifier V with public-key PK
and secret-key SK, an (s, t)-concurrent malicious prover P ∗ in the BPK model, for a pair positive
polynomials (s, t), be a probabilistic t(n)-time Turing machine that, on a security parameter 1n and
PK, performs concurrently at most s(n) interactive protocols (sessions) with V as follows.

If P ∗ is already running i − 1 (0 ≤ i − 1 < s(n)) sessions, it can select on the fly a common input
xi ∈ {0, 1}n (which may be equal to xj for 1 ≤ j < i) and initiate a new session with V (SK, xi). We
note that in different sessions V uses independent random-tapes.
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We then say a protocol satisfies concurrent soundness in the BPK model if for any honest verifier
V , for all positive polynomials (s, t), for all (s, t)-concurrent malicious prover P ∗, the probability that
there exists i (1 ≤ i ≤ s(n)) such that V (SK, xi) outputs “accept xi” while xi 6∈ L is negligible in n.

4 Constant-Round Concurrent Zero-Knowledge With Concurrent Sound-
ness in the BPK model

In this section, we present the main result of this paper: a constant-round (specifically, 6-round) con-
current zero-knowledge argument of knowledge with concurrent soundness for NP in the BPK model,
< P, V >, which is depicted in Figure 1 (page 8).
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The protocol < P, V >

Key Generation. For a security parameter n, let (TCPK0, TCSK0)
R← TCGen(1n, r0),

(TCPK1, TCSK1)
R← TCGen(1n, r1), where r0 and r1 are two independent random strings used

by TCGen. (TCPK0, TCPK1) is the public-key of the verifier V . But for its secret-key, the
verifier V randomly selects a bit b

R← {0, 1} and keeps TCSKb in secret as its secret-key while
discards TCSK1−b.
The public file F in the BPK model is a collection of records (id, PKid), where
PKid = (TCPK

(id)
0 , TCPK

(id)
1 ) is the alleged public-key of the verifier with identity id,

Vid. The secret-key of Vid, SKid, is TCSK
(id)
b for a random bit b in {0, 1}.

Common input. An element x ∈ L∩{0, 1}n. Denote by RL the corresponding NP-relation for
L.

P private input. An NP-witness y for x ∈ L.
Stage 1. The verifier V proves the knowledge that: he knows either TCSK0 or TCSK1 with

respect to his public-key (TCPK0, TCPK1), by using the ΣOR protocol of Schnorr’s Σ-
protocol (described in Section 2.1) for proving commitment trapdoors. The witness used by
V is its secret-key TCSKb.

Stage 2. The prover P uniformly selects two independent random strings r
(0)
P

R← {0, 1}NIσLen(n)

and r
(1)
P

R← {0, 1}NIσLen(n), and for two independent random strings s(0), s(1), computes
α0 = TCCom(TCPK0, r

(0)
P , s(0)) and α1 = TCCom(TCPK1, r

(1)
P , s(1)) using the trapdoor

commitment scheme TC. Finally, the left player sends (α0, α1) to the right player.

Stage 3. The verifier V uniformly selects rV
R← {0, 1}NIσLen(n) and sends rV to P .

Stage 4. P sends r = r
(i)
P ⊕ rV to the right player for i

R←− {0, 1}.
Stage 5. Using a 3-round public-coin WIPOK for NP, P proves that either α0 or α1 commits

to r ⊕ rV . That is, P proves the knowledge of (i, r ⊕ rV , s) such that i ∈ {0, 1} and
αi = TCCom(TCPKi, r ⊕ rV , s). The witness used by P is (i, r(i)

P , s(i)) for.

Stage 6. Using r as the common input, P gives a NIZKPOK that he knows y such that (x, y) ∈
RL. a

aWe remark it is not necessarily to use NIZK proof of knowledge in Stage 6. Actually, a NIZK argument of
knowledge for NP does also work here. For example, we can adopt the robust NIZK (presented in [22]) that is
a same-string unbounded non-malleable NIZK argument of knowledge for NP. Here same-string NIZK means
that the reference string generated by the simulator of robust NIZK is a uniformly random string rather than a
pseudorandom one as usual. The same-string property can be used to simplify future security analyses.

Figure 1. A constant-round concurrent zero-knowledge argument of knowledge with concurrent
soundness for NP in the BPK model

We remark the protocol depicted in Figure 1 runs in 8 rounds. But it can be reduced into 6 rounds
by accordingly combining some rounds. Specifically, the Stage 2 and Stage 3 can be combined into the
Stage 1.
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Theorem 4.1 Under Discrete Logarithm assumption and the existence of trapdoor one-way permuta-
tions and dense secure public-key cryptosystems, the protocol depicted in Figure 1 is a constant-round
concurrent zero-knowledge argument of knowledge with concurrent soundness for NP in the BPK model.

Proof. The completeness of the protocol can be easily checked. Below, we focus on the properties
of concurrent zero-knowledge and concurrent soundness.

Black-box concurrent zero-knowledge

For any adversary V ∗ described in Section 3.1, we need to construct a PPT simulator S such that the
output of SV ∗ is computationally indistinguishable from the view of V ∗ in its real concurrent interactions
with honest-prover instances.

