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Abstract

We present, implement and apply a new privacy primitive Wetall “Traceable Signatures.”
To this end we develop the underlying mathematical and pobtools, present the concepts and
the underlying security model, and then realize the scherdéta security proof. Traceable sig-
natures support an extended set of fairness mechanismbgnisms for anonymity management
and revocation) when compared with the traditional grogpaiure mechanism. We demonstrate
that this extended function is needed for proper operatiwrealequate level of privacy in various
settings and applications. For example, the new notiomvaltoacing of all signatures by a single
(misbehaving) party without opening signatures and réwvgatlentities of any other user in a
distributed fashion. In contrast, if such tracing is impéted by a state of the art group signa-
ture system, such wide opening of all sighatures of a sing# is a centralized operation that
requires the opening of all anonymous signatures and liegetlle users associated with them,
an act that violates the privacy of all users.

Our work includes a novel modeling of security in privacytsyss that leads to simulation-
based proofs. Security notions in privacy systems are &jlgimore complex than the traditional
security of cryptographic systems, thus our modeling mahagy may find future applications
in other settings. To allow efficient implementation of oadheme we develop a number of basic
tools, zero-knowledge proofs, protocols, and primitivext tve use extensively throughout. These
novel mechanisms work directly over a group of unknown grdentributing to the efficiency
and modularity of our design, and may be of independentésteil he interactive version of our
signature scheme yields the notion of “traceable (anonghidentification.”
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1 Introduction

A number of basic primitives have been suggested in cryptographicrebstadeal with the issue
of privacy. The most flexible private authentication tool to date is “grsigpatures,” a primitive
where each group member is equipped with a signing algorithm that inctepaaroof of group-
membership. Group-signatures were introduced by Chaum and Van idd$8] and were further
studied and improved in many ways in [11, 8, 6, 7, 4, 2]. Each signatlue i@anonymous, in the
sense that it only reveals that the issuer is a member of the group, witteutieking signatures by
the same signer.

Privacy comes at a price. Unconditional privacy seems to be an atgaxition from the user’s
viewpoint, nevertheless it can potentially be a very dangerous tool againkc safety (and can even
be abused against the user herself). Undoubtedly everybodystiawlés that privacy is a right of
law-abiding citizens, while at the same time a community must be capable of re\alghgrivacy
when illegal behavior (performed under the “mask of privacy”) is detdchis balancing act is thus
called “fairness”. Group-signatures were designed with one embddurdss mechanism which, in
fact, allows for the “opening” of an atomic signature value, revealing thetiigeof its signer. Such
opening capability can be assigned to a special entity, a Trustee, whiciiszabe distributed (to
further increase privacy). Such functionality is possible in existingreese for example in the very
efficient and scalable state of the art scheme of Ateniese et al. [2].

We observe that while group signatures are a very general “privedietials” tool, their opening
capability is not a sufficient mechanism to ensure safety and/or privaeaynamber of settings.
What we need is additional mechanisms for lifting of privacy conditions. i stand paradoxical
that offering more mechanisms for revoking privacy actually contributgsitacy, but consider the
following scenario: a certain member of the group is suspected of illegaitgdjpotentially, its
identity was revealed by opening a signature value). It is then crucialtextdehich signatures
were issued by this particular member so that his/her transactions are tfdeednly solution with
the existing group signature schemes is to have the Group Manager (@&)atisignatures, thus
violating the privacy of all (including law-abiding) group members. Furiane, this operation is
also scalability impairing, since the Group Manager would have to open a#tsigs in the system
and these signatures may be distributed in various locations. What woulesbalde, instead, is
to have a mechanism that allows the selective linking of the existing signatiieesnsbehaving
user without violating the privacy of law-abiding group members; this mashashould be efficient
(e.g. done in parallel by numerous agents when required). This capaliligct, implements an
“oblivious data mining” where only signature values of a selected misbehasger are traced. Such
traceability property should be offered in conjunction with the standardingecapability of group
signatures.

Another type of traceability, “self-traceability,” is helpful to the user andmgortant in our
setting. It suggests that a user should also be capable of claiming that evigginator of a certain
signature value if he wishes (or when a certain application protocol esjthiis). In other words, a
group-member should be capable of stepping outdaichinga certain group-signature value as his
own, withoutcompromising the privacy of the remaining past or future group-sigrathet he/she
issues. Adding self-traceability to the existing solutions in group-signatsiedso far from ideal: at
best the user will be required to remember her private random coinstémsall the signatures she
signed, which is an unreasonable user storage overhead in many settings
Our Concept: Motivated by the above, in this work we introduce a new basic primitive whieh w
call Traceable Signaturedt incorporates the following three different types of traceability: (i)ruse
tracing: check whether a signature was issued by a given user; itecapdiied to all signatures by
agents running in parallel; (ii) signature opening: reveal the signer ofesm gignature (as in group



signature); and (iii) signature claiming: the signer of a signature provdaims a given signature
that it has signed. When recovering all transactions by performingtigsgng it may be useful to
avoid collecting all signatures to a central location and in order to redudritden of the GM (which
may be a distributed entity), we divide user tracing into two steps: the firseisuéad by the GM
and reveals some secret information about the user; this is given tofedssignated agents (clerks)
that scan all signatures in parallel and reveal those signed by thectebjpiser. Note that the secret
information revealed should not allow the agents to impersonate the usetaievtoe anonymity of
law-abiding users.

Modeling: We model our concepts of traceable signatures and their interactiviervéas traceable
identification) and define their correctness and security.

We introduce a novel way of modeling privacy systems which is more getiema previous
models. The model includes the definition of correctness and of secuoiperies of the system.
In a security system, like encryption, it is obvious who is the attacker andtmdsto defend the
encryption device, so adversary modeling is relatively easy. In agyisgstem, on the other hand,
a protocol between many parties may involve mutually distrusting, malicious agarcking each
other from many sides and in various coalitions: e.g., a server (perbldplsarating with a subset of
some users) trying to violate the user’s privacy interacting with a user ttgingpersonate a group
member. Since in privacy systems we deal with mutually adversarial pargegewelop a new model
that copes with this situation and is geared towards simulation-based secodfy.p

To this effect, we introduce a set of queries by which adversaries caipuiate the system
(and the simulator during the security proof). Then we present any‘afraecurity definitions,”
where each definition is modeled as an adversary with partial access toe¢hes) representing
a capability that the attack captures. This allows us to deal with various natfosimultaneous
adversarial behavior within one system, modeling them as an “array oksittaied proving security
against each of them. Specifically in our setting, we classify three gesetality requirements
that capture all possibilities for adversarial activity: misidentification atteaksnymity attacks and
framing attacks. We note that previous security notions that have apjpieattee literature such as
unforgeability, coalition-resistance and exculpability are subsumed bglassification.
Constructions: Our construction is motivated by the state of the art and in particular by the mathe
matical assumptions that allow a group of users to generate a multitude of keyonaocomposite
number that are private, namely are (partially) unknown even to the gnamager who owns a trap-
door (prime factorization of the composite); such an ingenious mathematittabseas presented in
[2]. Due to the refined notions of fairness of our model, we need to int@dwnumber of extensions
to the above setting as well as employ a number of new cryptographic cctisdtrat enable the vari-
ous mechanisms that our model employs. We also note that our scheme isecansgith the present
state-of-the-art revocation method for group signatures present@f thiis member revocation can
be added modularly to our construction. We remark that the user tracingb{eed with the GM
publishing the user’s “tracing trapdoor”) can be used to implement a tyfigRif-based revocation”
that nullifies all signatures by a private key. This type of revocation leas lsonsidered recently in
[3].

In order to implement the scheme efficiently, we design a number of basicpletand prim-
itives that we use extensively throughout (as useful subroutinegledsing feature of these novel
notions and protocols is that they work directly over a group of unknawaroWe show some useful
properties of such groups of quadratic residues that are requirddefeecurity proofs. We then in-
troduce the notion of “discrete-log relation sets” which is a generic wagsitghing zero-knowledge
proof systems that allows an entity to prove efficiently the knowledge of a auoflwitnesses for
any such relation set that involves various discrete-logarithms and saasfiendition that we call
“triangularity.” Triangular discrete-log relation sets are employed extehsin our protocols but, in



fact, they are a useful as an abstraction that can be used elsewhareaherefore of independent
interest. We then define a notion called “discrete-log representationbitbay powers,” as well as
a mechanism we call “drawing random powers” which is a two party prbteberein one party gets
a secret discrete logarithm whose value she does not control, while satietime the other party
gets the public key version, i.e., the exponentiated value.

Based on the above primitives we present traceable signatures aredtpeivcorrectness and
security. We remark that our traceable signature scheme adds onlytardamgerhead to the com-
plexity measures of the state of the art group signature scheme of [2].

Applications: We demonstrate the power of the new notion by presenting some applicatioss. O
generic application is transforming an anonymous system to one with “famqy? Another is a
mix-net application where originators of messages or messages of aratwigian be opened, while
otherwise retaining privacy. A specific application to open-bid auctionisisdiscussed.
Organization: In section 2 we present some basic preliminary technical details regarding-th
tractability assumptions that are employed in our primitives. The main technictdrdmf this work
commences from section 3 that investigates certain mathematical propertiegodtip of quadratic
residues modulo a composite. Section 4 then describes the notion of “dikgyetation sets”,
while Section 5 presents the notion of “discrete log representations ofaaybitowers” and Section
6 introduces the basic protocol of “drawing random powers”. We thewvento the conceptual part
and present definitions and modelling of our notion in Section 7 which defiegsroperties and the
careful adversarial model of traceable signatures and identificatiomb@ing the definitions and
model and the basic protocol constructions, Section 8 deals with “the defsiga traceable signa-
ture scheme” and its proof of security (the details of which is in the appen8egtion 10, in turn,
presents a number of applications. The proof of security for our primgigé/en in the appendix.
Notations: The notationS(a, b) (called a sphere of radidscentered at wherea, b € Z denotes the
set{a—b+1,...,a+b—1}. Afunction inw will be called negligible if it holds that it is smaller than
any fraction of the formu% for any ¢ and sufficiently largev; we use the notationegl(w) for such
functions. The concatenation of two stringd will be denoted by||b. If « is a bitstring we denote
by (a);,...; the substringa);|| ... ||(a); where(a); denotes thé-th bit of a. For any setd, we will
denote by# A its cardinality. If X andY are parameterized probability distributions with the same
support, we will writeX ~ Y if the statistical distance betweefi Y is a negligible function in the
parameter. Furthermore, ffandg are functions over a variable, we will wrije= ¢ if their absolute
distance is a negligible function in the same variable. Finally notddhatenotes the logarithm base
2, =4f means “equal by definition”, and PPT stands for “probabilistic polynomial-time

2 Preliminaries

Throughout the paper we will work (unless noted otherwise) in the gobgpadratic residues mod-
ulo n, denoted byQR(n), with n = pg andp = 2p’ + 1 andq = 2¢’ + 1. All operations are to
be interpreted as module (unless noted otherwise). We will employ various related security pa-
rameters (as introduced in the sequel); with respe@Rin) the relevant security parameter is the
number bits of the order of the group, denoted/byys [log p'q’|. Next we define the Cryptographic
Intractability Assumptions that will be relevant in proving the security prig@eof our constructions.
The first assumption is the so called Strong-RSA assumption. It is similar inen&tuhe as-
sumption of the difficulty of finding-th roots of arbitrary elements &, with the difference that the
exponent is not fixed (part of the instance).

Definition 1 Strong-RSA. Given a composite (as described above), ande QR(n), it is infeasi-
ble to findu € Z} ande > 1 such that.® = z(modn), in time polynomial irv.



