
Concurrent/Resettable Zero-Knowledge With Concurrent Soundness

in the Bare Public-Key Model and Its Applications

Yunlei Zhao‡

Abstract

In this paper, we present both practical and general 4-round concurrent and resettable zero-
knowledge arguments with concurrent soundness in the bare public-key (BPK) model. To our knowl-
edge, our result is the first work that achieves concurrent soundness for ZK protocols in the BPK
model and stands for the current state-of-the-art of concurrent zero-knowledge with setup assump-
tions. Since the BPK model is very simple and also very reasonable and is in fact a weak version of the
frequently used public-key infrastructure (PKI) model, which underlies any public-key cryptosystem
or digital signature scheme, we suggest that zero-knowledge protocols with simultaneous concurrent
security in the BPK model may be of independent interests and can be used as a building block
in other applications in the BPK model (e. g. secure two-party and multi-party computation with
registered public-keys). For example, we show how to use our CZK-CS protocols to achieve crypto-
graphic protocols with both concurrent player security and concurrent channel security (concurrent
non-malleability) in the BPK model.

Keywords: concurrent soundness, concurrent zero-knowledge, bare public-key (BPK) model

1 Introduction

The notion of zero-knowledge (ZK) was introduced in the seminal paper of Goldwasser, Micali and
Rackoff [46] to illustrate situations where a prover reveals nothing other than the verity of a given
statement to an even malicious verifier. Since their introduction, zero-knowledge proofs have proven
to be very useful as a building block in the construction of cryptographic protocols, especially after
Goldreich, Micali and Wigderson [45] have shown that all languages in NP admit zero-knowledge
proofs. By now, zero-knowledge has played a central role in the field of cryptography and is the
accepted methodology to define and prove security of various cryptographic tasks.

Coin-tossing is one of the first and more fundamental protocol problem in the literature [12]. In its
simplest form, the task calls for two mutually distrustful parties to generate a common random string [9].

†The updated version changes nothing in the last version, other than adding Section 7, 8, 9, 10. We remark that
in this paper concurrent coin-tossing is presented as an application of CZK-CS protocols. But the real order is that I
originally achieved concurrently non-malleable coin-tossing in a submission to Eurocrypt 2004 (that paper was not selected
by Eurocrypt04 mainly due to poor writing), but my original concurrently non-malleable coin-tossing only implies ZK and
commitments with concurrent channel security (concurrent non-malleability) but not provides concurrent player security.
It is the motivation for me to search for CZK-CS. I originally achieved 6-round general and practical CZK-CS protocols
in the original version of this report. The 4-round OWF-based general construction of CZK-CS is suggested by Lindell in
January 2004. The rZK-CS protocols with complexity leveraging under subexponential hardness assumptions are minor
modifications of our CZK-CS protocols, but we remark that before we made this observation Di Crescenzo and Ivan Visconti
informed me that they had achieved rZK-CS with superpolynomial hardness assumptions in a submission to CRYPTO04.
Their work is to appear in the CRYTPO04. We stress that we made the observation (transformation from CZK-CS into
rZK-CS) without any details of the work of Di Crescenzo and Visconti.

‡Department of Computer Science, Fudan University, Shanghai, P. R. China. ylzhao@fudan.edu.cn

1

Recent research efforts have intensively investigated efficient coin-tossing in more complicated settings.
For example, in the secure two-party computation setting, constant-round secure coin-tossing (and
accordingly, constant-round secure two-party computation by combining the results of [64, 44]) is firstly
achieved by Lindell [51]. In the “man-in-the-middle (MIM)” setting, constant-round non-malleable
coin-tossing protocol in the plain model (and accordingly, constant-round non-malleable zero-knowledge
arguments for NP and commitment schemes by combining the result of [24]) is firstly achieved by Barak
[2].

With the emergence and far and wide sweeping popularity of the Internet, much recent research
attention, initiated by Dwork, Naor and Sahai [34], has been paid to the security threats of cryptographic
protocols when they are executing concurrently in an asynchronous network setting like the Internet. In
this scenario, many concurrent executions of the same protocol take place in an asynchronous network
setting. All communication channels are assumed unauthenticated and controled by an adversary.
Honest players are assumed oblivious of each other’s existence, nor do they generally know the topology
of the network, and thus cannot coordinate their executions. However, a malicious adversary that
interacts with a number of players can schedule all the executions concurrently at its wish. There are
three security threats to be addressed for concurrent executions of a two-party cryptographic protocol
in unauthenticated and asynchronous network settings: concurrent non-malleability (channel security
threat), concurrent left-player security threat (e. g. concurrent zero-knowledge for a zero-knowledge
protocol) and concurrent right-player security threat (e. g. concurrent soundness for a zero-knowledge
protocol). We call a cryptographic protocol concurrently secure if it is immune against all the above
three kinds of security threats. In particular, concurrently secure coin-tossing protocols are named
concurrent coin-tossing in this work.

1.1 A historical view of related works

1.1.1 Related works on concurrent and resettable zero-knowledge

The study of security under concurrent composition is initiated by Dwork, Naor and Sahai in the context
of concurrent zero-knowledge [34]. Although non-constant-round black-box concurrent zero-knowledge
proofs for NP exist in the plain model under standard intractability assumptions [61, 48, 49, 60, 55],
but they cannot be constant-round in the black-box sense [14, 15]. Constant-round non-black-box
bounded concurrent zero-knowledge arguments and arguments of knowledge for NP are achieved in
[1, 5]. To achieve constant-round black-box concurrent zero-knowledge, several computatinal models
are introduced: the timing model [34, 43], the preprocessing model [31], the common reference string
model[19], and the bare public-key model [13].

The bare public-key (BPK) model is first introduced by Canetti, Goldreich, Goldwasser and Micali
[13] to achieve round-efficient resettable zero-knowledge (rZK) that is a generalization and strengthen-
ing of the notion of concurrent zero-knowledge. As pointed out by Micali and Reyzin [56], although
introduced with a specific application in mind, the BPK model applies to interactive systems in general,
regardless of their knowledge complexity. A protocol in BPK model simply assumes that all verifiers
have deposited a public key in a public file before any interaction takes place among the users. This
public file is accessible to all users at all times. Note that an adversary may deposit many (possibly in-
valid or fake) public keys in it, particularly, without even knowing corresponding secret keys or whether
such exist. That is, no trusted third party is assumed in the BPK model, the prover is not involved
in the preprocessing, and there is also no assumption on the asynchronousity of the communication
network. Consequently, the BPK model is considered a weaker setup assumption with respect to the
models proposed in [34, 43, 31, 19].

The BPK model is thus very simple, and it is in fact a weak version of the frequently used public-key

2

infrastructure (PKI) model, which underlies any public-key cryptosystem or digital signature scheme.
Despite its apparent simplicity, the BPK model is quite powerful. While cZK and rZK protocols exist
both in the standard and in the BPK models [13], only in the latter case they can be constant-round,
at least in the black box sense. Various soundness notions of cryptographic protocols in public-key
models are noted and clarified by Micali and Reyzin [56]. In public-key models, a verifier V has a
secret key SK, corresponding to its public-key PK. A malicious prover P ∗ could potentially gain some
knowledge about SK from an interaction with the verifier. This gained knowledge might help him to
convince the verifier of a false theorem in another interaction. Micali and Reyzin showed that under
standard intractability assumptions there are four distinct meaningful notions of soundness, i.e., from
weaker to stronger one-time, sequential, concurrent and resettable soundness. In this paper we focus
on concurrent soundness which roughly means, for zero-knowledge protocols, that a malicious prover
P ∗ can not convince the honest verifier V of a false statement enen P ∗ is allowed multiple interleaved
interactions with V . Micali and Reyzin [56] showed that the constant-round rZK argument in the BPK
model present in [13] and their improvement [56] enjoy sequential soundness while they conjecture that
both protocols do not satisfy concurrent soundness, thus they are not secure in an asynchronous setting
as the Internet. Three-round resettable zero-knowledge with concurrent soundness in some stronger
version of the BPK model can be found in [57, 71].

For arguments of knowledge, rZK (non-black-box) arguments of knowledge for NP is achieved by
Barak, Goldreich, Goldwasser and Lindell [4].

We remark that all the concurrent zero-knowledge protocols mentioned in this subsection are not
provably concurrent non-malleability. That is, these works do not explicitly deal with the concurrent
channel security .

1.1.2 Related works on non-malleability

Non-malleability in the “man-in-the-middle” setting is first studied by Dolve, Dwork and Naor in [32]
and there they also give firstly the CCA-2 non-malleable public-key cryptosystem, non-constant-round
(stand-alone) non-malleable zero-knowledge protocols for NP and non-constant-round (stand-alone)
non-malleable commitment schemes in the plain model under standard complexity assumptions. Their
results also imply a non-constant-round (stand-alone) non-malleable coin-tossing protocol in the plain
model. Constant-round (stand-alone) non-malleable coin-tossing protocol in the plain model is first
achieved by Barak by following the technique presented in [51] for constant-round secure coin-tossing
and using non-black-box simulation [1].

Non-malleability in the common reference string model has been extensively investigated recently.
Sahai introduced non-malleable NIZK in [62] where he shows how to construct NIZK which remains
non-malleable only as long as the number of proofs seen by any adversary is bounded. Unbounded
(concurrent) non-malleable NIZK for NP in the common reference string model is achieved by De
Santis et al. [24]. .

Non-interactive non-malleable commitment schemes in the common reference string model is achieved
by Di Crescenzo, Ishai, and Ostrovsky [29] assuming the existence of one-way functions. More efficient
constructions based on specific assumptions can be found in [30, 39]. The constructions from [29, 30, 39]
are proved secure according to a stand-alone non-malleability definition where the adversary sees one
commitment from the honest player and then tries to make its own (maliciously related) commitment.
Unbounded (concurrent) non-malleability of commitment schemes in the common reference string model
is achieved very recently by Damgard and Groth [21] where they named this notion of security reusabil-
ity.

3

1.2 Our contributions

In this paper, we define concurrent coin-tossing and show how to implement it in constant rounds in
the bare public-key (BPK) model [13] under standard intractability assumptions. We stress that the
registered public-keys in the BPK model are not used in any way to achieve an authentication scheme,
even for concurrent non-malleability where players are assumed to be honest and so the public-keys
are well-formed. In comparison with the work of Barak [2], the work of [2] is the first constant-round
stand-alone non-malleable coin-tossing protocol in the plain model (without any trusted third party or
setup assumption). The work of [2] assumes subexponential hardness assumptions and runs in at least
10 rounds since the work of [1] uses ZK universal arguments and the known ZK universal arguments
runs in 10 rounds. emploies non-black-box and complexity leveraging techniques. Our work deals with
concurrently secure coin-tossing (that implies concurrently non-malleable coin-tossing) in the BPK
model. Our work does not assume any sub-exponential hardness assumption and runs in 8 rounds. and
also does not employ non-black-box and complexity leveraging techniques in the security proofs.

A critical tool for achieving concurrent coin-tossing in the BPK model developed in this paper is
(general and practical) constant-round CZK-CS protocols.

Our concurrent coin-tossing implies concurrently secure zero-knowledge protocols, specifically constant-
round concurrent zero-knowledge argument of knowledge forNP with concurrent soundness and concur-
rent non-malleability, in the BPK model by composing our result with the robust NIZK in the common
random string model [24]. Our result also implies constant-round concurrently non-malleable commit-
ment schemes (non-malleable with respect to commitments) in the BPK model. There are two ways to
achieve constant-round concurrently non-malleable commitment schemes in the BPK model. One way
is to combine our result with the (very recently developed) reusable and non-malleable commitment
schemes in the common random string model [21]. Another way is to first commit to a value and then
use a constant-round concurrently non-malleable zero-knowledge argument of knowledge protocol to
prove knowledge of the committed value.

To our knowledge, there is no previous concurrent non-malleability result known beyond the common
reference string model. Note that in contrary to the common reference string model, where a trusted
third party is implicitly assumed besides the honest players, no trusted third party is assumed in the
BPK model. Note that non-malleability refers to the unauthenticated channel security among honest
players.

1.3 Organization

In Section 2, we present preliminaries. In section 3, we present the definitions of concurrent zero-
knowledge and concurrent soundness in the BPK model. In Section 4, we give constant-round general
and practical CZK-CS protocols in the BPK model. In Section 5, we present some further improvements
on the round-complexity and on rZK-CS. In Section 6, we define and construct general and practical
coin-tossing protocol.

2 Preliminaries

In this section, we quickly recall the major cryptographic tools used.
We use standard notations and conventions below for writing probabilistic algorithms and exper-

iments. If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on inputs
x1, x2, · · · and coins r. We let y ← A(x1, x2, · · ·) denote the experiment of picking r at random and
letting y be A(x1, x2, · · · ; r). If S is a finite set then x ← S is the operation of picking an element
uniformly from S. If α is neither an algorithm nor a set then x ← α is a simple assignment statement.

4

2.1 Σ-protocols for proving the knowledge of commitment trapdoors

Σ-protocols are first introduced by Cramer, Damgard and Schoenmakers [18]. Informally, a Σ-protocol
is itself a 3-round public-coin special honest verifier zero-knowledge protocol with special soundness in
the knowledge-extraction sense. Since its introduction, Σ-protocols have been proved a very powerful
cryptographic tool and are widely used in numerous important cryptographic applications including
digital signatures (by using the famous Fiat-Shamir methodology [40] and efficient electronic payment
systems [17]. For a good survey of Σ-protocols and their applications, readers are referred to [20, 17].

Definition 2.1 (Σ-protocol [18]) A 3-round public-coin protocol < P, V > is said to be a Σ-protocol
for relation R if the following hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.

• Special soundness. From any common input x and any pair of accepting conversations on input
x, (a, e, z) and (a, e′, z′) where e 6= e′, one can efficiently computes w such that (x,w) ∈ R. Here
a, e, z stand for the first, the second and the third message respectively.

• Special honest verifier zero-knowledge (SHVZK). There exists a polynomial-time simulator S,
which on input x and a random challenge string e, outputs an accepting conversation of the form
(a, e, z), with the same probability distribution as conversations between the honest P , V on input
x.

Definition 2.2 (trapdoor commitment scheme TC) A trapdoor commitment scheme (TC) is a
quintuple of probabilistic polynomial-time (PPT) algorithms TCGen, TCCom, TCVer, TCKeyVer and
TCFake, such that

• Completeness. ∀n, ∀v, Pr[(TCPK, TCSK) R← TCGen(1n); (c, d) R← TCCom(TCPK, v) :
TCKeyVer(TCPK, 1n) = TCVer(TCPK, c, v, d) = YES] = 1.

• Computational Binding. For all sufficiently large n and for all PPT adversaries A, the following
probability is negligible in n: Pr[(TCPK, TCSK) R← TCGen(1n); (c, v1, v2, d1, d2)

R← A(1n, TCPK) :

TCVer(TCPK, c, v1, d1) = TCVer(TCPK, c, v2, d2) = YES and v1 6= v2].

• Perfect Hiding. ∀TCPK such that TCKeyVer(TCPK, 1n) = YES and ∀v1, v2 of equal length,
the following two probability distributions are identical: [(c1, d1)

R← TCCom(TCPK, v1) : c1] and
[(c2, d2)

R← TCCom(TCPK, v2) : c2].

• trapdoorness. ∀(TCPK, TCSK) ∈ {TCGen(1n)}, ∀v1, v2 of equal length, the following two prob-
ability distributions are identical:
[(c, d1)

R← TCCom(TCPK, v1); d′2
R← TCFake(TCPK, TCSK, c, v1, d1, v2) : (c, d′2)] and

[(c, d2)
R← TCCom(TCPK, v2) : (c, d2)].

The following is a construction of trapdoor commitment scheme based on DLP intractability as-
sumption [11]: On a security parameter n, the receiver selects uniformly an n-bit prime p so that
q = (p− 1)/2 is a prime, an element g of order q in Z∗p. Then the receiver uniformly selects w in Z∗q and
sets h = gw mod p. The receiver publishes (p, q, g, h) as its public-key and keeps w as its secret-key (i. e.
the trapdoor). To commit a bit σ, the sender first checks that (p, q, g, h) is of the right form (otherwise

5

it halts announcing that the receiver is cheating), uniformly selects s ∈ Zq, and sends gshσ mod p as its
commitment.

Feige-Shamir Trapdoor Commitments
The following one-way function based (computational hiding and computational binding) trapdoor

commitment scheme is firstly introduced by Feige and Shamir [38], which is based on the zero-knowledge
proof for DHC (directed Hamiltonicity cicle) of Blum [10].

Key Generation. Let f be a one-way function, then on a security parameter n, the commitment
verifier randomly chooses x ∈ {0, 1}n and computes y = f(x). Then by using the (Cook-Levin)
NP-reduction the commitment verifier reduces the language {y|∃xs.ty = f(x)} to Hamiltonicity,
to obtain a graph G (with p(n) nodes) so that finding a Hamiltonian cycle in G is equivalent to
finding the preimage x of y, where p(n) is a positive polynomial in n. Note that the one-wayness
of f implies the difficulty of finding a Hamiltonian cycle in G. The commitment verifier published
the graph G, or equivalently the string y, as its public-key and keeps x in secret as its secret-key.
Note that, from x it is easy to generate a Hamiltonian cycle in G.

Commitments and decommitments. To commit to 0, the commitment prover chooses a random
permutation π, permutes the nodes of G, and commits to the entries of the resulting adjacency
matrix by using the one-round OWF-based perfect-binding commitment scheme defined in ?. The
commitment prover reveals the committed bit ’0’ by revealing π and the entries of the matrix.

To commit to 1, the commitment prover chooses the p(n) node clique and commits to its adjacency
matrix (which is all 1) by using the one-round OWF-based perfect-binding commitment scheme.
The commitment prover reveals the committed bit ’0’ by openning a random cycle in this matrix.

Trapdoorness. Given a Hamiltonian cycle in G, it is possible to generates commitments that are
indistinguishable from legal ones, and yet have the property that one can decommit to both 0 and
1. In particular, after committing to a random permutation of G, it is possible to decommit to
0 in the same ways. However, it is also possible to decommit to 1 by only revealing the (known)
Hamiltonian cycle in G.

We remark that since the underlying OWF-based one-round perfect-binding commitment scheme
is only computationally hiding, the above trapdoor commitment scheme is also computationaly hiding.
In the rest of this paper, we denote by FSTC the above OWF-based (both computational binding and
computational hiding) trapdoor commitment scheme.

And the following is a Σ-protocol < P, V > suggested by Schnorr [63] for proving the knowledge of
trapdoor secret-key, w, for a public-key of the above form (p, q, g, h) such that h = gw mod p:

• P chooses r at random in Zq and sends a = gr mod p to V .

• V chooses a challenge e at random in Z2t and sends it to P . Here, t is fixed such that 2t < q.

• P sends z = r + ew mod p to V , who checks that gz = ahe mod p, that p, q are prime and that
g, h have order q, and accepts iff this is the case.

The OR-proof of Σ-protocols. As shown in [18], any public-coin SHVZK protocol is itself
witness indistinguishable (WI). Although for languages that each instance has a single witness, Σ-
protocols for that languages is trivially WI, one basic construction with Σ-protocols allows a prover to
show that given two inputs x0, x1 that each of them has a single witness, he knows w such that either
(x0, w) ∈ R or (x1, w) ∈ R, BUT without revealing which is the case.

6

So we assume we are given a Σ-protocol < P, V > for R with random challenges of length t. Assume
also that (x0, x1) are common input to P , V , and that w is private input to P , where (xb, w) ∈ R for
b = 0 or 1. Roughly speaking, the idea is that we will ask the prover to complete two instances of
< P, V >, with respect to x0, x1 respectively. For xb, he can do this for real, for x1−b he will have to
fake it using the SHVZK simulator. However, if we give him a little freedom in choosing the challenges
to answer, he will be able to complete both instances. More precisely, consider the following protocol,
which we call ΣOR:

• P computes the first message ab in < P, V > , using xb, w as private inputs. P chooses e1−b at
random and runs the SHVZK simulator S on input x1−b, e1−b, let (a1−b, e1−b, z1−b) be the output.
P finally sends a0, a1 to V .

