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Abstract

We present, implement and apply a new privacy primitive thatwe call “Traceable Signatures.”
To this end we develop the underlying mathematical and protocol tools, present the concepts and
the underlying security model, and then realize the scheme and its security proof. Traceable sig-
natures support an extended set of fairness mechanisms (mechanisms for anonymity management
and revocation) when compared with the traditional group signature mechanism. We demonstrate
that this extended function is needed for proper operation and adequate level of privacy in various
settings and applications. For example, the new notion allows tracing of all signatures by a single
(misbehaving) party without opening signatures and revealing identities of any other user in a
distributed fashion. In contrast, if such tracing is implemented by a state of the art group signa-
ture system, such wide opening of all signatures of a single user is a centralized operation that
requires the opening of all anonymous signatures and revealing the users associated with them,
an act that violates the privacy of all users.

Our work includes a novel modeling of security in privacy systems that leads to simulation-
based proofs. Security notions in privacy systems are typically more complex than the traditional
security of cryptographic systems, thus our modeling methodology may find future applications
in other settings. To allow efficient implementation of our scheme we develop a number of basic
tools, zero-knowledge proofs, protocols, and primitives that we use extensively throughout. These
novel mechanisms work directly over a group of unknown order, contributing to the efficiency
and modularity of our design, and may be of independent interest. The interactive version of our
signature scheme yields the notion of “traceable (anonymous) identification.”
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1 Introduction

A number of basic primitives have been suggested in cryptographic research to deal with the issue
of privacy. The most flexible private authentication tool to date is “group-signatures,” a primitive
where each group member is equipped with a signing algorithm that incorporates a proof of group-
membership. Group-signatures were introduced by Chaum and Van Heyst in [10] and were further
studied and improved in many ways in [11, 8, 6, 7, 4, 2]. Each signature value is anonymous, in the
sense that it only reveals that the issuer is a member of the group, without even linking signatures by
the same signer.

Privacy comes at a price. Unconditional privacy seems to be an attractive notion from the user’s
viewpoint, nevertheless it can potentially be a very dangerous tool against public safety (and can even
be abused against the user herself). Undoubtedly everybody understands that privacy is a right of
law-abiding citizens, while at the same time a community must be capable of revokingsuch privacy
when illegal behavior (performed under the “mask of privacy”) is detected; this balancing act is thus
called “fairness”. Group-signatures were designed with one embeddedfairness mechanism which, in
fact, allows for the “opening” of an atomic signature value, revealing the identity of its signer. Such
opening capability can be assigned to a special entity, a Trustee, which canalso be distributed (to
further increase privacy). Such functionality is possible in existing schemes, for example in the very
efficient and scalable state of the art scheme of Ateniese et al. [2].

We observe that while group signatures are a very general “private credentials” tool, their opening
capability is not a sufficient mechanism to ensure safety and/or privacy ina number of settings.
What we need is additional mechanisms for lifting of privacy conditions. It may sound paradoxical
that offering more mechanisms for revoking privacy actually contributes toprivacy, but consider the
following scenario: a certain member of the group is suspected of illegal activity (potentially, its
identity was revealed by opening a signature value). It is then crucial to detect which signatures
were issued by this particular member so that his/her transactions are traced. The only solution with
the existing group signature schemes is to have the Group Manager (GM) open all signatures, thus
violating the privacy of all (including law-abiding) group members. Furthermore, this operation is
also scalability impairing, since the Group Manager would have to open all signatures in the system
and these signatures may be distributed in various locations. What would be desirable, instead, is
to have a mechanism that allows the selective linking of the existing signatures of a misbehaving
user without violating the privacy of law-abiding group members; this mechanism should be efficient
(e.g. done in parallel by numerous agents when required). This capability, in fact, implements an
“oblivious data mining” where only signature values of a selected misbehaving user are traced. Such
traceability property should be offered in conjunction with the standard opening capability of group
signatures.

Another type of traceability, “self-traceability,” is helpful to the user and isimportant in our
setting. It suggests that a user should also be capable of claiming that he is the originator of a certain
signature value if he wishes (or when a certain application protocol requires this). In other words, a
group-member should be capable of stepping out andclaiminga certain group-signature value as his
own, withoutcompromising the privacy of the remaining past or future group-signatures that he/she
issues. Adding self-traceability to the existing solutions in group-signaturesis also far from ideal: at
best the user will be required to remember her private random coin-tosses for all the signatures she
signed, which is an unreasonable user storage overhead in many settings.
Our Concept: Motivated by the above, in this work we introduce a new basic primitive which we
call Traceable Signatures.It incorporates the following three different types of traceability: (i) user
tracing: check whether a signature was issued by a given user; it can be applied to all signatures by
agents running in parallel; (ii) signature opening: reveal the signer of a given signature (as in group
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signature); and (iii) signature claiming: the signer of a signature provably claims a given signature
that it has signed. When recovering all transactions by performing usertracing it may be useful to
avoid collecting all signatures to a central location and in order to reduce theburden of the GM (which
may be a distributed entity), we divide user tracing into two steps: the first is executed by the GM
and reveals some secret information about the user; this is given to a set of designated agents (clerks)
that scan all signatures in parallel and reveal those signed by the suspected user. Note that the secret
information revealed should not allow the agents to impersonate the user or violate the anonymity of
law-abiding users.
Modeling: We model our concepts of traceable signatures and their interactive version (as traceable
identification) and define their correctness and security.

We introduce a novel way of modeling privacy systems which is more general than previous
models. The model includes the definition of correctness and of security properties of the system.
In a security system, like encryption, it is obvious who is the attacker and whotries to defend the
encryption device, so adversary modeling is relatively easy. In a privacy system, on the other hand,
a protocol between many parties may involve mutually distrusting, malicious usersattacking each
other from many sides and in various coalitions: e.g., a server (perhaps collaborating with a subset of
some users) trying to violate the user’s privacy interacting with a user tryingto impersonate a group
member. Since in privacy systems we deal with mutually adversarial parties, we develop a new model
that copes with this situation and is geared towards simulation-based security proofs.

To this effect, we introduce a set of queries by which adversaries can manipulate the system
(and the simulator during the security proof). Then we present an “array of security definitions,”
where each definition is modeled as an adversary with partial access to the queries, representing
a capability that the attack captures. This allows us to deal with various notionsof simultaneous
adversarial behavior within one system, modeling them as an “array of attacks” and proving security
against each of them. Specifically in our setting, we classify three generalsecurity requirements
that capture all possibilities for adversarial activity: misidentification attacks, anonymity attacks and
framing attacks. We note that previous security notions that have appeared in the literature such as
unforgeability, coalition-resistance and exculpability are subsumed by ourclassification.
Constructions: Our construction is motivated by the state of the art and in particular by the mathe-
matical assumptions that allow a group of users to generate a multitude of keys modulo a composite
number that are private, namely are (partially) unknown even to the groupmanager who owns a trap-
door (prime factorization of the composite); such an ingenious mathematical setting was presented in
[2]. Due to the refined notions of fairness of our model, we need to introduce a number of extensions
to the above setting as well as employ a number of new cryptographic constructs that enable the vari-
ous mechanisms that our model employs. We also note that our scheme is consistent with the present
state-of-the-art revocation method for group signatures presented in [9], thus member revocation can
be added modularly to our construction. We remark that the user tracing (combined with the GM
publishing the user’s “tracing trapdoor”) can be used to implement a type of“CRL-based revocation”
that nullifies all signatures by a private key. This type of revocation has been considered recently in
[3].

In order to implement the scheme efficiently, we design a number of basic protocols and prim-
itives that we use extensively throughout (as useful subroutines). Apleasing feature of these novel
notions and protocols is that they work directly over a group of unknown order. We show some useful
properties of such groups of quadratic residues that are required for the security proofs. We then in-
troduce the notion of “discrete-log relation sets” which is a generic way of designing zero-knowledge
proof systems that allows an entity to prove efficiently the knowledge of a number of witnesses for
any such relation set that involves various discrete-logarithms and satisfies a condition that we call
“triangularity.” Triangular discrete-log relation sets are employed extensively in our protocols but, in
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fact, they are a useful as an abstraction that can be used elsewhere and are therefore of independent
interest. We then define a notion called “discrete-log representations of arbitrary powers,” as well as
a mechanism we call “drawing random powers” which is a two party protocol wherein one party gets
a secret discrete logarithm whose value she does not control, while at thesame time the other party
gets the public key version, i.e., the exponentiated value.

Based on the above primitives we present traceable signatures and prove their correctness and
security. We remark that our traceable signature scheme adds only a constant overhead to the com-
plexity measures of the state of the art group signature scheme of [2].
Applications: We demonstrate the power of the new notion by presenting some applications. One
generic application is transforming an anonymous system to one with “fair privacy.” Another is a
mix-net application where originators of messages or messages of an originator can be opened, while
otherwise retaining privacy. A specific application to open-bid auctions is also discussed.
Organization: In section 2 we present some basic preliminary technical details regarding the in-
tractability assumptions that are employed in our primitives. The main technical content of this work
commences from section 3 that investigates certain mathematical properties of the group of quadratic
residues modulo a composite. Section 4 then describes the notion of “discrete-log relation sets”,
while Section 5 presents the notion of “discrete log representations of arbitrary powers” and Section
6 introduces the basic protocol of “drawing random powers”. We then move to the conceptual part
and present definitions and modelling of our notion in Section 7 which definesthe properties and the
careful adversarial model of traceable signatures and identification. Combining the definitions and
model and the basic protocol constructions, Section 8 deals with “the designof the traceable signa-
ture scheme” and its proof of security (the details of which is in the appendix). Section 10, in turn,
presents a number of applications. The proof of security for our primitiveis given in the appendix.
Notations: The notationS(a, b) (called a sphere of radiusb centered ata wherea, b ∈ Z denotes the
set{a−b+1, . . . , a+b−1}. A function inw will be called negligible if it holds that it is smaller than
any fraction of the form1

wc for anyc and sufficiently largew; we use the notationnegl(w) for such
functions. The concatenation of two stringsa, b will be denoted bya||b. If a is a bitstring we denote
by (a)l,...,j the substring(a)l|| . . . ||(a)j where(a)i denotes thei-th bit of a. For any setA, we will
denote by#A its cardinality. IfX andY are parameterized probability distributions with the same
support, we will writeX ≈ Y if the statistical distance betweenX, Y is a negligible function in the
parameter. Furthermore, iff andg are functions over a variable, we will writef ≈ g if their absolute
distance is a negligible function in the same variable. Finally note thatlog denotes the logarithm base
2, =df means “equal by definition”, and PPT stands for “probabilistic polynomial-time.”

2 Preliminaries

Throughout the paper we will work (unless noted otherwise) in the groupof quadratic residues mod-
ulo n, denoted byQR(n), with n = pq andp = 2p′ + 1 andq = 2q′ + 1. All operations are to
be interpreted as modulon (unless noted otherwise). We will employ various related security pa-
rameters (as introduced in the sequel); with respect toQR(n) the relevant security parameter is the
number bits of the order of the group, denoted byν =df ⌈log p′q′⌉. Next we define the Cryptographic
Intractability Assumptions that will be relevant in proving the security properties of our constructions.

The first assumption is the so called Strong-RSA assumption. It is similar in nature to the as-
sumption of the difficulty of findinge-th roots of arbitrary elements inZ∗

n with the difference that the
exponente is not fixed (part of the instance).

Definition 1 Strong-RSA. Given a compositen (as described above), andz ∈ QR(n), it is infeasi-
ble to findu ∈ Z

∗
n ande > 1 such thatue = z(modn), in time polynomial inν.
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The second assumption that we will employ is the Decisional Diffie-Hellman Assumption over
the quadratic residues modulon; in stating this assumption we also take into account the fact that the
exponents may belong to pre-specified integer spheresB ⊆ {1, . . . , p′q′}.

Definition 2 Decisional Diffie-Hellman (over B1,B2,B3) Given a generatorg of a cyclic group
QR(n) wheren is as above, a DDH distinguisherA is a polynomial inν timePPTthat distinguishes
the family of triples of the form〈gx, gy, gz〉 from the family of triples of the form〈gx, gy, gxy〉, where
x ∈R B1, y ∈R B2, andz ∈R B3.

The maximum distance of these two distributions of triples as quantified over all possiblePPTdis-
tinguishers will be denoted byAdvDDH

B1,B2,B3
(ν); if B1 = B2 = B3 = {1, . . . , p′q′} we will write simply

AdvDDH(ν) instead. TheDDH assumption suggests that this advantage is a negligible function inν.

We remark that when the size of the spheresB1,B2,B3 are sufficiently close to the order of
QR(n) it will hold that AdvDDH

B1,B2,B3
(ν) ≈ AdvDDH(ν). Nevertheless we discover that the spheres

can be selected to be much smaller than that without any degradation in security(see the remark at
the end of section 3).

Finally, we will employ the discrete-logarithm assumption over the quadratic residues modulon
and a pre-specified sphereB, when the factorization ofn is known:

Definition 3 Discrete-Logarithm. Given two valuesa, b that belong to the set of quadratic residues
modulon with known factorization, so that∃x ∈ B : ax = b, find in time polynomial inν the integer
x so thatax = b. AgainB is an integer sphere into the set{1, . . . , p′q′}.