The second assumption that we will employ is the Decisional Diffie-HellmanrAgsan over
the quadratic residues modulgin stating this assumption we also take into account the fact that the
exponents may belong to pre-specified integer spHeres{1, ..., p'q'}.

Definition 2 Decisional Diffie-Hellman (over By, By, B3) Given a generatol of a cyclic group
QR(n) wheren is as above, a DDH distinguishet is a polynomial inv time PP Tthat distinguishes
the family of triples of the forny®, ¢¥, ¢*) from the family of triples of the forry®, ¢¥, ¢*¥), where
x €r Bi,y €r By, andz €g Bs.

The maximum distance of these two distributions of triples as quantified bpesaiblePPTdis-
tinguishers will be denoted bydvg il 5 (v);if By = Bo = Bs = {1,...,p/q'} we will write simply

AdvPPH (1) instead. ThédDH assumption suggests that this advantage is a negligible functien in

We remark that when the size of the sphesB,, B3 are sufficiently close to the order of
QR(n) it will hold that Advg 4! 5. (v) ~ AdvPP7 (v). Nevertheless we discover that the spheres
can be selected to be much smaller than that without any degradation in s¢seeithe remark at
the end of section 3).

Finally, we will employ the discrete-logarithm assumption over the quadraiidues modula:
and a pre-specified sphefe when the factorization of is known:

Definition 3 Discrete-Logarithm. Given two valueg, b that belong to the set of quadratic residues
modulon with known factorization, so thatr € B : a® = b, find in time polynomial inv the integer
x so thate” = b. AgainB is an integer sphere into the sft, ..., p'¢'}.

Conventions. (i) our proofs of knowledge will only be proven to work properly in thenbet-verifier
setting. On the one hand, the honest-verifier setting is sufficient folupiogl signatures. On the
other hand, even in the general interactive setting the honest-verifiraisc can be enforced by
assuming the existence, e.g., of a beacon, or some other mechanism tpabdace trusted ran-
domness; alternatively the participants may execute a coin flipping algorithch. @atocols where
the randomness that is used to select the challenge is trusted will be caltehiwa.” (ii) the pub-
lic parameters employed in our various protocol designs (e.g., the compogitéusa) will be be
assumed to be selected honestly.

3 Sphere Truncations of Quadratic Residues

Letn be a composite so that= pq andp = 2p’ + 1 andq = 2¢’ + 1 with p, ¢, p’, ¢’ all prime. Let
a be a generator of the cyclic group of quadratic residues maduRecall that the order ad)R(n)
isp'q. Let S(2¢,2#) = {2¢ —2# +1,...,2° + 2# — 1} be a sphere for two parametets: € N.
Observe thagS(2¢,2#) = 2#+1 — 1.
In this section we will prove a basic result that will be helpful later in the asialgf our scheme.
In particular we will show that, assuming factoring is hard and the fact thersg(2¢, 2#) is suffi-
ciently large (but still not very large) the random variabfewith = € S(2¢, 2#) is indistinguishable
from the uniform distribution ovef) R(n); note that the result becomes trivial if the size of the sphere
is very close to the order @@ R(n); we will be interested in cases where the size of the sphere is ex-
ponentially smaller (but still sufficiently large). Intuitively, this means that adation of thel) R(n)
as defined by the sphes£2¢, 2#) is indistinguishable to any probabilistic polynomial-time observer.
Let v = [logp'q’]. Consider the functiorf, ,(z) = ¢*(modn) defined for allz < n. The
inverse of this functiorfg—ﬁ is defined for any element iQ R(n) so thatf(;}L(y) = x wherex < p/¢/
and it holds that” = y(modn). Observe that: can be written as a-bitstring. Note that ify is



uniformly distributed ovef, it holds that every bitx); of = withi = 1, ..., v follows a probability
distributionD! with support the sef0, 1}. Note that for theD(log ) most significant bits it holds
that the distributiorD} is biased towards 0, whereas for the remaining bits the distriba¥ons
uniform; this bias is due to the distance betw&&mandp’q’. Below we define the simultaneous
hardness of the bits of the discrete-logarithm function, (cf. [15]):

Definition 4 The bits[l, ..., j], 1 > j, of fgj}L are simultaneously hard the following two distribu-
tions arePPT-indistinguishable:

o theSD! distribution: ((f; }(y))i....;, y) Wherey €z QR(n).
o theSR{ distribution:(r|| . .. ||7;, y) wherey eg QR(n) andr; — DY fori =1,...,j.

Hastad et al. [15] studied the simultaneous hardness of of the discreigtthog over composite
groups and one of their results imply the following theorem:

Theorem 5 The bits[v, ..., j] of £, are simultaneously hard under the assumption that factoring
n is hard, provided thay = [5] — O(logv).

Now let us return to the study of the subset@R(n) defined by the spherg(2¢, 2*). Consider
13

the uniform probability distributiord/ over QR(n) and the probability distributio? **") with
supportQR(n) that assigns the probability/ (2#+' — 1) to all elements:® with = € S(2¢, 2*) and
probability O to all remaining elements of the support. The main result of this agstibe following
theorem:
Theorem 6 The probability distribution@f(ﬂ’w andi/ with support R(n) are PPT-indistinguishable
under the assumption that factorimgis hard, provided thagS(2¢, 2#) = 221-Oogv),
Proof. Let .4 be a probabilistic polynomial-time distinguisher for the two distributi@mde@z’Z“).
Consider the modification ofl called.A’ that given the input it simulatesA on inputba*2l+2“.

We will show how.4’ can be turned into a distinguisher for the simultaneous hardness of the
sequence of bitgv, ..., u + 2] for the discrete-logarithm function. By theorem 5 the result will
follow.

Let¢ = (c|| ... ||cut2,y) be a challenge for the simultaneous hardness of the discrete-log bits
[v,...,n+ 2]. We compute the following:

* =4f yafcy2"*1fcu_12”’27...fcu+22“+1

observe that if is drawn from the probability distributio&D, ., it follows that the above oper-
ation will cancel all the high order bits of, and as a resulf* will be an element that is uniformly
distributed over the subsét, a, ..., a2 ~1} of QR(n). Alternatively, if is drawn from the prob-
ability distributionSR;, ., it follows thaty* is uniformly distributed ove@ R2(n).

It is clear from the above thad’ is a distinguisher between the probability distributidi®, ,
andRDj,,, with the same advantage as the distinguishing advantagebeftween the probability

distributionsDs ?*?") andi/. Based on the assumption on the size of the SphéRé 2+) we can
employ theorem 5 to complete the proof. O

Remark. The results of this section suggest that we may truncate the range ofanramadiablea”,
x €r {1,...,p'¢'}, into a subset of) R(n) that is of size approximately’p’¢’; this truncation will
not affect the behavior of any polynomial-time bounded observer. tticpar, for the case of the



Decisional Diffie Hellman assumption i@ R(n) over the sphereB;, B2, B3, we may use spheres

of size approximately/p’q’; under the assumption that factoring is hard, we will still maintain that
Advgla! 5. (v) = AdvPPH (1), In some few cases we may need to employ the DDH over spheres that
are smaller in size thagp’¢’ (in particular we will employ the sphei®, to be of size approximately
vp'q"). While the DDH over such sphere selection does not appear to be kasield be possible

that this version of DDH is a stronger intractability assumption. Neverthelesemark that if we
assume that factoring remains hard evefvif4] of bits of the prime factors of are knowr then

as stated in [15] approximately 3/4 of the bits@f}b are simultaneously hard and thus, using the
methodology developed in this section, we can still argueAlag":! 5 (v) ~ Adv”P(v), even

if By is selected to be of size approximatelyp’q’.

4 Discrete-log Relation Sets

Discrete-log relation sets are quite useful in planning complex proofs @fvledge for protocols
operating over groups of unknown order in general. BelowGdie the unknown order group of
quadratic residues module, denoted also by)R(n), wheren is an RSA modulus that satisfies
n=pq=(2p'+1)(2¢ + 1) with p, ¢, p’, ¢’ all prime numbers.

Definition 7 A discrete-log relation se® with = relations overr variables andm objects is a set

of relations defined over the objects, ..., A,, € G and the free variables., ..., «, with the
following specifications: (1) Theth relation in the sef? is specified by a tupléz?, . . ., al,) so that
eacha§ is selected to be one of the free variables, ..., «,} or an element ofZ. The relation is

to be interpreted aﬂ;":l A;j = 1. (2) Every free variabley; is assumed to take values in a finite
integer rangeS (2%, 24i) wherel;, 11; > 0.

We will write R(a, ..., ;) to denote the conjunction of all relatiorf’", A?j = 1 that are
included inR.

Below we will design a 3-move honest verifier zero-knowledge proeé €.g. [12]) that allows
to a prover that knows witnesses, . . ., z,, such thatR(z1, . . ., x,) = 1 to prove knowledge of these
values. We start with a definition:

Definition 8 A discrete-log relation seR is said to betriangular if for each relationi containing
the free variablesy,,, o, , . . ., o, it holds that the free-variables,,,, . .., a,, were contained in
relations1,...,7 — 1.

The 3-move proof of knowledge is presented in figure 1. The followingliaty lemma will be
useful in proving the properties of the protocol.

Lemma 9 Consider a fixed: € S(2¢,2*) and the random variables €z 4{0,1}“+k) ¢ ep
{0,1}*. It holds that the random variablé = t — c(x — 2¢) is statistically indistinguishable
from the random variables €r +{0, 1}“+%) The parameter assumption required for statisti-
cal indistinguishability (assuming is the security parameter and 1 are functions ink) is that

(e — 1)(n + k) = w(log k); in particular this forcese to be an asymptotically larger function in
than any function of the forrh+ log &/ (u(k) + k).

Proof. We will denote byD, the distribution of the random variabseand byD; the distribution of
5=t — c(z — 2%). Assume that the support of the two random variablé is

'Efficient factorization techniques are known when at I¢agB] bits of the prime factors af are known, [15].
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Proof of knowledge for a Discrete-Log Relation Sef:

objectsAy, ..., A, r free-variablesy, . . ., .., parameterse > 1,k € N,
Each variabley; takes values in the rang# 2%, 2+5)

P proves knowledge of the witnessese S(2%, 2€ 42y st R(x1, ..., 2,) = 1
P 1%
forw e {1,...,r} selectt,, € £{0, 1}(rwtk)

: Bi,....B.
forie {1,....2} setBi = [[; 50 4i-a, Aje Py c€r{0,1}*

P

forw e {1,...,7r} Setsy, =ty — ¢+ (xy, — 20w) "7 Verify:

forwe {1,...,7}
S €7 £{0, 1}c(rutk)+1
forie {1,...,2}
)

al y
w L 2
Hj:EIw,a;-:aw Ajw - Bi(Hj:a;-EZ Ajj Hj:EIw,aé:aw Aj b )C

Figure 1:Proof of Knowledge for a Discrete-Log relation et

 RegardingD, observe that a certai in {0, 1}(“**) has probability of being selected equal

t0 577 (uniform probability distribution). Anysy ¢ +{0, 1}“***) has probability 0.

¢ RegardingDs observe that a certaify has the following probabilities of being selected:

1. For—2¢utk) 4 outk — oo  oclutk) _ ontk for each of the2* differentcy’s we can find
ato such thatsy = to — co(x — 2%), as a result the probability of obtaining the given
. . k
according toDs IS S5t = 5T
2. Forsy > 2¢wtk) 4 otk or g0 < —2¢(utk) _ outk the probability of obtainingsg
according tdD; is O (it is impossible to solve the equatief = tg — cgx for tg, cg in their
respective domains).