• V chooses a random t-bit string s and sends it to P .

• P sets eb = s⊕ e1−b and computes the answer zb to challenge eb using (xb, ab, eb, w) as input. He
sends (e0, z0, e1, z1) to V .

• V checks that s = e0⊕e1 and that conversations (a0, e0, zo), (a1, e1, z1) are accepting conversations
with respect to inputs x0, x1, respectively.

Theorem 2.1 [20] The protocol ΣOR above is a Σ-protocol for ROR, where ROR = {((x0, x1), w)|(x0, w) ∈
R or (x1, w) ∈ R}. Moreover, for any verifier V ∗, the probability distribution of conversations between
P and V ∗, where w is such that (xb, w) ∈ R, is independent of b. That is, ΣOR is perfectly witness
indistinguishable.

2.2 Other cryptographic tools

We proceed to present other cryptographic tools used in this paper.

Definition 2.3 (system for proof of knowledge) Let R be a binary relation and κ : N → [0, 1].
We say that a probabilistic polynomial-time (PPT) interactive machine V is a knowledge verifier for
the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x, y) ∈ R all possible
interactions of V with P on common input x and auxiliary input y are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle machine K such
that for every interactive machine P ∗, every x ∈ LR, and every y, r ∈ {0, 1}∗, machine K satisfies
the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on input x, when
interacting with the prover specified by P ∗

x,y,r (where P ∗
x,y,r denotes the strategy of P ∗ on common

input x, auxiliary input y and random-tape r). If p(x, y, r) > κ(|x|), then, on input x and with
oracle access to P ∗

x,y,r, machine K outputs a solution s ∈ R(x) within an accepted number of steps
bounded by

q(|x|)
p(x, y, r)− κ(|x|)

The oracle machine K is called a knowledge extractor.

An interactive proof system (P, V) such that V is a knowledge verifier for a relation R and P is a
machine satisfying the non-triviality condition (with respect to V and R) is called a system for proof of
knowledge for the relation R. The proof system (P, V) is a system of zero-knowledge proof of knowledge
(ZKPOK) if it is also zero-knowledge.

7

For more clarifications on the definition of proof of knowledge, readers are referred to [42]. More recent
advances of zero-knowledge arguments of knowledge can be found in [51, 5].

Definition 2.4 (witness indistinguishability WI) Let < P, V > be an interactive proof system for
a language L ∈ NP, and let RL be the fixed NP witness relation for L. That is x ∈ L if there exists
a w such that (x, w) ∈ RL. We denote by view

P (w)
V ∗(z)(x) a random variable describing the transcript of

all messages exchanged between V ∗ and P in an execution of the protocol on common input x, when P
has auxiliary input w and V ∗ has auxiliary input z. We say that < P, V > is witness indistinguisha-
bility for RL if for every PPT interactive machine V ∗, and every two sequences W 1 = {w1

x}x∈L and
W 2 = {w2

x}x∈L, so that (x, w1
x) ∈ RL and (x, w2

x) ∈ RL, the following two probability distributions are
computationally indistinguishable: {x, view

P (w1
x)

V ∗(z) }x∈L, z∈{0, 1}∗ and {x, view
P (w2

x)
V ∗(z) }x∈L, z∈{0, 1}∗.

In this paper we use 3-round public-coin witness indistinguishability proofs of knowledge (WIPOK)
for NP. Such protocols exists under the existence of one-way functions, e. g. the parallel repetitions of
Blum’s 3-round proof of knowledge for HC [?]. We remark that 2-round public-coin WI proofs for NP
do exist under the existence of one-way permutations [33].

Definition 2.5 (non-interactive zero-knowledge NIZK) Let NIP and NIV be two interactive
machines and NIV is also probabilistic polynomial-time, and let NIσLen be a positive polynomial. We
say that 〈NIP, NIV 〉 is an NIZK proof system for an NP language L, if the following conditions hold:

• Completeness. For any x ∈ L of length n, any σ of length NIσLen(n), and NP-witness w for x,
it holds that

Pr[Π R←− NIP (σ, x, w) : NIV (σ, x, Π) = YES] = 1.

• Soundness. ∀x /∈ L of length n,

Pr[σ R←− {0, 1}NIσLen(n) : ∃ Π s.t. NIV (σ, x, Π) = YES] is negligible in n.

• Zero-Knowledgeness. ∃ a PPT simulator NIS such that, ∀ sufficiently large n, ∀x ∈ L of length
n and NP-witness w for x, the following two distributions are computationally indistinguishable:

[(σ′, Π′) R←− NIS(x) : (σ′, Π′] and [σ R←− {0, 1}NIσLen(n); Π R←− NIP (σ, x, w) : (σ, Π)].

Non-interactive zero-knowledge proof systems for NP can be constructed based on any one-way per-
mutation [37]. An efficient implementation based on any one-way permutation is presented in [?] and
readers are referred to [24] for recent advances of NIZK.

Definition 2.6 (NIZK proof of knowledge [?]) An NIZK proof system 〈NIP, NIV 〉 for a lan-
guage L ∈ NP with witness relation RL (as defined above) is NIZK proof of knowledge (NIZKPOK) if
there exists a pair of PPT machines (E1, E2) and a negligible function ε such that for all sufficiently
large n:

• Reference-String Uniformity. The distribution on reference strings produced by E1(1n) has statis-
tical distance at most ε(n) from the uniform distribution on {0, 1}NIσLen(n).

• Witness Extractability. For all adversaries A, we have that Pr[ExptE
A(n) = 1] > Pr[ExptA(n) =

1]− ε(n), where the experiments ExptA(n) and ExptE
A(n) are defined as follows:

8

ExptA(n):
σ

R←− {0, 1}NIσLen(n)

(x,Π) ←− A(σ)
return NIV (x, σ,Π)

ExptE
A(n):

(σ, τ) ←− E1(1n)
(x,Π) ←− A(σ)
w ←− E2(σ, τ, x,Π)
return 1 if (x,w) ∈ RL

NIZK proofs of knowledge for NP can be constructed assuming the existence of one-way permutations
and dense secure public-key cryptosystems [?].

3 Definitions of concurrent zero-knowledge and concurrent sound-
ness in the BPK model

In this section, we present the formal definitions of concurrent zero-knowledge and concurrent soundness
in the BPK model.

Concurrent zero-knowledge in the BPK model. Let x̄ = {x1, x2, · · · , xq}, where |x1| = |x2| =
· · · = |xq| and q is a polynomial in n. Upon x̄, an adversary V ∗ in the BPK model firstly outputs
an arbitrary public-file F that includes a list of (without loss of generality) q public-keys pk1, · · · , pkq.
Then V ∗ concurrently interacts with q2 instances of the honest prover: P (xi, pkj), 1 6 i, j 6 q, and
schedules all the concurrent executions at its wish. We remark that each instance of the honest prover
uses independent random strings. Without loss of generality we also assume that messages from V ∗ are
immediately answered by the honest prover instances.

Definition 3.1 We say that a proof or argument system < P, V > for a language L in the BPK model is
black-box concurrent zero-knowledge if there exists a probabilistic polynomial-time (PPT) oracle machine
S (the simulator) such that for any polynomial q in n and for any PPT adversary V ∗, the distributions
< P, V ∗ > (x̄) and SV ∗(x̄) are computationally indistinguishable for any sequence of common inputs
x̄ = x1, x2, · · · , xq ∈ L ∩ {0, 1}n.

Concurrent soundness in the BPK model. For an honest verifier V with public-key PK
and secret-key SK, an (s, t)-concurrent malicious prover P ∗ in the BPK model, for a pair positive
polynomials (s, t), be a probabilistic t(n)-time Turing machine that, on a security parameter 1n and
PK, performs concurrently at most s(n) interactive protocols (sessions) with V as follows.

If P ∗ is already running i − 1 (0 ≤ i − 1 < s(n)) sessions, it can select on the fly a common input
xi ∈ {0, 1}n (which may be equal to xj for 1 ≤ j < i) and initiate a new session with V (SK, xi). We
note that in different sessions V uses independent random-tapes.

We then say a protocol satisfies concurrent soundness in the BPK model if for any honest verifier
V , for all positive polynomials (s, t), for all (s, t)-concurrent malicious prover P ∗, the probability that
there exists i (1 ≤ i ≤ s(n)) such that V (SK, xi) outputs “accept xi” while xi 6∈ L is negligible in n.

4 Constructions for Constant-Round Concurrent Zero-Knowledge With
Concurrent Soundness in the BPK model

In this section, we present general and practical constant-round concurrent zero-knowledge argument
of knowledge with concurrent soundness for NP in the BPK model.

9

4.1 The general construction

The general construction < P, V > is depicted in Figure 1 (page 10).

The protocol < P, V >

Key Generation. For a security parameter n, let (TCPK0, TCSK0)
R← TCGen(1n, r0),

(TCPK1, TCSK1)
R← TCGen(1n, r1), where r0 and r1 are two independent random strings used

by TCGen. (TCPK0, TCPK1) is the public-key of the verifier V . But for its secret-key, the
verifier V randomly selects a bit b

R← {0, 1} and keeps TCSKb in secret as its secret-key while
discards TCSK1−b.
The public file F in the BPK model is a collection of records (id, PKid), where
PKid = (TCPK

(id)
0 , TCPK

(id)
1) is the alleged public-key of the verifier with identity id,

Vid. The secret-key of Vid, SKid, is TCSK
(id)
b for a random bit b in {0, 1}.

Common input. An element x ∈ L∩{0, 1}n. Denote by RL the corresponding NP-relation for
L.

P private input. An NP-witness y for x ∈ L.
Stage 1. The verifier V proves the knowledge that: he knows either TCSK0 or TCSK1 with

respect to his public-key (TCPK0, TCPK1), by using the ΣOR protocol of Schnorr’s Σ-
protocol (described in Section 2.1) for proving commitment trapdoors. The witness used by
V is its secret-key TCSKb.

Stage 2. The prover P uniformly selects two independent random strings r
(0)
P

R← {0, 1}NIσLen(n)

and r
(1)
P

R← {0, 1}NIσLen(n), and for two independent random strings s(0), s(1), computes
α0 = TCCom(TCPK0, r

(0)
P , s(0)) and α1 = TCCom(TCPK1, r

(1)
P , s(1)) using the trapdoor

commitment scheme TC. Finally, the left player sends (α0, α1) to the right player.

Stage 3. The verifier V uniformly selects rV
R← {0, 1}NIσLen(n) and sends rV to P .

Stage 4. P sends r = r
(i)
P ⊕ rV to the right player for i

R←− {0, 1}.
Stage 5. Using a 3-round public-coin WIPOK for NP, P proves that either α0 or α1 commits

to r ⊕ rV . That is, P proves the knowledge of (i, r ⊕ rV , s) such that i ∈ {0, 1} and
αi = TCCom(TCPKi, r ⊕ rV , s). The witness used by P is (i, r(i)

P , s(i)) for.

Stage 6. Using r as the common input, P gives a NIZKPOK that he knows y such that (x, y) ∈
RL. a

aWe remark it is not necessarily to use NIZK proof of knowledge in Stage 6. Actually, a NIZK argument of
knowledge for NP does also work here. For example, we can adopt the robust NIZK (presented in [24]) that is
a same-string unbounded non-malleable NIZK argument of knowledge for NP. Here same-string NIZK means
that the reference string generated by the simulator of robust NIZK is a uniformly random string rather than a
pseudorandom one as usual. The same-string property can be used to simplify future security analyses.

Figure 1. A constant-round concurrent zero-knowledge argument of knowledge with concurrent
soundness for NP in the BPK model

10

We remark that the above general protocol is similar to the concurrent zero-knowledge protocol in
the timing model developed by Dwork and Naor [33]. The double commitments technique can be traced
to [58] in achieving public-key cryptography secure against chosen message attacks. This technique is
also used in other works (e. g. [25, 62, 24, 52]).

The protocol depicted in Figure 1 runs in 8 rounds. But it can be reduced into 6 rounds by
accordingly combining some rounds. Specifically, the Stage 2 and Stage 3 can be combined into the
Stage 1.

Theorem 4.1 Under Discrete Logarithm assumption and the existence of trapdoor one-way permuta-
tions and dense secure public-key cryptosystems, the protocol depicted in Figure 1 is a constant-round
concurrent zero-knowledge argument of knowledge with concurrent soundness for NP in the BPK model.

Proof. The completeness of the protocol can be easily checked. Below, we focus on the properties
of concurrent zero-knowledge and concurrent soundness.

Black-box concurrent zero-knowledge

For any adversary V ∗ described in Section 3.1, we need to construct a PPT simulator S such that the
output of SV ∗ is computationally indistinguishable from the view of V ∗ in its real concurrent interactions
with honest-prover instances.

The simulation procedure is similar to (but simpler than) the simulation procedure presented in [13]
for resettable zero-knowledge. Specifically, S works in at most q + 1 rounds, where q is the number
of public-keys registered by V ∗ in the public-key file. In each round, S either successfully gets a
simulated transcript or “breaks” a new public-key in the sense that S can extract the corresponding
secret-key TCSKb (according to the special soundness of Σ-protocol, this is achieved by rewinding
V ∗ to get two accepting conversations of Stage 1). Once a public-key is broken (that is S learns
TCSKb), then in any session with respected to this broken public-key S works as follows: S runs
accordingly just as a honest prover in Stage 1-3; Let (α0, α1) be the message sent by S in Stage 2
(that commit to two independent random values, r

(0)
P and r

(1)
P , respectively) and rV ∗ be the message

sent by V ∗ in Stage 3; In Stage 4, S runs the NIZK simulator to get a random string, denoted σ,
and sends σ to V ∗; In Stage 5, S uses (b, σ ⊕ rV ∗ , s

′) as its witness to give a WIPOK, where s′ R←
TCFake(TCPKb, TCSKb, αb, r

(b)
P , s(b), σ⊕rV ∗). Finally, S using the NIZK simulator to give a simulated

NIZK (on σ) in Stage 6.
Since S runs in at most q rounds, at during each round S also works in expected polynomial time,

it is easy to see that S also runs in expected polynomial time in toto. Below, we show that the output
of S is indistinguishable from the view of V ∗ in real interactions.

We consider four classes of transcripts: they differ according to the value sent in Stage 4 (r(i)
P ⊕ rV ∗

or σ generated by NIZK simulator), the witness used in Stage 5, the Stage-6 message (real NIZK or
simulated NIZK).

1. Stage-4 message is r
(i)
P ⊕ rV ∗ for i

R←− {0, 1}, Stage-5 witness is (αi, r
(i), s(i)) . Stage-6 message is

a real NIZK.

2. Stage-4 message is rP ⊕ rV ∗ , Stage-5 witness is (αb, rP , s
(b)
rP), where b is the secret information of

V ∗ in its secret-key TCSKb. Stage-6 message is a real NIZK.

3. Stage-4 message is σ, Stage-5 witness is (αb, σ ⊕ rV ∗ , s
′). Stage-6 message is a real NIZK.

4. Stage-4 message is σ, Stage-5 witness is (αb, σ ⊕ rV ∗ , s
′). Stage-6 message is a simulated NIZK.

11

The real transcripts are the first class. The simulator outputs the fourth class. It is easy to see that
Class 3 and Class 4 are computationally indistinguishable. Class 1 and Class 2 are computationally
indistinguishable by the witness indistinguishability of Stage 5. We note that Class 3 and Class do not
make (non-negligibly) noticeable distinguishability gap. Actually, if we adopt robust NIZK in Stage 6
as suggested in the protocol construction, the distributions of Class 2 and Class 3 are identical. The
reason is that the σ generated by the simulator of robust NIZK is uniformly distributed. This means
σ, σ ⊕ rV ∗ , rP and rP ⊕ rV ∗ are all uniformly random strings. Furthermore, according to the trapdoor
property of the trapdoor commitment scheme used, s

(b)
rP and s′ are also independent random strings.

Concurrent soundness and argument of knowledge

We first note that a computational power unbounded prover can easily convince the verifier of a
false statement since he can get the secret-keys if his computational power is unbounded. Hence the
protocol < P, V > depicted in Figure 1 constitutes an argument system rather than a proof system.

We now proceed to prove that the protocol < P, V > is concurrent soundness and argument of
knowledge. The following proof uses standard reduction and knowledge-extraction techniques . That is,
if the protocol < P, V > does not satisfy concurrent soundness in the BPK model then we will construct
a non-uniform algorithm S that breaks the discrete logarithm assumption in expected polynomial-time.

Suppose the protocol < P, V > does not satisfy concurrent soundness in the BPK model, then
according to the definition of concurrent soundness in the BPK model (described in Section 3), then in
a concurrent attack issued by an (s, t)-concurrent malicious prover P ∗ against an honest verifier V with
public-key (TCPK0, TCSK1) and secret-key TCSKb for b

R←− {0, 1}, with non-negligible probability
p(n) there exists an i, 1 6 i 6 s(n), such that V outputs “accept xi” while xi 6∈ L. Then we will construct
a non-uniform algorithm S that takes (TCPK0, TCPK1, TCSKb) as input and outputs either a witness
w such that (xi, w) ∈ RL or TCSK1−b with probability p4(n)

4s(n) in polynomial-time. For this purpose, S

has oracle access to P ∗ and plays the role of V by running V (TCPK0, TCPK1, TCSKb) to emulate
the real concurrent interactions between P ∗ and V (TCPK0, TCPK1, TCSKb).

For any i, 1 6 i 6 s(n), denote by ki ∈ {0, 1} the first component in the witness used by P ∗ in
Stage-5 of i-th session. We first have the following lemma:

Proposition 4.1 For any i, 1 6 i 6 s(n), ki is independent of b. That is, Pr[ki = b] = 1
2 , where the

probability is over the coin flips of P ∗ and V .

Proof. We can view the honest V in two parts: the first part, denoted V1, only works in Stage-1. That
is, V1 takes TCSKb as its secret input and proves that he knows one of the secret-key with respect to
the public-key (TCPK0, TCPK1) in Stage-1. Note that V1 is itself perfectly witness indistinguishable;
the second part, denote V2, works in other stages and has no secret information.

Now, suppose there exists an i, 1 6 i 6 s(n), such that ki is not independent of b, then we can
construct a PPT algorithm A that works as follows to violate the perfect witness indistinguishability
of V1: A interacts with V1 on common input (TCPK0, TCPK1) and runs P ∗ and V2 to emulate the
concurrent interactions between P ∗ and V . After the simulation, A randomly guess the “bad” i and
outputs ki as its output. Suppose P ∗ distinguishes b with probability p then A will distinguish b with
probability p/s(n), which violates the perfect WI property of V1. ¤

For future reference convenience, below we denote by Stage 5.1, 5.2 and 5.3 the first, the second
and the third message of Stage 5 in protocol < P, V > respectively, where Stage 5.2 is supposed to be a
random string. Let (E1, E2) be the pair of PPT algorithms guaranteed in the definition of NIZKPOK.
Now, consider the following algorithm SP ∗(1n, TCPK0, TCPK1, TCSKb) depicted in Figure 2 (page
22).

12

The algorithm SP ∗(1n, TCPK0, TCPK1, TCSKb)

i
R←− {1, 2, · · · , s(n)}.

Runs P ∗ and acts accordingly by running V (TCPK0, TCPK1, TCSKb) in any session other
than the i-th session. In the i-th session, denote by (α(i)

0 , α
(i)
1) the Stage-2 message of the i-th

session, S acts as follows:

• Uniformly selects rV
R← {0, 1}NIσLen(n) and sends rV to P ∗ as the Stage-3 message of the

i-th session.

• When running into the WIPOK phase (Stage 4-5) of the i-th session, denoted by r the
Stage-4 message (from P ∗) of the i-th session, S uses the knowledge-extractor of WIPOK
to extract the witness used by P ∗ in Stage-5 of the i-th session. This needs to rewind P ∗

once and such a rewinding is called the first knowledge rewinding. If the extracted value is
(ki, ti, si) such that α

(i)
ki

= TCCom(TCPKki
, ti, si) and ti = r ⊕ rV , where ti is of length

NIσLen(n) and ki ∈ {0, 1}, then S does the following:

1. runs E1 to get (σ, τ) ←− E1(1n).