Conventions.(i) our proofs of knowledge will only be proven to work properly in the honest-verifier
setting. On the one hand, the honest-verifier setting is sufficient for producing signatures. On the
other hand, even in the general interactive setting the honest-verifier scenario can be enforced by
assuming the existence, e.g., of a beacon, or some other mechanism that canproduce trusted ran-
domness; alternatively the participants may execute a coin flipping algorithm. Such protocols where
the randomness that is used to select the challenge is trusted will be called “canonical.” (ii) the pub-
lic parameters employed in our various protocol designs (e.g., the composite modulusn) will be be
assumed to be selected honestly.

3 Sphere Truncations of Quadratic Residues

Let n be a composite so thatn = pq andp = 2p′ + 1 andq = 2q′ + 1 with p, q, p′, q′ all prime. Let
a be a generator of the cyclic group of quadratic residues modulon. Recall that the order ofQR(n)
is p′q′. Let S(2ℓ, 2µ) = {2ℓ − 2µ + 1, . . . , 2ℓ + 2µ − 1} be a sphere for two parametersℓ, µ ∈ N.
Observe that#S(2ℓ, 2µ) = 2µ+1 − 1.

In this section we will prove a basic result that will be helpful later in the analysis of our scheme.
In particular we will show that, assuming factoring is hard and the fact the sphereS(2ℓ, 2µ) is suffi-
ciently large (but still not very large) the random variableax with x ∈R S(2ℓ, 2µ) is indistinguishable
from the uniform distribution overQR(n); note that the result becomes trivial if the size of the sphere
is very close to the order ofQR(n); we will be interested in cases where the size of the sphere is ex-
ponentially smaller (but still sufficiently large). Intuitively, this means that a truncation of theQR(n)
as defined by the sphereS(2ℓ, 2µ) is indistinguishable to any probabilistic polynomial-time observer.

Let ν = ⌈log p′q′⌉. Consider the functionfg,n(x) = gx(modn) defined for allx < n. The
inverse of this functionf−1

g,n is defined for any element inQR(n) so thatf−1
a,n(y) = x wherex ≤ p′q′

and it holds thatax = y(modn). Observe thatx can be written as aν-bitstring. Note that ify is
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uniformly distributed overZ∗
n it holds that every bit(x)i of x with i = 1, . . . , ν follows a probability

distributionDν
i with support the set{0, 1}. Note that for theO(log ν) most significant bitsi it holds

that the distributionDν
i is biased towards 0, whereas for the remaining bits the distributionDν

i is
uniform; this bias is due to the distance between2ν andp′q′. Below we define the simultaneous
hardness of the bits of the discrete-logarithm function, (cf. [15]):

Definition 4 The bits[l, . . . , j], l > j, of f−1
g,n are simultaneously hardif the following two distribu-

tions arePPT-indistinguishable:

• theSDj
i distribution: 〈(f−1

g,n(y))i,...,j , y〉 wherey ∈R QR(n).

• theSRj
i distribution:〈rl|| . . . ||rj , y〉 wherey ∈R QR(n) andri ← Dν

i for i = l, . . . , j.

Hastad et al. [15] studied the simultaneous hardness of of the discrete-logarithm over composite
groups and one of their results imply the following theorem:

Theorem 5 The bits[ν, . . . , j] of f−1
g,n are simultaneously hard under the assumption that factoring

n is hard, provided thatj = ⌈ν
2⌉ − O(log ν).

Now let us return to the study of the subset ofQR(n) defined by the sphereS(2ℓ, 2µ). Consider

the uniform probability distributionU over QR(n) and the probability distributionDS(2ℓ,2µ)
a with

supportQR(n) that assigns the probability1/(2µ+1 − 1) to all elementsax with x ∈ S(2ℓ, 2µ) and
probability 0 to all remaining elements of the support. The main result of this section is the following
theorem:

Theorem 6 The probability distributionsDS(2ℓ,2µ)
a andU with supportQR(n) arePPT-indistinguishable

under the assumption that factoringn is hard, provided that#S(2ℓ, 2µ) = 2⌈
ν
2
⌉−O(log ν).

Proof. LetA be a probabilistic polynomial-time distinguisher for the two distributionsG andDS(2ℓ,2µ)
a .

Consider the modification ofA calledA′ that given the inputb it simulatesA on inputba−2ℓ+2µ
.

We will show howA′ can be turned into a distinguisher for the simultaneous hardness of the
sequence of bits[ν, . . . , µ + 2] for the discrete-logarithm function. By theorem 5 the result will
follow.

Let c̃ = 〈cν || . . . ||cµ+2, y〉 be a challenge for the simultaneous hardness of the discrete-log bits
[ν, . . . , µ + 2]. We compute the following:

y∗ =df ya−cν2ν−1−cν−12ν−2−...−cµ+22µ+1

observe that if̃c is drawn from the probability distributionSDν
µ+2 it follows that the above oper-

ation will cancel all the high order bits ofy, and as a resulty∗ will be an element that is uniformly
distributed over the subset{1, a, . . . , a2µ+1−1} of QR(n). Alternatively, if c̃ is drawn from the prob-
ability distributionSRν

µ+2 it follows thaty∗ is uniformly distributed overQR(n).
It is clear from the above thatA′ is a distinguisher between the probability distributionsSDν

µ+2

andRDν
µ+2 with the same advantage as the distinguishing advantage ofA between the probability

distributionsDS(2ℓ,2µ)
a andU . Based on the assumption on the size of the sphereS(2ℓ, 2µ) we can

employ theorem 5 to complete the proof. ⊓⊔
Remark. The results of this section suggest that we may truncate the range of a random variableax,
x ∈R {1, . . . , p′q′}, into a subset ofQR(n) that is of size approximately

√
p′q′; this truncation will

not affect the behavior of any polynomial-time bounded observer. In particular, for the case of the
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Decisional Diffie Hellman assumption inQR(n) over the spheresB1,B2,B3, we may use spheres
of size approximately

√
p′q′; under the assumption that factoring is hard, we will still maintain that

AdvDDH
B1,B2,B3

(ν) ≈ AdvDDH(ν). In some few cases we may need to employ the DDH over spheres that
are smaller in size than

√
p′q′ (in particular we will employ the sphereB2 to be of size approximately

4
√

p′q′). While the DDH over such sphere selection does not appear to be easierit could be possible
that this version of DDH is a stronger intractability assumption. Nevertheless we remark that if we
assume that factoring remains hard even if⌈ν/4⌉ of bits of the prime factors ofn are known1 then
as stated in [15] approximately 3/4 of the bits off−1

g,n are simultaneously hard and thus, using the
methodology developed in this section, we can still argue thatAdvDDH

B1,B2,B3
(ν) ≈ AdvDDH(ν), even

if B2 is selected to be of size approximately4
√

p′q′.

4 Discrete-log Relation Sets

Discrete-log relation sets are quite useful in planning complex proofs of knowledge for protocols
operating over groups of unknown order in general. Below, letG be the unknown order group of
quadratic residues modulon, denoted also byQR(n), wheren is an RSA modulus that satisfies
n = pq = (2p′ + 1)(2q′ + 1) with p, q, p′, q′ all prime numbers.

Definition 7 A discrete-log relation setR with z relations overr variables andm objects is a set
of relations defined over the objectsA1, . . . , Am ∈ G and the free variablesα1, . . . , αr with the
following specifications: (1) Thei-th relation in the setR is specified by a tuple〈ai

1, . . . , a
i
m〉 so that

eachai
j is selected to be one of the free variables{α1, . . . , αr} or an element ofZ. The relation is

to be interpreted as
∏m

j=1 A
ai

j

j = 1. (2) Every free variableαj is assumed to take values in a finite

integer rangeS(2ℓj , 2µj ) whereℓj , µj ≥ 0.

We will write R(α1, . . . , αr) to denote the conjunction of all relations
∏m

j=1 A
ai

j

j = 1 that are
included inR.

Below we will design a 3-move honest verifier zero-knowledge proof (see e.g. [12]) that allows
to a prover that knows witnessesx1, . . . , xr such thatR(x1, . . . , xr) = 1 to prove knowledge of these
values. We start with a definition:

Definition 8 A discrete-log relation setR is said to betriangular, if for each relationi containing
the free variablesαw, αw1 , . . . , αwb

it holds that the free-variablesαw1 , . . . , αwb
were contained in

relations1, . . . , i − 1.

The 3-move proof of knowledge is presented in figure 1. The following auxiliary lemma will be
useful in proving the properties of the protocol.

Lemma 9 Consider a fixedx ∈ S(2ℓ, 2µ) and the random variablest ∈R ±{0, 1}ǫ(µ+k), c ∈R

{0, 1}k. It holds that the random variablês = t − c(x − 2ℓ) is statistically indistinguishable
from the random variables ∈R ±{0, 1}ǫ(µ+k). The parameter assumption required for statisti-
cal indistinguishability (assumingk is the security parameter andǫ, µ are functions ink) is that
(ǫ − 1)(µ + k) = ω(log k); in particular this forcesǫ to be an asymptotically larger function ink
than any function of the form1 + log k/(µ(k) + k).

Proof. We will denote byDa the distribution of the random variables and byDs the distribution of
ŝ = t − c(x − 2ℓ). Assume that the support of the two random variables isZ.

1Efficient factorization techniques are known when at least⌈ν/3⌉ bits of the prime factors ofn are known, [15].
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Proof of knowledge for a Discrete-Log Relation SetR
objectsA1, . . . , Am, r free-variablesα1, . . . , αr, parameters:ǫ > 1, k ∈ N,

Each variableαj takes values in the rangeS(2ℓj , 2µj )
P proves knowledge of the witnessesxj ∈ S(2ℓj , 2ǫ(µj+k)+2) s.t.R(x1, . . . , xr) = 1

P V
for w ∈ {1, . . . , r} selecttw ∈R ±{0, 1}ǫ(µw+k)

for i ∈ {1, . . . , z} setBi =
∏

j:∃w,ai
j=αw

Atw
j

B1,...,Bz−→ c ∈R {0, 1}k

c←−
for w ∈ {1, . . . , r} setsw = tw − c · (xw − 2ℓw)

s1,...,sr−→ Verify:
for w ∈ {1, . . . , r}

sw ∈? ±{0, 1}ǫ(µw+k)+1

for i ∈ {1, . . . , z}
∏

j:∃w,ai
j=αw

Asw

j
?
= Bi(

∏

j:ai
j∈Z

A
ai

j

j

∏

j:∃w,ai
j=αw

A2ℓw

j )c

Figure 1:Proof of Knowledge for a Discrete-Log relation setR.

• RegardingDa observe that a certains0 in ±{0, 1}ǫ(µ+k) has probability of being selected equal
to 1

2ǫ(µ+k)+1 (uniform probability distribution). Anys0 6∈ ±{0, 1}ǫ(µ+k) has probability 0.

• RegardingDs observe that a certains0 has the following probabilities of being selected:

1. For−2ǫ(µ+k) +2µ+k < s0 < 2ǫ(µ+k) − 2µ+k for each of the2k differentc0’s we can find
a t0 such thats0 = t0 − c0(x − 2ℓ), as a result the probability of obtaining the givens0

according toDs is 2k

2k2ǫ(µ+k)+1 = 1
2ǫ(µ+k)+1 .

2. For s0 ≥ 2ǫ(µ+k) + 2µ+k or s0 ≤ −2ǫ(µ+k) − 2µ+k the probability of obtainings0

according toDs is 0 (it is impossible to solve the equations0 = t0 − c0x for t0, c0 in their
respective domains).

3. For the remainings0 ∈ Z the probability of selecting them according toDs is smaller
than 1

2ǫ(µ+k)+1 but potentially higher than 0.

It is clear from the above that the absolute difference between the probability of a certains0

according toDs andDa is 0 for the integer ranges of cases 1 and 2 above. The distributionsDs

andDa will accumulate some statistical distance though due to their different behaviorfor s0 that
belong to the integer range specified in item 3. In this case, for a specifics0, distributionDa assigns
probability either0 or 1

2ǫ(µ+k)+1 whereas distributionDs assigns probability that belongs in the real
interval[0, 1

2ǫ(µ+k)+1 ). Clearly, in the worst case the absolute difference will be1
2ǫ(µ+k)+1 The number

of elementss0 of case 3, are2µ+k+2 thus it follows that the statistical distance of the distributionsDs

andDa cannot be greater than

2µ+k+2

2ǫ(µ+k)+1
=

1

2(ǫ−1)(µ+k)−1

Clearly under the assumption that(ǫ − 1)(µ + k) = ω(log k) the above distance is negligible in
k and as a result the distributionsDactual andDsim are statistically indistinguishable. ⊓⊔
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Theorem 10 For any triangular discrete-log relation setR the 3-move protocol of figure 1 is a honest
verifier zero-knowledge proof that can be used by a party (prover)knowing a witness forR to prove
knowledge of the witness to a second party (verifier).

We remark that the proof assumes that the prover is incapable of solvingthe Strong-RSA problem;
under this assumption the cheating probability of the prover is1/2k. Regarding the length of the proof
we note that the proof requires the first communication flow from the prover to the verifier to be of
sizez QR(n) elements (wherez is the number of relations inR) and the second communication flow
from the prover to the verifier to be of total bit-length

∑r
w=1(ǫ(µw + k) + 1).