The simulation procedure is similar to (but simpler than) the simulation procedure presented in [10]
for resettable zero-knowledge. Specifically, S works in at most q + 1 rounds, where q is the number
of public-keys registered by V ∗ in the public-key file. In each round, S either successfully gets a
simulated transcript or “breaks” a new public-key in the sense that S can extract the corresponding
secret-key TCSKb (according to the special soundness of Σ-protocol, this is achieved by rewinding
V ∗ to get two accepting conversations of Stage 1). Once a public-key is broken (that is S learns
TCSKb), then in any session with respected to this broken public-key S works as follows: S runs
accordingly just as a honest prover in Stage 1-3; Let (α0, α1) be the message sent by S in Stage 2
(that commit to two independent random values, r

(0)
P and r

(1)
P , respectively) and rV ∗ be the message

sent by V ∗ in Stage 3; In Stage 4, S runs the NIZK simulator to get a random string, denoted σ,
and sends σ to V ∗; In Stage 5, S uses (b, σ ⊕ rV ∗ , s

′) as its witness to give a WIPOK, where s′ R←
TCFake(TCPKb, TCSKb, αb, r

(b)
P , s(b), σ⊕rV ∗). Finally, S using the NIZK simulator to give a simulated

NIZK (on σ) in Stage 6.
Since S runs in at most q rounds, at during each round S also works in expected polynomial time,

it is easy to see that S also runs in expected polynomial time in toto. Below, we show that the output
of S is indistinguishable from the view of V ∗ in real interactions.

We consider four classes of transcripts: they differ according to the value sent in Stage 4 (r(i)
P ⊕ rV ∗

or σ generated by NIZK simulator), the witness used in Stage 5, the Stage-6 message (real NIZK or
simulated NIZK).

1. Stage-4 message is r
(i)
P ⊕ rV ∗ for i

R←− {0, 1}, Stage-5 witness is (αi, r
(i), s(i)) . Stage-6 message is

a real NIZK.

2. Stage-4 message is rP ⊕ rV ∗ , Stage-5 witness is (αb, rP , s
(b)
rP ), where b is the secret information of

V ∗ in its secret-key TCSKb. Stage-6 message is a real NIZK.

3. Stage-4 message is σ, Stage-5 witness is (αb, σ ⊕ rV ∗ , s
′). Stage-6 message is a real NIZK.

4. Stage-4 message is σ, Stage-5 witness is (αb, σ ⊕ rV ∗ , s
′). Stage-6 message is a simulated NIZK.

The real transcripts are the first class. The simulator outputs the fourth class. It is easy to see that
Class 3 and Class 4 are computationally indistinguishable. Class 1 and Class 2 are computationally
indistinguishable by the witness indistinguishability of Stage 5. We note that Class 3 and Class do not
make (non-negligibly) noticeable distinguishability gap. Actually, if we adopt robust NIZK in Stage 6
as suggested in the protocol construction, the distributions of Class 2 and Class 3 are identical. The
reason is that the σ generated by the simulator of robust NIZK is uniformly distributed. This means
σ, σ ⊕ rV ∗ , rP and rP ⊕ rV ∗ are all uniformly random strings. Furthermore, according to the trapdoor
property of the trapdoor commitment scheme used, s

(b)
rP and s′ are also independent random strings.
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Concurrent soundness and argument of knowledge

We first note that a computational power unbounded prover can easily convince the verifier of a
false statement since he can get the secret-keys if his computational power is unbounded. Hence the
protocol < P, V > depicted in Figure 1 constitutes an argument system rather than a proof system.

We now proceed to prove that the protocol < P, V > is concurrent soundness and argument of
knowledge. The following proof uses standard reduction and knowledge-extraction techniques . That is,
if the protocol < P, V > does not satisfy concurrent soundness in the BPK model then we will construct
a non-uniform algorithm S that breaks the discrete logarithm assumption in expected polynomial-time.

Suppose the protocol < P, V > does not satisfy concurrent soundness in the BPK model, then
according to the definition of concurrent soundness in the BPK model (described in Section 3), then in
a concurrent attack issued by an (s, t)-concurrent malicious prover P ∗ against an honest verifier V with
public-key (TCPK0, TCSK1) and secret-key TCSKb for b

R←− {0, 1}, with non-negligible probability
p(n) there exists an i, 1 6 i 6 s(n), such that V outputs “accept xi” while xi 6∈ L. Then we will construct
a non-uniform algorithm S that takes (TCPK0, TCPK1, TCSKb) as input and outputs either a witness
w such that (xi, w) ∈ RL or TCSK1−b with probability p4(n)

4s(n) in polynomial-time. For this purpose, S

has oracle access to P ∗ and plays the role of V by running V (TCPK0, TCPK1, TCSKb) to emulate
the real concurrent interactions between P ∗ and V (TCPK0, TCPK1, TCSKb).

For any i, 1 6 i 6 s(n), denote by ki ∈ {0, 1} the first component in the witness used by P ∗ in
Stage-5 of i-th session. We first have the following lemma:

Proposition 4.1 For any i, 1 6 i 6 s(n), ki is independent of b. That is, Pr[ki = b] = 1
2 , where the

probability is over the coin flips of P ∗ and V .

Proof. We can view the honest V in two parts: the first part, denoted V1, only works in Stage-1. That
is, V1 takes TCSKb as its secret input and proves that he knows one of the secret-key with respect to
the public-key (TCPK0, TCPK1) in Stage-1. Note that V1 is itself perfectly witness indistinguishable;
the second part, denote V2, works in other stages and has no secret information.

Now, suppose there exists an i, 1 6 i 6 s(n), such that ki is not independent of b, then we can
construct a PPT algorithm A that works as follows to violate the perfect witness indistinguishability
of V1: A interacts with V1 on common input (TCPK0, TCPK1) and runs P ∗ and V2 to emulate the
concurrent interactions between P ∗ and V . After the simulation, A randomly guess the “bad” i and
outputs ki as its output. Suppose P ∗ distinguishes b with probability p then A will distinguish b with
probability p/s(n), which violates the perfect WI property of V1. ¤

For future reference convenience, below we denote by Stage 5.1, 5.2 and 5.3 the first, the second
and the third message of Stage 5 in protocol < P, V > respectively, where Stage 5.2 is supposed to be a
random string. Let (E1, E2) be the pair of PPT algorithms guaranteed in the definition of NIZKPOK.
Now, consider the following algorithm SP ∗(1n, TCPK0, TCPK1, TCSKb) depicted in Figure 2 (page
21).