2. rewinds P ∗ to the point P ∗ just sent (α(i)
0 , α

(i)
1) and sends back σ ⊕ ti to P ∗ as a new

Stage-3 message. Such a rewinding is called the major rewinding.

3. Runs P ∗ further (from the major rewinding point). When running into again the
WIPOK phase (Stage 4-5), if the Stage-4 message from P ∗ is not σ then S uses the
knowledge-extractor of WIPOK again to extract the witness used by P ∗ in this WIPOK
phase. This needs to knowledge-rewind P ∗ once more. Denote by (k′i, t

′
i, s

′
i) the witness

extracted in the second knowledge-rewinding.

4. If P ∗ successfully gives an NIZKPOK Π on σ for xi at Stage-6, S runs E2(σ, τ, xi,Π)
to get a witness w.

Figure 2. The algorithm SP ∗(1n, TCPK0, TCPK1, TCSKb)

13

First, we note that P ∗ cannot distinguish (except with statistically negligible probability) whether he
is interacting with honest verifier V or with S since the distribution of σ generated by E1 is statistically
distinguishable from the uniform distribution on {0, 1}NIσLen(n). This means that , in the concurrent
interactions between the (s, t)-concurrent malicious P ∗ and S, with the same non-negligible probability
p(n) there exists an i, 1 6 i 6 s(n), such that S outputs “accept xi” while xi 6∈ L. Furthermore,
conditioned on P ∗ always succeeds in completing its interactions with S, then Pr[ki = k′i = 1− b] = 1

4
according to the proposition 4.1. Since i is uniformly selected by S from {1, 2, · · · , s(n)}, we conclude
that with probability at least p4

4s(n) , S either get a witness w such that (xi, w) ∈ RL or two different

decommitments to α
(i)
1−b from which the secret-key TCSK1−b can be easily extracted. This contradicts to

the assumption that xi 6∈ L and discrete logarithm is hard. Thus the protocol < P, L > is concurrently
sound in the BPK model.

That the system is an argument of knowledge is immediately from the extraction procedure of S. ¤

4.2 The practical construction

We remark that by using the techniques presented in [55], the above 6-round general protocol can be
transformed into a practical protocol without going through the general NP-reductions. Specifically, for
any language that admits a Σ-protocol, we present for the same language a 6-round black-box concurrent
zero-knowledge argument of knowledge with concurrent soundness in the BPK model. Let 〈PL, VL〉 be
a Σ-protocol for a language L and denote by (p1, q, p2) be the messages exchanged between honest PL

and honest VL on a common input x ∈ L ∩ {0, 1}n, where q is suggested to be an n-bit value randomly
chosen according to some distribution. Denote by SL be the honest verifier zero-knowledge simulator of
〈PL, VL〉. We transform 〈PL, VL〉 into a protocol 〈P, V 〉 in the BPK model that is depicted in Figure 3
(page 15). The protocol 〈P, V 〉 uses the DLP-based trapdoor commitment scheme TC and we denote by
SOR the honest verifier zero-knowledge simulator of the ΣOR protocol of Schnorr’s protocol for discrete
logarithm.

14

The practical protocol 〈P, V 〉
Key Generation. For a security parameter n, let (TCPK0, TCSK0)

R← TCGen(1n, r0),
(TCPK1, TCSK1)

R← TCGen(1n, r1), where r0 and r1 are two independent random strings used
by TCGen. (TCPK0, TCPK1) is the public-key of the verifier V . But for its secret-key, the
verifier V randomly selects a bit b

R← {0, 1} and keeps TCSKb in secret as its secret-key while
discards TCSK1−b.
The public file F in the BPK model is a collection of records (id, PKid), where
PKid = (TCPK

(id)
0 , TCPK

(id)
1) is the alleged public-key of the verifier with identity id,

Vid. The secret-key of Vid, SKid, is TCSK
(id)
b for a random bit b in {0, 1}.

Common input. An element x ∈ L∩{0, 1}n. Denote by RL the corresponding NP-relation for
L.

P private input. An NP-witness y for x ∈ L.
Stage 1. The verifier V proves the knowledge that: he knows either TCSK0 or TCSK1 with

respect to his public-key (TCPK0, TCPK1), by using the ΣOR protocol of Schnorr’s Σ-
protocol (described in Section 3.1) for proving discrete logarithm. The witness used by V
is its secret-key TCSKb.

Stage 2. The prover P uniformly selects two independent random strings r
(0)
P

R← {0, 1}n

and r
(1)
P

R← {0, 1}n, and for two independent random strings s(0), s(1), computes α0 =
TCCom(TCPK0, r

(0)
P , s(0)) and α1 = TCCom(TCPK1, r

(1)
P , s(1)) using the trapdoor com-

mitment scheme TC. Finally, the prover sends (α0, α1) to the verifier.

Stage 3. The verifier V uniformly selects rV
R← {0, 1}n and sends rV to P .

Stage 4. Stage 4 includes the following three steps:

Stage 4.1. Using the simulator SOR (of the ΣOR protocol of Schnorr’s Σ-protocol) on input
(α0, α1, rV), the prover obtains a transcript (â, ê, ẑ). (Informally, here the prover uses the
simulator SOR to “pretend” that one of (α0, α1) commits to rV). Then P runs PL to compute
p1 and sends (â, p1) to V .

Stage 4.2. The verifier sends back P a random value q′ of length n.

Stage 4.3. The prover computes q = ê ⊕ q′ and p2 = PL(x, y, p1, q). P then sends (ê, ẑ, p2) to
the verifier.

Verifier’s decision The verifier accepts if and only if (â, ê, ẑ) is an accepting conversation on
(α0, α1, rV) and (p1, ê⊕ q′, p2) is an accepting conversation on input x.

Figure 3. The practical construction of zero-knowledge with concurrent player security in the BPK
model for any language that admits Σ-protocols.

We remark that the protocol depicted in Figure 3 runs in 8 rounds. But it can be reduced into 6
rounds by accordingly combining some rounds. Specifically, the Stage-2 and Stage-3 can be combined
into the Stage-1. We also remark that the protocol can be easily extended to transform any public-coin
honest verifier zero-knowledge protocol into concurrent zero-knowledge in the BPK model with three

15

additional rounds. But for simplicity, we only present the transformation starting from any Σ-protocol
which is the most often case when public-coin honest verifier zero-knowledge protocols are used in
practice.

Theorem 4.2 Under the discrete logarithm assumption and 〈PL, VL〉 is a Σ-protocol for L, the protocol
depicted in Figure 3 is a 6-round black-box concurrent zero-knowledge argument of knowledge for L with
concurrent soundness in the BPK model but without going through general NP-reductions. Furthermore,
if 〈PL, VL〉 has the property of honest verifier perfect zero-knowledge then the protocol is also concurrent
perfect zero-knowledge.

Proof (sketch).

(1) completeness.

If x ∈ L then P can always complete the proof and V accepts it.

(2) Black-box concurrent zero-knowledge.

For any adversary V ∗ described in Section 4.1.3, we need to construct a PPT simulator S such
that the output of SV ∗ is computationally indistinguishable from the view of V ∗ in its real concurrent
interactions with honest-prover instances.

The simulation procedure is similar to (but simpler than) the simulation procedure presented in
[13] for resettable zero-knowledge. Specifically, S works in at most s(n) + 1 phases, where s(n) is the
number of public-keys registered by V ∗ in the public-key file. In each phase, S either successfully gets
a simulated transcript or “breaks” a new public-key in the sense that S can extract the corresponding
secret-key TCSKb (according to the special soundness of Σ-protocol, this is achieved by rewinding V ∗

to get two different accepting conversations w. r. t. the same first message of Stage 1). Once a public-
key (TCPK0, TCPK1) is broken (that is, S learns TCSKb), then in any session with respected to this
broken public-key S works as follows:

S runs accordingly just as an honest prover in Stage 1-3. Let (α0, α1) be the message sent by S in
Stage 2 (that commit to two independent random values, r

(0)
P and r

(1)
P , respectively) and rV ∗ be the

message sent by V ∗ in Stage 3. In Stage 4, S firstly runs the honest verifier zero-knowledge simulator
of the Σ-protocol 〈PL, VL〉 to get a simulated transcript (p1, q, p2). Then in Stage 4.1, S sends (â, p1)
to V ∗. After receiving back a random value q′ from V ∗ in Stage 4.2, S sets ê = q ⊕ q′, computes ẑ on
(α0, α1, rV ∗ , â, ê) by using TCSKb as its witness, and finally sends (ê, ẑ, p2) to V ∗ in Stage 4.3.

Since S runs in at most s(n)+1 phases, and during each phase S also works in expected polynomial
time, it is easy to see that S runs in expected polynomial time in toto. Below, we show that the output
of S is indistinguishable from the view of V ∗ in real interactions.

We consider three classes of transcripts: they differ according to the (simulated or real) transcript
(â, ê, ẑ) of the ΣOR protocol of Schnorr’s Σ-protocol, and the (real or simulated) transcript (p1, q, p2) of
the Σ-protocol 〈PL, VL〉 in Stage 4 of each session.

1. Simulated (â, ê, ẑ) = SOR(α0, α1, rV ∗ , ê); real (p1, q = q′ ⊕ ê, p2) (generated by using y as the
witness).

2. Real (â, ê, ẑ) (generated by using TCSKb as the witness); real (p1, q = q′ ⊕ ê, p2) (generated by
using y as the witness).

3. Real (â, ê = q ⊕ q′, ẑ) (generated by using TCSKb as the witness) and simulated (p1, q, p2) =
SL(x, q).

16

The real transcript of concurrent interactions between V ∗ and honest prover instances is the first
class. The simulator outputs the third class. The second class is the transcript of the following mental
experiment executed between V ∗ and honest provers: In each session of the mental experiment w. r.
t. a public-key (TCPK0, TCPK1) and a common input x, the honest prover P takes both the witness
y such that (x, y) ∈ RL and the corresponding secret-key TCSKb as its auxiliary inputs. In stage 4.1,
P sends (â, p1) to V ∗. After receiving q′ from V ∗ in stage 4.2, P randomly selects ê, computes ẑ on
(α0, α1, rV ∗ , â, ê) by using TCSKb as its witness, sets q = q′ ⊕ ê and computes p2 on (x, p1, q) by using
y as the witness, and finally sends (ê, ẑ, p2) to V ∗ in stage 4.3.

We first observe that in the first class, according to the honest verifier perfect zero-knowledge
property of the ΣOR of Schnorr’s protocol for proving discrete logarithms, q is also truly random. In
other words, upon seeing the simulated value â, V ∗ cannot in any way choose the q′ dependently on
ê. For the same reason, in the third class, ê is also at least pseudorandom. Note that in the second
class, both q and ê are truly random. Then, by using standard hybrid techniques, it is easy to see that
Class 1 and Class 2 are identical, and Class 3 and Class 2 are also indistinguishable. Furthermore, if
〈PL, VL〉 has the property of honest verifier perfect zero-knowledge, then Class 3 and Class 2 are also
identical. This means that in this case the protocol presented in Figure 1 is black-box concurrent perfect
zero-knowledge.

(3) Concurrent soundness and argument of knowledge.

We first note that a computational power unbounded prover can easily convince the verifier of a
false statement since he can extract the secret-keys if his computational power is unbounded. Hence
the protocol 〈P, V 〉 depicted in Figure 3 constitutes an argument system rather than a proof system.

We now proceed to prove that the protocol 〈P, V 〉 satisfies concurrent soundness in the BPK model.
The following proof uses standard reduction and knowledge-extraction techniques. Specifically, suppose
the protocol 〈P, V 〉 does not satisfy concurrent soundness in the BPK model, then according to the
definition of concurrent soundness in the BPK model (described in Section 4.1.2), in a concurrent
attack issued by an (s, t)-concurrent malicious prover P ∗ against an honest verifier V with public-key
(TCPK0, TCSK1) and secret-key TCSKb for b

R←− {0, 1}, with non-negligible probability p(n) there
exists a k, 1 6 k 6 s(n), such that V outputs “accept xk” while xk 6∈ L. Then we will construct
an algorithm S that takes a public-key TCPK as input and outputs either a witness for xk ∈ L or
the corresponding TCSK with probability at least (p(n))4

4s(n) in polynomial-time, which breaks either the
assumption that xk 6∈ L or the discrete logarithm hardness assumption. The algorithm S is depicted in
Figure 4 (page 18).

According to the description of S in Figure 4, conditioned on P ∗ always succeeds in completing its
interactions with S, then both in the interactions prior to the major rewinding and in the interactions
posterior to the major rewinding of the rewound i-th session there are two cases to be considered:

1. S gets two different accepting conversations of the Σ-protocol 〈PL, VL〉 on input xi with respect to
the same Stage 4.1 message (specifically, the same p1 message). According to the special soundness
property of Σ-protocol, this means a witness of xi ∈ L can be efficiently extracted.

2. S gets two different accepting conversations of the Σ-protocol ΣOR on input (α0, α1, rV) with
respect to the same Stage 4.1 message (specifically, the same â message). According to the special
soundness property of Σ-protocol, this means that a witness of the form (s, j) can be efficiently
extracted, where j ∈ {0, 1} and αj = TCCom(TCPKj , rV , s).

17

The algorithm SP ∗(1n, TCPK)

(TCPK ′, TCSK ′) R←− TCGen(1n).
b

R←− {0, 1}.
Set TCPKb be TCPK ′, TCSKb be TCSK ′ and TCPK1−b be TCPK. S publishes
(TCPK0, TCPK1) as its public-key and keeps TCSKb = TCSK ′ in secret as its secret-key.

i
R←− {1, 2, · · · , s(n)}.

S runs P ∗ and acts accordingly by running V (TCPK0, TCPK1, TCSKb) in any session other
than the i-th session. In the i-th session, S acts as follows:

• In the i-th session, S acts just as the honest verifier V (TCPK0, TCPK1, TCSKb) does until
he receives the Stage-2 message (α0, α1) from P ∗.

• k := 1.

• While k ≤ 2 do:

– Uniformly selects rV
R←− {0, 1}n and sends rV to P ∗ as the Stage-3 message.

– Acts accordingly further by running V (TCPK0, TCPK1, TCSKb) until receiving the
last Stage 4.3 message from P ∗. Denote by (â, p1) the Stage 4.1 message from P ∗.

– After receiving the Stage 4.3 message from P ∗, S rewinds P ∗ to the point that P ∗ just
sent Stage 4.1 message and sends back a new random Stage 4.2 message to P ∗. Such
a rewinding is called the knowledge rewinding.

– Runs P ∗ further from the above knowledge rewinding point until receiving back again
a Stage-4.3 message.

– k := k+1. This means that S will rewind P ∗ to the point that P ∗ just sent the Stage-2
message (α0, α1) and send back a new random Stage-3 message. Such a rewinding is
called the major rewinding.

Figure 4. The algorithm SP ∗(1n, TCPK)

18

Firstly, we note that conditioned on xi 6∈ L the first case above will not appear in either the
interactions prior to the major rewinding or the interactions posterior to the major rewinding. For
the second case above, since b is chosen randomly in {0, 1}, and the ΣOR protocol used in Stage-1
is perfect witness indistinguishable, conditioned on xi 6∈ L and P ∗ always succeeds in completing its
interactions with S, the probability of j = 1 − b in both the interactions prior to the major rewinding
and the interactions posterior to the major rewinding is 1

4 . Note that TCPK1−b = TCPK and from
two different decommitments of α1−b the corresponding secret-key TCSK can be easily extracted.

Since P ∗ cannot distinguish whether he is interacting with honest verifier or S, suppose the protocol
does not satisfy concurrent soundness then in the concurrent interactions between the (s, t)-concurrent
malicious P ∗ and S, with the same non-negligible probability p(n) there exists an k, 1 6 k 6 s(n), such
that S outputs “accept xk” while xk 6∈ L. Then since i is uniformly selected by S from {1, 2, · · · , s(n)},
we conclude that with probability at least (p(n))4

4s(n) , S gets either a witness w such that (xk, w) ∈ RL or
two different decommitments to α1−b from which the secret-key TCSK1−b can be easily extracted. This
contradicts to the assumption that xk 6∈ L and discrete logarithm is hard. Thus the protocol < P, L >
is concurrently sound in the BPK model.

That the system is an argument of knowledge is immediate from the extraction procedure of S. ¤

4.3 4-Round Practical Construction

We remark that the 6-round practical protocol above can be easily improved into a 4-round protocol.
Specifically, for x ∈ L that L admits Σ-protocols, the 4-round practical protocol is the following: I

In Stage-1 the verifier uses ΣOR-protocol to prove that he knows one of secret-key with respect to
the public-key pair.

In Stage-2, the prover uses ΣOR-protocol to prove that he knows either a witness to x ∈ L or one of
secret-key with respect to the public-key pair.

The first and the second message of Stage-2 can be combined into Stage-1, and so the above protocol
can be implemented in 4-round.

Furthermore, and more importantly, as we shall see in next subsection the 4-round practical protocol
can be based on any one-way function that admits Σ-protocols by using the techniques presented in
next section.

5 Improvements

5.1 4-round OWF-based CZK-CS

Now, we present the general construction that is a 4-round (that is optimal unless the language con-
sidered is trivial) black-box concurrent zero-knowledge argument of knowledge for NP with concurrent
soundness in the BPK model under the minimal hardness assumption of one-way functions 1. As usual,
the general construction goes through NP-reductions. The general protocol is depicted in Figure 5
(page 20)2.

1This general construction is suggested by Lindell in January 2004.
2The general protocol is actually the Feige-Shamir constant-round zero-knowledge protocol for NP [38] with a bare

public-key model added. But, the version of Feige-Shamir protocol used in our work is the one appearing in Feige’s Ph.D.
thesis [35] that is actually different to the one appearing in CRYPTO’89. This general construction is suggested by Yehuda
Lindell although he declined the coauthorship of this work. We remark that both the practical construction and the above
6-round general protocol are developed independently of the Ph.D. thesis version of Feige-Shamir protocol.

19

The general protocol 〈P, V 〉
Key Generation. Let f be a one-way function. For a security parameter n, each verifier
randomly selects two elements x1, x2 from {0, 1}n, computes y1 = f(x1) and y2 = f(x2), publishes
(y1, y2) as its public-key. For its secret-key, the verifier randomly selects a bit b

R← {0, 1} and
keeps xb in secret as its secret-key while discards x1−b.

Common input. An element x ∈ L∩{0, 1}n. Denote by RL the corresponding NP-relation for
L.

P private input. An NP-witness w for x ∈ L.

Stage 1. V uses a 3-round public-coin witness indistinguishability proof of knowledge (WIPOK)
system for NP to prove that it knows a preimage to one of y1, y2. The witness used by V
in this stage is xb.

Stage 2. P uses a 3-round public-coin WIPOK system for NP to prove either that it knows w
s.t. (x,w) ∈ R or that it knows a preimages to one of y1, y2. The witness used by P in this
stage is w.

Figure 5. The general construction of zero-knowledge with concurrent player security for NP in the
BPK model.

The protocol depicted in Figure 5 runs in 6-round, but it can be reduced into 4-round that is optimal
according to the lower-bound proved in [56] on zero-knowledge with concurrent soundness in the BPK
model. Note that the hardness assumption assumed in the general construction, i. e. the existence of
one-way functions, is also minimal. But the general protocol goes through general NP-reductions in
both Stage-1 and Stage-2 and so it is not a practical solution.

Theorem 5.1 Assuming the existence of one-way functions, the protocol 〈P, V 〉 depicted in Figure 5
is a 4-round (that is optimal) black-box concurrent zero-knowledge argument of knowledge for NP that
enjoys concurrent soundness in the BPK model.

Proof (sketch).

(1) completeness.

If x ∈ L then P can always complete the proof and V accepts it.

(2) Black-box concurrent zero-knowledge.