3. For the remaining, € Z the probability of selecting them accordingy is smaller
than -+ but potentially higher than 0.

It is clear from the above that the absolute difference between the ljlibpaf a certainsg
according toDs and D, is 0 for the integer ranges of cases 1 and 2 above. The distribuflons
and D, will accumulate some statistical distance though due to their different beHavieg that
belong to the integer range specified in item 3. In this case, for a speagifiistributionD, assigns
probability either0 or m whereas distributiorD, assigns probability that belongs in the real
interval[0, m). Clearly, in the worst case the absolute difference Willz—ggjk)T The number
of elementss, of case 3, aré**+5+2 thus it follows that the statistical distance of the distributiéhs
andD, cannot be greater than

outk+2 1

oe(pt+k)+1 — 9(e=1)(u+k)—1

Clearly under the assumption that— 1)(u + k) = w(log k) the above distance is negligible in
k and as a result the distributiofi,.;,, andDs;.,, are statistically indistinguishable. O




Theorem 10 For any triangular discrete-log relation sét the 3-move protocol of figure 1 is a honest
verifier zero-knowledge proof that can be used by a party (prdussjving a witness foR to prove
knowledge of the witness to a second party (verifier).

We remark that the proof assumes that the prover is incapable of sahérstrong-RSA problem;
under this assumption the cheating probability of the proveéy2. Regarding the length of the proof
we note that the proof requires the first communication flow from the ptovile verifier to be of
sizez QR(n) elements (where is the number of relations iR) and the second communication flow
from the prover to the verifier to be of total bit-lengtf);, _, (e(pw + k) + 1).

Proof. Let@ = {a1, ..., an} be the set of the free-variables Bfandzx, . .., z, the witness forR
that is in the knowledge of the prover; further assume théat. . ., al,) is thei-th relation of R and
that there are relations inR.

In the first move the prover seledts € +{0, 1}5(““’““) forallw = 1,...,r. Then, for each
relationi € {1,...,z} The prover computes the valug, = [] Az.“’ and transmits all
valuesBy, ..., B, to the verifier.

The verifier selects € {0,1}* and transmits: to the prover. The prover in response prepares
the valuess,, = t,, — c(z,, — 2%%) forw = 1,...,r and transmits them to the verifier.

The verifier performs the following checks in order to accept the proof:

j:Hw,a;:aw

e Checkss,, € +{0, 1}weth+1 forallw =1,...,r.

e Tests the equalities far=1, ..., z,

I a-Zm([l 4y I a4

j:ﬂw,a;:aw Jiag Za j:ﬂw,a;:aw

Next we argue for the three properties of the above protocol, compstesmundness and honest
verifier zero-knowledge.

1. Completeness follows easily by inspection. In particular observe that if0, 1}, it follows
that eache(z,, — 2%) € £{0,1}*** (recall thatz,, € S(2»,2+v)), and as a result, —
c(xy — 20v) € £{0, 1} tR)+1 glways,

2. Regarding soundnesswe(é, ..., B,,¢, s1,...,s,)and(B1, ..., B, c* s},..., sk) be two
accepting conversations. between a prover and the (honest) verthar % ¢*.
First observe that due to the triangularity property it holds that the filstiwaship inR in-
volves only a single free variable, say,, at locationg7,, C {1,...,m}. Now let us denote
byA = Hjejwo Aj.

Because the two conversations are accepting it follows that:

Sw —Sq*ﬂ o 221110 ai- C—C*
Ao~ = (AP T A7)
JETwq

Next, we computé = gcd(sw, — sy, ¢ —¢*) anda, § such thab = a(sw, — s, ) +6(c—c”).
Observe that with very high probability it should hold tldatas no common divisor with the
order of G (otherwise we can turn the prover into a factorization algorithm) and asut ies
follows that:

Swq 752‘”0

Lo, ai.
A= =" ] 47)
i Ty

c—c*
B
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Now observe that,

A= ARSI A7) AT
JETwq

Observe now that it — ¢* > ¢ it follows easily that we can turn the prover into an algorithm
that solves a given strong-RSA challenge (indeed, given the Str@#geRallenges” we would
select at random the elements{of; | j € Ju,} with the condition[[;. ; ~A; = K and as

shown above we would obtain tﬁéf—*-root of K).
It follows thatc — ¢* = ¢ and as a result it follows that:

CIT 4™ T 47 =1

JE€ETwq JETwg

The above equality implies that we have constructed the witness fapdtie free variable

st —Suw
xwo = wo ¢+ 2two

Observe that since,,, s;,, € +{0, 1}s(uw+k)+1 it follows thats, — sw, € £{0, 1}6(,uw+k)+2
and also thaf“e "0 ¢ +{0, 1} +k)+2 As a resulti,,, € S(20wo, 26w +k)+2),

Now assume that we have processed all the relations with index less. tNega process the
i-th relation as follows: first, observe that due to triangularity, relatimvolves the variables

Qg s Oy 5 - - - 5 Qi SO that the variables,,, , . . ., ay,, Were contained already in the previous
relations. It follows by an inductive argument that we have alreadytnatsed witnesses for the
Sty —Swy —Swy,

free-variablesr,,, = 15— + Qbwy ey Ty, = s“’bf + 2%y . As before let7., be the set
of locations of the-th relation that mvolve the,,, variable and similarly defing,, , . . ., Ju,;
we also set/ = U,—q.... pJw,. Furthermore Ielzflwl = HjerZ Ajfore =0,...,b. Since the
two conversations are accepting, it follows that

[T oa=cI 4 T 4

j:Hw,a}zaw j:aé- €L j:ﬂw,aj-:au,

Now observe that due to the conditions that we have foi-tiherelation it holds that
H A;M*STU _ Ai}lgo SwoA w1 —Sw, .”Af;b’b_s%
j:Hw,a;:aw
and
1 * 29tw, ~9tw Z’LU
(T A7 [ A2 = @A Az Az (] AV

j:aé. €Z j:ﬂw,a;-:ozw JeT

¢, From the above we obtain that:

* * *\olw * * [“’b i
~Swg =Sy (e e¥)2lwy 7S, —Swq +(c—c*)271 7Sy, ~Swy+(c—c")2 al\o_e
Ay 70 = Alme2m0 4 L Ag (IT 4/

Now due to the fact that for allc {1,..., b} itholds thatz,,, = S*””%Jrﬂw with § = c—c*
we obtain thak, — s, + 2t (c — ¢*) = &y, (c — ¢*) and as a result,

Aswofsfu AQZwO AT xw
Ay 700 = (A2 At LA bHAJ
JgT
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Now we defing’ = ged(sw, — 53, c—c*) anda/, 3" such thab’ = o/ (s, — 55, ) + 0’ (c— ")

and with an identical argument as in the case of the first relation, we centiatlit must be
the case that’ = ¢ — ¢* = §. Moreover, as in the case of the first relation, we construct
the witnesst,,, = w 4 2fwo for the free-variablev,,; it is easy to verify thaft,,, €

S (28wo | 2€(kuwg +5)+2)

3. Regarding honest verifier zero-knowledge, we will describe a stonfiar protocol transcripts
between the honest prover and the honest verifier. The simulatotepasafollows: it selects
cerp{0,1}Fandforj =1,...,r, 3; €g +£{0,1}"i %) and it computes foi = 1,..., z the
valuesB; = Hjﬂw@;:aw A‘;."f(]‘[j:a;._EZ A?J‘ Hﬂw’a;:aw A%"")=¢. The simulator outputs the
transcript R )

<Bl,...,Bz,C,.§1,...,§r>

Then we need to show that the simulated transcripts are statistically indistireigieistom
transcripts that are generated in conversations between the honestgrd the honest verifier.
This boils down to calculating the statistical distance between the randomleariedimputed
ast — c(x — 2¢) for a fixedz € S(2¢,2#) andt € +{0,1}<“*+*) andc € {0,1}* to the
random variable € {0, 1}<*+%), This follows immediately from lemma 9.

O

4.1 Examples of Discrete-Log Relation Sets

Proving knowledge of a witness for a discrete-log relation sets can lgeiisevariety of settings.
We list some of them below:

Proving knowledge of a discrete-logarithm over a group of unknowderorConsider the base ele-
mentsA;, A, and the free variable € S(1,2ll°s#G]-1)- we consider the discrete-log relation set
with a single reIationAﬁj‘A;l = 1. Itis immediate that this relation set is triangular. Furthermore,
it is easy to see that a proof of knowledge for the above discrete-Iaipreket allows one to prove
knowledge of the discrete-logarithm df baseA;.

Proving knowledge of a discrete-logarithm inside an interviébllowing the above description but
the variablea will be restricted to a rang&(2¢,2#). Note that the soundness property will only
guarantee that the constructed witness lies in the extended sptérac(#++)+2): tighter intervals
can be achieved by increasing the size of the zero-knowledge pesoé.g. [5].

Proving knowledge of a committed discrete-logarithm representatioet A, Az, As, A4, A5 be
the objects and consider the free-variablgsa, € S(l,2UOg#GJ*1). we define two relations
AM AT =1andAJ AP AT = 1.

First, note that the above discrete-log relation set is triangular. Furtherinaifows a proof of
knowledge for a representation 4f over the baseds, Ay.

4.2 Spheres and Innerspheres

As demonstrated in the proof of knowledge of a discrete-log relation setwifreess belongs to
a certain spheres(2¢,2#) we are able to enforce the membership of the witness to an extended
sphereS(2¢, 2¢(v+k)) based on the parametetsande (recall that the parametetsande calibrate
the prover cheating probability and the statistical distance of the zeroledges simulator in the
zero-knowledge argument, respectively).

Frequently, sphere relationships will be immensely useful in proving ptiepef our constructs.
If proof of discrete-log relation sets are to be employed in proving therggaf more complex
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structures and enforcing various sphere relationships, we shouldntakaccount the fact that the
witness interval is slightly expanded because of the way the soundreedsgpperformed. Note that
the tightness can be increased by employing more complex interval pre&f45p; nevertheless
the amount of tightness we achieve is sufficient for our setting. Givemersg (2, 2) we define

its innersphere for parametersk as follows IS5 (2¢,24) =4 S(2,2"~%). If a witnessz €
IS*(2¢, 21 is employed in a proof of discrete-log relation set, then the verifier is gtesdithat the
prover possesses a witnesssi(2’, 2+).

5 Discrete Log Representations of Arbitrary Powers

In this section we introduce and present some basic facts about “dismgetepresentations of ar-
bitrary powers” inside the set of Quadratic Resid@&3(n) wheren is a composite modulus with
n=pq=(2p'+1)(2¢ + 1) where allp, ¢, p’, ¢’ are prime. Let = [logp'q’].

We will define three spheres, I', M inside the se{0, . . ., 2V —1} so that the following conditions
are satisfied:

S1. (minT)? > maxT.
S2. M has size approximately equal26/2!.

S3. minI' > max M max A + max A + maxM

The above set of conditions is attainable as shown by the following possieletion: for sim-
plicity, we assume that is divisible by4:

e A=S5(2i71, 2771, note that¢ A = 27 — 1 andmax A = 27 — 1.

e M =S(2271,2271), note thatM = 27 — 1 andmax M = 27 — 1.

o I = S(2% +2%71,2571), note that4' = 2% — 1, minT = 2% + 1 > max AmaxM +
max A + maxM = 2% — 1.

In the exposition below we use some fixed valugs:, b € QR(n).

Definition 11 A discrete-log representation of an arbitrary power is a tuplg e : z, ) so that it
holds A¢ = aga®b® with z, 2’ € A ande € T.

In this work we will be interested in the following computational problem:

¢ The One-more Representation Proble@ivenn, ag, a,b and K discrete-log representations of
arbitrary powers find “one-more” discrete-log representation of hitrary power inside)R(n).

The main result of this section, stated in the theorem below, establishesltiivag e One-more
representation problem cannot be substantially easier than solving ting-&R&A problem.