First, we note that P ∗ cannot distinguish (except with statistically negligible probability) whether he
is interacting with honest verifier V or with S since the distribution of σ generated by E1 is statistically
distinguishable from the uniform distribution on {0, 1}NIσLen(n). This means that , in the concurrent
interactions between the (s, t)-concurrent malicious P ∗ and S, with the same non-negligible probability
p(n) there exists an i, 1 6 i 6 s(n), such that S outputs “accept xi” while xi 6∈ L. Furthermore,
conditioned on P ∗ always succeeds in completing its interactions with S, then Pr[ki = k′i = 1− b] = 1

4
according to the proposition 4.1. Since i is uniformly selected by S from {1, 2, · · · , s(n)}, we conclude

11



The algorithm SP ∗(1n, TCPK0, TCPK1, TCSKb)

i
R←− {1, 2, · · · , s(n)}.

Runs P ∗ and acts accordingly by running V (TCPK0, TCPK1, TCSKb) in any session other
than the i-th session. In the i-th session, denote by (α(i)

0 , α
(i)
1 ) the Stage-2 message of the i-th

session, S acts as follows:

• Uniformly selects rV
R← {0, 1}NIσLen(n) and sends rV to P ∗ as the Stage-3 message of the

i-th session.

• When running into the WIPOK phase (Stage 4-5) of the i-th session, denoted by r the
Stage-4 message (from P ∗) of the i-th session, S uses the knowledge-extractor of WIPOK
to extract the witness used by P ∗ in Stage-5 of the i-th session. This needs to rewind P ∗

once and such a rewinding is called the first knowledge rewinding. If the extracted value is
(ki, ti, si) such that α

(i)
ki

= TCCom(TCPKki
, ti, si) and ti = r ⊕ rV , where ti is of length

NIσLen(n) and ki ∈ {0, 1}, then S does the following:

1. runs E1 to get (σ, τ) ←− E1(1n).

2. rewinds P ∗ to the point P ∗ just sent (α(i)
0 , α

(i)
1 ) and sends back σ ⊕ ti to P ∗ as a new

Stage-3 message. Such a rewinding is called the major rewinding.

3. Runs P ∗ further (from the major rewinding point). When running into again the
WIPOK phase (Stage 4-5), if the Stage-4 message from P ∗ is not σ then S uses the
knowledge-extractor of WIPOK again to extract the witness used by P ∗ in this WIPOK
phase. This needs to knowledge-rewind P ∗ once more. Denote by (k′i, t

′
i, s

′
i) the witness

extracted in the second knowledge-rewinding.

4. If P ∗ successfully gives an NIZKPOK Π on σ for xi at Stage-6, S runs E2(σ, τ, xi,Π)
to get a witness w.

Figure 2. The algorithm SP ∗(1n, TCPK0, TCPK1, TCSKb)
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that with probability at least p4

4s(n) , S either get a witness w such that (xi, w) ∈ RL or two different

decommitments to α
(i)
1−b from which the secret-key TCSK1−b can be easily extracted. This contradicts to

the assumption that xi 6∈ L and discrete logarithm is hard. Thus the protocol < P, L > is concurrently
sound in the BPK model.

That the system is an argument of knowledge is immediately from the extraction procedure of S. ¤

5 Improvements

In this section, we present two implementations for 4-round (that is optimal) black-box concurrent
zero-knowledge argument of knowledge that enjoys both concurrent soundness and concurrent black-
box witness extraction in the BPK model: A practical construction that is under the DLP assumption
and runs in six rounds without going through general NP-reductions for any language that admits
Σ-protocols; And a general construction that runs in optimal rounds (4-round) for any language in NP
under only one-way functions. To our knowledge, both the practical protocol and the general protocol
stand for the current state-of-the-art of concurrent zero-knowledge with setup assumptions.

5.1 The Practical construction

For any language that admits a Σ-protocol, we present for the same language a 6-round black-box
concurrent zero-knowledge argument of knowledge with concurrent soundness in the BPK model. Let
〈PL, VL〉 be a Σ-protocol for a language L and denote by (p1, q, p2) be the messages exchanged between
honest PL and honest VL on a common input x ∈ L∩ {0, 1}n, where q is suggested to be an n-bit value
randomly chosen according to some distribution. Denote by SL be the honest verifier zero-knowledge
simulator of 〈PL, VL〉. We transform 〈PL, VL〉 into a protocol 〈P, V 〉 in the BPK model that is depicted
in Figure 3 (page 14). The protocol 〈P, V 〉 uses the DLP-based trapdoor commitment scheme TC and
we denote by SOR the honest verifier zero-knowledge simulator of the ΣOR protocol of Schnorr’s protocol
for discrete logarithm.

13



The practical protocol 〈P, V 〉
Key Generation. For a security parameter n, let (TCPK0, TCSK0)

R← TCGen(1n, r0),
(TCPK1, TCSK1)

R← TCGen(1n, r1), where r0 and r1 are two independent random strings used
by TCGen. (TCPK0, TCPK1) is the public-key of the verifier V . But for its secret-key, the
verifier V randomly selects a bit b

R← {0, 1} and keeps TCSKb in secret as its secret-key while
discards TCSK1−b.
The public file F in the BPK model is a collection of records (id, PKid), where
PKid = (TCPK

(id)
0 , TCPK

(id)
1 ) is the alleged public-key of the verifier with identity id,

Vid. The secret-key of Vid, SKid, is TCSK
(id)
b for a random bit b in {0, 1}.

Common input. An element x ∈ L∩{0, 1}n. Denote by RL the corresponding NP-relation for
L.