For any adversary V ∗ described in Section 4.1.3, the simulator S works in at most s(n) + 1 phases
with black-box access to V ∗, where s(n) is the number of public-keys registered by V ∗ in the public-key
file. In each phase, S either successfully gets a simulated transcript or “breaks” a new public-key in
the sense that S can extract the corresponding secret-key (this is achieved by rewinding V ∗ to get
two different accepting conversations of Stage-1 w. r. t. the same first message of Stage 1). Once a
public-key (y0, y1) is broken (that is, S learns xb), then in any session with respected to this broken
public-key S works as follows: S runs accordingly just as an honest prover in Stage-1 but in Stage-2 he
uses xb as the witness to give the WIPOK.

20

Since S runs in at most s(n)+1 phases, and during each phase S also works in expected polynomial
time, it is easy to see that S runs in expected polynomial time in toto.

The only difference between the simulated transcript generated by S and the real transcript of
concurrent interactions between V ∗ and honest prover instances is that in the simulated transcript S uses
the corresponding secret-key as the witness in Stage-2 of each session with respect to a broken public-key,
while in the real transcript an honest prover uses the real NP-witness of RL as the witness in Stage-2 of
each session. By the fact that witness indistinguishability is concurrently composable, using standard
hybrid techniques it is easy to see that the simulated transcript is computational indistinguishable from
the real transcript.

(3) Concurrent soundness and argument of knowledge.

We first note that a computational power unbounded prover can easily convince the verifier of a
false statement since he can extract the secret-keys if his computational power is unbounded. Hence
the protocol 〈P, V 〉 depicted in Figure 6 constitutes an argument system rather than a proof system.

Suppose the protocol 〈P, V 〉 does not satisfy concurrent soundness in the BPK model. According to
the definition of concurrent soundness in the BPK model (described in Section 4.1.2), this means that in
a concurrent attack issued by an (s, t)-concurrent malicious prover P ∗ against an honest verifier V with
public-key (y0, y1) and secret-key xb for b

R←− {0, 1}, with non-negligible probability p(n) there exists a
k, 1 6 k 6 s(n), such that V outputs “accept xk” while xk 6∈ L. Then we will construct an algorithm
S that takes a value y as input and outputs either a witness for xk ∈ L or a preimage x to y such that
y = f(x) with probability at least (p(n))4

4s(n) in polynomial-time, which breaks either the assumption that
xk 6∈ L or the hardness assumption of one-way functions.

The algorithm S is depicted in Figure 6 (page 21). For future reference convenience, we denote by
Stage-2.1, 2.2, 2.3 the first, second, third message of Stage-2 respectively, where Stage-2.2 message is
assumed to be a random string in {0, 1}n.

21

The algorithm SP ∗(1n, y)

Compute y′ = f(x′) for x′ R←− {0, 1}n.
b

R←− {0, 1}.
Set yb be y′, xb be x′ and y1−b be y. S publishes (y0, y1) as its public-key and keeps xb = x′ in
secret as its secret-key.

i
R←− {1, 2, · · · , s(n)}.

S runs P ∗ and acts accordingly by running V (y0, y1, xb) in any session other than the i-th session.
In the i-th session, S acts as follows:

• In the i-th session, S acts just as the honest verifier V (y0, y1, yb) until he receives the Stage-
2.3 message from P ∗.

• S rewinds P ∗ to the point that P ∗ just sent Stage-2.1 message and sends back a new random
Stage-2.2 message to P ∗.

• Runs P ∗ further from the above rewinding point until receiving back again a Stage-4.3
message.

Figure 6. The algorithm SP ∗(1n, y)

According to the proof of knowledge property of Stage-2, conditioned on P ∗ always succeeds in
completing its interactions with S, S gets either a witness for xi ∈ L or a preimage to one of (y0, y1).
Furthermore, conditioned on xi 6∈ L, according to the witness indistinguishability property of Stage-1,
S will get a preimage to y1−b = y with probability one half except for negligibly small gaps.

Since we assume that the protocol depicted in Figure 5 does not satisfy concurrent soundness, it
means that in the concurrent interactions between the (s, t)-concurrent malicious P ∗ and S, with non-
negligible probability p(n) there exists an k, 1 6 k 6 s(n), such that S outputs “accept xk” while
xk 6∈ L. Then since i is uniformly selected by S from {1, 2, · · · , s(n)}, we conclude that with probability
at least (p(n))2

2s(n) (except for negligibly small gaps), S gets either a witness w such that (xk, w) ∈ RL or
a preimage to y1−b = y, which contradicts to the assumption that xk 6∈ L and the one-wayness of f .
Thus the protocol < P, L > is concurrently sound in the BPK model.

That the system is an argument of knowledge is immediate from the extraction procedure of S. ¤

22

5.2 How to Get rZK with Concurrent Soundness in the BPK Model

We remark that our 4-round (both general and practical) CZK-CS protocols can be easily modified into
rZK-CS protocols by using the complexity leveraging technique introduced in [13] 3.

Specifically, the modifications are the following:
Modifications of V :

1. On the top of the 4-round CZK-CS, V firstly commits to a random string rV of length n by
using trapdoor commitments (specifically, using the DLP-based trapdoor commitment scheme
in practical rZK-CS, and using the Feige-Shamir OWF-based trapdoor commitment scheme in
general rZK-CS). Note that for trapdoor commitments the prover needs to firstly send a trapdoor
public-key to V .

2. In the Stage-2 of the 4-round CZK-CS which is itself a 3-round public-coin WI, the second message
of it (which is assumed to be a random string sent by V) is replaced by rV . That is, V just
decommits the trapdoor commitment in the second round of Stage-2.

Modifications of P :
All randomness used by P is computed by applying a PRF on the transcript up to know.
Complexity-Leverage Used
Note that the public-key of V includes a pair of y0, y1 which are in the range of the OWF f on

inputs of length n. We let f has a larger security parameter than the security parameter of the trapdoor
commitment scheme. Specifically, suppose the system security parameter is K which is also the security
parameter of f , we let the security parameter of the trapdoor commitment is k = Kε, ε > 0. We also
assumes that the one-wayness of f against circuits of size 2Kε

. This guarantee that we can use time 2k

to find the corresponding secret-key of the trapdoor commitment public-key but are still infeasible to
break the one-wayness of f .

Comment on Round-Complexity
In above description, the modified rZK-CS protocol runs in 5-round. But if we allow provers also can

publish public-keys in the public-key file, then the trapdoor commitment public-key can be deposited
before the interactions take place. Note that in normal BPK model, only the verifiers publish public-
keys. But, the BPK model does not exclude the case that provers also publish public-keys. In this
general BPK model, our rZK-CS protocols actually run in 4-round that is optimal. Note that rZK-RS
does not exist even in the BPK model.

5.2.1 Proof Outlines

The standard proof techniques for rZK presented in [13] can be directly applied here to show that the
modified protocol is rZK.

For concurrent soundness, we remark that by using complexity-leveraging techniques, the proof
procedure is almost the same of concurrent soundness of the original 4-round CZK-CS and is thus much
simpler than that presented in [13].

3We remark that before we made this observation, we were informed from Di Crescenzo and Ivan Visconti that
they had achieved rZK-CS protocol in the BPK model under superpolynomial hardness assumptions in a submission
to CRYPTO2004. The work of Di Crescenzo et al. on rZK-CS is to appear in CRYPTO04. But, we stress that we make
this observation without any details of the work of Di Crescenzo et al. on rZK-CS. Actually, we do not know any details
of that work up to now. Our rZK-CS protocols are the minor modification of our CZK-CS, and although our protocols are
under subexponential hardness assumption but it may be the most practical ones. Since we do not know any details of the
work of Di Crescenzo et al, we cannot give comparisons between their protocols and our protocols at the current stage.

23

Specifically, using time 2k the honest verifier can extracts the trapdoor commitment secret-key and
thus can decommit in Stage-2 at its wish. This means that once the honest verifier get the trapdoor
commitment secret-key, then the same proof procedure can be directly used here to show concurrent
soundness of the modified protocol. We remark that in the sequential soundness proof of [13, 56], the
simulator also needs to generate simulated WIPOK which also takes time exponentially in k by using
complexity-leveraging. But in our proof, the simulator does not need complexity-leveraging in this
simulation stage and so is simpler.

5.3 Practical rZK with Secret-Keys in Preprocessing Model

Zero-knowledge with secret-keys is recently studied by Cramer and Damgard in TCC04. The philosophy
of ZK with secret-keys is that what can get from honest prover can also be computed by the verifier
himself from his secret-key corresponding the public-key.

Our practical CZK-CS can be also modified into practical rZK with registered public-keys.

5.3.1 4-round practical rZK with verifiable public-keys

For any OWF that admits Σ-protocol, e. g. DLP, RSA et al, each verifier publishes a public-key such
that the existence of the corresponding secret-key can be publicly verified. That is, in this model, the
verifier does not need to give WIPOK for the knowledge of such secret-keys. In practice, the existence
of secret-keys can be verified by an authority like a CA, or the verifier ZKPOK to CA the existence of
secret-keys. After such ZKPOKS, the CA gives a certificate that the secret-key exists.

The prover also has a public-key for a trapdoor commitment scheme. For a language that admits
Σ-protocol, the protocol works as follows:

Stage-1. 1. V sends TC(rl) for a random string rl to P .
Stage-2: Using the ΣOR-protocol, P proves that he knows either a witness for the common input or

the secret-key of the public-key of the verifier. We remark that the second message of the ΣOR-protocol
(which is assumed to be random string sent from V to P) is the random string rl committed in Stage-1.

By using standard complexity-leveraging techniques, it is easy to see that the above protocol is
a practical 4-round rZK without going NP reductions in the preprocessing model defined in [13].
Furthermore, this protocol can be further improved into a 3-round rZK with resettable soundness in
the preprocessing model. Specifically, the Stage-1 of above protocol is removed. The second message of
ΣOR is got by V by applying a VRF on the first message of ΣOR, the common input and the registered
public-keys. But the practical property of such a 3-round rZK with resettable soundness relies on the
practical property of VRF that still cannot be viewed as very practical up to now.

5.3.2 Practical NIZK with random oracles in the preprocessing model

Specifically, if we work in the random oracle model then the second message of the above ΣORΣOR-
protocol can be got by requesting the random oracle in order to get a non-interactive ZK in the pre-
processing model. As ususal, in practice, the random oracle is replaced by using Hash functions. We
think such a very simple but very practical NIZK in the preprocessing model may be very attractive to
industry in practice.

How to Prevent Man-in-the-Middle Attacks: a 2-round practical ZK ID scheme in
the random oracle model with preprocessing. Note that above practical NIZK in the random
oracle model with preprocessing does not secure against man-in-the-middle attack. Specifically, a MIM
adversary can relay the NIZK message to impersonate the honest prover. To prevent the MIM attacks,
one way is to include a time-tag in the NIZK message such that the random get from the random oracle
is got not only on the common input, the public-key, and the first message of ΣOR but also on the

24

time tag; Another way is that we can let the verifier firstly send a random string rV to P , and when
P prepares the NIZK in the second round, he sends rV , the common input, all public-keys(of both the
verifier and the prover), and the second message of ΣOR to the random oracle to get the second message
of ΣOR.

We also remark that the 4-round CZK-CS based on any OWF that admits Σ-protocols can be DI-
RECTLY modified into a practical NIZK in the random oracle model. Specifically, we let (f(x1), f(x2))
be the common reference string. In this setting, the verifier does not any longer need to proves the
knowledge of one secret-key by using ΣOR. That is, the stage-1 is avoided. The second message in
Stage-2 (the random challenge sent by the verifier to the prover) will be generated by the prover itself
by using the random oracle. We believe that such practical NIZK in the random oracle model will be
very attractive in application and we are planning to apply for a US patent for it.

6 Cryptographic Protocols with both Concurrent Player Security
and Concurrent Channel Security

In this section, we present a major application of our CZK-CS protocol: both OWF-based general
and DLP-based practical 5-round concurrent coin-tossing protocols in the BPK model that also implies
constant-round ZK and commitments with both concurrent player security and concurrent channel se-
curity (concurrent non-malleability) in the BPK model. Note that previous concurrent non-malleability
result only is achieved in the common random string model and coin-tossing is one of the first and more
fundamental problem in the literature [12].

6.1 Definition of Concurrent Coin-Tossing

In this section we formally define concurrently secure coin-tossing, which we name it concurrent coin-
tossing CCT. Note that, according to discussions presented in Introduction, a two party protocol <
L,R > is a concurrent coin-tossing protocol if it satisfies three kinds of concurrent security requirements
(to be addressed in detail in the following subsections): the concurrent security of unauthenticated
communication channels (concurrent non-malleability), the concurrent security of left-players, and the
concurrent security of right-players. Accordingly, the approach to the definition of concurrent coin-
tossing is as follows: we first define the concurrent non-malleability of coin-tossing, and then define
the concurrent player security of coin-tossing, finally a coin-tossing protocol is defined to be concurrent
coin-tossing if it satisfies both the concurrent non-malleability and the concurrent player security.

6.1.1 Model and basic terminology of concurrent non-malleability

The concept of non-malleability is introduced by Dolve, Dwork and Naor [32] to avoid “man-in-the-
middle” attacks. In the normal “man-in-the-middle setting” of two-party protocol < L,R >, non-
malleability refers to the unauthenticated channel security between two honest players, L (the left
player) and R (the right player), in a stand-alone execution of the protocol. In this paper we consider
the concurrent version of the ”man-in-the-middle setting” of two-party protocol, denoted CMIM, where
polynomially many concurrent executions of the same protocol < L, R > take place in an asynchro-
nous setting (say, on the Internet) and all the unauthenticated communication channels (among all the
concurrently executing instances of < L, R >) are controlled by a probabilistic polynomial-time (PPT)
adversary A. This means that the left players cannot directly communicate with the right players since
all communication messages are done through the adversary. Thus, we can divide the polynomially
many concurrent executions of the protocol < L, R > in the CMIM setting into two parts: the left
part of CMIM, in which the adversary plays the role of right players and concurrently interacts with

25

polynomially many left players; and the right part of CMIM, in which the adversary plays the role of
left players and concurrently runs with polynomially many right players. We call an adversary s(n)-
adversary if the adversary involves at most s(n) concurrent sessions in each part of the CMIM setting,
where n is a security parameter and s(·) is a positive polynomial. The adversary A (controlling the
scheduling of messages in both parts of CMIM) can decide to simply relay the messages of each left
player in the left part to the corresponding right player in the right part. But it can also decide to block,
delay, divert, or change messages arbitrarily at its wish. The CMIM setting with a PPT s(n)-adversary
can be depicted in Figure 7 (page 26) 4 :

L1

L2

L3

...

Ls(n)

¹¸

º·
A

R1

R2

R3

...

Rs(n)

Q
Q

Q
Q

Q
QQ

PPPPPP

´
´

´
´

´́

´
´

´
´

´
´

´́

³³³³³³³³

Q
Q

Q
Q

Q
Q

QQ

Figure 7. CMIM setting

In the CMIM setting, there are two extreme strategies that A can always use. One strategy is
the relaying strategy in which the only thing A does is relay messages between each communicating
pair < Li, Ri >, 1 ≤ i ≤ s(n). In this case A is transparent. The other extreme strategy is the
blocking strategy in which A plays its role in each session of one part of the CMIM setting completely
independent of all the sessions running concurrently in another part of the CMIM setting. Since all
the communication channels in the CMIM setting are unauthenticated, regardless of the protocol it
is impossible to prevent the adversary from using one of the two strategies. Intuitively, the goal in
designing protocols for the CMIM setting, is to design protocols that force A to use one of these two
extreme strategies (or such that it could not be advantageous to A to use any other strategies).

Now, we are ready for a formal definition of concurrently non-malleable coin-tossing (CNMCT) in
the CMIM setting. In the following definition we have assumed, without loss of generality, that the
view of an adversary in the CMIM setting includes the outputs of all concurrent sessions.

Definition 6.1 (black-box concurrently non-malleable coin-tossing CNMCT) Let Π =< L, R >
be a two-party protocol. We say that Π is a (black-box) concurrently non-malleable coin-tossing protocol
in the CMIM setting if there exists a probabilistic (expected) polynomial-time algorithm S such that for
any PPT s(n)-adversary A in the CMIM setting, the following holds:

• Simulatability. let SL = {S(1)
L , S

(2)
L , · · · , S

s(n)
L } and SR = {S(1)

R , S
(2)
R , · · · , S

s(n)
R } be two sets of

random strings, each set containing s(n) random strings. The output of SA(SL, SR) is computa-
tionally indistinguishable from the view of A in the real concurrent executions of Π in the CMIM
setting. Here, the view of A is a random variable describing the random tape of A, all the mes-
sages sent by honest players, and the outputs of all concurrent sessions running in both parts of
the CMIM setting. We remark that for protocols in the BPK model, the adversary’s view also
includes the public-key file.

4In general, the number of concurrent sessions in the left part of CMIM is not necessarily equal to the number of
concurrent sessions in the right part of CMIM, but here for simplicity and wlog we assume they are identical.

26

• Strategy-restricted and predefinable randomness. Denote by RL = {R(1)
L , R

(2)
L , · · · , R

s(n)
L } the set

of outputs (recorded in the output of SA(SL, SR)) for all concurrent sessions between S and A in
the left part of CMIM and denote by RR = {R(1)

R , R
(2)
R , · · · , R

s(n)
R } the set of outputs (recorded in

the output of S) for all concurrent sessions between S and A in the right part of CMIM. Then,
with overwhelming probability (except for negligibly small gaps), RL = SL and for each R

(i)
R in RR

(1 ≤ i ≤ s(n)) either R
(i)
R = S

(i)
R or R

(i)
R ∈ RL. Furthermore, with overwhelming probability for

each R
(j)
L in RL, 1 ≤ j ≤ s(n), R

(j)
L appears at most once in RR.

We remark that condition 3 in above definition of CNMCT is necessary to achieve concurrently
non-malleable zero-knowledge without common random string (by combining a CNMCT protocol with
the concurrently non-malleable NIZK in the common random string model [24]).

Motivations for concurrent non-malleability. Consider the concurrent executions of a zero-
knowledge protocol in a distributed clients/server setting over Internet in which the client is implemented
as the prover and the server is implemented as the verifier. We remark that this setting is widely used
in practice, especially in E-commerce over Internet. At any time there may be numerous instances of
the zero-knowledge protocol executing concurrently between many clients and the server. Since all the
communication channels are unauthenticated, the channel security in suchlike settings is a real threat
and concurrently non-malleable zero-knowledge protocols are really desirable in practice.

Another motivation example as stated in [21] is fair contract bidding, which can be implemented
by having each participant commit to his bid first, after which commitments can be opened and the
winner is determined. Consider the concurrent executions of the commitment scheme over Internet. We
note that the non-malleable commitment schemes [29, 30, 39] in the common reference string model
only guarantee that after seeing one commitment from the honest player an adversary is infeasible to
generate another maliciously related commitment. Such a (stand-alone) non-malleability security does
not suffice for secure fair contract bidding in the concurrent setting. For example, the security proofs
of [29, 30] break down in the concurrent setting [21] and Damgard and Groth [21] show that there do
exist commitment schemes that are stand-alone non-malleable but not concurrently non-malleable.

6.1.2 Concurrent player security

In this subsection, we present the concurrent left/right player security of a coin-tossing protocol < L, R >
in the concurrent setting.

The concurrent left player security essentially requires that for any PPT adversary that controls all
the right-players and concurrently interacts with polynomially many instances of a left-player, if the left-
player is honest then with overwhelming probability the outputs of all the concurrent sessions (between
the adversary and polynomially many instances of the honest left-player) are completely independent
random strings. Furthermore, in this paper we ask for a much more stronger left-player security in the
knowledge-extraction sense that the adversary’s view can be simulated by a simulator with oracle access
to the adversary and the simulator can also uniformly set the simulated outputs (between the simulator
and the adversary) at its wish.

Accordingly, the concurrent right player security essentially requires that for any PPT adversary
that controls all the left-players and concurrently interacts with polynomially many instances of a
right-player, if the right-player is honest then with overwhelming probability the outputs of all the
concurrent sessions (between the adversary and polynomially many instances of the honest right-player)
are completely independent random strings. Furthermore, the adversary’s view can be simulated by a
simulator with oracle access to the adversary and the simulator can also uniformly set the simulated
outputs (between the simulator and the adversary) at its wish.