Proof. Let α = {α1, . . . , αm} be the set of the free-variables ofR andx1, . . . , xr the witness forR
that is in the knowledge of the prover; further assume that〈ai

1, . . . , a
i
m〉 is thei-th relation ofR and

that there arez relations inR.
In the first move the prover selectstw ∈R ±{0, 1}ǫ(µw+k) for all w = 1, . . . , r. Then, for each

relation i ∈ {1, . . . , z} The prover computes the valueBi =
∏

j:∃w,ai
j=αw

Atw
j and transmits all

valuesB1, . . . , Bz to the verifier.
The verifier selectsc ∈R {0, 1}k and transmitsc to the prover. The prover in response prepares

the valuessw = tw − c(xw − 2ℓw) for w = 1, . . . , r and transmits them to the verifier.
The verifier performs the following checks in order to accept the proof:

• Checkssw ∈ ±{0, 1}ǫ(µw+k)+1 for all w = 1, . . . , r.

• Tests the equalities fori = 1, . . . , z,

∏

j:∃w,ai
j=αw

Asw

j
?
= Bi(

∏

j:ai
j 6∈α

A
ai

j

j

∏

j:∃w,ai
j=αw

A2ℓw

j )c

Next we argue for the three properties of the above protocol, completeness, soundness and honest
verifier zero-knowledge.

1. Completeness follows easily by inspection. In particular observe that ifc ∈ {0, 1}k, it follows
that eachc(xw − 2ℓw) ∈ ±{0, 1}µw+k (recall thatxw ∈ S(2ℓw , 2µw)), and as a resulttw −
c(xw − 2ℓw) ∈ ±{0, 1}ǫ(µw+k)+1 always.

2. Regarding soundness we let〈B1, . . . , Bz, c, s1, . . . , sr〉 and〈B1, . . . , Bz, c
∗, s∗1, . . . , s

∗
r〉 be two

accepting conversations. between a prover and the (honest) verifier with c 6= c∗.

First observe that due to the triangularity property it holds that the first relationship inR in-
volves only a single free variable, sayαw0 at locationsJw0 ⊆ {1, . . . , m}. Now let us denote
by A =

∏

j∈Jw0
Aj .

Because the two conversations are accepting it follows that:

Asw0−s∗w0 = (A2ℓw0
∏

j 6∈Jw0

A
ai

j

j )c−c∗

Next, we computeδ = gcd(sw0 −s∗w0
, c−c∗) andα, β such thatδ = α(sw0 −s∗w0

)+β(c−c∗).
Observe that with very high probability it should hold thatδ has no common divisor with the
order ofG (otherwise we can turn the prover into a factorization algorithm) and as a result it
follows that:

A
sw0−s∗w0

δ = (A2ℓw0
∏

j 6∈Jw0

A
ai

j

j )
c−c∗

δ

10



Now observe that,

A = Aα
sw0−s∗w0

δ
+β c−c∗

δ = ((A2ℓw0
∏

j 6∈Jw0

A
ai

j

j )αAβ)
c−c∗

δ

Observe now that ifc − c∗ > δ it follows easily that we can turn the prover into an algorithm
that solves a given strong-RSA challenge (indeed, given the Strong-RSA challengeK we would
select at random the elements of{Aj | j ∈ Jw0} with the condition

∏

j∈Jw0
Aj = K and as

shown above we would obtain thec−c∗

δ -root ofK).

It follows thatc − c∗ = δ and as a result it follows that:

(
∏

j∈Jw0

Aj)
s∗w0

−sw0
δ

+2ℓw0
∏

j 6∈Jw0

A
ai

j

j = 1

The above equality implies that we have constructed the witness for thew0-th free variable

x̃w0 =
s∗w0

−sw0

δ + 2ℓw0 .

Observe that sincesw0 , s
∗
w0

∈ ±{0, 1}ǫ(µw+k)+1 it follows thats∗w0
− sw0 ∈ ±{0, 1}ǫ(µw+k)+2

and also that
s∗w0

−sw0

δ ∈ ±{0, 1}ǫ(µw+k)+2 As a result̃xw0 ∈ S(2ℓw0 , 2ǫ(µw+k)+2).

Now assume that we have processed all the relations with index less thani. We process the
i-th relation as follows: first, observe that due to triangularity, relationi involves the variables
αw0 , αw1 , . . . , αwb

so that the variablesαw1 , . . . , αwb
were contained already in the previous

relations. It follows by an inductive argument that we have already constructed witnesses for the

free-variables̃xw1 =
s∗w1

−sw1

δ + 2ℓw1 , . . . , x̃wb
=

s∗wb
−swb

δ + 2ℓwb . As before letJw0 be the set
of locations of thei-th relation that involve theαw0 variable and similarly defineJw1 , . . . ,Jwb

;
we also setJ = ∪ı=0,...,bJwı . Furthermore let̂Awı =

∏

j∈Jwı
Aj for ı = 0, . . . , b. Since the

two conversations are accepting, it follows that

∏

j:∃w,ai
j=αw

A
sw−s∗w
j = (

∏

j:ai
j∈Z

A
ai

j

j

∏

j:∃w,ai
j=αw

A2ℓw

j )c−c∗

Now observe that due to the conditions that we have for thei-th relation it holds that
∏

j:∃w,ai
j=αw

A
sw−s∗w
j = Â

sw0−s∗w0
w0 Â

sw1−s∗w1
w1 . . . Â

swb
−s∗wb

wb

and

(
∏

j:ai
j∈Z

A
ai

j

j

∏

j:∃w,ai
j=αw

A2ℓw

j )c−c∗ = (Â2ℓw0

w0
Â2ℓw1

w1
. . . Â2ℓwb

wb
)c−c∗(

∏

j 6∈J

A
ai

j

j )c−c∗

¿From the above we obtain that:

Â
sw0−s∗w0
w0 = Â(c−c∗)2ℓw0

w0
Â

s∗w1
−sw1+(c−c∗)2ℓw1

w1 . . . Â
s∗wb

−swb
+(c−c∗)2ℓwb

wb
(
∏

j 6∈J

A
ai

j

j )c−c∗

Now due to the fact that for allı ∈ {1, . . . , b} it holds that̃xwı =
s∗wı

−swı

δ +2ℓwı with δ = c−c∗

we obtain thats∗wı
− swı + 2ℓwı (c − c∗) = x̃wı(c − c∗) and as a result,

Â
sw0−s∗w0
w0 = (Â2ℓw0

w0
Â

x̃w1
w1 . . . Â

x̃wb
wb

∏

j 6∈J

A
ai

j

j )c−c∗
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Now we defineδ′ = gcd(sw0 −s∗w0
, c−c∗) andα′, β′ such thatδ′ = α′(sw0 −s∗w0

)+β′(c−c∗)
and with an identical argument as in the case of the first relation, we conclude that it must be
the case thatδ′ = c − c∗ = δ. Moreover, as in the case of the first relation, we construct

the witness̃xw0 =
s∗w0

−sw0

δ + 2ℓw0 for the free-variableαw0 ; it is easy to verify that̃xw0 ∈
S(2ℓw0 , 2ǫ(µw0+k)+2).

3. Regarding honest verifier zero-knowledge, we will describe a simulator for protocol transcripts
between the honest prover and the honest verifier. The simulator operates as follows: it selects
c ∈R {0, 1}k and forj = 1, . . . , r, ŝj ∈R ±{0, 1}ǫ(µj+k) and it computes fori = 1, . . . , z the

valuesB̂i =
∏

j:∃w,ai
j=αw

Asw

j (
∏

j:ai
j∈Z

A
ai

j

j

∏

j:∃w,ai
j=αw

A2µw

j )−c. The simulator outputs the

transcript
〈B̂1, . . . , B̂z, c, ŝ1, . . . , ŝr〉

Then we need to show that the simulated transcripts are statistically indistinsguishable from
transcripts that are generated in conversations between the honest prover and the honest verifier.
This boils down to calculating the statistical distance between the random variable s computed
ast − c(x − 2ℓ) for a fixedx ∈ S(2ℓ, 2µ) andt ∈R ±{0, 1}ǫ(µ+k) andc ∈R {0, 1}k to the
random variablês ∈R ±{0, 1}ǫ(µ+k). This follows immediately from lemma 9.

⊓⊔

4.1 Examples of Discrete-Log Relation Sets

Proving knowledge of a witness for a discrete-log relation sets can be used in a variety of settings.
We list some of them below:

Proving knowledge of a discrete-logarithm over a group of unknown order. Consider the base ele-
mentsA1, A2 and the free variableα ∈ S(1, 2⌊log #G⌋−1); we consider the discrete-log relation set
with a single relationAα

1 A−1
2 = 1. It is immediate that this relation set is triangular. Furthermore,

it is easy to see that a proof of knowledge for the above discrete-log relation set allows one to prove
knowledge of the discrete-logarithm ofA2 baseA1.

Proving knowledge of a discrete-logarithm inside an interval. Following the above description but
the variableα will be restricted to a rangeS(2ℓ, 2µ). Note that the soundness property will only
guarantee that the constructed witness lies in the extended sphereS(2ℓ, 2ǫ(µ+k)+2); tighter intervals
can be achieved by increasing the size of the zero-knowledge proof, see e.g. [5].

Proving knowledge of a committed discrete-logarithm representation. Let A1, A2, A3, A4, A5 be
the objects and consider the free-variablesα1, α2 ∈ S(1, 2⌊log #G⌋−1). we define two relations
Aα1

1 A−1
2 = 1 andAα1

3 Aα2
4 A−1

5 = 1.
First, note that the above discrete-log relation set is triangular. Furthermore it allows a proof of

knowledge for a representation ofA5 over the basesA3, A4.

4.2 Spheres and Innerspheres

As demonstrated in the proof of knowledge of a discrete-log relation set, if awitness belongs to
a certain sphereS(2ℓ, 2µ) we are able to enforce the membership of the witness to an extended
sphereS(2ℓ, 2ǫ(µ+k)) based on the parametersk andǫ (recall that the parametersk andǫ calibrate
the prover cheating probability and the statistical distance of the zero-knowledge simulator in the
zero-knowledge argument, respectively).

Frequently, sphere relationships will be immensely useful in proving properties of our constructs.
If proof of discrete-log relation sets are to be employed in proving the security of more complex

12



structures and enforcing various sphere relationships, we should takeinto account the fact that the
witness interval is slightly expanded because of the way the soundness proof is performed. Note that
the tightness can be increased by employing more complex interval proofs (see [5]); nevertheless
the amount of tightness we achieve is sufficient for our setting. Given a sphereS(2ℓ, 2µ) we define

its innersphere for parametersǫ, k as followsISk
ǫ (2ℓ, 2µ) =df S(2ℓ, 2

µ−2
ǫ

−k). If a witnessx ∈
ISk

ǫ (2ℓ, 2µ) is employed in a proof of discrete-log relation set, then the verifier is guaranteed that the
prover possesses a witness inS(2ℓ, 2µ).

5 Discrete Log Representations of Arbitrary Powers

In this section we introduce and present some basic facts about “discretelog representations of ar-
bitrary powers” inside the set of Quadratic ResiduesQR(n) wheren is a composite modulus with
n = pq = (2p′ + 1)(2q′ + 1) where allp, q, p′, q′ are prime. Letν = ⌈log p′q′⌉.

We will define three spheresΛ, Γ, M inside the set{0, . . . , 2ν−1} so that the following conditions
are satisfied:

S1. (min Γ)2 > max Γ.

S2. M has size approximately equal to2⌈ν/2⌉.

S3. min Γ > max M max Λ + max Λ + maxM

The above set of conditions is attainable as shown by the following possible selection: for sim-
plicity, we assume thatν is divisible by4:

• Λ = S(2
ν
4
−1, 2

ν
4
−1), note that#Λ = 2

ν
4 − 1 andmaxΛ = 2

ν
4 − 1.

• M = S(2
ν
2
−1, 2

ν
2
−1), note that#M = 2

ν
2 − 1 andmax M = 2

ν
2 − 1.

• Γ = S(2
3ν
4 + 2

ν
4
−1, 2

ν
4
−1), note that#Γ = 2

ν
4 − 1, min Γ = 2

3ν
4 + 1 > max Λ maxM +

max Λ + max M = 2
3ν
4 − 1.

In the exposition below we use some fixed valuesa0, a, b ∈ QR(n).

Definition 11 A discrete-log representation of an arbitrary power is a tuple〈A, e : x, x′〉 so that it
holdsAe = a0a

xbx′
with x, x′ ∈ Λ ande ∈ Γ.

In this work we will be interested in the following computational problem:

⋄ The One-more Representation Problem. Given n, a0, a, b andK discrete-log representations of
arbitrary powers find “one-more” discrete-log representation of an arbitrary power insideQR(n).

The main result of this section, stated in the theorem below, establishes that solving the One-more
representation problem cannot be substantially easier than solving the Strong-RSA problem.