P private input. An NP-witness y for x ∈ L.
Stage 1. The verifier V proves the knowledge that: he knows either TCSK0 or TCSK1 with

respect to his public-key (TCPK0, TCPK1), by using the ΣOR protocol of Schnorr’s Σ-
protocol (described in Section 3.1) for proving discrete logarithm. The witness used by V
is its secret-key TCSKb.

Stage 2. The prover P uniformly selects two independent random strings r
(0)
P

R← {0, 1}n

and r
(1)
P

R← {0, 1}n, and for two independent random strings s(0), s(1), computes α0 =
TCCom(TCPK0, r

(0)
P , s(0)) and α1 = TCCom(TCPK1, r

(1)
P , s(1)) using the trapdoor com-

mitment scheme TC. Finally, the prover sends (α0, α1) to the verifier.

Stage 3. The verifier V uniformly selects rV
R← {0, 1}n and sends rV to P .

Stage 4. Stage 4 includes the following three steps:

Stage 4.1. Using the simulator SOR (of the ΣOR protocol of Schnorr’s Σ-protocol) on input
(α0, α1, rV ), the prover obtains a transcript (â, ê, ẑ). (Informally, here the prover uses the
simulator SOR to “pretend” that one of (α0, α1) commits to rV ). Then P runs PL to compute
p1 and sends (â, p1) to V .

Stage 4.2. The verifier sends back P a random value q′ of length n.

Stage 4.3. The prover computes q = ê ⊕ q′ and p2 = PL(x, y, p1, q). P then sends (ê, ẑ, p2) to
the verifier.

Verifier’s decision The verifier accepts if and only if (â, ê, ẑ) is an accepting conversation on
(α0, α1, rV ) and (p1, ê⊕ q′, p2) is an accepting conversation on input x.

Figure 3. The practical construction of zero-knowledge with concurrent player security in the BPK
model for any language that admits Σ-protocols.

We remark that the protocol depicted in Figure 3 runs in 8 rounds. But it can be reduced into 6
rounds by accordingly combining some rounds. Specifically, the Stage-2 and Stage-3 can be combined
into the Stage-1. We also remark that the protocol can be easily extended to transform any public-coin
honest verifier zero-knowledge protocol into concurrent zero-knowledge in the BPK model with three
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additional rounds. But for simplicity, we only present the transformation starting from any Σ-protocol
which is the most often case when public-coin honest verifier zero-knowledge protocols are used in
practice.

Theorem 5.1 Under the discrete logarithm assumption and 〈PL, VL〉 is a Σ-protocol for L, the protocol
depicted in Figure 3 is a 6-round black-box concurrent zero-knowledge argument of knowledge for L with
concurrent soundness in the BPK model but without going through general NP-reductions. Furthermore,
if 〈PL, VL〉 has the property of honest verifier perfect zero-knowledge then the protocol is also concurrent
perfect zero-knowledge.

Proof (sketch).

(1) completeness.

If x ∈ L then P can always complete the proof and V accepts it.

(2) Black-box concurrent zero-knowledge.

For any adversary V ∗ described in Section 4.1.3, we need to construct a PPT simulator S such
that the output of SV ∗ is computationally indistinguishable from the view of V ∗ in its real concurrent
interactions with honest-prover instances.

The simulation procedure is similar to (but simpler than) the simulation procedure presented in
[10] for resettable zero-knowledge. Specifically, S works in at most s(n) + 1 phases, where s(n) is the
number of public-keys registered by V ∗ in the public-key file. In each phase, S either successfully gets
a simulated transcript or “breaks” a new public-key in the sense that S can extract the corresponding
secret-key TCSKb (according to the special soundness of Σ-protocol, this is achieved by rewinding V ∗

to get two different accepting conversations w. r. t. the same first message of Stage 1). Once a public-
key (TCPK0, TCPK1) is broken (that is, S learns TCSKb), then in any session with respected to this
broken public-key S works as follows:

S runs accordingly just as an honest prover in Stage 1-3. Let (α0, α1) be the message sent by S in
Stage 2 (that commit to two independent random values, r

(0)
P and r

(1)
P , respectively) and rV ∗ be the

message sent by V ∗ in Stage 3. In Stage 4, S firstly runs the honest verifier zero-knowledge simulator
of the Σ-protocol 〈PL, VL〉 to get a simulated transcript (p1, q, p2). Then in Stage 4.1, S sends (â, p1)
to V ∗. After receiving back a random value q′ from V ∗ in Stage 4.2, S sets ê = q ⊕ q′, computes ẑ on
(α0, α1, rV ∗ , â, ê) by using TCSKb as its witness, and finally sends (ê, ẑ, p2) to V ∗ in Stage 4.3.

Since S runs in at most s(n)+1 phases, and during each phase S also works in expected polynomial
time, it is easy to see that S runs in expected polynomial time in toto. Below, we show that the output
of S is indistinguishable from the view of V ∗ in real interactions.

We consider three classes of transcripts: they differ according to the (simulated or real) transcript
(â, ê, ẑ) of the ΣOR protocol of Schnorr’s Σ-protocol, and the (real or simulated) transcript (p1, q, p2) of
the Σ-protocol 〈PL, VL〉 in Stage 4 of each session.

1. Simulated (â, ê, ẑ) = SOR(α0, α1, rV ∗ , ê); real (p1, q = q′ ⊕ ê, p2) (generated by using y as the
witness).

2. Real (â, ê, ẑ) (generated by using TCSKb as the witness); real (p1, q = q′ ⊕ ê, p2) (generated by
using y as the witness).