Theorem 12 Fix ag, a,b € QR(n) and sphereg\, M, I" satisfying the above properties. L& be a
PPTalgorithm that givenk discrete-log representations of arbitrary powers insig®&(n) it outputs

a different discrete-log representation of an arbitrary power ingigle(») with non-negligible prob-
ability. Then, the Strong-RSA problem can be solved with non-negligibbapildty. In particular if

«v is the success probability d#1, the Strong-RSA problem can be solved with success probability at
leasta /2K

13



Proof. Suppose we are given an instance of the Strong-RSA probten), wheren is a composite
modulus and € Z; we will show how to use\ to construct a paifu, e) such thau® = z( mod n).

Below we will descrlbe an algorithm that solves the given Strong-RSA instalihe algorithm
is comprised of four games that are played at random. The major issue ie glathes is the con-
struction of the discrete-log representations of random powers thabaded to the adversary and
the relationship of the output of the adversary to these representatidhfouAgames construct
somehow the discrete-log representations of random po@Agrsz s ag,ah) fori =1,..., K, and
obtain the output representation of the adversane z,2'). Each game may fail accordlng to the
following specifications:

1. Game 1 will fail ifé has a non-trivial common divisor with any of the valugs. . ., ek.

2. Game 2 will fail if (i) € is relatively prime to all valuesl, ..., ex,and (ii) it is not possible to
findaj € {1,..., K} for which it holds thau®~%s b = 1 with either? # z; or i’ #

3. Game 3 will fail if (i) € is relatively prime to all values, ..., ek, and (ii) for a pre-selected
valuej it does not hold that; dividesé and it does not hold that; = # andz’; = .

4. Game 4 will fail if (i) € is relatively prime to all valuesy, ..., ek, and (i) for a pre-selected
valuej it does not hold that; dividesé and it does not hold that*~2/5" ~*5 # 1.

Observe that playing the above games at random covers all possiblddrstof the algorithrovt
with respect to the relation of the output discrete-log representation towee gnes. The detailed
description of the four games follows below.

Game 1.

1. Selectrandomy, ..., zx,2,..., 2% € Aandey,...,ex €T.

2. Seta = z°1% (modn), ag = a” andb = a’’ wherer, ' are random integers iN. Observe
that due to theorem 6 and the properties of the selected sph¢g2) it holds that the values
agp, a, b are indistinguishable from random elementg®(n).

(witrr'a)) LK : €; i Tk
3. Computed; = = e (modn), foralli =1,..., K. Observe thatl;* = aga™ b":
foralli =1,...,K,ie., (A e : x;,x,) are discrete-log representations of arbitrary powers
inside@R(n) overag, a, b.

4. Simulate M by providing theK discrete-log representations of arbitrary powers computed
above and letA, ¢ : &, #’) denote the output of1 which is a discrete-log representation of an
arbitrary power (distinct from{A4;, e; : x;, «}) fori =1,..., K).

. If € has a non-trivial common divisor with any ef, ..., ex abort.

Now observe thatd® = aga®b®; based on our selection of the values a, b it is easy to
see thatga™b® = (U +i+r'teex  Seté := (r + & + '@ )e; ... ex. Next we compute

§ := ged(€,é) = ged(r + & + 1’2, €). In the case has a non-trivial common divisor with
the order of@R(n) we can factom and thus compute the solution of the given Strong-RSA
instance; in the other case, we compaté? such that = aé + 5é and we have

2= 20505 = (25)2205 = (A5)22P5 = (A°2P)5

Clearly if § < é we are done, since the above equations reveals a solution to the giveg-Stro
RSA instance. Observe that< r + z + /2, and due to property S3 of the sphere selectlon it
holds thaty < e for anye € " and as a resuli < é. It follows thatu := 2* AP ande := Sisa
solution for the Strong-RSA instange, z).
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Game 2.

1.

We flip a random coibit €z {0,1} and ifbit = 0 we setv, = z andv;, = 2" otherwise we
setv, = 2" anduv, = z, wherer’ € M.

. Selectrandomy, ..., zx,2},...,2% € Aandey, ..., ex €T.

. Seta = v¢'°% (modn), ap = a” andb = v, (modn) wherer is a random integer ib/.

Due to sphere selection property S2 and theorem 6 it holds:uthat b are indistinguishable
from random elements @@ R(n).

Computed; = (aovgivfi) s (modn), foralli = 1,..., K. Observe thatl® = aga®b®:
foralli =1,..., K, ie. (A; ¢ : x;,z,) are discrete-log representations of arbitrary powers
inside@R(n) overag, a, b.

. SimulateM by providing the K discrete-log representations of arbitrary powers computed

A~

above and Ie(fl, é : &, &') denote the output of1 which is a discrete-log representation of an
arbitrary power (distinct from{A4;, e; : x;, z}) fori =1,..., K).

If € is relatively prime with alkq, . .., ex game 2 aborts.

. For allj we computeA = & —z; andA’ = —4/ + 2;; We check whethes® = b2 If we find

no j for which the test passes or if we find onfg for which it holds thathA = A’ = 0 we abort
game 2. Below we assume thasatisfiess® = b2 so that not botl\, A’ are 0. Now observe
thatvetex 4 = vlfl"'eKA/ which is equivalent to2* = v’ since the primes, . . ., ey do not
divide the order ofY R(n).

. (Case a) suppose that £ 0 and A’ # 0. We compute) = ged(A, A’) anda, 5 such that

5 = aA + BA.

Observe that if we come up withdthat divides the order a) R(n) we can factor and as a
A A’
result solve the Strong-RSA instaneez. In the other case, it will hold that’ = vb5

Now observe that,

A A N
va = (vd ) (va" )7 = (0,7 ) (va” )7 = (vfv]) ™
Now if A’ > § it follows easily that since, is be equal to: with probability 1/2, the above
relation reveals a solution for the Strong-RSA instance.

In the case\’ = § it follows that A’ dividesA. Again if A’ has a non-trivial common divisor
with the order of the grou@) R(n) we can factom and thus solve the Strong-RSA instance
A

n, z. In the other case observe that it will hold th@ = v, and sincev, = z with probability
1/2 we will solve the given Strong-RSA instance, unléss= A’, something hardly possible
since this would make, = v, which is a negligible probability event.

. (Case b). Suppose that = 0. It follows thatvbA' = 1 and as a result eithek’ has a non-

trivial divisor with the order of) R(n) that allows us to factor and thus solve the Strong-RSA
instancen, z or it also holds that\’ = 0. But this cannot be true as this case has been excluded.
The case wher\’ = 0 is similar.

Game 3.
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1. We selectrandom, ..., zx,2),..., 2% € Aandey, ... ex €T.
€1€K v , 61“4.EK
2. Selectj €g {1,...,K}andset = v, 7 (modn),ap= A} /(a™b")andb=v, 7 (mod

61.4.€K
n) whered; = z % (modn) andv, = 2" andwv, = v/ with 7,7’ random integers in.

Clearly a, b are indistinguishable from random elementsdR(n) given the sphere selection
property S2, theorem 6 and the fact that. .., ex are all relatively prime to the order of
QR(n) (and this fact holds for a fixed). Moreover since: is a free selected element of

QR(n), alsoayg is uniformly distributed ove) R(n) (sinceey, .. ., ex are all relatively prime
to the order ol R(n)).
e CLtK
3. Computed; = (2%v," v, ) %% (modn), foralli =1,...,5-1,j+1,... K. Ob-
serve thatd;" = apa®ib¥i foralli = 1,..., K, It follows that(A;, e; : z;, z}) are discrete-log
representations of arbitrary powers foe 1,..., K.

4. Simulate M by providing theK discrete-log representations of arbitrary powers computed

above and Ie(A, é : &, &') denote the output of1 which is a discrete-log representation of an
arbitrary power (distinct from{A4;, e; : x;, z}) fori =1,..., K).

5. If éis relatively prime tae; game 3 aborts.

6. Ifx; #2 ora:; # 2’ then game 3 aborts. In the other case, observeAEY’at: A¢. 1t follows
that, A® = 2¢1--¢K _ \We computel = ged(é,er ... ex) anda, g suchthat = aé+ ey .. .ex.
In the case that has a non-trivial common divisor with the order @R(n) we can factom
and thus solve the given Strong RSA instance. In the other case it holds,

P L P s R oLy

which yields a solution to the given Strong RSA instance unfessé. But this in turn means
thaté dividese; . .. ex which implies that either (if = e; which is not possible since in this
a4l

case the two representatiofd;, e; : z;, x7) and(A, ¢ : z,4') are the same or (i = eje;
which is also not possible since in this c@sg I" (due to sphere selection property S1).

Game 4.

1. Selectey,...,zx, 2}, ..., 2% € Aandey,...,ex €T.
elu.eK ) ’ ,
2. Selectj e {1,...,K}andsetu = z % (modn), agp = A}’ /(a™/b"7) andb = a” where
A; = a” andr,r’ are random integers iWL. As in game 3, we argue tha, a, b are indistin-
guishable from random elements@fR(n).

42 el VELCK
(@i+r'zi+rej—z;j—r'z})

3. Computed; = =z “¢ (modn), foralli =1,...,5—1,7+1,... K.
Observe thatl;’ = apa®ib®i foralli =1,..., K, It follows that(A;, e; : z;, ;) are discrete-
log representations of arbitrary powers ot 1, ..., K.

4. Simulate M by providing the K discrete-log representations of arbitrary powers computed

above and letA, ¢ : i, ') denote the output af1 which is a discrete-log representation of an
arbitrary power (distinct from{A4;, e; : x;, z}) fori =1,..., K).
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5. If it holds thatgcd(é, e;) # e; then the game aborts (note thatihas a non-trivial common
divisor with some ofey, ..., ex game 4 will abort with probability onlyt /K). In any other
casegcd(é, ej) = e; (due to the fact that; is a prime number) and as a result there exists an
integert such thaé = te;.

Next we check whethef — z; + /(2" — 27) # 0 and in this case we proceed as follows:

Let Z = A'/A;. It cannot be the case thdt= 1; indeed ifZ = 1 this means thati’ = A;

or equivalently thatd® = A‘/ which implies thata®b* = a®5% anda® * " =) = 1,
¢From this we obtain that = & — z; + /(' — 2;) = 0 since is a positive integer (due to
sphere selection property S1) that is smaller than the order of the grauprity other case
that this may happen is in the case thdttas a non-trivial common divisor with the order of the
group@R(n) from which we can facton).

7€ — (gfj — Aé. — aga® b B R )

Aj A;] aoaijx;'
Lete := 7% it follows thatZ¢ = 2. Suppose that := gcd(e;, |é]); it is easy to see that
d = ged(ej, |]) sincee; is relatively prime with%. Due to the sphere selection property
S3 it follows thate; > |y| and sincee; is a prime number, it holds that= 1. It follows then
that we can findv, 3 € Z such thatl = ae; + 3¢ and as a result = 2% +0¢ = (z2Z8)e |t
follows thatu := 2*Z” ande := ¢; is a solution for the Strong-RSA instante, z).

As a result, using\f we can construct a probabilistic algorithm for Strong-RSA by playing the
above two games. W is the success probability @¢1, it is easy to see that the above algorithm will
solve the Strong-RSA problem with success probability at leA2# . a

6 Non-adaptive Drawings of Random Powers

Consider the following game between two players A, B: player A wishes totselandom powed”
sothatr € S(2¢,2*) wherea € QR(n) withn = pq = (2p’+1)(2¢'+1). Player B wants to ensure
that the valuex is selected “non-adaptively” from its respective domain. The outputipetions of
the game is that player A returnsand that player B returng”. Player B is assumed to know the
factorization ofn. In this section we will carefully model and implement a protocol for achiethigy
two-player functionality. The reader is referred to [14] for a gendistussion of modeling secure
two-party computations.