Theorem 12 Fix a0, a, b ∈ QR(n) and spheresΛ, M, Γ satisfying the above properties. LetM be a
PPTalgorithm that givenK discrete-log representations of arbitrary powers insideQR(n) it outputs
a different discrete-log representation of an arbitrary power insideQR(n) with non-negligible prob-
ability. Then, the Strong-RSA problem can be solved with non-negligible probability. In particular if
α is the success probability ofM, the Strong-RSA problem can be solved with success probability at
leastα/2K.

13



Proof. Suppose we are given an instance of the Strong-RSA problem〈n, z〉, wheren is a composite
modulus andz ∈ Z

∗
n; we will show how to useM to construct a pair〈u, e〉 such thatue = z( mod n).

Below we will describe an algorithm that solves the given Strong-RSA instance. The algorithm
is comprised of four games that are played at random. The major issue in all the games is the con-
struction of the discrete-log representations of random powers that arehanded to the adversary and
the relationship of the output of the adversary to these representations. All four games construct
somehow the discrete-log representations of random powers〈Ai, ei : xi, x

′
i〉 for i = 1, . . . , K, and

obtain the output representation of the adversary〈Â, ê : x̂, x̂′〉. Each game may fail according to the
following specifications:

1. Game 1 will fail if ê has a non-trivial common divisor with any of the valuese1, . . . , eK .

2. Game 2 will fail if (i) ê is relatively prime to all valuese1, . . . , eK , and (ii) it is not possible to
find aj ∈ {1, . . . , K} for which it holds thatax̂−xjbx̂′−x′

j = 1 with eitherx̂ 6= xj or x̂′ 6= x′
j .

3. Game 3 will fail if (i) ê is relatively prime to all valuese1, . . . , eK , and (ii) for a pre-selected
valuej it does not hold thatej dividesê and it does not hold thatxj = x̂ andx′

j = x̂′.

4. Game 4 will fail if (i) ê is relatively prime to all valuese1, . . . , eK , and (ii) for a pre-selected
valuej it does not hold thatej dividesê and it does not hold thatax̂−xjbx̂′−x′

j 6= 1.

Observe that playing the above games at random covers all possible behaviors of the algorithmM
with respect to the relation of the output discrete-log representation to the given ones. The detailed
description of the four games follows below.
Game 1.

1. Select randomx1, . . . , xK , x′
1, . . . , x

′
K ∈ Λ ande1, . . . , eK ∈ Γ.

2. Seta = ze1...eK (modn), a0 = ar andb = ar′ wherer, r′ are random integers inM. Observe
that due to theorem 6 and the properties of the selected sphereM (S2) it holds that the values
a0, a, b are indistinguishable from random elements ofQR(n).

3. ComputeAi = z
(xi+r+r′x′

i)
e1...eK

ei (modn), for all i = 1, . . . , K. Observe thatAei

i = a0a
xibx′

i

for all i = 1, . . . , K, i.e., 〈Ai, ei : xi, x
′
i〉 are discrete-log representations of arbitrary powers

insideQR(n) overa0, a, b.

4. SimulateM by providing theK discrete-log representations of arbitrary powers computed
above and let〈Â, ê : x̂, x̂′〉 denote the output ofM which is a discrete-log representation of an
arbitrary power (distinct from〈Ai, ei : xi, x

′
i〉 for i = 1, . . . , K).

5. If ê has a non-trivial common divisor with any ofe1, . . . , eK abort.

Now observe thatÂê = a0a
x̂bx̂′

; based on our selection of the valuesa0, a, b it is easy to
see thata0a

x̂bx̂′
= z(r+x̂+r′x̂′)e1...eK . Set ẽ := (r + x̂ + r′x̂′)e1 . . . eK . Next we compute

δ := gcd(ẽ, ê) = gcd(r + x̂ + r′x̂′, ê). In the caseδ has a non-trivial common divisor with
the order ofQR(n) we can factorn and thus compute the solution of the given Strong-RSA
instance; in the other case, we computeα, β such thatδ = αẽ + βê and we have

z = zα ẽ
δ
+β ê

δ = (z
ẽ
δ )αzβ ê

δ = (Â
ê
δ )αzβ ê

δ = (Âαzβ)
ê
δ

Clearly if δ < ê we are done, since the above equations reveals a solution to the given Strong-
RSA instance. Observe thatδ ≤ r + x̂ + r′x̂′, and due to property S3 of the sphere selection it
holds thatδ < e for anye ∈ Γ and as a resultδ < ê. It follows thatu := zαÂβ ande := ê

δ is a
solution for the Strong-RSA instance〈n, z〉.
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Game 2.

1. We flip a random coinbit ∈R {0, 1} and if bit = 0 we setva = z andvb = zr′ , otherwise we
setva = zr′ andvb = z, wherer′ ∈R M.

2. Select randomx1, . . . , xK , x′
1, . . . , x

′
K ∈ Λ ande1, . . . , eK ∈ Γ.

3. Seta = ve1...eK
a (modn), a0 = ar andb = ve1...eK

b (modn) wherer is a random integer inM.
Due to sphere selection property S2 and theorem 6 it holds thata0, a, b are indistinguishable
from random elements ofQR(n).

4. ComputeAi = (a0v
xi
a v

x′
i

b )
e1...eK

ei (modn), for all i = 1, . . . , K. Observe thatAei

i = a0a
xibx′

i

for all i = 1, . . . , K, i.e., 〈Ai, ei : xi, x
′
i〉 are discrete-log representations of arbitrary powers

insideQR(n) overa0, a, b.

5. SimulateM by providing theK discrete-log representations of arbitrary powers computed
above and let〈Â, ê : x̂, x̂′〉 denote the output ofM which is a discrete-log representation of an
arbitrary power (distinct from〈Ai, ei : xi, x

′
i〉 for i = 1, . . . , K).

6. If ê is relatively prime with alle1, . . . , eK game 2 aborts.

7. For allj we compute∆ = x̂−xj and∆′ = −x̂′ +x′
j ; We check whethera∆ = b∆′

. If we find
noj for which the test passes or if we find onlyj’s for which it holds that∆ = ∆′ = 0 we abort
game 2. Below we assume thatj satisfiesa∆ = b∆′

so that not both∆, ∆′ are 0. Now observe
thatve1...eK∆

a = ve1...eK∆′

b which is equivalent tov∆
a = v∆′

b since the primese1, . . . , eK do not
divide the order ofQR(n).

8. (Case a) suppose that∆ 6= 0 and∆′ 6= 0. We computeδ = gcd(∆, ∆′) andα, β such that
δ = α∆ + β∆′.

Observe that if we come up with aδ that divides the order ofQR(n) we can factorn and as a

result solve the Strong-RSA instancen, z. In the other case, it will hold thatv
∆
δ

a = v
∆′

δ

b

Now observe that,

va = (v
∆
δ

a )α(v
∆′

δ
a )β = (v

∆′

δ

b )α(v
∆′

δ
a )β = (vα

b vβ
a )

∆′

δ

Now if ∆′ > δ it follows easily that sinceva is be equal toz with probability1/2, the above
relation reveals a solution for the Strong-RSA instancen, z.

In the case∆′ = δ it follows that∆′ divides∆. Again if ∆′ has a non-trivial common divisor
with the order of the groupQR(n) we can factorn and thus solve the Strong-RSA instance

n, z. In the other case observe that it will hold thatv
∆
∆′

a = vb and sincevb = z with probability
1/2 we will solve the given Strong-RSA instance, unless∆ = ∆′, something hardly possible
since this would makeva = vb, which is a negligible probability event.

9. (Case b). Suppose that∆ = 0. It follows thatv∆′

b = 1 and as a result either∆′ has a non-
trivial divisor with the order ofQR(n) that allows us to factorn and thus solve the Strong-RSA
instancen, z or it also holds that∆′ = 0. But this cannot be true as this case has been excluded.
The case when∆′ = 0 is similar.

Game 3.
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1. We select randomx1, . . . , xK , x′
1, . . . , x

′
K ∈ Λ ande1, . . . , eK ∈ Γ.

2. Selectj ∈R {1, . . . , K} and seta = v

e1...eK
ej

a ( mod n), a0 = A
ej

j /(axjbx′
j ) andb = v

e1...eK
ej

b ( mod

n) whereAj = z
e1...eK

ej (modn) andva = zr andvb = vr′
a with r, r′ random integers inM.

Clearlya, b are indistinguishable from random elements ofQR(n) given the sphere selection
property S2, theorem 6 and the fact thate1, . . . , eK are all relatively prime to the order of
QR(n) (and this fact holds for a fixedz). Moreover sincez is a free selected element of
QR(n), alsoa0 is uniformly distributed overQR(n) (sincee1, . . . , eK are all relatively prime
to the order ofQR(n)).

3. ComputeAi = (zejv
xi−xj
a v

x′
i−x′

j

b )
e1...eK

eiej (modn), for all i = 1, . . . , j − 1, j + 1, . . .K. Ob-
serve thatAei

i = a0a
xibx′

i for all i = 1, . . . , K, It follows that〈Ai, ei : xi, x
′
i〉 are discrete-log

representations of arbitrary powers fori = 1, . . . , K.

4. SimulateM by providing theK discrete-log representations of arbitrary powers computed
above and let〈Â, ê : x̂, x̂′〉 denote the output ofM which is a discrete-log representation of an
arbitrary power (distinct from〈Ai, ei : xi, x

′
i〉 for i = 1, . . . , K).

5. If ê is relatively prime toej game 3 aborts.

6. If xj 6= x̂ or x′
j 6= x̂′ then game 3 aborts. In the other case, observe thatA

ej

j = Âê. It follows

that,Âê = ze1...eK . We computeδ = gcd(ê, e1 . . . eK) andα, β such thatδ = αê+βe1 . . . eK .
In the case thatδ has a non-trivial common divisor with the order ofQR(n) we can factorn
and thus solve the given Strong RSA instance. In the other case it holds,

z = zα ê
δ
+β

e1...eK
δ = zα ê

δ (z
e1...eK

δ )β = (zαÂβ)
ê
δ

which yields a solution to the given Strong RSA instance unlessδ = ê. But this in turn means
that ê dividese1 . . . eK which implies that either (i)̂e = ej which is not possible since in this
case the two representations〈Aj , ej : xj , x

′
j〉 and〈Â, ê : x̂, x̂′〉 are the same or (ii)̂e = ejej′

which is also not possible since in this caseê 6∈ Γ (due to sphere selection property S1).

Game 4.

1. Selectx1, . . . , xK , x′
1, . . . , x

′
K ∈ Λ ande1, . . . , eK ∈ Γ.

2. Selectj ∈R {1, . . . , K} and seta = z
e1...eK

ej (modn), a0 = A
ej

j /(axjbx′
j ) andb = ar′ where

Aj = ar andr, r′ are random integers inM. As in game 3, we argue thata0, a, b are indistin-
guishable from random elements ofQR(n).

3. ComputeAi = z
(xi+r′x′

i+rej−xj−r′x′
j)

e1...eK
eiej (modn), for all i = 1, . . . , j − 1, j + 1, . . .K.

Observe thatAei

i = a0a
xibx′

i for all i = 1, . . . , K, It follows that〈Ai, ei : xi, x
′
i〉 are discrete-

log representations of arbitrary powers fori = 1, . . . , K.

4. SimulateM by providing theK discrete-log representations of arbitrary powers computed
above and let〈Â, ê : x̂, x̂′〉 denote the output ofM which is a discrete-log representation of an
arbitrary power (distinct from〈Ai, ei : xi, x

′
i〉 for i = 1, . . . , K).
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5. If it holds thatgcd(ê, ej) 6= ej then the game aborts (note that ifê has a non-trivial common
divisor with some ofe1, . . . , eK game 4 will abort with probability only1/K). In any other
case,gcd(ê, ej) = ej (due to the fact thatej is a prime number) and as a result there exists an
integert such that̂e = tej .

Next we check whether̂x − xj + r′(x̂′ − x′
j) 6= 0 and in this case we proceed as follows:

Let Z = Ât/Aj . It cannot be the case thatZ = 1; indeed ifZ = 1 this means that̂At = Aj

or equivalently thatÂê = A
ej

j which implies thatax̂bx̂′
= axjbx′

j andax̂−xj+r′(x̂′−x′
j) = 1.

¿From this we obtain thatγ = x̂ − xj + r′(x̂′ − x′
j) = 0 sinceγ is a positive integer (due to

sphere selection property S1) that is smaller than the order of the group (the only other case
that this may happen is in the case thatγ has a non-trivial common divisor with the order of the
groupQR(n) from which we can factorn).

Zej =
( Ât

Aj

)ej

=
Âê

A
ej

j

=
a0a

x̂bx̂′

a0axjbx′
j

= ax̂−xj+r′(x̂′−x′
j) = aγ

Let ẽ := γ e1...eK

ej
, it follows thatZej = zẽ. Suppose thatδ := gcd(ej , |ẽ|); it is easy to see that

δ = gcd(ej , |γ|) sinceej is relatively prime withe1...eK

ej
. Due to the sphere selection property

S3 it follows thatej > |γ| and sinceej is a prime number, it holds thatδ = 1. It follows then
that we can findα, β ∈ Z such that1 = αej + βẽ and as a resultz = zαej+βẽ = (zαZβ)ej It
follows thatu := zαZβ ande := ej is a solution for the Strong-RSA instance〈n, z〉.