3. Real (â, ê = q ⊕ q′, ẑ) (generated by using TCSKb as the witness) and simulated (p1, q, p2) =
SL(x, q).

15



The real transcript of concurrent interactions between V ∗ and honest prover instances is the first
class. The simulator outputs the third class. The second class is the transcript of the following mental
experiment executed between V ∗ and honest provers: In each session of the mental experiment w. r.
t. a public-key (TCPK0, TCPK1) and a common input x, the honest prover P takes both the witness
y such that (x, y) ∈ RL and the corresponding secret-key TCSKb as its auxiliary inputs. In stage 4.1,
P sends (â, p1) to V ∗. After receiving q′ from V ∗ in stage 4.2, P randomly selects ê, computes ẑ on
(α0, α1, rV ∗ , â, ê) by using TCSKb as its witness, sets q = q′ ⊕ ê and computes p2 on (x, p1, q) by using
y as the witness, and finally sends (ê, ẑ, p2) to V ∗ in stage 4.3.

We first observe that in the first class, according to the honest verifier perfect zero-knowledge
property of the ΣOR of Schnorr’s protocol for proving discrete logarithms, q is also truly random. In
other words, upon seeing the simulated value â, V ∗ cannot in any way choose the q′ dependently on
ê. For the same reason, in the third class, ê is also at least pseudorandom. Note that in the second
class, both q and ê are truly random. Then, by using standard hybrid techniques, it is easy to see that
Class 1 and Class 2 are identical, and Class 3 and Class 2 are also indistinguishable. Furthermore, if
〈PL, VL〉 has the property of honest verifier perfect zero-knowledge, then Class 3 and Class 2 are also
identical. This means that in this case the protocol presented in Figure 1 is black-box concurrent perfect
zero-knowledge.

(3) Concurrent soundness and argument of knowledge.

We first note that a computational power unbounded prover can easily convince the verifier of a
false statement since he can extract the secret-keys if his computational power is unbounded. Hence
the protocol 〈P, V 〉 depicted in Figure 3 constitutes an argument system rather than a proof system.

We now proceed to prove that the protocol 〈P, V 〉 satisfies concurrent soundness in the BPK model.
The following proof uses standard reduction and knowledge-extraction techniques. Specifically, suppose
the protocol 〈P, V 〉 does not satisfy concurrent soundness in the BPK model, then according to the
definition of concurrent soundness in the BPK model (described in Section 4.1.2), in a concurrent
attack issued by an (s, t)-concurrent malicious prover P ∗ against an honest verifier V with public-key
(TCPK0, TCSK1) and secret-key TCSKb for b

R←− {0, 1}, with non-negligible probability p(n) there
exists a k, 1 6 k 6 s(n), such that V outputs “accept xk” while xk 6∈ L. Then we will construct
an algorithm S that takes a public-key TCPK as input and outputs either a witness for xk ∈ L or
the corresponding TCSK with probability at least (p(n))4

4s(n) in polynomial-time, which breaks either the
assumption that xk 6∈ L or the discrete logarithm hardness assumption. The algorithm S is depicted in
Figure 4 (page 17).

According to the description of S in Figure 4, conditioned on P ∗ always succeeds in completing its
interactions with S, then both in the interactions prior to the major rewinding and in the interactions
posterior to the major rewinding of the rewound i-th session there are two cases to be considered:

1. S gets two different accepting conversations of the Σ-protocol 〈PL, VL〉 on input xi with respect to
the same Stage 4.1 message (specifically, the same p1 message). According to the special soundness
property of Σ-protocol, this means a witness of xi ∈ L can be efficiently extracted.

2. S gets two different accepting conversations of the Σ-protocol ΣOR on input (α0, α1, rV ) with
respect to the same Stage 4.1 message (specifically, the same â message). According to the special
soundness property of Σ-protocol, this means that a witness of the form (s, j) can be efficiently
extracted, where j ∈ {0, 1} and αj = TCCom(TCPKj , rV , s).
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The algorithm SP ∗(1n, TCPK)

(TCPK ′, TCSK ′) R←− TCGen(1n).
b

R←− {0, 1}.
Set TCPKb be TCPK ′, TCSKb be TCSK ′ and TCPK1−b be TCPK. S publishes
(TCPK0, TCPK1) as its public-key and keeps TCSKb = TCSK ′ in secret as its secret-key.

i
R←− {1, 2, · · · , s(n)}.

S runs P ∗ and acts accordingly by running V (TCPK0, TCPK1, TCSKb) in any session other
than the i-th session. In the i-th session, S acts as follows:

• In the i-th session, S acts just as the honest verifier V (TCPK0, TCPK1, TCSKb) does until
he receives the Stage-2 message (α0, α1) from P ∗.

• k := 1.

• While k ≤ 2 do:

– Uniformly selects rV
R←− {0, 1}n and sends rV to P ∗ as the Stage-3 message.

– Acts accordingly further by running V (TCPK0, TCPK1, TCSKb) until receiving the
last Stage 4.3 message from P ∗. Denote by (â, p1) the Stage 4.1 message from P ∗.

– After receiving the Stage 4.3 message from P ∗, S rewinds P ∗ to the point that P ∗ just
sent Stage 4.1 message and sends back a new random Stage 4.2 message to P ∗. Such
a rewinding is called the knowledge rewinding.

– Runs P ∗ further from the above knowledge rewinding point until receiving back again
a Stage-4.3 message.

– k := k+1. This means that S will rewind P ∗ to the point that P ∗ just sent the Stage-2
message (α0, α1) and send back a new random Stage-3 message. Such a rewinding is
called the major rewinding.