In the ideal world the above game is played by two Interactive TM’s (ITM'g, By and the help
of a trusted third party ITMI" following the specifications below. We note that we use a special
symbol L to denote failure (or unwillingness to participate); if an ITM terminates with ahgro
output other than_ we say that it accepts; in the other case we say it rejects. ¢From all thiblpos
ways to implementd, By one is considered to be the honest one; this will be markedifasB
and is also specified below.

0. The modulus: is available to all parties and its factorization is knownRg. The sphere
S(2¢,2#) is also public and fixed.

1. A sends a message fgo, L} toT. A transmitsgo.

2. By sends a message fgo, |} to 7. B{! transmitsgo.
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3. If T receiveszo from both parties, it selects €z S(2¢,2*) and returns: to Ao; otherwiseT’
transmitsl to both parties.

4. Ay selects avalu€' € Z¥ and transmits eithef’ or L to 7. A¥ transmitsC' = a® mod n.

5. T verifies thaiw® = C'(modn) and if this is the case it transmit$to both players. Otherwise,
(or in the cased, transmittedL in step 4),7 transmits. to both players.B! terminates by
returningC or L in the case of receiving. from 7. Similarly A terminates by returning,
or L in the case of receiving. from 7.

Let Imp =q4¢ (Ao, Bp) be two ITM’s that implement the above protocol with the help of the ITM
T. We define byOUT'{'™ (init 4 (v)) andOUT " (init (1)) be the output probability distributions of
the two players. Note thabit4(») contains the initialization string of player A which contains the
modulusn, and the description of the sphe$€2¢, 2#); similarly init (1) is defined asnit 4 (v) with
the addition of the factorization of. Below we will use the notatiolDEAL'™” (ina,inpg) to denote
the pair(OUT'}'" (in4), OUTST (ing)). Finally, we denote bym! the pair(A}, BL).

The goal of a protocol for non-adaptive drawing of random povgeifse simulation of the trusted
third party by the two players. Létn = (A;, B;) be a two-player system of interactive TM’s that
implement the above game without interacting with the trusted third @artyAs above we will
denote byOUT'Y (in4) the output probability distributior;, and likewise forOUT (inp). Also
we denote b)REAL'm(inA, inp) the concatenation of these two distributions.

Definition 13 (Correctness) An implementatiom = (A, B;) for non-adaptive drawings of ran-
dom powers igorrectif the following is true:

REAL™ (in4, ing) ~ IDEAL'™ (in4, inp)

whereiny « init4(v) andinp « initg(v). Intuitively the above definition means that the imple-
mentationim should achieve essentially the same output functionality for the two players aketd
honest implementation.

Defining security is naturally a bit trickier as the two players may misbehaveaily when
executing the prescribed protocol implementation= (A;, By).

Definition 14 (Security) An implementatiolm = (A;, B;) for non-adaptive drawings of random
powers issecurdf the following is true:

VAT A% REALATBY (iny ing) &~ IDEALASBE) (in 4 ing)

VB 3B; REALALBY (iny ing) ~ IDEALASBE) (in 4 ing)

whereiny < init4(v) anding < initg(v). Intuitively the above definition means that no matter
what adversarial strategy is followed by either player it holds that it catrlbesformed to the ideal
world setting without affecting the output distribution.

Having defined the goals, we now take on the task of designing an implemeritatigithout a
trusted third party; below we denote by =4 #5(2¢,2#) = 2¢+1 — 1,

1. The two players read their inputs and initiate a protocol dialog.
2. Player A selects € Zg,7 €r {0,...,n? — 1} and transmits to player B the valdg =
g*h"(modn) andCy = y"(modn).
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3. Player A engages with player B to a proof of knowledge for the disdogteelation set
(—-1,0,z, 7,0) and (0, —1,0,0,7) over the objects’, Cs, g, h,y. Observe that the relation
set is triangular.

Player B selectg € Z, and transmitg to A.

Player A computes’ = & + §(modm) and transmits to player B the valdg = a.

6. Player A engages with player B to a proof of knowledge for the disdogteelation set
(-1,0,a,,7,0,0), (0,-1,0,0,0,0,0,7), (0,0,—1,0,0,0,, 0) over the objects’; g, Cs,
Cs,g,9™, h,a,y (Observe again, that the relation set is triangular).

7. Player A engages with player B to a tight interval proof ¢&r ensuring thatog, C5 € Zys,
(treatingZ,; as an integer range); this is done as described in [5].

8. Player A outputs := 2/ + 2¢ — 2% + 1 and Player B output§’ := Ca2 ~2"+1,

ok

Theorem 15 The above protocol implementation for non-adaptive drawing of randmaeps is cor-
rect and secure, per definitions 13 and 14, under the Strong-RSBBhRbassumptions.

Proof. Regarding correctness note that if both players follow the protocol,theselected from the
uniform distribution overS(2¢, 2+); following the protocol steps both parties will obtain the output
as specified in the ideal implementation.

Next, we deal with the first equation of definition 14 (essentially the secwitplayer B). Let
A7 be any ITM for player A in the real protocol execution. We need to caostin ITM Aj as an
ideal world transformation ofi} so that the first equation is satisfied.

Aj operates as follows: it simulatel§ up to the point tha#} initiates the protocol dialog; in this
caseA} transmits thego message t@ and receives the valuec S(2¢,2#). On the other hand, ifi}
never initiates the protocol dialogl; transmitsL to 7'. SubsequentlyA; continues the simulation
of A7. Aj stores the value€’;, Cs as transmitted byl}; then, it selects two challenges, ¢ so
thatc €p {0,1}* andc* €g {0,1}%1 — {c}, and simulatesi; till step 3 is completed so that the
challengec* is supplied. ThenAj rewinds A7 to the step thatd] waits the challenge in the proof
of knowledge of step 3 and; gives toA] the challenge. Based on the soundness property of the
proof of knowledge of step 34 is capable of reconstructingands (the witnesses). Subsequently
it computesr’ = x — (2¢ — 2# 4 1) (as an integer) and sejs= 2’ — Z(modm); then it transmitg)
to A}. Aj replies byCs and the proofs of knowledge of step 5 and stepi§.verifies the proofs of
knowledge that they are correct and in this case, it transiit® 7'; in any other caselj; transmits
1 toT. Af continues the simulation of} and terminates by outputting the output4y.

Let us first consider the distributio! = OUT%’B”(mA) and0’ = OUT;ASS’BéJ)(mA). Itis

clear thatO! andO° are indistinguishable as}; executes a perfect simulation af.

Now we consider the distribution@®! = OUTgT’B”(z’nB) and0® = OUT;’?)ﬁ’Bé{>(inB).

The probability distribution®' andO° can be thought of, as mappings from a sequence of coin
tosses to an element gJR(n) U {L}. Coins’ for j = 1,0 is the set of all possible coin tosses
respectively. Ifb € Coins/, it holds thatO’ (b)) € QR(n) U { L}. Now letk; be the number of coin
tosses required for selecting the challengdsgfin the step 3 of the execution of the protocol in the
real world. Letky be the number of coin tosses that the adversiryequires to complete the final
step in the proof proof of step 3 in the real world execution.

Letb € Coins!, andO'(b) = C € QR(n). Now observe thab can be mapped to a set of
(2F1 — 1)2*2 coin tosses$’ € Coins’ in a straightforward manner; the only point that is interesting
is the fact that the coin tosses Bfinside’ must be computed based on the coin tosseB;ofor
selectingy and the baseg logarithm of the value”;. Now observe that the coin tosskshat lead
B, to accept despite the fact thdf does not construct the valué€g, C», Cs properly (and as a
result in this casé’, B{ will reject) constitute a negligible fraction of all possible coin tosses. In
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any other case observe that it will hold ti@at(b) = O°(V') € QR(n). Observe that this mapping
can be reversed; indeed, given anyc Coins’ with O'(b) = C we can construct a string of coin
tosses € Coins' so thatO'(b) = C. In this case, the coin tosses frdfmhat correspond t@ will
determine the coin tosses bfequired to set the coin tossesgpfising, again, the basglogarithm
of the valueC;. Regarding the case af, observe that ib is a sequence of coin tosses for which
O'(b) = L then definitelyO°(v') = L, whereb’ € Coins® is any of the corresponding coin tosses
to b. On other hand it’ is such thaD!(¥') = 1 and it holds that!(b) # L for the corresponding
coin tosse$ € Coins' then this means thad] cheats in some of the proofs of knowledge in steps 6,
7; this can happen with only for a negligible fraction of coin tosses. Thétrés ~ O° follows.

Suppose now thaB; be an ITM playing the role oB3; in a real protocol execution (acting as
an adversary). We will desigB;; as an adaptation @B} in the ideal world. The ITMB; operates
as follows: in step 1 (of the real world simulatioj; provides toB; the value”;, C; as random
elements of) R(n) (this is indistinguishable from real-world executions based on the DDH@gssu
tion); then in step 3B; provides toB; a simulated protocol transcript for the proof of knowledge
of step 3 (employing the zero-knowledge property). In step3receives fromB; the valuey and
ignores it. WhenB; receives the valué€' from the trusted part§’, B computes’s = Ca=2 +2"~1;
B; gives toB7 the valueCs when simulating step 4. Otherwise Tiftransmitted a failure message,
Bg; will selectCs at random fromQ R(n) for the simulation of step 4. Subsequenily; simulates
the proofs of knowledge of steps 5 and 6 and gives theftoFinally B continues the simulation
of B} and returns the same output.

(A1,B7) (A¢.BE)

Next we consider the distribution®' = OUT 3 """/ (ina) andO® = OUT ;2 "% (in4). The
0

indistinguishability ofO' andO" is simple to see: it is clear that’ is the uniform distribution over
elements:® with 2 €z S(2¢, 2#); the same will hold true in the case of a real execution betwben
andBj7 (this holds true, independently of whBf does, as it cannot bias the probability distribution
of the output of4; since the reduction modulpwill allow the random variabl& cancel any possible
bias introduced bys7).

. . T 1 (A1,B*) . 0 (AH By, .

Finally, we consider the distributior@" = OUTB’{ Y(ing) andO” = OUTBg;O °(inpg).
Recall that we assume that the challenge$3pfshould be honest (all our zero-knowledge proofs
canonical). This means that the simulations performed®pyvhile adaptingB; in the ideal world
are indistinguishable from the ones supplied by playein real protocol executions. It follows that
the protocol views oBj7 in real executions are indistinguishable compared to the corresponading) vie
in the simulation performed by8; when B7 is adapted to the ideal world; thus the two probability
distributionsO! andO° will be indistinguishable. a

7 Traceable Signatures and Identification

Atraceable signature scheme is comprised of nine protocol procesktigs Join, Sign, Verify, Open,
Reveal, Trace, Claim, Claim_Verify) that are executed by the active participants of the system, which
are identified by the Group Manager (GM), a set of users and othetrasted third parties called
tracers. A traceable identification scheme is defined in a similar fashion wittiftaeedce that the
Sign andVerify procedures are substituted by ldentify protocol and theClaim andClaim_Verify
procedures are substituted bZkiming protocol.

Setup (executed by the GM). For a given security parameteahe GM produces a publicly-known
stringpkg ,, and some private stringkg , to be used for user key generation.

Join (a protocol between a new user and the GM). In the course of the ptdtee GM employs
the secret-key stringkg (. The outcome of the protocol results in a membership certifizatethat
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becomes known to the new user. The whimé protocol transcript is stored by the GM in a database
that will be denoted byranscripts. This is a private database and each Join transcript contains also
all the coin tosses that were used by the GM during the execution.

Identify (traceable identification) It is an interactive proof system between aeprwd a verifier
with the user playing the role of the prover and the verifier played by anytrusted third party. The
Identify protocol is a proof of knowledge of a membership certificate;. We restrict the protocol to
operate in 3 rounds, with the verifier selecting a random challenge obpipate length in the second
round.