As a result, usingM we can construct a probabilistic algorithm for Strong-RSA by playing the
above two games. Ifα is the success probability ofM, it is easy to see that the above algorithm will
solve the Strong-RSA problem with success probability at leastα/2K. ⊓⊔

6 Non-adaptive Drawings of Random Powers

Consider the following game between two players A, B: player A wishes to select a random powerax

so thatx ∈R S(2ℓ, 2µ) wherea ∈ QR(n) with n = pq = (2p′+1)(2q′+1). Player B wants to ensure
that the valuex is selected “non-adaptively” from its respective domain. The output specifications of
the game is that player A returnsx and that player B returnsax. Player B is assumed to know the
factorization ofn. In this section we will carefully model and implement a protocol for achievingthis
two-player functionality. The reader is referred to [14] for a generaldiscussion of modeling secure
two-party computations.

In the ideal world the above game is played by two Interactive TM’s (ITM’s) A0, B0 and the help
of a trusted third party ITMT following the specifications below. We note that we use a special
symbol⊥ to denote failure (or unwillingness to participate); if an ITM terminates with any other
output other than⊥ we say that it accepts; in the other case we say it rejects. ¿From all the possible
ways to implementA0, B0 one is considered to be the honest one; this will be marked asAH

0 , BH
0

and is also specified below.

0. The modulusn is available to all parties and its factorization is known toB0. The sphere
S(2ℓ, 2µ) is also public and fixed.

1. A0 sends a message in{go,⊥} to T . AH
0 transmitsgo.

2. B0 sends a message in{go,⊥} to T . BH
0 transmitsgo.
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3. If T receivesgo from both parties, it selectsx ∈R S(2ℓ, 2µ) and returnsx to A0; otherwiseT
transmits⊥ to both parties.

4. A0 selects a valueC ∈ Z
∗
n and transmits eitherC or⊥ to T . AH

0 transmitsC = ax mod n.

5. T verifies thatax ≡ C(modn) and if this is the case it transmitsC to both players. Otherwise,
(or in the caseA0 transmitted⊥ in step 4),T transmits⊥ to both players.BH

0 terminates by
returningC or ⊥ in the case of receiving⊥ from T . Similarly AH

0 terminates by returningx,
or⊥ in the case of receiving⊥ from T .

Let ImT =df 〈A0, B0〉 be two ITM’s that implement the above protocol with the help of the ITM
T . We define byOUT

ImT

A0
(initA(ν)) andOUT

ImT

B0
(initB(ν)) be the output probability distributions of

the two players. Note thatinitA(ν) contains the initialization string of player A which contains the
modulusn, and the description of the sphereS(2ℓ, 2µ); similarly initB(ν) is defined asinitA(ν) with
the addition of the factorization ofn. Below we will use the notationIDEALImT (inA, inB) to denote
the pair〈OUT

ImT

A0
(inA), OUT

ImT

B0
(inB)〉. Finally, we denote byImH

T the pair〈AH
0 , BH

0 〉.
The goal of a protocol for non-adaptive drawing of random powersis the simulation of the trusted

third party by the two players. LetIm = 〈A1, B1〉 be a two-player system of interactive TM’s that
implement the above game without interacting with the trusted third partyT . As above we will
denote byOUTIm

A1
(inA) the output probability distributionA1, and likewise forOUTIm

B1
(inB). Also

we denote byREALIm(inA, inB) the concatenation of these two distributions.

Definition 13 (Correctness) An implementationIm = 〈A1, B1〉 for non-adaptive drawings of ran-
dom powers iscorrectif the following is true:

REALIm(inA, inB) ≈ IDEALImH
T (inA, inB)

whereinA ← initA(ν) and inB ← initB(ν). Intuitively the above definition means that the imple-
mentationIm should achieve essentially the same output functionality for the two players as the ideal
honest implementation.

Defining security is naturally a bit trickier as the two players may misbehave arbitrarily when
executing the prescribed protocol implementationIm = 〈A1, B1〉.

Definition 14 (Security) An implementationIm = 〈A1, B1〉 for non-adaptive drawings of random
powers issecureif the following is true:

∀A∗
1 ∃A∗

0 REAL〈A∗
1,B1〉(inA, inB) ≈ IDEAL〈A∗

0,BH
0 〉(inA, inB)

∀B∗
1 ∃B∗

0 REAL〈A1,B∗
1 〉(inA, inB) ≈ IDEAL〈AH

0 ,B∗
0 〉(inA, inB)

whereinA ← initA(ν) and inB ← initB(ν). Intuitively the above definition means that no matter
what adversarial strategy is followed by either player it holds that it can betransformed to the ideal
world setting without affecting the output distribution.

Having defined the goals, we now take on the task of designing an implementationIm without a
trusted third party; below we denote bỹm =df #S(2ℓ, 2µ) = 2µ+1 − 1.

1. The two players read their inputs and initiate a protocol dialog.
2. Player A selects̃x ∈R Zm̃, r̃ ∈R {0, . . . , n2 − 1} and transmits to player B the valueC1 =

gx̃hr̃(modn) andC2 = yr̃(modn).
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3. Player A engages with player B to a proof of knowledge for the discrete-log relation set
〈−1, 0, x̃, r̃, 0〉 and〈0,−1, 0, 0, r̃〉 over the objectsC1, C2, g, h, y. Observe that the relation
set is triangular.

4. Player B selects̃y ∈R Zm̃ and transmits̃y to A.
5. Player A computesx′ = x̃ + ỹ(modm̃) and transmits to player B the valueC3 = ax′

.
6. Player A engages with player B to a proof of knowledge for the discrete-log relation set

〈−1, 0, α, β, γ, 0, 0〉, 〈0,−1, 0, 0, 0, 0, 0, γ〉, 〈0, 0,−1, 0, 0, 0, α, 0〉 over the objectsC1g
ỹ, C2,

C3, g, gm̃, h, a, y (observe again, that the relation set is triangular).
7. Player A engages with player B to a tight interval proof forC3 ensuring thatloga C3 ∈ Zm̃

(treatingZm̃ as an integer range); this is done as described in [5].
8. Player A outputsx := x′ + 2ℓ − 2µ + 1 and Player B outputsC := C3a

2ℓ−2µ+1.

Theorem 15 The above protocol implementation for non-adaptive drawing of random powers is cor-
rect and secure, per definitions 13 and 14, under the Strong-RSA andDDH assumptions.

Proof. Regarding correctness note that if both players follow the protocol, thenx is selected from the
uniform distribution overS(2ℓ, 2µ); following the protocol steps both parties will obtain the output
as specified in the ideal implementation.

Next, we deal with the first equation of definition 14 (essentially the security for player B). Let
A∗

1 be any ITM for player A in the real protocol execution. We need to construct an ITMA∗
0 as an

ideal world transformation ofA∗
1 so that the first equation is satisfied.

A∗
0 operates as follows: it simulatesA∗

1 up to the point thatA∗
1 initiates the protocol dialog; in this

caseA∗
0 transmits thego message toT and receives the valuex ∈ S(2ℓ, 2µ). On the other hand, ifA∗

1

never initiates the protocol dialog,A∗
0 transmits⊥ to T . Subsequently,A∗

0 continues the simulation
of A∗

1. A∗
0 stores the valuesC1, C2 as transmitted byA∗

1; then, it selects two challengesc∗, c so
that c ∈R {0, 1}k1 andc∗ ∈R {0, 1}k1 − {c}, and simulatesA∗

1 till step 3 is completed so that the
challengec∗ is supplied. Then,A∗

0 rewindsA∗
1 to the step thatA∗

1 waits the challenge in the proof
of knowledge of step 3 andA∗

0 gives toA∗
1 the challengec. Based on the soundness property of the

proof of knowledge of step 3,A∗
0 is capable of reconstructing̃x andr̃ (the witnesses). Subsequently

it computesx′ = x − (2ℓ − 2µ + 1) (as an integer) and sets̃y = x′ − x̃(modm̃); then it transmits̃y
to A∗

1. A∗
1 replies byC3 and the proofs of knowledge of step 5 and step 6.A∗

0 verifies the proofs of
knowledge that they are correct and in this case, it transmitsC3 to T ; in any other caseA∗

0 transmits
⊥ to T . A∗

0 continues the simulation ofA∗
1 and terminates by outputting the output ofA∗

1.

Let us first consider the distributionsO1 = OUT
〈A∗

1,B1〉
A∗

1
(inA) andO0 = OUT

〈A∗
0,BH

0 〉
A∗

0
(inA). It is

clear thatO1 andO0 are indistinguishable asA∗
0 executes a perfect simulation ofA∗

1.

Now we consider the distributionsO1 = OUT
〈A∗

1,B1〉
B1

(inB) andO0 = OUT
〈A∗

0,BH
0 〉

BH
0

(inB).

The probability distributionsO1 andO0 can be thought of, as mappings from a sequence of coin
tosses to an element ofQR(n) ∪ {⊥}. Coinsj for j = 1, 0 is the set of all possible coin tosses
respectively. Ifb ∈ Coinsj , it holds thatOj(b) ∈ QR(n) ∪ {⊥}. Now letk1 be the number of coin
tosses required for selecting the challenge ofB1 in the step 3 of the execution of the protocol in the
real world. Letk2 be the number of coin tosses that the adversaryA∗

1 requires to complete the final
step in the proof proof of step 3 in the real world execution.

Let b ∈ Coins1, andO1(b) = C ∈ QR(n). Now observe thatb can be mapped to a set of
(2k1 − 1)2k2 coin tossesb′ ∈ Coins0 in a straightforward manner; the only point that is interesting
is the fact that the coin tosses ofT insideb′ must be computed based on the coin tosses ofB1 for
selectingỹ and the baseg logarithm of the valueC1. Now observe that the coin tossesb that lead
B1 to accept despite the fact thatA∗

1 does not construct the valuesC1, C2, C3 properly (and as a
result in this caseb′, BH

0 will reject) constitute a negligible fraction of all possible coin tosses. In
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any other case observe that it will hold thatO1(b) = O0(b′) ∈ QR(n). Observe that this mapping
can be reversed; indeed, given anyb′ ∈ Coins0 with O1(b) = C we can construct a string of coin
tossesb ∈ Coins1 so thatO1(b) = C. In this case, the coin tosses fromb′ that correspond toT will
determine the coin tosses ofb required to set the coin tosses ofỹ using, again, the baseg logarithm
of the valueC1. Regarding the case of⊥, observe that ifb is a sequence of coin tosses for which
O1(b) = ⊥ then definitelyO0(b′) = ⊥, whereb′ ∈ Coins0 is any of the corresponding coin tosses
to b. On other hand ifb′ is such thatO1(b′) = ⊥ and it holds thatO1(b) 6= ⊥ for the corresponding
coin tossesb ∈ Coins1 then this means thatA∗

1 cheats in some of the proofs of knowledge in steps 6,
7; this can happen with only for a negligible fraction of coin tosses. The result O1 ≈ O0 follows.

Suppose now thatB∗
1 be an ITM playing the role ofB1 in a real protocol execution (acting as

an adversary). We will designB∗
0 as an adaptation ofB∗

1 in the ideal world. The ITMB∗
0 operates

as follows: in step 1 (of the real world simulation),B∗
0 provides toB∗

1 the valuesC1, C2 as random
elements ofQR(n) (this is indistinguishable from real-world executions based on the DDH assump-
tion); then in step 3,B∗

0 provides toB∗
1 a simulated protocol transcript for the proof of knowledge

of step 3 (employing the zero-knowledge property). In step 3,B∗
0 receives fromB∗

1 the valueỹ and
ignores it. WhenB∗

0 receives the valueC from the trusted partyT , B∗
0 computesC3 = Ca−2ℓ+2µ−1;

B∗
0 gives toB∗

1 the valueC3 when simulating step 4. Otherwise, ifT transmitted a failure message,
B∗

0 will selectC3 at random fromQR(n) for the simulation of step 4. Subsequently,B∗
0 simulates

the proofs of knowledge of steps 5 and 6 and gives them toB∗
1 . Finally B∗

0 continues the simulation
of B∗

1 and returns the same output.

Next we consider the distributions,O1 = OUT
〈A1,B∗

1 〉
A1

(inA) andO0 = OUT
〈AH

0 ,B∗
0 〉

AH
0

(inA). The

indistinguishability ofO1 andO0 is simple to see: it is clear thatO0 is the uniform distribution over
elementsax with x ∈R S(2ℓ, 2µ); the same will hold true in the case of a real execution betweenA1

andB∗
1 (this holds true, independently of whatB∗

1 does, as it cannot bias the probability distribution
of the output ofA1 since the reduction modulõy will allow the random variablẽx cancel any possible
bias introduced byB∗

1).

Finally, we consider the distributionsO1 = OUT
〈A1,B∗

1 〉
B∗

1
(inB) andO0 = OUT

〈AH
0 ,B∗

0 〉
B∗

0
(inB).