Figure 4. The algorithm SP ∗(1n, TCPK)
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Firstly, we note that conditioned on xi 6∈ L the first case above will not appear in either the
interactions prior to the major rewinding or the interactions posterior to the major rewinding. For
the second case above, since b is chosen randomly in {0, 1}, and the ΣOR protocol used in Stage-1
is perfect witness indistinguishable, conditioned on xi 6∈ L and P ∗ always succeeds in completing its
interactions with S, the probability of j = 1 − b in both the interactions prior to the major rewinding
and the interactions posterior to the major rewinding is 1

4 . Note that TCPK1−b = TCPK and from
two different decommitments of α1−b the corresponding secret-key TCSK can be easily extracted.

Since P ∗ cannot distinguish whether he is interacting with honest verifier or S, suppose the protocol
does not satisfy concurrent soundness then in the concurrent interactions between the (s, t)-concurrent
malicious P ∗ and S, with the same non-negligible probability p(n) there exists an k, 1 6 k 6 s(n), such
that S outputs “accept xk” while xk 6∈ L. Then since i is uniformly selected by S from {1, 2, · · · , s(n)},
we conclude that with probability at least (p(n))4

4s(n) , S gets either a witness w such that (xk, w) ∈ RL or
two different decommitments to α1−b from which the secret-key TCSK1−b can be easily extracted. This
contradicts to the assumption that xk 6∈ L and discrete logarithm is hard. Thus the protocol < P, L >
is concurrently sound in the BPK model.

That the system is an argument of knowledge is immediate from the extraction procedure of S. ¤

5.2 4-Round Practical Construction

We remark that the 6-round practical protocol above can be easily improved into a 4-round protocol.
Specifically, for x ∈ L that L admits Σ-protocols, the 4-round practical protocol is the following: I

In Stage-1 the verifier uses ΣOR-protocol to prove that he knows one of secret-key with respect to
the public-key pair.

In Stage-2, the prover uses ΣOR-protocol to prove that he knows either a witness to x ∈ L or one of
secret-key with respect to the public-key pair.

The first and the second message of Stage-2 can be combined into Stage-1, and so the above protocol
can be implemented in 4-round.

Furthermore, and more importantly, as we shall see in next subsection the 4-round practical protocol
can be based on any one-way function that admits Σ-protocols by using the techniques presented in
next subsection.

5.3 The General Construction

Now, we present the general construction that is a 4-round (that is optimal unless the language con-
sidered is trivial) black-box concurrent zero-knowledge argument of knowledge for NP with concurrent
soundness in the BPK model under the minimal hardness assumption of one-way functions 1. As usual,
the general construction goes through NP-reductions. The general protocol is depicted in Figure 5
(page 19)2.

The protocol depicted in Figure 5 runs in 6-round, but it can be reduced into 4-round that is optimal
according to the lower-bound proved in [41] on zero-knowledge with concurrent soundness in the BPK
model. Note that the hardness assumption assumed in the general construction, i. e. the existence of

1This general construction is suggested by Lindell in January 2004.
2The general protocol is actually the Feige-Shamir constant-round zero-knowledge protocol for NP [?] with a bare

public-key model added. But, the version of Feige-Shamir protocol used in our work is the one appearing in Feige’s Ph.D.
thesis [?] that is actually different to the one appearing in CRYPTO’89. This general construction is suggested by Yehuda
Lindell although he declined the coauthorship of this work. We remark that both the practical construction and the above
6-round general protocol are developed independently of the Ph.D. thesis version of Feige-Shamir protocol.
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The general protocol 〈P, V 〉
Key Generation. Let f be a one-way function. For a security parameter n, each verifier
randomly selects two elements x1, x2 from {0, 1}n, computes y1 = f(x1) and y2 = f(x2), publishes
(y1, y2) as its public-key. For its secret-key, the verifier randomly selects a bit b

R← {0, 1} and
keeps xb in secret as its secret-key while discards x1−b.

Common input. An element x ∈ L∩{0, 1}n. Denote by RL the corresponding NP-relation for
L.

P private input. An NP-witness w for x ∈ L.

Stage 1. V uses a 3-round public-coin witness indistinguishability proof of knowledge (WIPOK)
system for NP to prove that it knows a preimage to one of y1, y2. The witness used by V
in this stage is xb.

Stage 2. P uses a 3-round public-coin WIPOK system for NP to prove either that it knows w
s.t. (x,w) ∈ R or that it knows a preimages to one of y1, y2. The witness used by P in this
stage is w.

Figure 5. The general construction of zero-knowledge with concurrent player security for NP in the
BPK model.

one-way functions, is also minimal. But the general protocol goes through general NP-reductions in
both Stage-1 and Stage-2 and so it is not a practical solution.

Theorem 5.2 Assuming the existence of one-way functions, the protocol 〈P, V 〉 depicted in Figure 5
is a 4-round (that is optimal) black-box concurrent zero-knowledge argument of knowledge for NP that
enjoys concurrent soundness in the BPK model.

Proof (sketch).

(1) completeness.

If x ∈ L then P can always complete the proof and V accepts it.

(2) Black-box concurrent zero-knowledge.

For any adversary V ∗ described in Section 4.1.3, the simulator S works in at most s(n) + 1 phases
with black-box access to V ∗, where s(n) is the number of public-keys registered by V ∗ in the public-key
file. In each phase, S either successfully gets a simulated transcript or “breaks” a new public-key in
the sense that S can extract the corresponding secret-key (this is achieved by rewinding V ∗ to get
two different accepting conversations of Stage-1 w. r. t. the same first message of Stage 1). Once a
public-key (y0, y1) is broken (that is, S learns xb), then in any session with respected to this broken
public-key S works as follows: S runs accordingly just as an honest prover in Stage-1 but in Stage-2 he
uses xb as the witness to give the WIPOK.