Sign andVerify. The signing and verification algorithms are derived fromitientify protocol using

the Fiat-Shamir heuristics [13] (including the message into hash).

Open (invoked by the Trustee) A p.p.t. TM which, given a signature (or an ideatitin protocol
transcript), the secret-keg 1 and access to the database of all the transcripts of the Join protocols,
it outputs the identity of the signer and a proof that the opening algorithm xezsited properly.

Reveal (invoked by the GM) A p.p.t. TM which, given the Join transcript for a uséroutputs the
tracing trapdoor for the usérmdenoted bytrace;.

Trace (invoked by designated parties, called tracers). A p.p.t. TM which, giveignatures (or a
Identify transcript) and the tracing trapdoor of a certain user, checksviis signed by the user.

Claiming. It is an interactive proof system between a prover and a verifiereviier role of the
prover is played by the user and the role of the verifier is played by the ctmipient. TheClaiming
protocol is a proof of knowledge that binds to a givdentify protocol transcript (or signature) and
employs the membership certificatert; of the user. As in the case tdentify protocol we restrict
Claiming to be a 3-round protocol so that in round 2 the verifier selects a randatresge of
appropriate length.

Claim andClaim_Verify. It is the non-interactive version of ti@laiming protocol employing the
Fiat-Shamir heuristics [13].

Given the inter-relationship between traceable identification and tracegbéges for simplic-
ity we will define correctness for the signature version of the scheme @heable identification
will be correct provided that the corresponding signature scheme risater note that the correct-
ness condition for identification deals with only the honest verifier cass,itigisafe to say that the
identification scheme is correct if the corresponding signature schemeésgo

Definition 16 (Correctness for a traceable schemel traceable signature scheme with security

parameter is correct if the following four conditions are satisfied (with overwhelming probability in

v). LetSign,, be the signing mechanism of ugeandClaimy, its corresponding claiming mechanism.
(1) Sign-Correctness:lt should hold that for allM/, Verify (M, pkg a4, Sign, (M )) = true.

(2) Open-Correctness:For all M, o — Sign,,(M), if Verify(M, pkgry, o) = true then

Open(skg, transcripts, o) = U

(3) Trace-Correctness:For any M, ando < Sign;, (M) it should hold that

Trace(Reveal(U, transcripts), o) = true if and only if Open(skga4, transcripts, o) = U

(4) Claim-Correctness: The Claim and Claim_Verify satisfy the following property: for all
M, o — Signy (M) it holds thatClaim_Verify(M, o, Claimy (M, 0)) = true
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7.1 Security Model for Traceable Schemes

In this section we formalize the security model for traceable signature sshefneclaim security
we will define the notion of an interfacgfor a traceable scheme which is a PTM that simulates the
operation of the system. The purpose behind the definitiéhisfto capture all possible adversarial
activities against a traceable scheme in an intuitive way. We will deal with theigeof the interac-
tive version of a traceable scheme, i.e., a traceable identification schenmeod&tour security using
“canonical” 3-move proofs of knowledge (where the challenge of thiéweg party is assumed to be
truly random — note that this can be simulated by an external protocol plstecen the parties, or
using a beacon etc. ) and passive impersonation-type of attacks; idgiifisecurity in this type of
model facilitates the employment of the Fiat-Shamir transform for proving sigmaecurity; thus,
proving security for the interactive version will be sufficient for emsgirsecurity of the traceable
signature in the random oracle model (see [1]).

We model the security of a traceable identification scheme as an interacticgelndtve adversary
A and an entity called thimterface The interface maintains a (private) state denotedtbyes (or
simply state) and communicates with the adversary using a handful of pre-speqifiey actions
that allow the adversary to learn information abeuiter; these queries are specified below. The
initial state of the interface is set$tater = (skgai, pkg ). The interface also employs an “internal
user counter” denoted hywhich is initialized to 0. Moreover three sets are initialiZé8, U*, U®
to (). Note thatstates is also assumed to contal?, U, U® andn. Finally the interface employs
two other strings denoted and initialized as followtainscripts = € andSigs = €. The various query
action specifications are listed below:

e (Qpub). The interface returns the string, pkg (). This allows to an adversary to learn the
public-information of the system, i.e., the number of users and the public-fayriation.

e (Qweyom). The interface returnskg q; this query action allows to the adversary to corrupt the
group-manager.

e (Qp_join). The interface simulates thiein protocol inprivate, increases the user counby 1,
and setstate := statez||(n, transcript,, cert,). It also adds into UP and setsranscripts :=
transcripts||(n, transcript,).

This query action allows to the adversary to introduce a new user to thersyitat is not
adversarially controlled).

e (Qa_join). The interface initiates an activioin dialog with the adversary; the interface in-
creases the user coumnby 1, and assumes the role of the GM where the adversary is assum-
ing the role of the prospective user. If the dialog terminates successfellintarface sets
statez := statez||(n,transcript,, L). It finally addsn into the setU® and transcripts :=
transcripts||(n, transcript, ).

This query action allows to the adversary it introduce an adversariallyaitmd user to the
system. The adversary has the chance to interact with the GM during theealtoript.

e (Q:i_join). This query is identical to &,_j.in query with the difference that the interface at the
end transmitgert, to the adversary and addsto U“. The queryQ;_j.i» is weaker than the
queryQ,_j.in and we include it in the modelling for technical reasons. See lemma 20.

e (Qy_join). The interface initiates an activoin dialog with the adversary; the interface in-
creases the user countby 1 and assumes the role of the prospective user and the adver-
sary is assuming the role of the GM. If the dialog terminates successfully théacdesets
stater := stater||(n, L, cert,). It also adds into U".

This query allows the adversary to introduce users to the system actingMs a
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stater = (pkgaq, Skga) < Setup(1¥);
EXPfuis(V) | (d, p1) — AZTIstater, Qoun, Qp—join,Qa—join, Qidl (first, 1V);
¢ = {0,1}";
p2 — A(second, d, p1, ¢);
it iV(pkgaq, p15c,p2) =true and
i f Open(skg, transcripts, p1) & U“
or AjeyeTrace(Reveal(i, transcripts), p1) =f al se
then output 1
el se output O

Figure 2: The misidentification experiment

e (Qi4,17). The interface parsestater and if it discovers an entry of the formi, -, cert;) it
produces andentify protocol transcript using the certificatert; and selecting the verifier
challenge at random; if no such entry is discovered 6EfU* the interface returns. Finally,
if o is the protocol transcript the interface s&igs = Sigs||(i, o).

o (Qreveal; 7). The interface returns the output®éveal (i, transcripts). Sometimes we will write
QA | to restrict the interface from revealing usersdnNote thatReveal(i, transcripts) = L
in case usef does not exist of € U".

Given the above definition of an interface we proceed to characterizatloeis security proper-
ties that a traceable scheme should satisfy. We will use the not&fio®;, . .., Q.| to denote the
operation of the interface with (initial) statethat responds to the query actio@s, . . ., 9, (a subset
of the query actions defined above). In general we assume that thiadeteserves one query at a
time: this applies to the queri&3, i, and Q,_;.in that require interaction with the adversary (i.e.,
the interface does not allow the adversary to cascade such quer@sdorRe traceable identifica-
tion scheme we will denote by andiV the prover and verifier algorithms for theentify 3-move
protocol as well as byP andcV the prover and verifier algorithms of ti@aiming 3-move protocol.

Our definition of security, stated below, is based on the definitions of the tramed security
properties in the coming subsections.

Definition 17 A traceable scheme is said to lsecure provided that it satisfies security against
misidentification, anonymity and framing attacks as well as against unda#tbtracing.

7.1.1 Misidentification Attacks.

In a misidentification attack against a traceable scheme the adversary istalooentrol a number
of users of the system (in an adaptive fashion). The adversary ialidseed to observe the operation
of the system in the way that users are added and they produce identificatiscripts. Finally the
adversary is required to produce an identification transcript that sateifleer one of the following
properties: (a): the adversarial identification transcript does nat apany of the users controlled
by the adversary, or (b): the adversarial identification transcrips doe trace to any of the users
controlled by the adversary. We will formalize this attack using the experipresented in figure 2.
We will say that a traceable identification scheme satisfies security againséntightion if for

any PPTA, it holds thatProb|Exp:. (v) = 1] = negl(v).

7.1.2 Anonymity Attacks

An anonymity attack is best understood in terms of the following experimenistipdyed with the
adversary4 who is assumed to operate in two phases called andguess. In theplay phase, the
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stater = (pkgaq, Skga) «— Setup(1¥);

EXp;‘Lon(V) | {d, dg,i1) — AI[StatelvQPubvgp—joinyga—joinaQivareveal}(play’ 1¥)
if dgor d3do not belong in UPreturn L.

b {0,1}.

parse statezand find the entry (i, transcript;,, cert;,).

si mul ate the Identify protocol for cert; to obtain (p,c,p2).

=(40,i1)

b* — AI[StateI7QPUb7Qp_jOin7Qa_jom’Qid7Qreveal }(guess, lyﬂ d? <p17 ¢, P2>)7
if b=b.,then returnlelse returno.

)

Figure 3: The anonymity attack experiment

stater = (pkgaq, Skga) < Setup(1¥);
Expr(v) & | (s,d, p1) « ATItater, Qpub, Quey, Qojoin: Qi (first, 1¥);
e {07 1}k;
p2 < A(second, d, p1, ¢);
i f iV(pkgaq, p1,c,p2) =true and
i f Open(skgay, transcripts, p1) € U®
or 3i € U : Trace(Reveal(skgaq, transcripts, i), p1) =t rue
then output 1
else if sis such that (i,s) € Sigsand i € U?
and cV(s,p1,c,p2) =truet hen out put 1
el se output 0O

Figure 4: The framing attack experiment

adversary interacts with the interface, introduces users in the systenseheuds two target users
he does not control; then receives an identification transcript thaésnds to one of the two at
random; in thefind stage the adversary tries to guess which of the two produced the identificatio
transcript. We remark that we allow the adversary to participate in the syssenasa tracer (i.e.,
one of the clerks that assist in the tracing functionality). The experimemneégepted in figure 3.

A traceability scheme is said to satisfy anonymity if for any attackdtrholds that
[Prob[Expghe (v) = 1] — 1| = negl(v).

7.1.3 Framing Attacks

A user may be framed or two different ways: the authorities and othes us@y construct a signature
that opens or trace to an innocent user, or they may claim a signatureabaenerated by the user
as their own. We capture these two framing notions with the experiment desgénlfigure 4 (we
remark that “exculpability” of group signatures [2] is integrated in this expent).

Atraceable scheme satisfies security against framing provided thayfpraabilistic polynomial-
time A it holds thatProb[Expz, (v) = 1] = negl(v).

8 Design of a Traceable Scheme

8.1 The Construction

Parameters The parameters of the scheme are R with ¢ > 1, k£ € N as well as three spheres
A, M, T satisfying the properties presented in 5; the functios supposed to satisfy the condition
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of lemma 9. Below we will denote biA®, IM*, andIT* the inner spheres of, M andI” w.r.t. the
parameters, k, (see section 4.2).

SetupThe GM generates two primes, ¢’ with p = 2p’ + 1, ¢ = 2¢’ + 1 also primes. The modulus
is set ton = pq. The sphered\, M, T" are embedded int¢0,...,p'¢’ — 1}. Also the GM selects
a,ap,b,g,h €r QR(n) of orderp’q’. The secret-keykg of the GM is set tg, q. The public-key
of the system is subsequently septq; ,, := (n,a, ag, b, y, g, h).

Join (a protocol executed by a new user and the GM). The prospectiveandethe GM execute
the protocol for non-adaptive drawing a random powee IA* overd (see section 6) with the user
playing the role of player A and the GM playing the role of player B; uporcessful completion of
the protocol the user obtaing and the GM obtains the valug = b®:.