Recall that we assume that the challenges ofB∗
1 should be honest (all our zero-knowledge proofs

canonical). This means that the simulations performed byB∗
0 while adaptingB∗

1 in the ideal world
are indistinguishable from the ones supplied by playerA1 in real protocol executions. It follows that
the protocol views ofB∗

1 in real executions are indistinguishable compared to the corresponding views
in the simulation performed byB∗

0 whenB∗
1 is adapted to the ideal world; thus the two probability

distributionsO1 andO0 will be indistinguishable. ⊓⊔

7 Traceable Signatures and Identification

A traceable signature scheme is comprised of nine protocol proceduresSetup, Join, Sign, Verify, Open,
Reveal, Trace, Claim, Claim Verify〉 that are executed by the active participants of the system, which
are identified by the Group Manager (GM), a set of users and other non-trusted third parties called
tracers. A traceable identification scheme is defined in a similar fashion with the difference that the
Sign andVerify procedures are substituted by anIdentify protocol and theClaim andClaim Verify
procedures are substituted by aClaiming protocol.

Setup (executed by the GM). For a given security parameterν, the GM produces a publicly-known
stringpkGM and some private stringskGM to be used for user key generation.

Join (a protocol between a new user and the GM). In the course of the protocol the GM employs
the secret-key stringskGM. The outcome of the protocol results in a membership certificatecerti that
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becomes known to the new user. The wholeJoin protocol transcript is stored by the GM in a database
that will be denoted bytranscripts. This is a private database and each Join transcript contains also
all the coin tosses that were used by the GM during the execution.

Identify (traceable identification) It is an interactive proof system between a prover and a verifier
with the user playing the role of the prover and the verifier played by any non-trusted third party. The
Identify protocol is a proof of knowledge of a membership certificatecerti. We restrict the protocol to
operate in 3 rounds, with the verifier selecting a random challenge of appropriate length in the second
round.

Sign andVerify. The signing and verification algorithms are derived from theIdentify protocol using
the Fiat-Shamir heuristics [13] (including the message into hash).
Open (invoked by the Trustee) A p.p.t. TM which, given a signature (or an identification protocol
transcript), the secret-keyskGM and access to the database of all the transcripts of the Join protocols,
it outputs the identity of the signer and a proof that the opening algorithm was executed properly.

Reveal (invoked by the GM) A p.p.t. TM which, given the Join transcript for a useri, it outputs the
tracing trapdoor for the useri denoted bytracei.

Trace (invoked by designated parties, called tracers). A p.p.t. TM which, givena signatureσ (or a
Identify transcript) and the tracing trapdoor of a certain user, checks ifσ was signed by the user.

Claiming. It is an interactive proof system between a prover and a verifier where the role of the
prover is played by the user and the role of the verifier is played by the claimrecipient. TheClaiming
protocol is a proof of knowledge that binds to a givenIdentify protocol transcript (or signature) and
employs the membership certificatecerti of the user. As in the case ofIdentify protocol we restrict
Claiming to be a 3-round protocol so that in round 2 the verifier selects a random challenge of
appropriate length.

Claim andClaim Verify. It is the non-interactive version of theClaiming protocol employing the
Fiat-Shamir heuristics [13].

Given the inter-relationship between traceable identification and traceable signatures for simplic-
ity we will define correctness for the signature version of the scheme (the traceable identification
will be correct provided that the corresponding signature scheme is correct – note that the correct-
ness condition for identification deals with only the honest verifier case, thus it is safe to say that the
identification scheme is correct if the corresponding signature scheme is correct).

Definition 16 (Correctness for a traceable scheme)A traceable signature scheme with security
parameterν is correct if the following four conditions are satisfied (with overwhelming probability in
ν). LetSignU be the signing mechanism of userU andClaimU its corresponding claiming mechanism.

(1) Sign-Correctness:It should hold that for allM , Verify(M, pkGM, SignU (M)) = true.

(2) Open-Correctness:For all M , σ ← SignU (M), if Verify(M, pkGM, σ) = true then

Open(skGM, transcripts, σ) = U

(3) Trace-Correctness:For anyM , andσ ← SignU (M) it should hold that

Trace(Reveal(U , transcripts), σ) = true if and only if Open(skGM, transcripts, σ) = U

(4) Claim-Correctness: TheClaim and Claim Verify satisfy the following property: for all
M, σ ← SignU (M) it holds thatClaim Verify(M, σ, ClaimU (M, σ)) = true
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7.1 Security Model for Traceable Schemes

In this section we formalize the security model for traceable signature schemes. To claim security
we will define the notion of an interfaceI for a traceable scheme which is a PTM that simulates the
operation of the system. The purpose behind the definition ofI is to capture all possible adversarial
activities against a traceable scheme in an intuitive way. We will deal with the security of the interac-
tive version of a traceable scheme, i.e., a traceable identification scheme. Wemodel our security using
“canonical” 3-move proofs of knowledge (where the challenge of the verifying party is assumed to be
truly random — note that this can be simulated by an external protocol playedbetween the parties, or
using a beacon etc. ) and passive impersonation-type of attacks; identification security in this type of
model facilitates the employment of the Fiat-Shamir transform for proving signature security; thus,
proving security for the interactive version will be sufficient for ensuring security of the traceable
signature in the random oracle model (see [1]).

We model the security of a traceable identification scheme as an interaction between the adversary
A and an entity called theinterface. The interface maintains a (private) state denoted bystateI (or
simply state) and communicates with the adversary using a handful of pre-specifiedquery actions
that allow the adversary to learn information aboutstateI ; these queries are specified below. The
initial state of the interface is set tostateI = 〈skGM, pkGM〉. The interface also employs an “internal
user counter” denoted byn which is initialized to 0. Moreover three sets are initializedUp, Ua, U b

to ∅. Note thatstateI is also assumed to containUp, Ua, U b andn. Finally the interface employs
two other strings denoted and initialized as follows:transcripts = ǫ andSigs = ǫ. The various query
action specifications are listed below:

• 〈Qpub〉. The interface returns the string〈n, pkGM〉. This allows to an adversary to learn the
public-information of the system, i.e., the number of users and the public-key information.

• 〈QkeyGM〉. The interface returnsskGM; this query action allows to the adversary to corrupt the
group-manager.

• 〈Qp−join〉. The interface simulates theJoin protocol inprivate, increases the user countn by 1,
and setsstate := stateI ||〈n, transcriptn, certn〉. It also addsn into Up and setstranscripts :=
transcripts||〈n, transcriptn〉.
This query action allows to the adversary to introduce a new user to the system (that is not
adversarially controlled).

• 〈Qa−join〉. The interface initiates an activeJoin dialog with the adversary; the interface in-
creases the user countn by 1, and assumes the role of the GM where the adversary is assum-
ing the role of the prospective user. If the dialog terminates successfully the interface sets
stateI := stateI ||〈n, transcriptn,⊥〉. It finally addsn into the setUa and transcripts :=
transcripts||〈n, transcriptn〉.
This query action allows to the adversary it introduce an adversarially controlled user to the
system. The adversary has the chance to interact with the GM during the Jointranscript.

• 〈Qt−join〉. This query is identical to aQp−join query with the difference that the interface at the
end transmitscertn to the adversary and addsn to Ua. The queryQt−join is weaker than the
queryQa−join and we include it in the modelling for technical reasons. See lemma 20.

• 〈Qb−join〉. The interface initiates an activeJoin dialog with the adversary; the interface in-
creases the user countn by 1 and assumes the role of the prospective user and the adver-
sary is assuming the role of the GM. If the dialog terminates successfully the interface sets
stateI := stateI ||〈n,⊥, certn〉. It also addsn into U b.

This query allows the adversary to introduce users to the system acting as aGM.
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stateI = 〈pkGM, skGM〉 ← Setup(1ν);

ExpAmis(ν) : 〈d, ρ1〉 ← AI[stateI ,Qpub,Qp−join,Qa−join,Qid](first, 1ν);

c
r←− {0, 1}k;

ρ2 ← A(second, d, ρ1, c);
if iV(pkGM, ρ1, c, ρ2) = true and

if Open(skGM, transcripts, ρ1) 6∈ Ua

or ∧i∈UaTrace(Reveal(i, transcripts), ρ1) = false
then output 1

else output 0

Figure 2: The misidentification experiment

• 〈Qid, i〉. The interface parsesstateI and if it discovers an entry of the form〈i, ·, certi〉 it
produces anIdentify protocol transcript using the certificatecerti and selecting the verifier
challenge at random; if no such entry is discovered or ifi ∈ Ua the interface returns⊥. Finally,
if σ is the protocol transcript the interface setsSigs = Sigs||〈i, σ〉.

• 〈Qreveal, i〉. The interface returns the output ofReveal(i, transcripts). Sometimes we will write
Q¬A

reveal to restrict the interface from revealing users inA. Note thatReveal(i, transcripts) = ⊥
in case useri does not exist ori ∈ U b.

Given the above definition of an interface we proceed to characterize thevarious security proper-
ties that a traceable scheme should satisfy. We will use the notationI[a,Q1, . . . ,Qr] to denote the
operation of the interface with (initial) statea that responds to the query actionsQ1, . . . ,Qr (a subset
of the query actions defined above). In general we assume that the interface serves one query at a
time: this applies to the queriesQa−join andQb−join that require interaction with the adversary (i.e.,
the interface does not allow the adversary to cascade such queries). For some traceable identifica-
tion scheme we will denote byiP andiV the prover and verifier algorithms for theIdentify 3-move
protocol as well as bycP andcV the prover and verifier algorithms of theClaiming 3-move protocol.

Our definition of security, stated below, is based on the definitions of the three named security
properties in the coming subsections.

Definition 17 A traceable scheme is said to besecureprovided that it satisfies security against
misidentification, anonymity and framing attacks as well as against unauthorized tracing.

7.1.1 Misidentification Attacks.

In a misidentification attack against a traceable scheme the adversary is allowed to control a number
of users of the system (in an adaptive fashion). The adversary is alsoallowed to observe the operation
of the system in the way that users are added and they produce identification transcripts. Finally the
adversary is required to produce an identification transcript that satisfies either one of the following
properties: (a): the adversarial identification transcript does not open to any of the users controlled
by the adversary, or (b): the adversarial identification transcript does not trace to any of the users
controlled by the adversary. We will formalize this attack using the experimentpresented in figure 2.

We will say that a traceable identification scheme satisfies security against misidentification if for
any PPTA, it holds thatProb[ExpAmis(ν) = 1] = negl(ν).

7.1.2 Anonymity Attacks

An anonymity attack is best understood in terms of the following experiment thatis played with the
adversaryA who is assumed to operate in two phases calledplay andguess. In theplay phase, the
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stateI = 〈pkGM, skGM〉 ← Setup(1ν);

ExpAanon(ν) : 〈d, i0, i1〉 ← AI[stateI ,Qpub,Qp−join,Qa−join,Qid,Qreveal](play, 1ν);
if i0 or i1 do not belong in Up return ⊥.
b

r←− {0, 1}.
parse stateI and find the entry 〈ib, transcriptib , certib〉.
simulate the Identify protocol for certib to obtain 〈ρ1, c, ρ2〉.
b∗ ← AI[stateI ,Qpub,Qp−join,Qa−join,Qid,Q

¬(i0,i1)
reveal

](guess, 1ν , d, 〈ρ1, c, ρ2〉);
if b = b∗ then return 1 else return 0.

Figure 3: The anonymity attack experiment

stateI = 〈pkGM, skGM〉 ← Setup(1ν);

ExpAfra(ν) : 〈s, d, ρ1〉 ← AI[stateI ,Qpub,Qkey,Qb−join,Qid](first, 1ν);

c
r←− {0, 1}k;

ρ2 ← A(second, d, ρ1, c);
if iV(pkGM, ρ1, c, ρ2) = true and

if Open(skGM, transcripts, ρ1) ∈ U b

or ∃i ∈ U b : Trace(Reveal(skGM, transcripts, i), ρ1) = true
then output 1

else if s is such that 〈i, s〉 ∈ Sigs and i ∈ U b

and cV(s, ρ1, c, ρ2) = true then output 1
else output 0

Figure 4: The framing attack experiment

adversary interacts with the interface, introduces users in the system, andselects two target users
he does not control; then receives an identification transcript that corresponds to one of the two at
random; in thefind stage the adversary tries to guess which of the two produced the identification
transcript. We remark that we allow the adversary to participate in the system also as a tracer (i.e.,
one of the clerks that assist in the tracing functionality). The experiment is presented in figure 3.

A traceability scheme is said to satisfy anonymity if for any attackerA it holds that
|Prob[ExpAanon(ν) = 1] − 1

2 | = negl(ν).

7.1.3 Framing Attacks

A user may be framed or two different ways: the authorities and other users may construct a signature
that opens or trace to an innocent user, or they may claim a signature that was generated by the user
as their own. We capture these two framing notions with the experiment described in figure 4 (we
remark that “exculpability” of group signatures [2] is integrated in this experiment).

A traceable scheme satisfies security against framing provided that for any probabilistic polynomial-
timeA it holds thatProb[ExpAfra(ν) = 1] = negl(ν).