27

Definition 6.2 (black-box concurrent player security of coin-tossing) Let Π =< L, R > be a
coin-tossing protocol. On a security parameter n, we call an adversary a s(n)-concurrent adversary if
it is involved in at most s(n) concurrent sessions between it and honest-player instances, where s(n) is
a positive polynomial in n. Let RS = {r(1)

S , r
(2)
S , · · · , r

(s(n))
S } be a set of s(n) random strings of length n

each. We say that Π satisfies black-box concurrent left-player (respectively, right-player) security if there
exists a probabilistic (expected) polynomial-time algorithm S such that for any PPT s(n)-concurrent
adversary A that plays the role of right-players (respectively, left-players) and concurrently interacts
with polynomially many instances of the honest left-player (respectively, the right-player) in at most
s(n) sessions, the following holds:

• Simulatability. The output of SA(RS) is computationally indistinguishable from the view of A
in its real concurrent executions (that is a random variable describing the random tape of A, all
the messages sent by honest-player instances, and the outputs of all concurrent sessions between
A and the honest-player instances). We remark that for concurrent right-player security in the
BPK model, the view of the adversary playing the role of left-player also includes the public-key
file generated by honest right-players.

• Predefinable Ramdomness. With overwhelming probability, the simulated outputs of S are com-
pletely independent random strings and can be uniformly set by S at its wish. Specifically, denote
by RA = {r(1)

A , r
(2)
A , · · · , r

(s(n))
A } the outputs (recorded in the output of SA(RS)) of all the concur-

rent sessions between S and A, then with overwhelming probability (except for at most negligible
probabilities) RA = RS.

6.1.3 Comments and observations on the definition of concurrent coin-tossing

Now we are ready to present the definition of concurrent coin-tossing.

Definition 6.3 (black-box concurrent coin-tossing CCT) A two-party protocol Π =< L, R > is
called a black-box concurrent coin-tossing protocol if it is black-box concurrently non-malleable and satis-
fies both the black-box concurrent left-player security and the black-box concurrent right-player security.

We first note that from the definition of concurrently non-malleable coin-tossing (Definition 2.1) it
can be easily seen that a concurrently non-malleable coin-tossing protocol in the plain model (without
any trusted third party or setup assumptions) is actually also a concurrent coin-tossing protocol in the
plain model. That is, the definition of concurrent non-malleability of coin-tossing in the plain model
actually also implies both the concurrent left-player security and the concurrent right-player security.
The reason is that in the plain model the adversary controlling all the communication channels in
the CMIM setting (as defined in Definition 2.1) can do what the adversary controlling either all the
left-players or all the right-players (as defined in Definition 2.2) does. But this observation does not
hold in the BPK model. In the BPK model, the left/right player security of a cryptographic two-party
protocol may rely on the registered public-keys and the corresponding secret-keys that keep secret to the
communication channels. For this reason, we treat concurrent non-malleability and concurrent player
security respectively and adopt here the full version of concurrent coin-tossing definition that can be
applied to both the plain model and computational models with registered public-keys or other setup
assumptions.

Another observation is that the black-box concurrent left-player security of coin-tossing actually
implies black-box concurrent zero-knowledge by composing a black-box concurrent coin-tossing protocol
with a non-interactive zero-knowledge (NIZK) protocol in the common random-string model, where the
left-player plays the role of zero-knowledge prover and the right-player plays the role of verifier. Since

28

any black-box concurrent zero-knowledge protocol for a language outside BPP in the plain model runs at
least Ω̃(log n) rounds [14, 15], and since NIZK exists for NP in the common random-string model under
the existence of trapdoor one-way permutations[37], so we conclude that assuming NP " BPP black-
box concurrent coin-tossing protocols run also at least Ω̃(log n) rounds in the plain model. In particular,
it means that one cannot expect to achieve constant-round black-box concurrent coin-tossing protocols
in the plain model. In this paper, we achieve constant-round black-box concurrent coin-tossing in the
BPK model. By composing a constant-round black-box concurrent coin-tossing in the BPK model with
an NIZK protocol in the common random string model, we get a constant-round black-box concurrent
zero-knowledge argument of knowledge with concurrent soundness. Since any black-box zero-knowledge
protocol with concurrent soundness in the BPK model for a language outside of BPP requires at least
four rounds [56], we conclude that assuming NP " BPP black-box concurrent coin-tossing protocols
run also at least four rounds in the BPK model.

6.2 the OWF-based general construction

The OWF-based general constant-round concurrent coin-tossing (CCT) protocol in the BPK model
is depicted in Figure 8 (page 41). Note that constant-round CCT does not exist in the plain model
assuming NP " BPP as we have argued in Section 2.

The General Concurrent Coin-Tossing Π =< L, R >

Key Generation. Let f : {0, 1}∗ → {0, 1}∗ be a one-way function. On a security parameter
n, the right-player R randomly selects x0, x1, x2 from {0, 1}n, computes y0 = f(x0), y1 = f(x1)
and y2 = f(x2). Then by using the general NP-reduction, the right-player transforms y2 into a
directed graph G. (y0, y1, G) is the public-key of the right player R. But for its secret-key, the
right-player randomly selects a bit b from {0, 1}, keeps xb as its secret key while discards x1−b

and x2.

Stage-1. Left player uniformly selects rl
R← {0, 1}n, and for a random string srl

computes α =
FSTC(G, rl, srl

) by using the Feige-Shamir trapdoor commitment scheme FSTC with respect
to G. Finally, the left player sends α to the right player.

Stage-2. The right player uniformly selects rr
R← {0, 1}n and sends rr to the left player.

Stage-3. The left player sends r = rl ⊕ rr to the right player.

Stage-4. Using the 4-round general concurrent zero-knowledge argument of knowledge
(CZKAOK) with concurrent soundness (depicted in Figure ?), the left player proves that:
he knows a string s′ such that α = FSTC(G, r⊕ rr, s

′). The witness used by the left player
in Steps L4-7 is (rl, srl

).

The result of the protocol is the string r. We will use the convention that if one of the parties
aborts (or fails to provide a valid proof) then the other party determines the result of the protocol.

Figure 8. The general concurrent coin-tossing in the BPK model

The protocol depicted in Figure 6 runs in 7 rounds. But it can be reduced into 5 rounds by
accordingly combining some rounds. Specifically, the Stage-1 and Stage-2 can be combined into the
first and the second round of the underlying 4-round concurrent zero-knowledge protocol respectively.

29

Theorem 6.1 Under the existence of one-way functions, the protocol Π =< L, R > depicted in Figure
8 is a 5-round black-box concurrent coin-tossing protocol in the BPK model.

Proof. According to the definition of black-box concurrent coin-tossing, we need to show that the
protocol Π =< L, R > satisfies both black-box concurrent channel security and black-box concurrent
player security in the BPK model.

Black-box concurrent channel security (black-box concurrent non-malleability).

We first show that on a security parameter n, for any positive polynomial s(n) and for any PPT
s(n)-adversary A in the CMIM setting of the BPK model with respect to any public-key file of size s(n)
generated by honest right-players, the protocol Π =< L,R > is black-box concurrently non-malleable.
Specifically, for any PPT s(n)-adversary A in the CMIM setting of the BPK model with respect to any
public-key file of size s(n), let SL = {S(1)

L , S
(2)
L , · · · , S

s(n)
L } and SR = {S(1)

R , S
(2)
R , · · · , S

s(n)
R } be two sets

of random strings, each set containing s(n) random strings of length n each, we construct a simulator
S that gets (SL, SR) as its input and generates in expected polynomial time (while oracle accessing
to A) a simulated view satisfying the required properties according to the definition of concurrently
non-malleable coin-tossing. For presentation convenience, besides the simulated key generation phase
of S we describe the simulation procedure of SA(SL, SR) in two parts: the left part, in which S plays the
role of honest left players and concurrently interacts with A; the right part, in which S plays the role
of the honest right players and concurrently interacts with A. The algorithm SA(SL, SR) is depicted in
Figure 9 (page 42).

First, we show that the simulator SA(SL, SR) runs in expected polynomial time. Note that whenever
S rewinds A in the right simulation, the interactions between S and A in the left simulation are also
rewound. But since the left simulation is straight-line simulatable and all the major rewindings in the
right simulation are ordered , no simultaneous rewindings take place. Since A works in polynomial-time,
there are also polynomially many major rewindings in the right simulation. And during each major
rewinding S also runs in expected polynomial time by running the knowledge extractor of CZKAOK.
We conclude that S works in expected polynomial time in total.

Below, we show that the simulation of S (depicted in Figure 7) does satisfy the required prop-
erties of concurrently non-malleable coin-tossing: simulatability, strategy-restricted and predefinable
randomness.

(1) Simulatability.
According to the definition of concurrently non-malleable coin-tossing, this needs to show that

the output of SA(SL, SR) is computationally indistinguishable from the view of A in real concurrent
executions of the protocol Π =< L,R > (depicted in Figure 6) in the CMIM setting of BPK model.
Note that there are three differences between the view of A in SA(SL, SR) and the view of A in real
concurrent executions.

1. For the i-th session in the left part of CMIM of the BPK model, 1 ≤ i ≤ s(n), in real execution, the
honest left-player always sends u⊕ r̃

(i)
r to A in Stage-3, where u is the random string committed

by the honest left-player in Stage-1 of that session and r̃
(i)
r is the Stage-2 message (sent by A) of

that session; But in SA(SL, SR), S always sends S
(i)
L in Stage-3.

2. For the i-th session in the left part of CMIM of the BPK model with respect to a public-key
(y(j)

0 , y
(j)
1 , G(j)), 1 ≤ i, j ≤ s(n), in real execution, the witness used by the honest left-player in

Stage-4 is the randomness used to commit to u in Stage-1; But in SA(SL, SR), the witness used
by S is generated from the trapdoor x

(j)
2 .

30

Generation of Simulated Public-Key File F .

For i := 1 to s(n) do:
x

(i)
0

R←− TCGen(1n); x
(i)
1

R←− TCGen(1n); x
(i)
2

R←− TCGen(1n).
Compute y

(i)
0 = f(x(i)

0), y
(i)
1 = f(x(i)

1) and y
(i)
2 = f(x(i)

2) and reduce y
(i)
2 to a graph G(i).

b
R←− {0, 1}.

Publish (y(i)
0 , y

(i)
1 , G(i)) as the i-th public-key in the simulated public-key file F and keeps

(x(i)
b , x

(i)
2) as the corresponding secret-key while discards x

(i)
1−b.

Straight-Line Left Simulation Rewinding-Ordered Right Simulation

In the i-th concurrent session (or-
dered by the time-step in which the
first round of each session is played)
between S and A in the left part of
CMIM with respect to a public-key
(y(j)

0 , y
(j)
1 , G(j)), 1 ≤ i, j ≤ s(n), S

acts in the following way:

In Stage-1, S uniformly se-
lects u

R← {0, 1}n and sends
α = FSTC(G(j)

2 , u) to A. After
receiving Stage-2 message, denoted
r̃
(i)
r , from A, S sends S

(i)
L to A in

Stage-3 (rather than sending back
u ⊕ r̃

(i)
r as the honest left player

does). Then, in Stage-4, using the
concurrent zero-knowledge argument
of knowledge (CZKAOK) protocol S
proves that “α is the commitment to
S

(i)
L ⊕ r̃

(i)
r ”. The witness used by S

in Stage-4 is generated from x
(j)
2 (or

equivalently, a directed Hamiltonian
cycle in G(j)) that is the trapdoor
of the Feige-Shamir trapdoor com-
mitment scheme with respect to
G(j).

i := 1
Running A until receiving the first Stage-1 message, de-
noted αi, marks the session of αi the i-th session.
Label: Suppose the i-th session is with respect to a public-
key (y(j)

0 , y
(j)
1 , G(j)).

While “A does not stop and S does not abort” do
• Uniformly selects v

R← {0, 1}n and sends v to A as the
Stage-2 message of the i-th session.

• Runs A further and acts accordingly (just as the hon-
est right-player does) in any session other than the
i-th session. When running into the CZKAOK phase
(Stage 3-4) of the i-th session, denoted by the Stage-
3 message (from A) of the i-th session r̃

(i)
l , S uses

the knowledge-extractor of CZKAOK protocol to ex-
tract the witness used by A in the CZKAOK phase
of the i-th session. This is achieved by rewinding
A and such rewindings are called knowledge rewind-
ings. If the extracted value is not (ti, si) such that
αi = FSTC(G(j), ti, si), where ti is of length n, then
S aborts. Otherwise, S does the following:

1. rewinds A to the point A just sent αi and sends
back S

(i)
R ⊕ ti to A. Such a rewinding is called

the i-th major rewinding.

2. Runs A further (from the i-th major rewind-
ing point) until receiving a new Stage-1 message
from A; sets i := i+1 and marks the new Stage-1
message αi and the current session of αi the i-th
session.

3. Goto Label

We stress that at any point of the simulation, if A does not act accordingly or fails to provide a
valid proof then S aborts and outputs the public-key file F and the transcript up to now.

Figure 9. The simulation of SA(SL, SR)

31

Generation of Simulated Public-Key File F .
This stage of SA

1 is identical to that of SA(SL, SR).

Left Interactions Right Interactions

In the i-th concurrent session (ordered by the time-step in
which the first round of each session is played) between S1

and A in the left part of CMIM with respect to a public-key
(y(j)

0 , y
(j)
1 , G(j)), 1 ≤ i, j ≤ s(n), S1 acts in the following way:

In Stage-1, S1 uniformly selects u
R← {0, 1}n and sends

α = FSTC(G(j)
2 , u) to A. After receiving Stage-2 message,

denoted r̃
(i)
r , from A, S1 randomly selects a string r

(i)
l in

{0, 1}n and sends r
(i)
l to A in Stage-3. Then, in Stage-4,

using the concurrent zero-knowledge argument of knowledge
(CZKAOK) protocol S1 proves that “α is the commitment to
r
(i)
l ⊕ r̃

(i)
r ”. The witness used by S in Stage-4 is generated from

x
(j)
2 (or equivalently, a directed Hamiltonian cycle in G(j))

that is the trapdoor of the Feige-Shamir trapdoor commitment
scheme with respect to G(j).

The right interactions between
A and S1 just identical to the
interactions between A and honest
right-players in real concur-
rent executions of the protocol
Π =< L, R > in the right part
of CMIM of the BPK model.
Specifically, there are no longer
major-rewindings or knowledge-
rewindings in the right interactions
between S1 and A, and at Stage-2
of any session S1 just sends a
random string of length n to A.

We stress that at any point of the simulation, if A does not act accordingly or fails to provide a
valid proof then S1 aborts and outputs the public-key file F and the transcript up to now.

Figure 10. The hybrid experiment SA
1

3. For the right part of CMIM of the BPK model, in SA(SL, SR) S may abort due to incorrect
knowledge-extraction during the i-th major rewinding, 1 ≤ i ≤ s(n). Specifically, during the i-th
major rewinding the output of knowledge rewindings may be a preimage to either y0 or y1 rather
than (ti, si) such that αi = FSTC(G(j), ti, si) which is the value that S expects. In this case, S will
abort the simulation. But this problem does not occur in real concurrent executions between A and
honest right-players. We remark that S may also abort due to failed knowledge-extraction in the
sense that it extracts no value from the knowledge rewindings. But according to the argument of
knowledge property of the underlying concurrent ZK protocol, failed knowledge-extraction makes
only negligible distinguishability gaps and so below we only consider the difference caused by
incorrect knowledge-extraction.

We firstly consider the following hybrid experiment SA
1 in which the simulated public-key generation

stage and left interactions in SA
1 are identical to that in SA(SL, SR), but the right interactions in SA

1

are identical to the interactions between A and honest right-players in real concurrent executions of the
protocol Π =< L, R > in the right part of CMIM of the BPK model. For clarity, SA

1 is depicted in
Figure 10 (page 32).

Since failed knowledge-extraction makes only negligible distinguishability gaps, it is easy to see that
conditioned on S aborts due to incorrect knowledge-extraction with negligible probability in SA(SL, SR),

32

the output of SA
1 is computationally indistinguishable from the output of SA(SL, SR). Then, the indis-

tinguishability between the output of SA
1 and the output of SA(SL, SR) is followed from the following

lemma.

Lemma 6.1 The probability that S will abort due to incorrect knowledge-extraction in the rewinding-
ordered right simulation of SA(SL, SR) is negligible.

Proof. Let F ′ = {y1, y2, · · · , ys(n)} be a set of s(n) values in the range of f on inputs of length n.
Suppose S aborts due to incorrect knowledge-extraction with non-negligible probability, then we will
construct a probabilistic algorithm E that takes F ′ as input and works in expected polynomial-time
(with oracle access to A) to output the preimage of yi for some i, 1 ≤ i ≤ s(n), which violates the
one-wayness of f . Actually, as we shall see, EA(F ′) works just as SA(SL, SR) does but with a modified
simulated public-file generation. Specifically, in EA(F ′) the simulated public-file is generated from F ′

rather than generated by itself from scratch. For clarity, the full description of the algorithm EA(F ′) is
depicted in Figure 11 (page 34).

It is easy to see that the view of A in EA(F ′) is identical to that of A in SA(SL, SR). Then, if S aborts
due to incorrect knowledge-extraction with non-negligible probability p in the rewinding-ordered right
simulation of SA(SL, SR), then with the same probability E will also abort due to incorrect knowledge-
extraction in EA(F ′). This means that with probability p E will get a preimage of either y

(i)
0 or y

(i)
1

for some i, 1 ≤ i ≤ s(n). But, according to the (non-uniform) witness indistinguishability property
of WIPOK used by honest right-players, with probability close to p/2 the extracted value will be the
preimage of yi = y

(i)
1−b, which violates the one-wayness of f .

¤
Now, we consider the second hybrid experiment SA

2 . The simulated public-key file generation stage
and the right interactions are identical to those of SA

1 . In left interactions, in Stage-3 of any session with
respect to a public-key (y(i)

0 , y
(i)
1 , G(i), S2 sends u⊕ r̃

(i)
r to A just as the honest left-player does, where u

is the random string committed by S2 in Stage-1 and r̃
(i)
r is the message sent by A in Stage-2. But, in

Stage-4 the witness used by S is still generated from x
(j)
2 (or equivalently, a directed Hamiltonian cycle

in G(j)) that is the trapdoor of the Feige-Shamir trapdoor commitment scheme with respect to G(j).
For clarity, the description of SA

2 is depicted in Figure 12 (page 35).

We first note that the only difference between the view of A in SA
2 and the view of A in real

concurrent executions of the protocol Π = 〈P, V 〉 in the CMIM setting of the BPK model is that: In
real executions, in Stage-4 of any session the honest left-player always uses the randomness used in
its Stage-1 commitment; In SA

2 , the witness used by S2 in Stage-4 is generated from the commitment
trapdoor. However, according to the WI property of Stage-4, this difference only makes negligible
distinguish gap since otherwise using standard hybrid technique one can construct a (non-uniform)
algorithm that works in probabilistic polynomial-time to break the WI property of Stage-4. Thus, we
conclude that the view of A in SA

2 is computationally indistinguishable from the view of A in real
concurrent executions.

Now, all left is to show that the output of SA
2 is indistinguishable from the output of SA

1 . Actually,
the indistinguishability between the output of SA

2 and the output of SA
1 is directly followed from the

following lemma.

Lemma 6.2 Suppose the output of SA
2 is not indistinguishable from the output of SA

1 , then we can
construct a BPP machine that breaks the computational-hiding property of the underlying Feige-Shamir
trapdoor commitment scheme with non-negligible acceptance gap.

33

Generation of Simulated Public-Key File F From F ′.
For i := 1 to s(n) do:
x′ R←− {0, 1}n; x′′ R←− {0, 1}n.
Compute y′ = f(x′), y′′ = f(x′′) and reduce y′′ to a graph G(i).
b

R←− {0, 1}.
Set y

(i)
b be y′, and y

(i)
1−b be yi.