Since S runs in at most s(n)+1 phases, and during each phase S also works in expected polynomial
time, it is easy to see that S runs in expected polynomial time in toto.
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The only difference between the simulated transcript generated by S and the real transcript of
concurrent interactions between V ∗ and honest prover instances is that in the simulated transcript S uses
the corresponding secret-key as the witness in Stage-2 of each session with respect to a broken public-key,
while in the real transcript an honest prover uses the real NP-witness of RL as the witness in Stage-2 of
each session. By the fact that witness indistinguishability is concurrently composable, using standard
hybrid techniques it is easy to see that the simulated transcript is computational indistinguishable from
the real transcript.

(3) Concurrent soundness and argument of knowledge.

We first note that a computational power unbounded prover can easily convince the verifier of a
false statement since he can extract the secret-keys if his computational power is unbounded. Hence
the protocol 〈P, V 〉 depicted in Figure 6 constitutes an argument system rather than a proof system.

Suppose the protocol 〈P, V 〉 does not satisfy concurrent soundness in the BPK model. According to
the definition of concurrent soundness in the BPK model (described in Section 4.1.2), this means that in
a concurrent attack issued by an (s, t)-concurrent malicious prover P ∗ against an honest verifier V with
public-key (y0, y1) and secret-key xb for b

R←− {0, 1}, with non-negligible probability p(n) there exists a
k, 1 6 k 6 s(n), such that V outputs “accept xk” while xk 6∈ L. Then we will construct an algorithm
S that takes a value y as input and outputs either a witness for xk ∈ L or a preimage x to y such that
y = f(x) with probability at least (p(n))4

4s(n) in polynomial-time, which breaks either the assumption that
xk 6∈ L or the hardness assumption of one-way functions.

The algorithm S is depicted in Figure 6 (page 20). For future reference convenience, we denote by
Stage-2.1, 2.2, 2.3 the first, second, third message of Stage-2 respectively, where Stage-2.2 message is
assumed to be a random string in {0, 1}n.
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The algorithm SP ∗(1n, y)

Compute y′ = f(x′) for x′ R←− {0, 1}n.
b

R←− {0, 1}.
Set yb be y′, xb be x′ and y1−b be y. S publishes (y0, y1) as its public-key and keeps xb = x′ in
secret as its secret-key.

i
R←− {1, 2, · · · , s(n)}.

S runs P ∗ and acts accordingly by running V (y0, y1, xb) in any session other than the i-th session.
In the i-th session, S acts as follows:

• In the i-th session, S acts just as the honest verifier V (y0, y1, yb) until he receives the Stage-
2.3 message from P ∗.

• S rewinds P ∗ to the point that P ∗ just sent Stage-2.1 message and sends back a new random
Stage-2.2 message to P ∗.

• Runs P ∗ further from the above rewinding point until receiving back again a Stage-4.3
message.

Figure 6. The algorithm SP ∗(1n, y)

According to the proof of knowledge property of Stage-2, conditioned on P ∗ always succeeds in
completing its interactions with S, S gets either a witness for xi ∈ L or a preimage to one of (y0, y1).
Furthermore, conditioned on xi 6∈ L, according to the witness indistinguishability property of Stage-1,
S will get a preimage to y1−b = y with probability one half except for negligibly small gaps.

Since we assume that the protocol depicted in Figure 5 does not satisfy concurrent soundness, it
means that in the concurrent interactions between the (s, t)-concurrent malicious P ∗ and S, with non-
negligible probability p(n) there exists an k, 1 6 k 6 s(n), such that S outputs “accept xk” while
xk 6∈ L. Then since i is uniformly selected by S from {1, 2, · · · , s(n)}, we conclude that with probability
at least (p(n))2

2s(n) (except for negligibly small gaps), S gets either a witness w such that (xk, w) ∈ RL or
a preimage to y1−b = y, which contradicts to the assumption that xk 6∈ L and the one-wayness of f .
Thus the protocol < P, L > is concurrently sound in the BPK model.

That the system is an argument of knowledge is immediate from the extraction procedure of S. ¤
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6 How to Get rZK with Concurrent Soundness in the BPK Model

We remark that our 4-round (both general and practical) CZK-CS protocols can be easily modified into
rZK-CS protocols3.

Specifically, the modifications are the following:
Modifications of V :

1. On the top of the 4-round CZK-CS, V firstly commits to a random string rV of length n by
using trapdoor commitments (specifically, using the DLP-based trapdoor commitment scheme
in practical rZK-CS, and using the Feige-Shamir OWF-based trapdoor commitment scheme in
general rZK-CS). Note that for trapdoor commitments the prover needs to firstly send a trapdoor
public-key to V .

2. In the Stage-2 of the 4-round CZK-CS which is itself a 3-round public-coin WI, the second message
of it (which is assumed to be a random string sent by V ) is replaced by rV . That is, V just
decommits the trapdoor commitment in the second round of Stage-2.

Modifications of P :
All randomness used by P is computed by applying a PRF on the transcript up to know.
Complexity-Leverage Used
Note that the public-key of V includes a pair of y0, y1 which are in the range of the OWF f on

inputs of length n. We let f has a larger security parameter than the security parameter of the trapdoor
commitment scheme. Specifically, suppose the system security parameter is K which is also the security
parameter of f , we let the security parameter of the trapdoor commitment is k = Kε, ε > 0. We also
assumes that the one-wayness of f against circuits of size 2Kε

. This guarantee that we can use time 2k

to find the corresponding secret-key of the trapdoor commitment public-key but are still infeasible to
break the one-wayness of f .

Comment on Round-Complexity
In above description, the modified rZK-CS protocol runs in 5-round. But if we allow provers also can

publish public-keys in the public-key file, then the trapdoor commitment public-key can be deposited
before the interactions take place. Note that in normal BPK model, only the verifiers publish public-
keys. But, the BPK model does not exclude the case that provers also publish public-keys. In this
general BPK model, our rZK-CS protocols actually run in 4-round that is optimal. Note that rZK-RS
does not exist even in the BPK model.