8 Design of a Traceable Scheme

8.1 The Construction

Parameters. The parameters of the scheme areǫ ∈ R with ǫ > 1, k ∈ N as well as three spheres
Λ, M, Γ satisfying the properties presented in 5; the functionǫ is supposed to satisfy the condition
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of lemma 9. Below we will denote byIΛk
ǫ , IMk

ǫ , andIΓk
ǫ the inner spheres ofΛ, M andΓ w.r.t. the

parametersǫ, k, (see section 4.2).
SetupThe GM generates two primesp′, q′ with p = 2p′ + 1, q = 2q′ + 1 also primes. The modulus
is set ton = pq. The spheresΛ, M, Γ are embedded into{0, . . . , p′q′ − 1}. Also the GM selects
a, a0, b, g, h ∈R QR(n) of orderp′q′. The secret-keyskGM of the GM is set top, q. The public-key
of the system is subsequently set topkGM := 〈n, a, a0, b, y, g, h〉.
Join (a protocol executed by a new user and the GM). The prospective user and the GM execute
the protocol for non-adaptive drawing a random powerx′ ∈ IΛk

ǫ overb (see section 6) with the user
playing the role of player A and the GM playing the role of player B; upon successful completion of
the protocol the user obtainsx′

i and the GM obtains the valueCi = bx′
i .

Subsequently the GM selects a random primeei ∈ IΓk
ǫ andxi ∈ IΛk

ǫ and then computesAi =

(Cia
xia0)

e−1
i (modn) and sends to the user the values〈Ai, ei, xi〉. The user forms the membership

certificate ascerti := 〈Ai, ei, xi, x
′
i〉. Observe that〈Ai, ei : xi, x

′
i〉 is a discrete-log representation of

an arbitrary power inQR(n) (see section 5); furthermore observe that the portion of the certificatexi

is known to the GM and will be used as the user’s tracing trapdoor.
Identify . To identify herself a user first computes the values,

T1 = Aiy
r, T2 = gr, T3 = geihr, T4 = gxik, T5 = gk, T6 = gx′

ik
′

, T7 = gk′

wherer, k, k′ ∈R M. Subsequently the user proceeds to execute the proof of knowledge ofthe fol-
lowing triangular discrete-log relation set defined over the objectsg, h, y, a0, a, b, T−1

1 , T−1
2 , T3, T4,

T5, T6, T7 and the free variables arex, x′ ∈ IΛk
ǫ , e ∈ IΓk

ǫ , r, h
′.























g h (T2)
−1 T5 T7 y (T1)

−1 a b a0 T3 T4 T6

T2 = gr : r 0 1 0 0 0 0 0 0 0 0 0 0
T3 = gehr : e r 0 0 0 0 0 0 0 0 −1 0 0

T e
2 = gh′

: h′ 0 e 0 0 0 0 0 0 0 0 0 0
T x

5 = T4 : 0 0 0 x 0 0 0 0 0 0 0 −1 0

T x′

7 = T6 : 0 0 0 0 x′ 0 0 0 0 0 0 0 −1

a0a
xbx′

yh′
= T e

1 : 0 0 0 0 0 h′ e x x′ 1 0 0 0























Observe that the above proof of knowledge ensures that the valuesT1, T2, T3, T4, T5, T6, T7 are prop-
erly formed and “contain” a valid certificate. In particular the above proofnot only enforces the
certificate conditionAei

i = a0a
xibx′

i but also the fact thatei ∈ Γ andxi, x
′
i ∈ Λ.

Open. (invoked by the GM) Given aIdentify transcript〈ρ1, c, ρ2〉 and all Join transcripts the GM does
the following: it parsesρ1 for the sequence〈T1, T2, T3, T4, T5, T6, T7〉 and computes the valueA =
(T2)

−xT1. Then it searches the membership certificates〈Ai, ei〉 (available from the Join transcripts)
to discover the indexi such thatA = Ai; the indexi identifies the signer of the message.
Reveal. (invoked by the GM) Given the Join transcript of thei-th user the GM parses the Join
transcript to recover the tracing trapdoortracei := xi.
Trace. (invoked by any agent/clerk) Given the valuetracei and anIdentify protocol transcript
〈ρ1, c, ρ2〉 the agent parses the sequence〈T1, T2, T3, T4, T5, T6, T7〉 from ρ1; subsequently it checks
whetherT xi

5 = T4; if this is the case the agent concludes that useri is the originator of the given
Identify protocol transcript.
Claiming. (invoked by the user) Given anIdentify protocol transcript that was generated by useri
and contains the sequence〈T1, T2, T3, T4, T5, T6, T7〉, the useri can claim that he is the originator as
follows: he initiates a proof of knowledge of the discrete-log ofT6 baseT7 (which is a discrete-log
relation set, see section 4). If the proof is directed to a specific entity the proof can be targeted to the
receiver using a designated verifier proof, see [16]; such proofscan be easily coupled to our proofs of
knowledge for discrete-log relation sets.
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Theorem 18 The traceable signature version of the scheme described above, is correct according to
definition 16 and secure according to definition 17.

In particular it satisfies (i) security against misidentification attacks based on the Strong-RSA
and the DDH assumptions; (ii) security against anonymity attacks based onthe DDH assumption;
(iii) security against framing attacks based on the discrete-logarithm problem overQR(n) when the
factorization ofn is known.

We remark that correctness of our scheme can be verified by a close inspection of the protocol.
On the other hand, the proof of security as stated in the above theorem will be described in detail in
the next section.

9 Security of the Protocol

In this section we prove that our construction is secure according to definition 17. We will start with
some basic lemmas that will be useful in the main security proofs.

Lemma 19 LetpkGM = 〈n, g, a0, a, b, y, g, h〉 be the public-key in the scheme of section 8.1. There
exists a PPTSid that takes as inputpkGM and a tuple〈A, e, x, x′〉 ∈ QR(n) × Γ × Λ × Λ (not
necessarily satisfying the conditionAe = a0a

xbx′
) that is capable of simulating the valid identifica-

tion transcripts generated by a single useri with membership certificate〈Ai, ei : xi, x
′
i〉, for which it

holdsei = e, xi = x, x′
i = x (but potentiallyAi 6= A).

In particular the distance betweenSid and real Identify protocol transcripts of the useri is at
most2AdvDDH(ν) + ǫ whereǫ is the statistical distance of the simulatorS of the 3-move zero-
knowledge proof of knowledge used inside theIdentify protocol.

Proof.Sid operates as follows: first it sets,

T1 = Ayr, T2 = gr, T3 = gehr, T4 = gxk, T5 = gk T6 = gx′k′

T7 = gk′

for r, k, k′ ∈R M. Then, based on properties of the proof of knowledge we know that there exists
a simulatorS for the proof of knowledge of the discrete-log relation-set that corresponds to the
Identify 3-move proof of knowledge. Thus,Sid simulatesS over the objectsg, h, y, a0, a, b, T1, T2,
T3, T4, T5, T6, T7.

Also letSR be a simulator operating asSid but usingT ′
1 ∈R QR(n) instead ofT1.

Suppose now that there exists a distinguisher of between valid protocol transcripts and the output
of Sid.

Let 〈G, X, Y, Z〉 be a challenge for the DDH assumption. Consider the following algorithmS∗.
It setsT ′

1 := AZ, T ′
2 := X, g′ = G, y′ := Y and it simulatesS on the inputn, g′, a0, a, b, y′, g,

h, A, e, x, x′. If G, X, Y, Z is valid DDH tuple then observe that the output ofS∗ is identically
distributed to the output ofSid. On the other hand ifG, X, Y, Z is a random tuple then the output of
S∗ is identically distributed to the output ofSR.

It follows that the probability distributions ofSid andSR have statistical distance at mostAdvDDH(ν).
Now consider the distributionD of all valid protocol transcripts generated by a single useri. We

modify theIdentify protocol of the useri to use the simulatorS of the 3-move proof of knowledge of
a discrete-log relation set instead. Based on theorem 10 it is easy to see that the modified probability
distributionD′ of all valid protocol transcripts generated by a single useri will be statistically indis-
tinguishable from the distributionD (it will distanceǫ in particular). Next we modify theD′ further
so that the valueT1 is substituted by the valueT ′

1 selected at random fromQR(n); the modified ditri-
bution will be denoted byD′′. It is easy to see that the distance ofD′′ fromD′ is at mostAdvDDH(ν).
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Finally observe that the distributionD′′ is identical to the distribution generated bySR. The proof of
the theorem follows easily. ⊓⊔

Lemma 20 For any probabilistic polynomial-time algorithmA that interacts with the interface as
defined in section 7.1,ProbstateI←Setup(1ν)[AI[stateI ,...,Qa−join,...] = A′I[stateI ,...,Qt−join,...]] = 1 −
negl(ν).

Proof. The proof is based on the security properties of the Join protocol which isa secure implemen-
tation of a non-adaptive drawing of a random power as described in section 6. In particular due to the
security from the player B’s side we can simulateA so that the valuesx′ thatA obtains from each
instantiation of aQa−join protocol can be chosen externally by a trusted party. According to theorem
15 this does not affect the private output functionality. ⊓⊔

9.1 Security against Misidentification

Theorem 21 The traceable identification scheme of section 8.1 satisfies security againstmisidentifi-
cation based on the strong-RSA assumption and the DDH assumption overQR(n).

Proof. LetA be an adversary that violates security against misidentification. It follows that

Prob[ExpAimp(ν) = 1]

is a non-negligible function inw. We will useA to construct an algorithm that solves the one-more
representation problem. First, letK be the number of users that are controlled by the adversary (i.e.,
introduced in system usingQa−join).

Now observe that based on lemma 20 there exists an adversaryA′ that has the same functionality
asA but whenever he executesQa−join he obtains the valuex′ through querying an external trusted-
third party.

Let n be a composite modulus with unknown factorization according to the specifications of our
protocol and{〈Aj , ej : xj , x

′
j〉}K

j=1 be an instance of the one-more representation problem over the
basesa0, a, b. Below we describe an algorithmB that usesA′ to solve the one-more discrete-log
representation problem.

First, B selectsy, g, h values as specified in the description of the protocol and setspkGM :=
〈n, a, a0, b, y, g, h〉. SubsequentlyB simulates the adversaryA′(first, 1ν) playing the role of an ap-
propriately modified interface as described below:

• If A′ submits〈Qpub〉 to the interface, thenB supplies toA the specified response (the public-
key of the system).

• If A′ submits〈Qp−join〉 to the interface, thenB increments the internal user counteri by one,
and selectscerti = A, e, x, x′ ∈ QR(n) × Γ × Λ × Λ and storescerti in the database by
inserting the string〈i,⊥, certi〉. Also,B addsi into the setUp.

• If A′ initiates aQt−join dialog thenB increases thejoin dialog counterj by one and the user
counteri by one;A′ asks the pair of valuesx, x′ that will be used as part of the certificate.B
supplies the input valuesxj , x

′
j . ThenA submits toB the valuea0a

xjax′
j andB returnsAj , ej

toA. In addition,B enters in the database the entry〈i,⊥, certi〉 wherecerti = 〈Aj , ej , xj , x
′
j〉.

FinallyB addsi into the setUa.
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• If A submits〈Qid, i〉 to the interface, thenB looks into the database to recover the corre-
sponding entry〈i, . . .〉 and the stringcerti = 〈Ai, ei, xi, x

′
i〉 (which observe that it does not

necessarily satisfiesAei

i = a0a
xibx′

i) and thenB simulates anIdentify protocol transcript as
described in lemma 19. Note that ifi 6∈ Up, B returns fail to the adversary.

Observe now that the view thatA′ has of its interaction withB is indistinguishable from the
interaction with the interface in the security definition.

At some pointA′(first, 1ν) terminates by returning the valuesd, ρ1. Then,B selects two different
c, c′ and simulatesA′(second, d, ρ1, c) andA′(second, d, ρ1, c

′) to obtain two outputsρ2, ρ
′
2.

Observe now that with probability(Prob[ExpA
′

mis(ν) = 1])2 it holds that the identification pro-
tocol transcripts〈ρ1, c, ρ2〉 and 〈ρ1, c

′, ρ′2〉 satisfy the verification functioniV. Observe thatρ1 =
〈T1, . . . , T7, . . .〉. Now, using the fact that theIdentify protocol transcript is sound we can extract a
witnessx, x′, w, e, h′ from the two transcripts for which it will hold thatT2 = gw, T3 = gehw, T e

2 =
gh′

, a0a
xbx′

yh′
= T e

1 , T x
5 = T4, T

x′

7 = T6.
Now we have two alternative events: (i)Open(skT , transcripts, ρ1) 6∈ Ua which means that

T1/T
logg y

2 does not equal anyAi for thosei ∈ Ua; observe thatA := T1/T
logg y

2 has the property

that Ae = (T1/T
logg y

2 )e = a0a
xbx′

yh′
/yh′

= a0a
xbx′

, as a result we constructed a discrete-log
representation of an arbitrary power〈A, e : x, x′〉 that is different from the ones that were selected by
B.

In the second alternative event we have : (ii)∧i∈UaTrace(Reveal(skT , transcripts, i), ρ1) =
false. It follows that (due to lemma 20)∧i∈UaTrace(xi, ρ1) = false or equivalently thatT xi

5 6=
T4 for all i ∈ Ua and as a resultx 6= xi for all i ∈ Ua.

It turns out that in both of the above cases the algorithmB is an algorithm that can solve the
“one-more representation” problem, something that based on theorem 12,yields an algorithm against
the Strong-RSA problem. ⊓⊔

9.2 Anonymity

Theorem 22 The traceable identification scheme of section 8.1 satisfies security againstanonymity
attacks based on the DDH assumption overQR(n).