Publish (y(i)
0 , y

(i)
1 , G(i)) as the i-th public-key in the simulated public-key file F and keeps (x′, x′′)

in secret as the corresponding secret-key.

Straight-Line Left Simulation Rewinding-Ordered Right Simulation

In the i-th concurrent session (or-
dered by the time-step in which the
first round of each session is played)
between E and A in the left part of
CMIM with respect to a public-key
(y(j)

0 , y
(j)
1 , G(j)), 1 ≤ i, j ≤ s(n), E

acts in the following way:

In Stage-1, E uniformly se-
lects u

R← {0, 1}n and sends
α = FSTC(G(j)

2 , u) to A. After
receiving Stage-2 message, denoted
r̃
(i)
r , from A, E randomly selects a

string r
(i)
l in {0, 1}n and sends r

(i)
l

to A in Stage-3 (rather than sending
back u ⊕ r̃

(i)
r as the honest left player

does). Then, in Stage-4, using the
concurrent zero-knowledge argument
of knowledge (CZKAOK) protocol E
proves that “α is the commitment to
r
(i)
l ⊕ r̃

(i)
r ”. The witness used by E

in Stage-4 is generated from x
(j)
2 (or

equivalently, a directed Hamiltonian
cycle in G(j)) that is the trapdoor
of the Feige-Shamir trapdoor com-
mitment scheme with respect to
G(j).

i := 1
Running A until receiving the first Stage-1 message, de-
noted αi, marks the session of αi the i-th session.
Label: Suppose the i-th session is with respect to a public-
key (TCPK

(j)
0 , TCPK

(j)
1 , TCPK

(j)
2).

While “A does not stop and S does not abort” do
• Uniformly selects v

R← {0, 1}n and sends v to A as the
Stage-2 message of the i-th session.

• Runs A further and acts accordingly in any session
other than the i-th session. When running into the
CZKAOK phase (Stage 3-4) of the i-th session, de-
noted by the Stage-3 message (from A) of the i-th ses-
sion r̃

(i)
l , E uses the knowledge-extractor of CZKAOK

protocol to extract the witness used by A in the
CZKAOK phase of the i-th session. This is achieved
by rewinding A and such rewindings are called knowl-
edge rewindings. If the extracted value is (ti, si) such
that αi = TCCom(TCPK

(j)
2 , ti, si), where ti is of

length n, then E does the following:

1. rewinds A to the point A just sent αi, randomly
selects a string r

(i)
r in {0, 1}n sends back r

(i)
r ⊕ ti

to A. Such a rewinding is called the i-th major
rewinding.

2. Runs A further (from the i-th major rewind-
ing point) until receiving a new Stage-1 message
from A; sets i := i+1 and marks the new Stage-1
message αi and the current session of αi the i-th
session.

3. Goto Label

We stress that at any point of simulation, if A does not act accordingly or fails to provide a valid
proof then E aborts and outputs the public-key file F and the transcript up to now.

Figure 11. The algorithm EA(F ′)

34

Generation of Simulated Public-Key File F .
This stage of SA

2 is identical to that of SA
1 .

Left Interactions Right Interactions

In the i-th concurrent session (ordered by the time-step in which the
first round of each session is played) between S2 and A in the left part
of CMIM with respect to a public-key (y(j)

0 , y
(j)
1 , G(j)), 1 ≤ i, j ≤ s(n),

S2 acts in the following way:

In Stage-1, S2 uniformly selects u
R← {0, 1}n and sends

α = FSTC(G(j)
2 , u) to A. After receiving Stage-2 message, de-

noted r̃
(i)
r , from A, S2 sends back r

(i)
l = u ⊕ r̃

(i)
r r

(i)
l to A in Stage-3

just as the honest left-player does. Then, in Stage-4, using the con-
current zero-knowledge argument of knowledge (CZKAOK) protocol
S2 proves that “α is the commitment to r

(i)
l ⊕ r̃

(i)
r ”. The witness used

by S2 in Stage-4 is generated from the trapdoor x
(j)
2 (or equivalently,

a directed Hamiltonian cycle in G(j)) rather than the randomness
used to commit to u in Stage-1 as the honest left-player does.

The right interactions of
SA

2 between A and S2 just
identical to that of SA

1

between A and S1.

We stress that at any point of the simulation, if A does not act accordingly or fails to provide a
valid proof then S2 aborts and outputs the public-key file F and the transcript up to now.

Figure 12. The hybrid experiment SA
2

35

Proof. We consider the following s(n) hybrid experiments HA
1 ,HA

2 , · · · ,HA
s(n). For any i, 1 ≤

i ≤ s(n), the simulated public-key file generation stage and the right interactions of HA
i identical to

those of SA
1 and SA

2 . But in its left interactions between Hi and A, in the first i sessions (ordered by
the time-step the first round of each session is played) Hi works just as S1 does, but in the rest s(n)− i
sessions Hi works just as S2 does.

Specifically, in Stage-4 of all sessions Hi uses the commitment trapdoor to generate the witness to
be used in the CZKAOK protocol. But in the j-th session, 1 ≤ j ≤ i, the CZKAOK protocol is with
respect to a random string chosen by Hi in Stage-3 and in the j-th session, i < j ≤ s(n), the CZKAOK
protocol is with respect to the outcome of coin-tossing r

(i)
l = u ⊕ r̃

(i)
r , where u is the random string

committed in Stage-1 and r̃
(i)
r is the message sent by A in Stage-2.

Clearly, suppose the output of SA
2 is distinguishable from the output of SA

1 with non-negligible
probability p(n), then there must exist an i, 1 < i ≤ s(n), such that there exists a (non-uniform) PPT
distinguisher D′ that can distinguish the output of Hi and the output of Hi−1 with probability at least
p(n)
s(n) that is also non-negligible in n. However, below we transform D′ into another BPP machine D
that breaks the computational-hiding property of the underlying Feige-Shamir trapdoor commitment
scheme with non-negligible acceptance gap p(n)

s(n)2
.

Let r0, r1 be two random strings in {0, 1}n, and α = FSTC(rb) for b
R←− {0, 1}. Now, D takes

α and rk (k = 0 or 1) as its inputs and its task is to distinguish whether or not α commits to rk.
To do this, D(α, rk) first randomly “guesses” an i from {1, 2, · · · , s(n)} and then runs A to mimic the
experiment HA

i but with the following exception. In the i-th session of left interactions between D and
A, D sends α to A in Stage-1, and after receive the Stage-2 message r̃

(i)
r from A, D sends rk⊕ r̃

(i)
r as the

Stage-3 message. Finally, D gives the interaction transcripts (between D and A) to the distinguisher
D′ and outputs what D′ outputs.

Now, we consider the acceptance gap between Pr[D(α, r0) = 1] and Pr[D(α, r1) = 1]. The key
observation is that: on one hand, if rk = r1−b then the Stage-3 message rk⊕ r̃

(i)
r is also a random string

and so in this case the interactions between A and D identical to HA
i ; on the other hand, if rk = rb then

the Stage-3 message rk ⊕ r̃
(i)
r is the real outcome of the coin-tossing and so in this case the interactions

between A and D identical to HA
i−1. Since we assume that there exists an i, 1 < i ≤ s(n), such that D′

can distinguish the output of Hi and the output of Hi−1 with probability at least p(n)
s(n) , and also since D

chooses i randomly from {1, 2, · · · , s(n)}, we conclude that |Pr[D(α, r0) = 1]−Pr[D(α, r1) = 1]| ≥ p(n)
s(n)2

.
This means that D is a BPP machine to break the computational-hiding property of the underlying
Feige-Shamir trapdoor commitment scheme. ¤

(2) Strategy-restricted and predefinable randomness.

Denote by RL = {R(1)
L , R

(2)
L , · · · , R

p(n)
L } the set of outputs recorded in the output S for all concurrent

sessions of the left part of CMIM in BPK model and denote by RR = {R(1)
R , R

(2)
R , · · · , R

p(n)
R } the set

of outputs recorded in the output of S for all concurrent sessions of the right part of CMIM in BPK
model.

It is clear that for any i, 1 ≤ i ≤ p(n), R
(i)
L = S

(i)
L that is a random string of length n. For any

string R
(i)
R ∈ RR, there are three cases:

Case 1. R
(i)
R = S

(i)
R that is a random string of length n.

Case 2. R
(i)
R ∈ RL

Case 3. Other cases.

36

Generation of Simulated Public-Key File F From F ′′.
For i := 1 to s(n) do:
x′ R←− {0, 1}n.
Compute y′ = f(x′)
b

R←− {0, 1}.
Set y

(i)
b be y′, y

(i)
1−b be y(i), and reduce y

(i)
2 to an instance of DHC G(i).

Publish (y(i)
0 , y

(i)
1 , G(i)) as the i-th public-key in the simulated public-key file F and keeps x

(i)
b = x′

in secret as the corresponding secret-key.

Straight-Line Left Simulation Rewinding-Ordered Right Simulation

In any session of the left interactions between Ê
and A, Ê works just as the honest left-player does.
Specifically, in Stage-3 of any session, Ê sends u⊕ r̃

(i)
r

to A, where u is the random string committed by Ê in
Stage-1 of that session and r̃

(i)
r is the Stage-2 message

from A. In Stage-4, Ê uses the corresponding ran-
domness used to commit to u in Stage-1 as the witness.

The right interactions between Ê and A
are identical to the rewinding-ordered right
simulation of EA(F ′).

We stress that at any point of simulation, if A does not act accordingly or fails to provide a valid
proof then Ê aborts and outputs the public-key file F and the transcript up to now.

Figure 13. The algorithm ÊA(F ′′)

According to the definition of strategy-restricted and predefinable randomness, it needs to show that
the probability that Case 3 occurs is negligible, and that with overwhelming probability each string in
RL can appear in RR at most once.

We first show the probability that Case 3 occurs is negligible. Let F ′′ = {(y(1), y
(1)
2), (y(2), y

(2)
2), · · · ,

(y(s(n)), y
(s(n))
2), }, where for each i, 1 ≤ i ≤ s(n), y(1) and y

(1)
2) are in the range of the OWF f on inputs

chosen randomly from {0, 1}n. Now, suppose Case 3 occurs with non-negligible probability (i. e. with
non-negligible probability there exists an i such that the output of the i-th session in the right simulation
of S with respect to a public-key (y(j)

0 , y
(j)
1 , G(j)) is neither Case 1 nor Case 2, 1 ≤ i, j ≤ s(n)), then we

will construct a probabilistic algorithm ÊA(F ′′) that works in (expected) polynomial-time to break the
onewayness of f . ÊA(F ′′) works like the EA(F ′) (depicted in Figure 9) but with the following exceptions:
The simulated public-key file in ÊA(F ′′) is generated from F ′′ and in the straight-line left simulation of
ÊA(F ′′), Ê works just as honest left-player do. For presentation clarity, ÊA(F ′′) is depicted in Figure
13.

It is easy to see that conditioned that Ê aborts due to incorrect knowledge-extraction with negligible
probability in the rewinding-ordered right simulation, the view of A in ÊA(F ′′) is identical to that of A in
real concurrent executions of the protocol Π = 〈P, V 〉 in the CMIM setting of the BPK model. Actually,
using the same proof technique of Lemma 6.1, it is easy to see that the probability that Ê aborts due to
incorrect knowledge-extraction in the rewinding-ordered right simulation is negligible. Since as we have
shown the view of A in SA(SL, SR) is indistinguishable from the view of A in real concurrent interactions,

37

we conclude that if with non-negligible probability there exists an i such that the output of the i-th
session in the right simulation of S with respect to a public-key (y(j)

0 , y
(j)
1 , G(j)) is neither Case 1 nor Case

2, then with also non-negligible probability (suppose this non-negligible probability is p(n)) there exists
an i such that the output of the i-th session in the right simulation of Ê with respect to a public-key
(y(j)

0 , y
(j)
1 , G(j)) is neither Case 1 nor Case 2, where 1 ≤ i, j ≤ s(n). However, by randomly “guessing” i

from {1, 2, · · · , s(n)} and by knowledge-rewinding A using the knowledge extractor of CZKAOK after
the major-rewinding point of the i-th session, Ê will extract another different decommitment to the
same Stage-1 message αi of the i-th session in expected polynomial-time with non-negligible probability
approximately p(n)

s(n) . Note that from two different decommitments to the same αi (one is extracted
before the major-rewinding point of the i-th session and another is extracted after the major-rewinding
point of the i-th session) E will easily computes out a Hamiltonian cycle of Gj from which one can
easily compute a preimage of y

(j)
2 , which contradicts the one-wayness of f .

Now, all left is to show that with overwhelming probability each string in RL can appear in RR at
most once. It is sufficient to show that with overwhelming probability RR consists of distinct values.
Suppose with non-negligible probability there exists an i such that R

(i)
R = R

(j)
R for j < i, then by

randomly “guessing” i from {1, 2, · · · , s(n)} and by knowledge-rewinding A after the major-rewinding
point of the i-th session, Ê will extract another decommitment R

(j)
R ⊕ S

(i)
R ⊕ ti to the same Stage-1

message αi of the i-th session in expected polynomial time with non-negligible probability, where ti is
the decommitment to αi extracted before the major-rewinding point of the i-th session. Since S

(i)
R is

a truly random value, with overwhelming probability R
(j)
R ⊕ S

(i)
R ⊕ ti 6= ti. Again, from two different

decommitments to the same αi E can easily extract a preimage of y
(i)
2 , which violates the one-wayness

of f .

Black-box concurrent player security.

We now proceed to prove the black-box concurrent player security of the protocol Π =< L, R >
depicted in Figure 6.

(1) Black-box concurrent right-player security.
Recall that in the concurrent right-player security setting, a adversary plays the role of left-players

and concurrently interacts with polynomially many instances of the right-player. But since left-players
are not involved in the key-generation stage of the BPK model, the adversary playing the role of
left-players keeps no secret information. It means that for any adversary A in the concurrent right-
player security setting of the BPK model there exists another adversary B in the CMIM setting of the
BPK model, such that what the adversary A can do in its concurrent attacks against honest right-
players can also be done by B in the right part of CMIM in the BPK model. Furthermore, B can
do that independently of the concurrent executions in the left part of CMIM. This means that black-
box concurrent channel security in the BPK model actually implies black-box concurrent right-player
security in the BPK model. Note that we have proved that the protocol Π =< L, R > does satisfy black-
box concurrent channel security in the BPK model, so it also satisfies black-box concurrent right-player
security in the BPK model.

(2) Black-box concurrent left-player security.
For black-box concurrent left-player security in the BPK model, we first observe that black-box

concurrent channel security in the BPK model does not imply black-box concurrent left-player security
in the BPK model any longer. The reason is that in the concurrent left-player security setting of the BPK
model , an adversary A firstly generates and publishes a public-key file and then concurrently interacts
with polynomially many instances of the honest left-player with respect to the published public-file.

38

Thus, the adversary keeps secret information (the corresponding secret-keys) and his behavior may also
depend on such secret information. An algorithm without the knowledge of the secret information (like
adversaries in the CMIM setting of the BPK model) may not do what the adversary A can do.

According to the definition of black-box concurrent left-player security, we need to construct a
probabilistic (expected) polynomial-time simulator S such that for any PPT s(n)-concurrent adversary
A that plays the role of right-players and concurrently interacts with many instances of the honest
left-player in at most s(n) sessions, the output of SA(RS) satisfies the properties of simulatability
and predefinable randomness, where RS = {r(1)

S , r
(2)
S , · · · , r

(s(n))
S } be a set of s(n) random strings of

length n each. Without loss of generality, we also suppose A generates and publishes a public-file that
contains s(n) public-keys of the form (y(i)

0 , y
(i)
1 , G(i)), 1 ≤ i ≤ s(n). Actually, as we shall see, the

proof of black-box concurrent left-player security is very similar to the proof of black-box concurrent
zero-knowledge for the general CZK-CS protocol ?. Specifically, just like the black-box zero-knowledge
simulator presented in the proof of Theorem ?, SA(RS) also works in at most s(n) + 1 phases and in
each phase, S either successfully gets a simulated transcript or “breaks” a new public-key in the sense
that S can extract the corresponding secret-key x

(j)
b (1 ≤ j ≤ s(n)). But, we remark that in the i-th

session of each phase, 1 ≤ i ≤ s(n), S sends to A r
(i)
S rather than r

(i)
l ⊕ r̃

(i)
r in Stage-3, where r

(i)
l is

the random value committed by S in Stage-1 of the i-th session and r̃
(i)
r is the value sent by A to S in

Stage-2. And once a public-key (y(j)
0 , y

(j)
1 , G(j)), 1 ≤ i ≤ s(n), is broken (that is, S learns x

(j)
b), then S

uses the witness generated from x
(j)
b in Stage-4.

Since S runs in at most s(n)+1 phases, and during each phase S also works in expected polynomial
time, it is easy to see that S runs in expected polynomial time in toto.

There are two differences between the output of SA(RS) and the view of A in real interactions with
honest left-player instances:

1. In the simulated transcript generated by SA(RS), S sends to A r
(i)
S (rather than r

(i)
l ⊕ r̃

(i)
r as the

honest left-player does) in Stage-3 of the i-th session , 1 ≤ i ≤ s(n), where r
(i)
l is the random value

committed by S in Stage-1 of the i-th session and r̃
(i)
r is the value sent by A to S in Stage-2.

2. In the i-th session of real interactions, the honest left-player uses the corresponding randomness
(used to commit to r

(i)
l in Stage-1) as the witness in Stage-4. But in the simulated transcript, in

any session with respect to a (broken) public-key (y(j)
0 , y

(j)
1 , G(j)), 1 ≤ i ≤ s(n), the witness used

by S in Stage-4 is generated from the extracted secret-key x
(j)
b .

To show the indistinguishability between the output of SA(RS) and the view of A in real interactions
with honest left-player instances, we consider the following mental hybrid experiment HA in which
a PPT algorithm H just works as S does but with the following exceptions: During any phase of
the at most s(n) + 1 phases, in the i-th session with respect to a broken public-key (y(j)

0 , y
(j)
1 , G(j)),

1 ≤ i, j ≤ s(n), H sends r
(i)
l ⊕ r̃

(i)
r (as the honest left-player does) in Stage-3, where r

(i)
l is the random

value committed by H in Stage-1 of the i-th session and r̃
(i)
r is the value sent by A to H in Stage-2.

But in Stage-4, the witness used by H is generated from the extracted secret-key x
(j)
b .

The indistinguishability between the output of HA and the view of A in real concurrent interactions
with honest left-player instances is followed from the (concurrent) witness indistinguishability property
of Stage-4. The indistinguishability between the output of SA(RS) and the output of HA is followed
from the fact that if they are not indistinguishable then using the similar proof procedure of Lemma
6.2 one can construct a BPP machine that breaks the computational-hiding property of the underlying
Feige-Shamir trapdoor commitment scheme with non-negligible acceptance gap.

39

¤
Comparisons of our result with the works of Barak and Lindell [2, 51].
Firstly, I remark that the structure of our coin-tossing follows that of Barak’s stand-alone non-

malleable coin-tossing [2] that in turn follows the structure of Lindell’s parallel coin-tossing [51].
There are two major differences between the protocol construction of our work and that of [51, 2].

One is that in the works of [51, 2], there is an additional POK phase between Stage-1 and Stage-2 in
which the left player proves the knowledge of the value he committed to in Stage-1. This additional POK
phase is needed in [51] in order to simulate the view of a malicious (aborting) left player in the secure
two-party computation setting. In [2] the additional POK phase is to avoid simultaneous rewindings.
This additional POK phase is avoided in our construction. The reason is: on one hand, non-malleability
refers to unauthenticated channel security and all players are assumed honest ; on the other hand, in the
simulation of S no simultaneous rewinding occurs since the left simulation is straight-line simulatable.
Another major difference is that in [51, 2] the left player uses a perfect-binding commitment scheme
but in our work the left player uses a computational-binding trapdoor commitment scheme. We remark
that the trapdoor commitments play a critical role in our construction.