Subsequently the GM selects a random prime II'* andxz; € IA* and then computed; =
(Cl-agciao)efl(modn) and sends to the user the values, ¢;, ;). The user forms the membership
certificate asert; := (A4;, e;, x;, ;). Observe that4;, e; : z;, x}) is a discrete-log representation of
an arbitrary power i) R(n) (see section 5); furthermore observe that the portion of the certifigate
is known to the GM and will be used as the user’s tracing trapdoor.

Identify . To identify herself a user first computes the values,

Tl = Aiyr7 T2 = gT’ T3 = geihr7 T4 = g$1k7 T5 = gku Tﬁ = gwgk/7 T7 = gk/

wherer, k, k' €z M. Subsequently the user proceeds to execute the proof of knowledige fufl-
lowing triangular discrete-log relation set defined over the objgedisy, ag, a, b,Tfl, T;l,Tg,T4,
Ts, Ts, Ty and the free variables atex’ € IN*, e € ITF r, 1/,

g h )™ Ty Tn y ()™ a b a T3 Ty Tp

Th=g": r 0 1 000 0 000 0 0 0
T3=¢h": e+ 0O 0 0O O 0O 00 O —-1 0 0
TsS=g": B 0 e 000 0 00 0 0 0 O
w=T: 00 0 =« 0 0 0 00 0 0 -1 0
™w=Ts: 00 0 0 2 0 0 00 0 0 0 -1
apa®by" =T¢: 0 0 0 0 0K e =z 1 0 0 0

Observe that the above proof of knowledge ensures that the VBIU&s, T3, Ty, T, Tg, T+ are prop-
erly formed and “contain” a valid certificate. In particular the above prumtfonly enforces the
certificate conditio4;’ = apa®ib%i but also the fact that; € I andz;, z; € A.

Open. (invoked by the GM) Given &lentify transcript(p1, ¢, p2) and all Join transcripts the GM does
the following: it parses; for the sequencél’, T, T3, Ty, 15, Ts, T7) and computes the valué =
(T>)~*T1. Then it searches the membership certificdtés e;) (available from the Join transcripts)
to discover the indexsuch thatd = A;; the index: identifies the signer of the message.

Reveal (invoked by the GM) Given the Join transcript of th¢h user the GM parses the Join
transcript to recover the tracing trapdaedce; := ;.

Trace. (invoked by any agent/clerk) Given the valuece; and anldentify protocol transcript
(p1, ¢, p2) the agent parses the sequeKi€e T», T3, Ty, T5, Ts, T7) from p;; subsequently it checks
whetherT;" = Ty; if this is the case the agent concludes that userthe originator of the given
Identify protocol transcript.

Claiming. (invoked by the user) Given ddentify protocol transcript that was generated by user
and contains the sequent® , T, T3, T4, T5, Ts, T7), the useti can claim that he is the originator as
follows: he initiates a proof of knowledge of the discrete-lodlptbaselr (which is a discrete-log
relation set, see section 4). If the proof is directed to a specific entity tlvé pao be targeted to the
receiver using a designated verifier proof, see [16]; such prasfde easily coupled to our proofs of
knowledge for discrete-log relation sets.
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Theorem 18 The traceable signature version of the scheme described aboverasicaccording to
definition 16 and secure according to definition 17.

In particular it satisfies (i) security against misidentification attacks basedhe Strong-RSA
and the DDH assumptions; (ii) security against anonymity attacks basedeoBDH assumption;
(iii) security against framing attacks based on the discrete-logarithm prolaieerQ R(n) when the
factorization ofn is known.

We remark that correctness of our scheme can be verified by a closeiiospof the protocol.
On the other hand, the proof of security as stated in the above theorenewlidzribed in detail in
the next section.

9 Security of the Protocol

In this section we prove that our construction is secure according tataefi7. We will start with
some basic lemmas that will be useful in the main security proofs.

Lemma 19 Letpkg, = (n,g,a0,a,b,y, g, h) be the public-key in the scheme of section 8.1. There
exists a PPTSjq that takes as inpupkg,, and a tuple(A, e, z,2') € QR(n) x I' x A x A (not
necessarily satisfying the conditiotf = aga®b®’) that is capable of simulating the valid identifica-
tion transcripts generated by a single usewith membership certificated;, e; : x;, «}), for which it
holdse; = e, z; = x, z, = = (but potentially4; # A).

In particular the distance betwee$)y and realldentify protocol transcripts of the useris at
most2AdvPPH (1) + € wheree is the statistical distance of the simulatsr of the 3-move zero-
knowledge proof of knowledge used insidelttentify protocol.

Proof. S;4 operates as follows: first it sets,
T =Ay, To=g", Ty =g¢°h", Tu= g™, T5 = ¢* Ts=¢"% Ty = ¢

for r,k, k' €g M. Then, based on properties of the proof of knowledge we know thet heasts
a simulatorS for the proof of knowledge of the discrete-log relation-set that cpoeds to the
Identify 3-move proof of knowledge. Thus;y simulatesS over the objectg, h, y, ag, a, b, T1, To,
Ty, Ty, Ts, T, Tr.

Also let Sy be a simulator operating &, but using?| €r QR(n) instead of;.

Suppose now that there exists a distinguisher of between valid protogsttipts and the output
of Si4.

Let (G, X,Y, Z) be a challenge for the DDH assumption. Consider the following algor8tim
It setsT] = AZ, T, .= X,¢ = G,y := Y and it simulatesS on the inputn, ¢, ag, a,b,v/, g,
h,A,e,x,2’. If G,X,Y,Z is valid DDH tuple then observe that the output$f is identically
distributed to the output af;y. On the other hand if7, X, Y, Z is a random tuple then the output of
S* is identically distributed to the output &fx.

It follows that the probability distributions df,q andSy have statistical distance at mastv??H (v).

Now consider the distributio® of all valid protocol transcripts generated by a single us&ve
modify theldentify protocol of the useito use the simulata$ of the 3-move proof of knowledge of
a discrete-log relation set instead. Based on theorem 10 it is easy to stestivndified probability
distributionD’ of all valid protocol transcripts generated by a single useitl be statistically indis-
tinguishable from the distributiof (it will distancee in particular). Next we modify thé’ further
so that the valud is substituted by the valug| selected at random fro@ R(n); the modified ditri-
bution will be denoted b”. Itis easy to see that the distancel®f from D’ is at mostAdv’ P (v).
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Finally observe that the distributid®” is identical to the distribution generated 8. The proof of
the theorem follows easily. O

Lemma 20 For any probabilistic polynomial-time algorithrd that interacts with the interface as

negl(v).

Proof. The proof is based on the security properties of the Join protocol whiackésure implemen-
tation of a non-adaptive drawing of a random power as describedfioséc In particular due to the
security from the player B’s side we can simulateso that the values’ that.4 obtains from each
instantiation of aQ,_;.in protocol can be chosen externally by a trusted party. According togheor
15 this does not affect the private output functionality. O

9.1 Security against Misidentification

Theorem 21 The traceable identification scheme of section 8.1 satisfies security agagidentifi-
cation based on the strong-RSA assumption and the DDH assumptio &(ey).

Proof. Let .4 be an adversary that violates security against misidentification. It follosts th
Prob[Exp{fnp(V) =1]

is a non-negligible function im. We will use A to construct an algorithm that solves the one-more
representation problem. First, |&t be the number of users that are controlled by the adversary (i.e.,
introduced in system using,_join)-

Now observe that based on lemma 20 there exists an advetsémgt has the same functionality
as.A but whenever he execut€}, ., he obtains the value’ through querying an external trusted-
third party.

Let n be a composite modulus with unknown factorization according to the specifisaifaur
protocol and{(A;, e; : ;vj,a:;>}]f.<:1 be an instance of the one-more representation problem over the
basesug, a,b. Below we describe an algorithii that usesA’ to solve the one-more discrete-log
representation problem.

First, B selectsy, g, h values as specified in the description of the protocol andels, :=
(n,a,ap,b,y,g,h). Subsequentlyd simulates the adversary'(first, 1) playing the role of an ap-
propriately modified interface as described below:

o If A’ submits(Q,,;,) to the interface, thel8 supplies ta4 the specified response (the public-
key of the system).

o If A’ submits(Q,_join) to the interface, the increments the internal user countdsy one,
and selectgert; = A,e,z,2’ € QR(n) x I' x A x A and storegert; in the database by
inserting the strindsi, L, cert;). Also, B addsi into the setU?.

e If A’ initiates aQ;_join dialog thenB increases thin dialog counterj by one and the user
counter:i by one;. A’ asks the pair of values, 2’ that will be used as part of the certificats.
supplies the input values;, 2. Then.A submits to3 the valueaga®™ a® andB returnsA;, e;
to A. In addition, enters in the database the enfiyL, cert;) wherecert; = (A;, e;, 7, 7%).
Finally B addsi into the set/“.
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o If A submits(Qiq,%) to the interface, them8 looks into the database to recover the corre-
sponding entry(i, ...) and the stringcert; = (4;, e;, x;, «}) (which observe that it does not
necessarily satisfied;’ = apa®b*i) and then3 simulates aridentify protocol transcript as
described in lemma 19. Note thatiiZ UP, B returns fail to the adversary.

Observe now that the view that’ has of its interaction with3 is indistinguishable from the
interaction with the interface in the security definition.

At some point4’(first, 1) terminates by returning the valuésp,. Then,B selects two different
¢, ¢ and simulatesd’(second, d, p1, ¢) and.A’(second, d, p1, ¢) to obtain two outputs, o).

Observe now that with probabilitfProb[Exp;i. (v) = 1])? it holds that the identification pro-
tocol transcripts(p1, ¢, p2) and{(p1, ¢, p,) satisfy the verification functioiV. Observe thap; =
(Th,...,Tr,...). Now, using the fact that thielentify protocol transcript is sound we can extract a
witnessz, 2, w, e, b’ from the two transcripts for which it will hold th&k, = ¢*, T3 = ¢°h™, T =
g" apa®b® Yt =T, T =Ty, T# = Tg.

Now we have two alternative events: @pen(skr, transcripts, p1) ¢ U® which means that
Ty /T, does not equal anyl; for thosei € U?; observe thatd := Ty /75" has the property

that A° = (T1/T5 %) = aga®b* y" /y"' = aga®b®, as a result we constructed a discrete-log
representation of an arbitrary powet, e : =, 2’) that is different from the ones that were selected by
B.

In the second alternative event we have : (i)« Trace(Reveal(skr, transcripts, i), p1) =
f al se. It follows that (due to lemma 20);cy7« Trace(x;, p1) = f al se or equivalently thafl5* #
Ty foralli € U* and as aresult # x; forall i € U®.

It turns out that in both of the above cases the algorithiis an algorithm that can solve the
“one-more representation” problem, something that based on theorsgnelt8,an algorithm against
the Strong-RSA problem. a

9.2 Anonymity

Theorem 22 The traceable identification scheme of section 8.1 satisfies security agamsymity
attacks based on the DDH assumption ogdR(n).

In particular we show thafProb[Expyh., (v) = 1] — 1| < n?(2AdvPPH (v) + 3AdVEPH (1))
whereAdvfﬁf(y) denotes the maximum advantage of any DDH adversary when the sacond
gument of the DDH challenge is restricted into the sphiyahis can be further relaxed, see the

comment at the end of section 3.