6.1 Proof Outlines

The standard proof techniques for rZK presented in [10] can be directly applied here to show that the
modified protocol is rZK.

For concurrent soundness, we remark that by using complexity-leveraging techniques, the proof
procedure is almost the same of concurrent soundness of the original 4-round CZK-CS and is thus much
simpler than that presented in [10].

3We remark that before I made this observation, Di Crescenzo, Persiano and Visconti informed me that they had
achieved rZK-CS protocol in the BPK model under superpolynomial hardness assumptions. The works of Di Crescenzo et
al. on rZK-CS are to appear in CRYPTO04. But, we stress that we make this observation without any details of the work
of Di Crescenzo et al. on rZK-CS. Actually, we do not know any details of that work up to now. Our rZK-CS protocols
are the minor modification of our CZK-CS, and although our protocols are under subexponential hardness assumption but
it may be the most practical ones. Since we do not know any details of the work of Di Crescenzo et al, we cannot give
comparisons between their protocols and our protocols.
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Specifically, using time 2k the honest verifier can extracts the trapdoor commitment secret-key and
thus can decommit in Stage-2 at its wish. This means that once the honest verifier get the trapdoor
commitment secret-key, then the same proof procedure can be directly used here to show concurrent
soundness of the modified protocol. We remark that in the sequential soundness proof of [10, 41], the
simulator also needs to generate simulated WIPOK which also takes time exponentially in k by using
complexity-leveraging. But in our proof, the simulator does not need complexity-leveraging in this
simulation stage and so is simpler.

7 Applications

7.1 Cryptographic Protocols with Full Concurrent Security in the BPK Model

A major application of CZK-CS protocols presented in this paper is to be used as building blocks to
achieve cryptographic protocols with not only simultaneous concurrent player security but also con-
current channel security (concurrent non-malleability) in the BPK model. Specifically, the practical
protocol and the OWF-based general protoco can be used as building blocks to achieve respectively
practical (without going NP reduction) and general OWF-based coin-tossing protocol with both con-
current player security and concurrent channel security in the BPK model, which can be in turn used
to achieve ZK and commitments with both concurrent player security and concurrent channel security
in the BPK model. These result will appear in another separate report very soon.

7.2 Practical rZK with Secret-Keys

Works presented in this subsection are partial contents in an ongoing US patent applica-
tion.

Zero-knowledge with secret-keys is recently studied by Cramer and Damgard in TCC04. The phi-
losophy of ZK with secret-keys is that what can get from honest prover can also be computed by the
verifier himself from his secret-key corresponding the public-key.

Our practical CZK-CS can be also modified into practical rZK with registered public-keys.

7.2.1 4-round practical rZK with verifiable public-keys

For any OWF that admits Σ-protocol, e. g. DLP, RSA et al, each verifier publishes a public-key such
that the existence of the corresponding secret-key can be publicly verified. That is, in this model, the
verifier does not need to give WIPOK for the knowledge of such secret-keys. In practice, the existence
of secret-keys can be verified by an authority like a CA, or the verifier ZKPOK to CA the existence of
secret-keys. After such ZKPOKS, the CA gives a certificate that the secret-key exists.

The prover also has a public-key for a trapdoor commitment scheme. For a language that admits
Σ-protocol, the protocol works as follows:

Stage-1. 1. V sends TC(rl) for a random string rl to P .
Stage-2: Using the ΣOR-protocol, P proves that he knows either a witness for the common input or

the secret-key of the public-key of the verifier. We remark that the second message of the ΣOR-protocol
(which is assumed to be random string sent from V to P ) is the random string rl committed in Stage-1.

By using standard complexity-leveraging techniques, it is easy to see that the above protocol is
a practical 4-round rZK without going NP reductions in the preprocessing model defined in [10].
Furthermore, this protocol can be further improved into a 3-round rZK with resettable soundness in
the preprocessing model. Specifically, the Stage-1 of above protocol is removed. The second message of
ΣOR is got by V by applying a VRF on the first message of ΣOR, the common input and the registered
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public-keys. But the practical property of such a 3-round rZK with resettable soundness relies on the
practical property of VRF that still cannot be viewed as very practical up to now.

7.2.2 Practical NIZK with random oracles in the preprocessing model

Specifically, if we work in the random oracle model then the second message of the above ΣORΣOR-
protocol can be got by requesting the random oracle in order to get a non-interactive ZK in the pre-
processing model. As ususal, in practice, the random oracle is replaced by using Hash functions. We
think such a very simple but very practical NIZK in the preprocessing model may be very attractive to
industry in practice.

How to Prevent Man-in-the-Middle Attacks: a 2-round practical ZK ID scheme in
the random oracle model with preprocessing. Note that above practical NIZK in the random
oracle model with preprocessing does not secure against man-in-the-middle attack. Specifically, a MIM
adversary can relay the NIZK message to impersonate the honest prover. To prevent the MIM attacks,
we can let the verifier firstly send a random string rV to P , and when P prepares the NIZK in the
second round, he sends rV , the common input, all public-keys(of both the verifier and the prover), and
the second message of ΣOR to the random oracle to get the second message of ΣOR.

We also remark that the 4-round CZK-CS based on any OWF that admits Σ-protocols can be DI-
RECTLY modified into a practical NIZK in the random oracle model. Specifically, we let (f(x1), f(x2))
be the common reference string. In this setting, the verifier does not any longer need to proves the
knowledge of one secret-key by using ΣOR. That is, the stage-1 is avoided. The second message in
Stage-2 (the random challenge sent by the verifier to the prover) will be generated by the prover itself
by using the random oracle. We believe that such practical NIZK in the random oracle model will be
very attractive in application and we are planning to apply for a US patent for it.
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