We further make some comparisons of our result with the work of Barak [2]. The work of [2] is the
first constant-round stand-alone non-malleability result in the plain model (without any trusted dealer
or setup assumption). But the construction and security analysis of the protocol [2] are much involved.
The protocol of [2] follows the outline of the protocol of [51] and additionally uses evasive set families
and ZK universal arguments [3]. It is based on sub-exponential hardness assumptions and runs at least
10 rounds since the known ZK universal arguments runs in 10 rounds. The security analysis of [2]
involves diagonalization, non-black-box simulation[1, 5], and the Richardson-Killian transformation [61]
techniques and treats the synchronizing and non-synchronizing adversaries separately. In comparison,
our work deals with concurrent non-malleability in the BPK model. Our protocol does not assume
any sub-exponential hardness assumption and can be implemented in 5 rounds. The security analysis
also does not employ much involved techniques. Our result can be viewed as another evidence to the
powerfulness of the BPK model.

6.3 The DLP-based Practical Construction

The DLP-based practical construction is depicted in Figure 14.

40

The Practical Concurrent Coin-Tossing Π =< L, R >

Key Generation. For a security parameter n, let (TCPK0, TCSK0)
R←

TCGen(1n), (TCPK1, TCSK1)
R← TCGen(1n) and (TCPK2, TCSK2)

R← TCGen(1n).
(TCPK0, TCPK1, TCPK2) is the public-key of the right player R. But for its secret-key, the
right-player randomly selects a bit b from {0, 1}, keeps TCSKb as its secret key while discards
TCSK1−b and TCSK2.

Stage-1. Left player uniformly selects rl
R← {0, 1}n and, for a random string srl

, computes
α = TCCom(TCPK2, rl, srl

) using the trapdoor commitment scheme TC with respect to
TCPK2. Finally, the left player sends α to the right player.

Stage-2. The right player uniformly selects rr
R← {0, 1}n and sends rr to the left player.

Stage-3. The left player sends r = rl ⊕ rr to the right player.

Stage-4. Using the 6-round practical concurrent zero-knowledge argument of knowledge
(CZKAOK) with both concurrent soundness and concurrent witness extraction (de-
picted in Figure 2), the left player proves that: he knows a string s′ such that α =
TCCom(TCPK2, r ⊕ rr, s

′). The witness used by the left player in Steps L4-7 is (rl, srl
).

The result of the protocol is the string r. We will use the convention that if one of the parties
aborts (or fails to provide a valid proof) then the other party determines the result of the protocol.

Figure 14. The practical concurrent coin-tossing in the BPK model

Theorem 6.2 Under discrete logarithm assumption, the protocol Π =< L, R > depicted in Figure 14
is a practical black-box concurrent coin-tossing protocol in the BPK model without going through general
NP-reductions .

Proof. According to the definition of black-box concurrent coin-tossing, we need to show that the
protocol Π =< L, R > satisfies both black-box concurrent channel security and black-box concurrent
player security in the BPK model.

Black-box concurrent channel security (black-box concurrent non-malleability).

We first show that on a security parameter n, for any positive polynomial s(n) and for any PPT
s(n)-adversary A in the CMIM setting of the BPK model with respect to any public-key file of size s(n)
generated by honest right-players, the protocol Π =< L,R > is black-box concurrently non-malleable.
Specifically, for any PPT s(n)-adversary A in the CMIM setting of the BPK model with respect to any
public-key file of size s(n), let SL = {S(1)

L , S
(2)
L , · · · , S

s(n)
L } and SR = {S(1)

R , S
(2)
R , · · · , S

s(n)
R } be two sets

of random strings, each set containing s(n) random strings of length n each, we construct a simulator
S that gets (SL, SR) as its input and generates in expected polynomial time (while oracle accessing
to A) a simulated view satisfying the required properties according to the definition of concurrently
non-malleable coin-tossing. For presentation convenience, besides the simulated key generation phase
of S we describe the simulation procedure of SA(SL, SR) in two parts: the left part, in which S plays the
role of honest left players and concurrently interacts with A; the right part, in which S plays the role
of the honest right players and concurrently interacts with A. The algorithm SA(SL, SR) is depicted in
Figure 7 (page 42).

41

Generation of Simulated Public-Key File F .
For i := 1 to s(n) do:
(TCPK

(i)
0 , TCSK

(i)
0) R←− TCGen(1n).

(TCPK
(i)
1 , TCSK

(i)
1) R←− TCGen(1n).

(TCPK
(i)
2 , TCSK

(i)
2) R←− TCGen(1n).

b
R←− {0, 1}.

Publish (TCPK
(i)
0 , TCPK

(i)
1 , TCPK

(i)
2) as the i-th public-key in the simulated public-key file F

and keeps (TCSK
(i)
b , TCSK

(i)
2) as the corresponding secret-key while discards TCSK

(i)
1−b.

Straight-Line Left Simulation Rewinding-Ordered Right Simulation

In the i-th concurrent session (or-
dered by the time-step in which the
first round of each session is played)
between S and A in the left part
of CMIM with respect to a public-
key (TCPK

(j)
0 , TCPK

(j)
1 , TCPK

(j)
2),

1 ≤ i, j ≤ s(n), S acts in the following
way:

In Stage-1, S uniformly se-
lects u

R← {0, 1}n and sends
α = TCCom(TCPK

(j)
2 , u) to A.

After receiving Stage-2 message, denoted
r̃
(i)
r , from A, S sends S

(i)
L to A in Stage-3

(rather than sending back u ⊕ r̃
(i)
r as

the honest left player does). Then, in
Stage-4, using the practical concurrent
zero-knowledge argument of knowledge
(CZKAOK) protocol S proves that “α
is the commitment to S

(i)
L ⊕ r̃

(i)
r ”. The

witness used by S is generated from
from TCPK

(j)
2 (specifically, by running

TCFake(TCPK
(j)
2 , TCSK

(j)
2 , α, S

(i)
L ⊕

r̃
(i)
r)).

i := 1
Running A until receiving the first Stage-1 message, de-
noted αi, marks the session of αi the i-th session.
Label: Suppose the i-th session is with respect to a public-
key (TCPK

(j)
0 , TCPK

(j)
1 , TCPK

(j)
2).

While “A does not stop and S does not abort” do
• Uniformly selects v

R← {0, 1}n and sends v to A as the
Stage-2 message of the i-th session.

• Runs A further and acts accordingly in any session
other than the i-th session. When running into the
CZKAOK phase (Stage 3-4) of the i-th session, de-
noted by the Stage-3 message (from A) of the i-th ses-
sion r̃

(i)
l , S uses the knowledge-extractor of CZKAOK

protocol to extract the witness used by A in the
CZKAOK phase of the i-th session. This is achieved
by rewinding A and such rewindings are called knowl-
edge rewindings. If the extracted value is (ti, si) such
that αi = TCCom(TCPK

(j)
2 , ti, si), where ti is of

length n, then S does the following:

1. rewinds A to the point A just sent αi and sends
back S

(i)
R ⊕ ti to A. Such a rewinding is called

the i-th major rewinding.

2. Runs A further (from the i-th major rewind-
ing point) until receiving a new Stage-1 message
from A; sets i := i+1 and marks the new Stage-1
message αi and the current session of αi the i-th
session.

3. Goto Label

We stress that at any point of simulation, if A does not act accordingly or fails to provide a valid
proof then S aborts and outputs the public-key file F and the transcript up to now.

Figure 7. The simulation of SA(SL, SR)

42

First, we show that the simulator SA(SL, SR) runs in expected polynomial time. Note that whenever
S rewinds A in the right simulation, the interactions between S and A in the left simulation are also
rewound. But since the left simulation is straight-line simulatable and all the major rewindings in the
right simulation are ordered , no simultaneous rewindings take place. Since A works in polynomial-time,
there are also polynomially many major rewindings in the right simulation. And during each major
rewinding S also runs in expected polynomial time by running the knowledge extractor of CZKAOK.
We conclude that S works in expected polynomial time in total.

Below, we show that the simulation of S (depicted in Figure 7) does satisfy the required prop-
erties of concurrently non-malleable coin-tossing: simulatability, strategy-restricted and predefinable
randomness.

(1) Simulatability.
According to the definition of concurrently non-malleable coin-tossing, this needs to show that

the output of SA(SL, SR) is computationally indistinguishable from the view of A in real concurrent
executions of the protocol Π =< L,R > (depicted in Figure 6) in the CMIM setting of BPK model.
Actually, as we shall see, the output of S is identical to the view of A in real concurrent executions of
Π =< L, R > in the CMIM setting of BPK model.

We consider a hybrid experiment HA(SL, SR) in which a PPT algorithm H works just as S does but
with the following exception that in the i-th session of the straight-line left simulation, H sends u⊕ r̃

(i)
r

to A (rather than sending back S
(i)
L as S does) in Stage-3 and uses the corresponding randomness (used

to commit to u in State-1) as the witness in Stage-4.
It is clear that the view of A in HA(SL, SR) is identical to the view of A in real concurrent executions

of the protocol Π =< L, R > in the CMIM setting of BPK model. It is also easy to see that the view of A
in HA(SL, SR) is identical to the view of A in SA(SL, SR). Specifically, in any session of straight-line left
simulation, S and H all send a random string of length n in Stage-3 and use a random decommitment
string as the witness in Stage-4.

(2) Strategy-restricted and predefinable andomness.

Denote by RL = {R(1)
L , R

(2)
L , · · · , R

p(n)
L } the set of outputs recorded in the output S for all concurrent

sessions of the left part of CMIM in BPK model and denote by RR = {R(1)
R , R

(2)
R , · · · , R

p(n)
R } the set

of outputs recorded in the output of S for all concurrent sessions of the right part of CMIM in BPK
model.

It is clear that for any i, 1 ≤ i ≤ p(n), R
(i)
L = S

(i)
L that is a random string of length n. For any

string R
(i)
R ∈ RR, there are three cases:

Case 1. R
(i)
R = S

(i)
R that is a random string of length n.

Case 2. R
(i)
R ∈ RL

Case 3. Other cases.

We first show the probability that Case 3 occurs is negligible. Suppose Case 3 occurs with non-
negligible probability, then with non-negligible probability there exists an i such that the output of
the i-th session in the right simulation of S is neither Case 1 nor Case 2. Since the view of A in
SA(SL, SR) is identical to the view of A in HA(SL, SR), then with the same probability there exists an
i such that the output of the i-th session in the right simulation of H is also neither Case 1 nor Case
2. Let F ′ = {(TCPK(1), TCPK

(1)
2), (TCPK(2), TCPK

(2)
2), · · · , (TCPK(s(n)), TCPK

(s(n))
2), }, then we

will construct a probabilistic algorithm E that takes F ′ and (SL, SR) as inputs and works in expected
polynomial-time (with oracle access to A) to break the discrete logarithm hardness assumption by oracle

43

accessing to A. Actually, as we shall see, EA(F ′, SL, SR) works just as HA(SL, SR) does but with a
modified simulated public-file generation. Specifically, in EA(F ′, SL, SR) the simulated public-file is
generated from F ′ rather than generated by itself from scratch. For clarity, the full description of the
algorithm EA(F ′, SL, SR) is depicted in Figure 8 (page 45).

It is clear that EA(F ′, SL, SR) is identical to HA(SL, SR). This means that with the same non-
negligible probability there also exists an i such that the output of the i-th session in the right simula-
tion of E is also neither Case 1 nor Case 2. However, by knowledge-rewinding A using the knowledge
extractor of CZKAOK after the major-rewinding point of the i-th session, S will extract another dif-
ferent decommitment to the same Stage-1 message αi of the i-th session. Note that from two different
decommitments to the same αi (one is extracted before the major-rewinding point of the i-th session
and another is extracted after the major-rewinding point of the i-th session) E will easily computes out
TCSK2, which contradicts the discrete logarithm hardness assumption.

Now, all left is to show that with overwhelming probability each string in RL can appear in RR at
most once. It is sufficient to show that with overwhelming probability RR consists of distinct values.
Suppose with non-negligible probability there exists an i such that R

(i)
R = R

(j)
R for j < i, then by

knowledge-rewinding A after the major-rewinding point of the i-th session, S will extract another
decommitment R

(j)
R ⊕ S

(i)
R ⊕ ti to the same Stage-1 message αi of the i-th session, where ti is the

decommitment to αi extracted before the major-rewinding point of the i-th session. Since S
(i)
R is a

truly random value, with overwhelming probability R
(j)
R ⊕ S

(i)
R ⊕ ti 6= ti. Again, from two different

decommitments to the same αi E can easily extract the secret-key TCSK2, which violates the hardness
assumption of discrete logarithm.

Black-box concurrent player security.

We now proceed to prove the black-box concurrent player security of the protocol Π =< L, R >
depicted in Figure 6.

(1) Black-box concurrent right-player security.
Recall that in the concurrent right-player security setting, a adversary plays the role of left-players

and concurrently interacts with polynomially many instances of the rith-player. But since left-players are
not involved in the key-generation stage of the BPK model, the adversary playing the role of left-players
keeps no secret information. It means that for any adversary A in the concurrent right-player security
setting of the BPK model there exists another adversary B in the CMIM setting of the BPK model, such
that what the adversary A can do in its concurrent attacks against honest right-players can also be done
by B in the right part of CMIM in the BPK model. Furthermore, B can do that independently of the
concurrent executions in the left part of CMIM. This means that black-box concurrent channel security
in the BPK model actually implies black-box concurrent right-player security in the BPK model. Note
that we have proved that the protocol Π =< L, R > does satisfy black-box concurrent channel security
in the BPK model, so it also satisfies black-box concurrent right-player security in the BPK model.

(2) Black-box concurrent left-player security.
For black-box concurrent left-player security in the BPK model, we first observe that black-box

concurrent channel security in the BPK model does not imply black-box concurrent left-player security
in the BPK model any longer. The reason is that in the concurrent left-player security setting of the BPK
model , an adversary A firstly generates and publishes a public-key file and then concurrently interacts
with polynomially many instances of the honest left-player with respect to the published public-file.
Thus, the adversary keeps secret information (the corresponding secret-keys) and his behavior may also

44

Generation of Simulated Public-Key File F From F ′.
For i := 1 to s(n) do:
(TCPK ′, TCSK ′) R←− TCGen(1n).
b

R←− {0, 1}.
Set TCPK

(i)
b be TCPK ′, TCSK

(i)
b be TCSK ′ and TCPK

(i)
1−b be TCPK(i).

Publish (TCPK
(i)
0 , TCPK

(i)
1 , TCPK

(i)
2) as the i-th public-key in the simulated public-key file F

and keeps TCSK
(i)
b = TCSK ′ in secret as the corresponding secret-key.

Straight-Line Left Simulation Rewinding-Ordered Right Simulation

In the i-th concurrent session (or-
dered by the time-step in which the
first round of each session is played)
between E and A in the left part
of CMIM with respect to a public-
key (TCPK

(j)
0 , TCPK

(j)
1 , TCPK

(j)
2),

1 ≤ i, j ≤ s(n), E acts in the following
way:

In Stage-1, E uniformly se-
lects u

R← {0, 1}n and sends
α = TCCom(TCPK

(j)
2 , u) to A. After

receiving Stage-2 message, denoted r̃
(i)
r ,

from A, E sends u⊕ r̃
(i)
r to A in Stage-3

just as the honest left player does. Then,
in Stage-4, using the practical concurrent
zero-knowledge argument of knowledge
(CZKAOK) protocol E proves that “α is
the commitment to u”. The witness used
by E is the corresponding randomness
used to commit to u in State-1.

i := 1
Running A until receiving the first Stage-1 message, de-
noted αi, marks the session of αi the i-th session.
Label: Suppose the i-th session is with respect to a public-
key (TCPK

(j)
0 , TCPK

(j)
1 , TCPK

(j)
2).

While “A does not stop and S does not abort” do
• Uniformly selects v

R← {0, 1}n and sends v to A as the
Stage-2 message of the i-th session.

• Runs A further and acts accordingly in any session
other than the i-th session. When running into the
CZKAOK phase (Stage 3-4) of the i-th session, de-
noted by the Stage-3 message (from A) of the i-th ses-
sion r̃

(i)
l , E uses the knowledge-extractor of CZKAOK

protocol to extract the witness used by A in the
CZKAOK phase of the i-th session. This is achieved
by rewinding A and such rewindings are called knowl-
edge rewindings. If the extracted value is (ti, si) such
that αi = TCCom(TCPK

(j)
2 , ti, si), where ti is of

length n, then E does the following:

1. rewinds A to the point A just sent αi and sends
back S

(i)
R ⊕ ti to A. Such a rewinding is called

the i-th major rewinding.

2. Runs A further (from the i-th major rewind-
ing point) until receiving a new Stage-1 message
from A; sets i := i+1 and marks the new Stage-1
message αi and the current session of αi the i-th
session.

3. Goto Label

We stress that at any point of simulation, if A does not act accordingly or fails to provide a valid
proof then E aborts and outputs the public-key file F and the transcript up to now.

Figure 8. The algorithm EA(F ′, SL, SR)

45

depend on such secret information. An algorithm without the knowledge of the secret information (like
adversaries in the CMIM setting of the BPK model) may not do what the adversary A can do.

According to the definition of black-box concurrent left-player security, we need to construct a
probabilistic (expected) polynomial-time simulator S such that for any PPT s(n)-concurrent adversary
A that plays the role of ritht-player and concurrently interacts with many instances of the honest left-
player in at most s(n) sessions, the output of SA(RS) satisfies the properties of simulatability and
predefinable randomness, where RS = {r(1)

S , r
(2)
S , · · · , r

(s(n))
S } be a set of s(n) random strings of length n

each. Without loss of generality, we also suppose A generates and publishes a public-file that contains
s(n) public-keys of the form (TCPK

(i)
0 , TCPK

(i)
1 , TCPK

(i)
2), 1 ≤ i ≤ s(n). SA(RS) works in at most

s(n)+1 phases. We remark that in the i-th session of each phase, 1 ≤ i ≤ s(n), S sends to A r
(i)
S rather

than rl ⊕ rr in Stage-3, where rl is the value committed in Stage-1 of the i-th session by S and rr is
the value sent by A to S in Stage-2. In each phase, S either successfully gets a simulated transcript
or “breaks” a new public-key in the sense that S can extract the corresponding secret-key TCSKb

(according to the special soundness of Σ-protocol, this is achieved by rewinding A to get two different
accepting conversations w. r. t. the same first message sent by A in Stage-4). Once a public-key
(TCPK0, TCPK1, TCPK2) is broken (that is, S learns TCSKb), then S uses the witness generated
from TCSKb in Stage-4.

Since S runs in at most s(n)+1 phases, and during each phase S also works in expected polynomial
time, it is easy to see that S runs in expected polynomial time in toto.

Due to the concurrent perfect zero-knowledge property of Stage-4, it is clear that output of SA(RS)
is identical to the view of V ∗ in its real interactions. Denote by RA = {r(1)

A , r
(2)
A , · · · , r

(s(n))
A } the outputs

(recorded in the output of SA(RS)) of all the concurrent sessions between S and A, then it is also easy
to see that RA = RS .

¤

7 A Survey of Subsequent Discoveries

After the original publication in January 2004, two and a half years has passed. In this subsection, we
make a survey on subsequent discoveries that closely related to this work.

Firstly, the two CZK-CS protocols are found flawed independently in [28, 66]. [28] fixed the flaw
very nicely, following the protocol structure of the first protocol. The first protocol is also extended to
transform any public-coin HVZK into generic yet practical (statistical) ZK arguments in the standard
model with optimal communication and computational complexity incurred. [70]. Very recently, [26]
fixed the flaw of the second protocol with the same sprit of [28]. Unfortunately, in [66], we show
that the fixed protocol of [28] does not provide concurrent verifier security, though it is concurrently
sound. The reason is that although a malicious prover cannot convince of a false statement, but it
can convince a true statement but without any knowledge of the witness! In next section, we show
the fixed protocol of [26] suffers the same problem, showing that it does not provide concurrent verifier
security. In [66], we provide RZK with full concurrent verifier security under subexponential hardness
assumptions. In particular, we get OWF-based, round-optimal but general hardness based, and highly
practical solutions. This leaves a main problem whether we can achieve full concurrent verifier security
for concurrent/resettable ZK under standard hardness assumptions in the BPK model. Note that this
problem is very tricky and subtle, witnessed by the evolution history in the past two and a half years.
Moreover, it even turns out to be tricky to provide a formal definition of full concurrent verifier security
in BPK model under standard assumption (note that formal definition under subexponential assumption
is given in [66]).