Proof. Let .4 be an anonymity adversary as described in section 7.1.2 with the modificatidmetha
wants to violate the anonymity of useis i1 always for fixedig,i,. We will show that for such
adversary it holds thgProb[Expziio% () = 1] — 1| = negl(v) (assuming that the advantage of
DDH distinguishers is a negligible function in). Then, it will follow that even ifA selectsiy, i1
adaptively (as stated in the anonymity definition in 7.1.2) it will hold that the goitibaof success
of the experiment will remain negligible since we assume a polynomial numbeseo$.uThis is so
since it is possible to transform any adaptive adversénp a non-adaptive ond’ as follows: A’
for fixed i, i, simulatesA4 and if A returns indeed,, i; as the challenge theA’ proceeds with the
simulation as specified, otherwigk selects a random bit and returns this instead.

Observe that based on lemma 20 there exists an adved$#mat has the same functionality s
but wheneverd executeQ,_join, A’ executes the oracl@;_ ., instead (i.e.,A’ obtains the value
«’ externally). Also letK be the number oB;_j.in queries executed byl’ (in both theplay and
guess stages).
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Now consider the following gamé';:
Letn be a composite modulus with unknown factorization according to the specifisaifamur

construction;G; selects randomy,...,zx, 2}, ..., 2% € A andey,...,ex € I', and seta =

z¢1-¢K (modn), ag = a” andb = a” wherer, ' are random integers if. ThenB computesd; =
. i el . . . .

SEitrire) =g (modn), foralli = 1,..., K. Observe that{ = aga®b% foralli = 1,..., K,

i.e., (A, e @ z;,x}) are discrete-log representations of arbitrary powers ingif%n) overag, a, b.
Lety, g, h, go, N be values as specified in the description of the protocol.

G proceeds to simulate the adversati(play, 1”) by answeringA4’s oracle queries to the inter-
face as follows (in the description belaw;j are two counters initialized ).

o If A’ poses the quer@,,,, G returns the public-key of the system as defined above.

o If A’ submits(Q,_join) to the interface, thety; increments the internal user countdsy one,
and selectgert; = A,e,z,2’ € QR(n) x I' x A x A and storegert; in the database by
inserting the strindsi, L, cert;). Also, G; addsi into the setU”.

o If A’initiates aQ;_join dialog thenG, increases thfin dialog counterj by one and the user
counter: by one; A’ asks the pair of values, 2’ that will be used as part of the certificate.
G supplies the pre-computed values a:; Then.A submits toGG; the valueagamja”9 and
G, returnsA4;, e; to A. In addition,G; enters in the database the enfiy L, cert;) where
cert; = (A, ej, 75, 2}). Finally G addsi into the seU/*.

e If A’ submits(Qiq, i) to the interface, theids; checks whethei € UP and in this case it
retrieves from the database the corresponding éntry.) and the stringert; = (A;, e;, x;, z})
(which observe that it does not necessarily satisfigs= aga™ b*) and theni; simulates an
Identify protocol transcript as described in lemma 19.

e If A’ submits the queryQyeveal, i), G1 checks whether ¢ {ig, i; } and in this case it looks into
the database for the corresponding etfiry. .) and the stringert; = (A;, e;, z;, z}); finally it
returns to the adversary the valug In this case useris removed fronl/? and entered into
the setlU".

When A’ (play, -) terminates(; receives the value&l, i, i1); if ig, i1 ¢ UP, G; terminates and
returns0. In the other cas€; selectsh <~ {0,1}, retrieves the entryiy, 1, cert;,) with cert;, =
(Ai,, €, : zi, xi,). Then it forms the sequence of values:

Tl — Aibyw7 T2 _ gw’ Tg — geibhw7 T4 — gxibk” T5 — gk: T6 _ gwébk’ T7 :k/

and simulates the proof of knowledge for the discrete-log relation set oflémify protocol. Then
G simulatesA(guess, d, (p1, ¢, p2)) employing the oracle simulations as described above and obtains
the outputb*. Finally G; returnsl if b = b* or 0 otherwise. Observe th&rob[G;(-) = 1] =
Prob[Expi., (v) = 1].

Then consider gam@'’, that operates as gandgéwith the difference that it uses the values in the
simulation of thddentify protocol transcript,

Tl — Aith TQ — RQ, TS — geile;gg h’ T4 — gxibk7 T5 — gk TG _ gw;bk’ T7 _ gk/
whereR;, Ry €r QR(n).

Itis easy to see thaProb[G(-) = 1] — Prob[Gs(-) = 1]| < AdvPPH (1),
Next consider gamé&'s that operates aS, but with the modification:
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Ti =Ry Ty =Ry Ty = g"s Ry, Ty = g"*, T5 = g* Ty = g"s" T7 = g
whereR;, Ry, Rz €r QR(n). Itis easy to verify thafProb[G2(-) = 1] — Prob[G3(-) = 1]| <
AdvPPH (1),
Now consider the following game called, ;, that modifiesG3 as follows fori. = {ip} or
iy = {i0,71}.

o If A’ poses the quer@,,,, G4, returns the public-key of the system as defined above.

o If A’ submits(Q,_jein) to the interface, thety; increments the internal user countday one;
if i & i, thenGy,, selectscert; = A,e,z,2’ € QR(n) x I' x A x A and storesert; in
the database by inserting the strifig_L, cert;). Now if i € i, thenGy,;, selectscert] =
(Aj, e, Ri,xl) € QR(n) x I' x QR(n) x A and stores in the database of users the value
(i, L, cert?).In either case(s4;, addsi into the setU?.

o If A’ submits(Qiq, i) to the interface, thet¥; checks whether € UP and in this case if ¢ i,
it operates identically t67s. In the casé < i, it retrieves from the database the corresponding
entry (i,...) and the stringeert} = (A;, ¢;, R;, z;) and then simulates adentify transcript
for the values

Ty = A", To=g", Ts = g“h" Ty =R}, Ts = g*, To=g"" Ty = g"
Finally, at the challenge phasejife i., G4, constructs thédentify challenge as:

Ti=Ry Ty=Ry Ts =Ry, Ty = Ry, T5 = Rs, Ts=g"s" Ty = g¥

(in the other casé€r, ;, operates as gam@s). Now consider the behavior of the gam@g and
G qioy- It is clear that they are either identical, or in the case 0 it holds that the distance of
Prob[Gs(-) = 1] andProb[G41(-) = 1] can be at moshdv. Y (v), whereAdvP denotes the
advantage of any PPT adversary so that the DDH'’s second argunrestristed over the sphere
In a similar fashion, the same will hold true for the ganigs;;,; andGy g, 4,3, 1., they will have
a distance of\dv? P’ (v). Finally observe that in the case 6f, (;, ;,} the challenge will have the
form: o

T\=Ry Ty=Ry Ts=Ry, Ty=Ry, Ts = Rs, Ty =g"", Tr =g"

with Ry, R, R, Ry, Rs random elements &) R(n).

Next we define a sequence of gandés;, in the same fashion &, ;,. We observe that in the
case of gamé-; ;;, ;,y it holds that the challenge is as follows:

Ty =Ry Ty =Ry T3 =R3, Ty = Ry, T5 = R5, Ts = Rg, 17 = Ry

with Ry, Re, R3, R4, R5, Re, R7 random elements @) R(n). It is easy to see that the distance of
Prob[Gy (i} (-) = 1] andProb[Gs ;, ;) = 1] is at mostAdvl P (v).

Moreover it is clear that gam@; g;, ;,; does not retain any information abaytand as a result it
is implied thatProb|Gs 1,3 () = 1] = 1/2.

Itis easy to see from the above thBrob[ExpZ:i9 (v) = 1]—3| < 2AdvPPH (1) +3AdvE P (v),

which implies thatProb|Expi,,(v) = 1] — 3 < n2(2AdvPPH (v) + 3Adv££f(u)). O
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Figure 5: Adding Fairness to any Anonymous System using a traceabisighRGsig

9.3 Security Against Framing

Theorem 23 The traceable identification scheme of section 8.1 satisfies security a@ainshg
based the discrete-logarithm assumption ogt(n) with known factorization for..

Proof. Let A be an adversary against framing as described in section 7.1.3. £etq with known
factorsp, ¢ and a challengé, C' € QR(n) for which we want to compute theg, B. We define the
following algorithm B that employs the adversay. B generates all the elements of the public-key
of the systeny, h, y, ag, a as specified in the protocol for the RSA modutusvith the addition of
challenge as the public-keyB selects a random membge {1, ..., s} wheres is the total number
Qb_join queries submitted by the adversary (required to>bkin a framing attack) 3 simulates the
adversaryA, by answering its interactions with the interface correctly, with the excepfi@?,0jqin
query for thej-th user that must be handled so that the adversary (playing the role@Mhehould
give to the user a certificatd, e so thatA® = aga®C. This requires thaB plugs C during the
execution of the Join protocol; this is possible by simulating all the zero-kmnig&lg@roofs in the
non-adaptive drawing of random powers executed within the Join mipteee theorem 15. Then
if the adversary outputs an identification transcript that either opens tgj ussces to the user it

is clear that we can rewind the adversary and obtain a witness for thattitrthat will reveal the
logarithm ofC' baseb, and thus solving the discrete-logarithm problem. The same is true for the cas
that the adversary outputs a claim for an identification transcript of jus&rewinds.A and obtains
the witness for the claiming which, again, is the discrete-logarithii baseb. O

10 Applications

In this section we demonstrate the potential of traceable signatures and ddgiotifiin providing
conditional anonymity in anonymous systems. The main motivation for our cmtisin is the de-
velopment of a generic way to transform any syst€rthat provides anonymity into a system that
provides “fair” or conditional anonymity. An anonymity system is comprisé@ @opulation of
units which, depending on the system’s function, exchange messaggsuosimymous channels. An
anonymity system withairnessallows the identification of the origin of messages, as well as the
tracing of all messages of a suspect unit, if this is mandated by the autho@tesransformation,
illustrated in figure 5, suggests that all systems’ units form a group arzux¢he Join protocol
of our traceable signature scheme prior to the initialization of the system’atoper Subsequently,
any message sent from a unit is signed using the signing algorithm of loemsg likewise for any
message received, a unit verifies the signature and if it fails the messegjeaged. This simple
construction is powerful enough to transform an anonymous systesal loaisa population of units to
an anonymous system with fairness (conditional anonymity).
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To understand the potential of this construction consider the notion of a etiwerk: a mix-
network is an anonymous message delivery system that allows to a setsff’us . . , U,,, to transmit
messages that are delivered to a destination so that the corresponfileack message and sender
is lost. This is achieved by employing a series of servers, called a mix-rietiiat shuffles the
messages transmitted by the users. Only the coalition of all servers comphisingx-network can
violate the privacy of this system. Anonymous message delivery will beedguovided that at least
one server will be honest (i.e., refuse to collaborate with malicious sesgaiast the privacy of the
users).

Applying our methodology as above, only properly signed messages valldyeed to enter the
mix-network. After the mixing procedure terminates the anonymity propertiesiiofraceable sig-
nature scheme guarantee that the correspondence between saddeesaages is lost. Nevertheless
based on our traceability properties, the authorities will be capable arparfg the operations:

e Reveal the originator of a specific message (opening).
¢ Reveal all messages sent by the same user (tracing).

Finally through our claiming protocol a user may claim a message as his othe, @nvenience
of the user (privacy is a good that should be personally managed).

10.1 Application to Auctions

Mix-nets with conditional privacy have many applications. For example,cameuse them to im-
plement an anonymous auction protocol (with open bids). Users submibillsithrough the mix-
network. In the message delivery point the bids are sorted from thedtighlewest and the identity
of the highest bidder is revealed by performing the “open” operationedfriteable signature. More-
over a user can claim that a certain public bid as his own, if he is asked @dmple an employee
of a company can prove that he submitted a bid by performing the claiming ptot0a the other
hand if a certain user is found to be misbehaving (e.g., he won an auctiohearefused to pay)
then all his current bids must be identified and invalidated: this is possiblenpioging the tracing
functionality of a traceable scheme.
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