In this work, we solve this main problem.

46

8 Some Observations on the Protocol of [26]

We briefly recall the fixing of [26]: In Stage-2 of the protocol of Figure 5, the prover commits to a string,
denoted C = Com(e), then prover proves to verifier that either x ∈ L or C commits to one of verifier’s
secret-keys.

In [26], it is especially stressed that Com can be any commitment scheme. We observe that this is
flawed. Specifically, we need to require Com to be a trapdoorless commitment scheme. Here “trapdoor-
less” means that possessing verifierer’s secret-keys cannot help equivocating the commitment. Other-
wise, the same conceptual flaw in the protocols (depicted in Fig. 1 and Fig. 3) will appear, and thus
both the protocol and the concurrent soundness proof in [28] will not work. This flaw is a bit similar
to the situations in [50, 54].

Then, we show that the protocol of [26] does not achieve full concurrent verifier security. Specifically,
we demonstrate attacks that enable a malicious P ∗ to convince V of a true statement but without
knowing any witness of the proved statement.

The attacks are very similar to those developed in [66, 67] against the fixed protocol of [28].
The fixing is in the same sprit of [28] that fixes the fist protocol, and provides concurrent soundness.
But, using the same attack strategies presented in [66, 67], one can easily convince a true statement

for the language: “{((PK0, PK1), w)}” such that either w is SK0 or SK1. Specifically, a malicious
prover make a simulated proof for “C commits to one of secret-keys”, and then by interleaving two
concurrent sessions, it can malleate the proof given by V on (PK0, PK1) in one session into a successful
Stage-2 interactions in another concurrent session. Note that P ∗ does not know any of verifier’s secret
keys. The second concurrent interleaving and malleating attacks of [66] also can be trivially applied to
the fixed protocol of [26]. Details can be found in [66, 67].

These observations showing that the fixed protocols of [28, 26] are still not secure in concurrent
settings.

9 Full Concurrent Verifier Security for Concurrent/Resettable ZK
under Standard Assumptions in the BPK Model

Then, how to get full concurrent verifier security for CZK/rZK under standard assumptions in the BPK
model? Or, in other words, how to modify the flawed protocols of the original version of this paper into
correct and right ones?

We solve this main open problem in this section. But, before presenting our protocols, we need
to first give a proper definition of full concurrent verifier security. Note that the attacks developed in
[66, 67] are of nature of man-in-the-middle attacks. That is, they are related to non-malleability of
protocols.

The informal intuition for full concurrent verifier security is: for any x if P ∗ can convince V (with
public-key PK) of “x ∈ L”, then it must know a witness for this fact. More formally, for any x if
P ∗ can convince V (with public-key PK) of “x ∈ L”, then there exists a PPT knowledge-extractor
that outputs a witness for x ∈ L. But, such a definition does not fully work in the public-key model.
For example, the language may be related to PK, and thus the extracted witness may be related to
SK. But, in knowledge-extraction the PPT extractor may have already possessed SK. To solve this
subtle problem, we require the extracted witness is independent of SK. But, the difficulty here is: How
to formalize such independence, in particular, when SK is unique. The solution is we consider the
message space (distribution) of SK, and such independence is defined as follows: for any polynomial-
time computable relation R, let SK be the real secret-key and SK ′ is an element randomly sampled from
the message space of secret-keys, then we require that the probability Pr[R(w, SK) = 1] is negligibly

47

close to Pr[R(w, SK ′) = 1], where w is the witness extracted by the PPT knowledge extractor.
Remark: If V has a pair of independent keys (PK0, PK1) as in our case (when they are formed

with pseudorandom generators such that PK does not reveal the secret-key), the independence can
also be formalized as Pr[R(w, SK0) = 1] is negligibly close to Pr[R(w, SK1 = 1]. This in particular
guarantees that P ∗’s interactions cannot depends on the secret-key used by V , and thus cannot malleate
V ’s proofs.

We omit formal definitions here.
Now, we return back for achieving full concurrent verifier security for CZK under standard assump-

tions in BPK model.
Protocol-1: In the fixed protocol of [28], we require public-keys to be generated by PRG. Specifically,

we require PKb = PRG(rb), where b ∈ {0, 1} and rb is a random string. Also, we require that prover
does not directly proves x ∈ L with Σ-protocol, where random challenges are set by a coin-tossing
mechnism. Rather, it first commits to a witness using a perfectly-binding commitment scheme, i.e.,
Cw = Com(w), then it proves to V that committed value is a witness for x ∈ L. Again, the perfectly-
binding commitment scheme used in [28] can be replaced by any trapdoorless commitment scheme (but
not by any commitment scheme).

Protocol-2: In the fixed protocol of [26], we require public-keys to be generated by PRG. Specifically,
we require PKb = PRG(rb), where b ∈ {0, 1} and rb is a random string. Also, we require that in Stage-
2, P first computes Cw = Com(w), and then proves to V that either the committed value in Cw is a
witness for x ∈ L OR another trapdoorless commitment C commits to a secret-key of V ’s secret-keys.
Again, we explicitly require the commitments to one of secret-keys are generated by prover with a
trapdoorless commitment scheme.

We postpone the formal analysis to a later version of this work. Here, we give some illumining
clarifications on the underlying rationales beneath the constructions.

By rewinding P ∗ we can get a witness w. There are three cases:
Case-1. w is not the secret-key used by the knowledge-extractor.
Case-2. w is just the same secret-key used by the extractor.
Case-3. w is the committed witness for L.
Firstly, Case-1 can be trivially got rid of.
Case-2 is also impossible due to the partial witness-independence and WI property of the proof from

V to P ∗.
Now, we only deal with Case-3. By the partial witness-independence and WI of proofs from verifier

to prover, the extracted witness cannot not depend, in a notable way, on the secret-key used by the
extractor. Then, we replace another public-key by a random string, then this fact still holds, but now
we get what we want.

9.1 Geting full concurrent verifier security for rZK under standard assumptions

The idea is to use the non-black-box techniques of [1, 4, 59], which is suggested in [26].
Specifically, V first commits to a random challenge on the top of the two protocols, in Stage-2, rather

than decommitting directly the random challenge, V sends a random string and proves to P that it is
the value committed on the top, using Barak’s non-black-box ZK. To get resettable ZK, all randomness
used by P are got by applying a PRF on the transcript. For provable security, we need the one-many
simulatability of [59, 26].

48

10 Conclusion

Achieving full concurrent verifier security for concurrent/resettable ZK under standard assumptions in
the BPK model has turned to be a very challenging task that is indeed very tricky and subtle. This
is witnessed by the efforts of obtaining correct and right protocols from the flawed protocols originally
presented in this work. We remark that although the protocols in the original version are flawed (and
are poorly written), but they indeed contain some very nice ideas, and triggered fruitful and valuable
subsequent works.

Acknowledgments. The author is deeply indebted to Yehuda Lindell for his deep comments on
motivations, numerous kindly clarifications and very valuable discussions and suggestions. Some critical
idea presented in this manuscript comes from Lindell although he declined to serve as a coauthor of this
paper. In particular, the 4-round CZK with councurrent soundness under only OWF is suggested by
Lindell in January 2004. The author is full of gratitude to Di Crescenzo, Persiano and Ivan Visconti for
many very valuable discussions and helps. In particular, Di Crescenzo provides the references [58, 25, 24]
for the originality of the double commitments technique. The author is grateful to Boaz Barak, Yi Deng,
Oded Goldreich, Wenbao Mao, Leonid Reyzin, and Moti Yung for their kindly clarifications and warm
helps.

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In IEEE Symposium on Foundations of Computer
Science, pages 106-115, 2001.

[2] B. Barak. Constant-Round Coin-Tossing With a Man in the Middle or Realizing the Shared Random String Model.
In IEEE Symposium on Foundations of Computer Science, pages , 2002.

[3] B. Barak and O. Goldreich. Universal Arguments and Their Applications. InIEEE Conference on Computational
Complexity, pages 194-203, 2002.

[4] B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell. Resettably-Sound Zero-Knowledge and Its Applications. In
IEEE Symposium on Foundations of Computer Science, pages 116-125, 2001

[5] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation and Extraction. In ACM Symposium on Theory of
Computing, pages 484-493, 2002.

[6] M. Bellare, R. Canetti and H. Krawczyk. A Modular Approach to the Design and Analysis of Authentication and
Key-Exchange Protocols. In ACM Symposium on Theory of Computing, pages 419-428, 1998.

[7] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In E. F. Brickell (Ed.): Advances in Cryptology-
Proceedings of CRYPTO 1992, LNCS 740, pages 390-420. Springer-Verlag, 1992.

[8] M. Bellare and C. Namprempre. Authenticated Encryption: Relations among Notions and Analysis of the Generic
Composition Paradigm. In Asiacrypt’00. LNCS 1976, Springer-Verlag, 2000. (authentication does not implies non-
malleability).

[9] M. Blum. Coin Flipping by Telephone. In proc. IEEE Spring COMPCOM, pages 133-137, 1982.

[10] M. Blum. How to Prove a Theorem so No One Else can Claim It. In Proceedings of the International Congress of
Mathematicians, Berkeley, California, USA, 1986, pp. 1444-1451.

[11] Brassard, D. Chaum and C. Crepeau. Minimum Disclosure Proofs of Knowledge. Journal of Computer Systems and
Science, 37(2): 156-189, 1988.

49

[12] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In IEEE Symposium
on Foundations of Computer Science, pages 136-145, 2001.

[13] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge. In ACM Symposium on Theory
of Computing, pages 235-244, 2000.

[14] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires Ω̃(log n) Rounds.
In ACM Symposium on Theory of Computing, pages 570-579, 2001.

[15] R. Canetti, J. Kilian, E. Petrank and A. Rosen. Black-Box Concurrent Zero-Knowledge Requires (Almost) Logarith-
mically Many Rounds. In SIAM Journal on Computing, 32(1): 1-47, 2002.

[16] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party and Multi-Party Secure
Computation. In ACM Symposium on Theory of Computing, pages 494-503, 2002.

[17] R. Cramer and I. Damgard. On Electronic Payment Systems. A lecture note for the course of Cryptographic Protocol
Theory at Aarhus University, 2003. Available from: http://www.daimi.au.dk/∼ivan/CPT.html

[18] R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and Simplified Design of Witness Hiding
Protocols. In Y. Desmedt (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1994, LNCS 839, pages 174-187.
Springer-Verlag, 1994.

[19] I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In B. Preneel (Ed.): Advances in
Cryptology-Proceedings of EUROCRYPT 2000, LNCS 1807, pages 418-430. Springer-Verlag, 2000.

[20] I. Damgard. On Σ-protocols. A lecture note for the course of Cryptographic Protocol Theory at Aarhus University,
2003. Available from: http://www.daimi.au.dk/∼ivan/CPT.html

[21] I. Damgard and J. Groth. Non-interactive and reusable non-malleable commitment schemes. In ACM Symposium
on Theory of Computing, pages 426-437, 2003.

[22] I. Damgard and J. B. Nielsen. Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes
with Constant Expansion Factor. In M. Yung (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2002, LNCS
2442, pages 581-596. Springer-Verlag, 2002.

[23] I. B. Damgard, T. P. Pedersen and B. Pfitzmann. On the Existence of Statistically Hiding Bit Commitment Schemes
and Fail-Stop Signatures. Journal of Cryptology, 10(3): 163-194, 1997.

[24] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano and A. Sahai. Robust Non-Interactive Zero-Knowledge. In
J. Kilian (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 566-598. Springer-Verlag,
2001.

[25] A. De Santis, G. Di Crescenzo and G. Persiano. Zero-Knowledge Arguments and Public-Key Cryptography. Infor-
mation and Computation. 121(1): 23-40 (1995)

[26] Y. Deng and D. Lin. Resettable Zero Knowledge in the Bare Public-Key Model under Standard Assumption.
Cryptology ePrint Archive, Report No. 2006/239, July 12, 2006.

[27] G. Di Crescenzo, G. Persiano and I. Visconti. Constant-Round Resettable Zero-Knowledge with Concurrent Sound-
ness in the Bare Public-Key Model. In M. Franklin (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2004,
LNCS 3152, pages 237-253. Springer-Verlag, 2004.

[28] G. Di Crescenzo and I. Visconti. Concurrent Zero-Knowledge in the Public-Key Model. In L. Caires et al. (Ed.):
ICALP 2005, LNCS 3580, pages 816-827. Springer-Verlag, 2005.

[29] G. Di Crescenzo, Y. Ishai and R. Ostrovsky. Non-Interactive and Non-Malleable Commitment In ACM Symposium
on Theory of Computing, pages 141-150, 1998.

[30] G. Di Crescenzo, J. Katz, R. Ostrovsky and A. Smith. Efficient and Non-Interactive Non-Malleable Commitments. In
B. Pfitzmann (Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2001, LNCS 2045, pages 40-59. Springer-
Verlag, 2001.

50

[31] G. Di Crescenzo and R. Ostrovsky. On Concurrent Zero-Knowledge with Pre-Processing. In M. J. Wiener (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 1999, LNCS 1666, pages 485-502. Springer-Verlag, 1999.

[32] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. In ACM Symposium on Theory of Computing,
pages 542-552, 1991.

[33] C. Dwork and M. Naor. Zaps and Their Applications. In IEEE Symposium on Foundations of Computer Science,
pages 283-293, 2000. Available on-line from:

[34] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In ACM Symposium on Theory of Computing, pages
409-418, 1998.

[35] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. Ph.D. Thesis, Department of Com-
puter Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, 1990. Available from:
http://www.wisdom.weizmann.ac.il/∼feige.

[36] U. Feige, A. Fiat and A. Shamir. Zero-knowledge Proof of Identity. Journal of Cryptology, 1(2): 77-94, 1988.

[37] U.Feige, D. Lapidot and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs Under General Assumptions.
SIAM Journal on Computing, 29(1): 1-28, 1999.

[38] U. Feige and Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In G. Brassard (Ed.): Advances in
Cryptology-Proceedings of CRYPTO 1989, LNCS 435, pages 526-544. Springer-Verlag, 1989.

[39] M. Fischlin and R. Fischlin. Efficient Non-Malleable Commitment Schemes. In M. Bellare (Ed.): Advances in
Cryptology-Proceedings of CRYPTO 2000, LNCS 1880, pages 413-431. Springer-Verlag, 2000.

[40] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In
A. Odlyzko (Ed.): Advances in Cryptology-Proceedings of CRYPTO’86, LNCS 263, pages 186-194. Springer-Verlag,
1986.

[41] J. A. Garay, P. MacKenzie and K. Yang. Strengthening Zero-Knowledge Protocols Using Signatures. In E. Biham
(Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS 2656 , pages 177-194. Springer-Verlag,
2003.

[42] O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University Press, 2001.

[43] O. Goldreich. Concurrent Zero-Knowledge with Timing, Revisited. In ACM Symposium on Theory of Computing,
pages 332-340, 2002.

[44] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game-A Completeness Theorem for Protocols
with Honest Majority. In ACM Symposium on Theory of Computing, pages 218-229, 1987.

[45] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validity or All language in NP
Have Zero-Knowledge Proof Systems. Journal of the Association for Computing Machinery, 38(1): 691-729, 1991.

[46] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof System. SIAM Journal on
Computing, 18(1): 186-208, 1989.

[47] S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes From Collision-Free Hashing. In N.
Koblitz (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1996, LNCS 1109, pages 201-215. Springer-Verlag,
1996.

[48] J. Kilian and E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-Logarithmic Rounds. In ACM Sym-
posium on Theory of Computing, pages 560-569, 2001.

[49] J. Kilian, E. Petrank, R. Richardson. Concurrent Zero-Knowledge Proofs for NP. Available from:
http://www.cs.technion.ac.il/̃ erez/Papers/czkub-full.ps.

[50] H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In Advances in Cryptology-Proceedings
of CRYPTO 2005, LNCS 3621, pages 546-566. Springer-Verlag, 2005. Full version appears in Cryptology ePrint
Archive Report No. 2005/176.

51

[51] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. In J. Kilian (Ed.): Advances
in Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages 171-189. Springer-Verlag, 2001.

[52] Y. Lindell. A Simple Construction of CCA2-Secure Public-Key Enryption Under General Assumptions. In E. Biham
(Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS 2656 , pages 241-255. Springer-Verlag,
2003.

[53] Y. Lindell. Composition of Secure Multi-Party Protocols - A Comprehensive Study. LNCS 2815, Springer-Verlag,
2003.

[54] A. Menezes. Another Look at HMQV. Cryptology ePrint Archive, Report No. 2005/205.

[55] D. Micciancio and E. Petrank. Simulatable Commitments and Efficient Concurrent Zero-Knowledge. In E. Biham
(Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS 2656 , pages 140-159. Springer-Verlag,
2003.

[56] S. Micali and L. Reyzin. Soundness in the Public-Key Model. In J. Kilian (Ed.): Advances in Cryptology-Proceedings
of CRYPTO 2001, LNCS 2139, pages 542–565. Springer-Verlag, 2001.

[57] S. Micali and L. Reyzin. Min-Round Resettable Zero-Knowledge in the Public-Key Model. In B. Pfitzmann (Ed.):
Advances in Cryptology-Proceedings of EUROCRYPT 2001, LNCS 2045, pages 373–393. Springer-Verlag, 2001.

[58] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen Ciphertext Attacks. In ACM
Symposium on Theory of Computing, pages 427-437, 1990.

[59] R. Pass and A. Rosen. Concurrent Non-Malleable Commitments. In IEEE Symposium on Foundations of Computer
Science, pages 563-572, 2005.

[60] M. Prabhakaran, A, Rosen and A. Sahai. Concurrent Zero-Knowledge With Logarithmic Round Complexity. In
IEEE Symposium on Foundations of Computer Science, pages 366-375, 2002.

[61] R. Richardson and J. Killian. On the Concurrent Composition of Zero-Knowledge Proofs. In J. Stern (Ed.): Advances
in Cryptology-Proceedings of EUROCRYPT 1999, LNCS 1592, pages 415-423. Springer-Verlag, 1999.

[62] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen Ciphertext Security. In IEEE
Symposium on Foundations of Computer Science, pages 543-553, 1999.

[63] C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3): 24, 1991.

[64] A. C. Yao. How to Generate and Exchange Secrets. In IEEE Symposium on Foundations of Computer Science, pages
162-167, 1986.

[65] Y. Zhao. Concurrent/Resettable Zero-Knowledge With Concurrent Soundness in the Bare Public-Key Model and Its
Applications Unpublished manuscript, appears in Cryptology ePrint Archive Report No. 2003-265.

[66] M. Yung and Y. Zhao. Constant-Round Concurrently-Secure rZK with (Real) Bare Public-Keys. Electronic Collo-
quium on Computational Complexity, 12(48), 2005.

[67] M. Yung and Y. Zhao. Interactive Zero-Knowledge with Restricted Random Oracles. TCC 2006, to appear.

[68] Y. Zhao. Concurrent/Resettable Zero-Knowledge With Concurrent Soundness in the Bare Public-Key Model and Its
Applications. Unpublished manuscript, appears in Cryptology ePrint Archive, Report 2003/265.

[69] Y. Zhao, X. Deng, C. H. Lee and H. Zhu. Resettable Zero-Knowledge in the Weak Public-Key Model. In E. Biham
(Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS 2656 , pages 123-140. Springer-Verlag,
2003.

[70] Y. Zhao, J. B. Nielsen, R. Deng and D. Feng. Generic yet Practical ZK Arguments from any Public-Coin HVZK.
Electronic Colloquium on Computational Complexity, 12(162), 2005.

[71] Y. Zhao, X. Deng, C. H. Lee and H. Zhu. Resettable Zero-Knowledge in the Weak Public-Key Model. In E. Biham
(Ed.): Advances in Cryptology-Proceedings of EUROCRYPT 2003, LNCS 2656 , pages 123-140. Springer-Verlag,
2003.

52