In particular we show that|Prob[ExpAanon(ν) = 1] − 1
2 | ≤ n2(2AdvDDH(ν) + 3AdvDDH

∗,Λ,∗ (ν))

whereAdvDDH
∗,Λ,∗ (ν) denotes the maximum advantage of any DDH adversary when the secondar-

gument of the DDH challenge is restricted into the sphereΛ; this can be further relaxed, see the
comment at the end of section 3.

Proof. Let A be an anonymity adversary as described in section 7.1.2 with the modification that he
wants to violate the anonymity of usersi0, i1 always for fixedi0, i1. We will show that for such
adversary it holds that|Prob[ExpA,i0,i1

anon (ν) = 1] − 1
2 | = negl(ν) (assuming that the advantage of

DDH distinguishers is a negligible function inw). Then, it will follow that even ifA selectsi0, i1
adaptively (as stated in the anonymity definition in 7.1.2) it will hold that the probability of success
of the experiment will remain negligible since we assume a polynomial number of users. This is so
since it is possible to transform any adaptive adversaryA to a non-adaptive oneA′ as follows:A′

for fixed i0, i1 simulatesA and ifA returns indeedi0, i1 as the challenge thenA′ proceeds with the
simulation as specified, otherwiseA′ selects a random bit and returns this instead.

Observe that based on lemma 20 there exists an adversaryA′ that has the same functionality asA
but wheneverA executesQa−join, A′ executes the oracleQt−join instead (i.e.,A′ obtains the value
x′ externally). Also letK be the number ofQt−join queries executed byA′ (in both theplay and
guess stages).
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Now consider the following gameG1:
Let n be a composite modulus with unknown factorization according to the specifications of our

construction;G1 selects randomx1, . . . , xK , x′
1, . . . , x

′
K ∈ Λ and e1, . . . , eK ∈ Γ, and seta =

ze1...eK (modn), a0 = ar andb = ar′ wherer, r′ are random integers inΛ. ThenB computesAi =

z
(xi+r+r′x′

i)
e1...eK

ei (modn), for all i = 1, . . . , K. Observe thatAei

i = a0a
xibx′

i for all i = 1, . . . , K,
i.e., 〈Ai, ei : xi, x

′
i〉 are discrete-log representations of arbitrary powers insideQR(n) overa0, a, b.

Let y, g, h, g0, N be values as specified in the description of the protocol.
G1 proceeds to simulate the adversaryA′(play, 1ν) by answeringA’s oracle queries to the inter-

face as follows (in the description belowi, j are two counters initialized to0).

• If A′ poses the queryQpub, G1 returns the public-key of the system as defined above.

• If A′ submits〈Qp−join〉 to the interface, thenG1 increments the internal user counteri by one,
and selectscerti = A, e, x, x′ ∈ QR(n) × Γ × Λ × Λ and storescerti in the database by
inserting the string〈i,⊥, certi〉. Also,G1 addsi into the setUp.

• If A′ initiates aQt−join dialog thenG1 increases thejoin dialog counterj by one and the user
counteri by one;A′ asks the pair of valuesx, x′ that will be used as part of the certificate.
G1 supplies the pre-computed valuesxj , x

′
j . ThenA submits toG1 the valuea0a

xjax′
j and

G1 returnsAj , ej to A. In addition,G1 enters in the database the entry〈i,⊥, certi〉 where
certi = 〈Aj , ej , xj , x

′
j〉. Finally G1 addsi into the setUa.

• If A′ submits〈Qid, i〉 to the interface, thenG1 checks whetheri ∈ Up and in this case it
retrieves from the database the corresponding entry〈i, . . .〉 and the stringcerti = 〈Ai, ei, xi, x

′
i〉

(which observe that it does not necessarily satisfiesAei

i = a0a
xibx′

i) and thenG1 simulates an
Identify protocol transcript as described in lemma 19.

• If A′ submits the query〈Qreveal, i〉, G1 checks whetheri 6∈ {i0, i1} and in this case it looks into
the database for the corresponding entry〈i, . . .〉 and the stringcerti = 〈Ai, ei, xi, x

′
i〉; finally it

returns to the adversary the valuexi. In this case useri is removed fromUp and entered into
the setU r.

WhenA′(play, ·) terminates,G1 receives the values〈d, i0, i1〉; if i0, i1 6∈ Up, G1 terminates and
returns0. In the other caseG1 selectsb

r← {0, 1}, retrieves the entry〈ib,⊥, certib〉 with certib =
〈Aib , eib : xi, xib〉. Then it forms the sequence of values:

T1 = Aiby
w, T2 = gw, T3 = geib hw, T4 = gxib

k, T5 = gk T6 = g
x′

ib
k′

T7 =k′

and simulates the proof of knowledge for the discrete-log relation set of theIdentify protocol. Then
G1 simulatesA(guess, d, 〈ρ1, c, ρ2〉) employing the oracle simulations as described above and obtains
the outputb∗. Finally G1 returns1 if b = b∗ or 0 otherwise. Observe thatProb[G1(·) = 1] =
Prob[ExpAanon(ν) = 1].

Then consider gameG2 that operates as gameG with the difference that it uses the values in the
simulation of theIdentify protocol transcript,

T1 = AibR1, T2 = R2, T3 = geib R
logg h

2 , T4 = gxib
k, T5 = gk T6 = g

x′
ib

k′

T7 = gk′

whereR1, R2 ∈R QR(n).
It is easy to see that|Prob[G1(·) = 1] − Prob[G2(·) = 1]| ≤ AdvDDH(ν).
Next consider gameG3 that operates asG2 but with the modification:
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T1 = R1 T2 = R2 T3 = geib R3, T4 = gxib
k, T5 = gk T6 = g

x′
ib

k′

T7 = gk′

whereR1, R2, R3 ∈R QR(n). It is easy to verify that|Prob[G2(·) = 1]−Prob[G3(·) = 1]| ≤
AdvDDH(ν).

Now consider the following game calledG4,i∗ that modifiesG3 as follows fori∗ = {i0} or
i∗ = {i0, i1}.

• If A′ poses the queryQpub, G4,i∗ returns the public-key of the system as defined above.

• If A′ submits〈Qp−join〉 to the interface, thenG1 increments the internal user counteri by one;
if i 6∈ i∗ thenG4,i∗ selectscerti = A, e, x, x′ ∈ QR(n) × Γ × Λ × Λ and storescerti in
the database by inserting the string〈i,⊥, certi〉. Now if i ∈ i∗ thenG4,i∗ selectscert∗i =
〈Ai, ei, Ri, x

′
i〉 ∈ QR(n) × Γ × QR(n) × Λ and stores in the database of users the value

〈i,⊥, cert∗i 〉.In either case,G4,i∗ addsi into the setUp.

• If A′ submits〈Qid, i〉 to the interface, thenG1 checks whetheri ∈ Up and in this case ifi 6∈ i∗
it operates identically toG3. In the casei ∈ i∗ it retrieves from the database the corresponding
entry 〈i, . . .〉 and the stringcert∗i = 〈Ai, ei, Ri, x

′
i〉 and then simulates anIdentify transcript

for the values

T1 = Aiy
w, T2 = gw, T3 = geihw T4 = Rk

i , T5 = gk, T6 = gx′
ik

′

T7 = gk′

Finally, at the challenge phase, ifib ∈ i∗, G4,i∗ constructs theIdentify challenge as:

T1 = R1 T2 = R2 T3 = R3, T4 = R4, T5 = R5, T6 = g
x′

ib
k′

T7 = gk′

(in the other caseG4,i∗ operates as gameG3). Now consider the behavior of the gamesG3 and
G4,{i0}. It is clear that they are either identical, or in the caseb = 0 it holds that the distance of
Prob[G3(·) = 1] andProb[G4,1(·) = 1] can be at mostAdvDDH

∗,Λ,∗ (ν), whereAdvDDH
∗,Λ,∗ denotes the

advantage of any PPT adversary so that the DDH’s second argument isrestricted over the sphereΛ.
In a similar fashion, the same will hold true for the gamesG4,{i0} andG4,{i0,i1}, i.e., they will have
a distance ofAdvDDH

∗,Λ,∗ (ν). Finally observe that in the case ofG4,{i0,i1} the challenge will have the
form:

T1 = R1 T2 = R2 T3 = R3, T4 = R4, T5 = R5, T6 = g
x′

ib
k′

, T7 = gk′

with R1, R2, R3, R4, R5 random elements ofQR(n).
Next we define a sequence of gamesG5,i′∗ in the same fashion asG4,i∗ . We observe that in the

case of gameG5,{i0,i1} it holds that the challenge is as follows:

T1 = R1 T2 = R2 T3 = R3, T4 = R4, T5 = R5, T6 = R6, T7 = R7

with R1, R2, R3, R4, R5, R6, R7 random elements ofQR(n). It is easy to see that the distance of
Prob[G4,{i0,i1}(·) = 1] andProb[G5,{i0,i1} = 1] is at mostAdvDDH

∗,Λ,∗ (ν).
Moreover it is clear that gameG5,{i0,i1} does not retain any information aboutib and as a result it

is implied thatProb[G5,{i0,i1}(·) = 1] = 1/2.
It is easy to see from the above that|Prob[ExpA,i0,i1

anon (ν) = 1]−1
2 | ≤ 2AdvDDH(ν)+3AdvDDH

∗,Λ,∗ (ν),
which implies that|Prob[ExpAanon(ν) = 1] − 1

2 | ≤ n2(2AdvDDH(ν) + 3AdvDDH
∗,Λ,∗ (ν)). ⊓⊔
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Figure 5: Adding Fairness to any Anonymous System using a traceable signatureFGsig

9.3 Security Against Framing

Theorem 23 The traceable identification scheme of section 8.1 satisfies security againstframing
based the discrete-logarithm assumption overQR(n) with known factorization forn.

Proof. Let A be an adversary against framing as described in section 7.1.3. Letn = pq with known
factorsp, q and a challengeb, C ∈ QR(n) for which we want to compute thelogb B. We define the
following algorithmB that employs the adversaryA. B generates all the elements of the public-key
of the systemg, h, y, a0, a as specified in the protocol for the RSA modulusn with the addition of
challengeb as the public-key.B selects a random memberj ∈ {1, . . . , s} wheres is the total number
Qb−join queries submitted by the adversary (required to be≥ 1 in a framing attack).B simulates the
adversaryA, by answering its interactions with the interface correctly, with the exception of Qb−join

query for thej-th user that must be handled so that the adversary (playing the role of theGM) should
give to the user a certificateA, e so thatAe = a0a

xC. This requires thatB plugsC during the
execution of the Join protocol; this is possible by simulating all the zero-knowledge proofs in the
non-adaptive drawing of random powers executed within the Join protocol; see theorem 15. Then
if the adversary outputs an identification transcript that either opens to user j traces to the userj it
is clear that we can rewind the adversary and obtain a witness for that transcript that will reveal the
logarithm ofC baseb, and thus solving the discrete-logarithm problem. The same is true for the case
that the adversary outputs a claim for an identification transcript of userj : B rewindsA and obtains
the witness for the claiming which, again, is the discrete-logarithm ofC baseb. ⊓⊔

10 Applications

In this section we demonstrate the potential of traceable signatures and identification in providing
conditional anonymity in anonymous systems. The main motivation for our construction is the de-
velopment of a generic way to transform any systemS that provides anonymity into a system that
provides “fair” or conditional anonymity. An anonymity system is comprised of a population of
units which, depending on the system’s function, exchange messages using anonymous channels. An
anonymity system withfairnessallows the identification of the origin of messages, as well as the
tracing of all messages of a suspect unit, if this is mandated by the authorities.Our transformation,
illustrated in figure 5, suggests that all systems’ units form a group and execute the Join protocol
of our traceable signature scheme prior to the initialization of the system’s operation. Subsequently,
any message sent from a unit is signed using the signing algorithm of our scheme; likewise for any
message received, a unit verifies the signature and if it fails the message isrejected. This simple
construction is powerful enough to transform an anonymous system based on a population of units to
an anonymous system with fairness (conditional anonymity).
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To understand the potential of this construction consider the notion of a mix-network: a mix-
network is an anonymous message delivery system that allows to a set of usersU1, . . . , Um to transmit
messages that are delivered to a destination so that the correspondenceof each message and sender
is lost. This is achieved by employing a series of servers, called a mix-network, that shuffles the
messages transmitted by the users. Only the coalition of all servers comprisingthe mix-network can
violate the privacy of this system. Anonymous message delivery will be ensured provided that at least
one server will be honest (i.e., refuse to collaborate with malicious serversagainst the privacy of the
users).

Applying our methodology as above, only properly signed messages will beallowed to enter the
mix-network. After the mixing procedure terminates the anonymity properties ofour traceable sig-
nature scheme guarantee that the correspondence between senders and messages is lost. Nevertheless
based on our traceability properties, the authorities will be capable of performing the operations:

• Reveal the originator of a specific message (opening).
• Reveal all messages sent by the same user (tracing).

Finally through our claiming protocol a user may claim a message as his own, atthe convenience
of the user (privacy is a good that should be personally managed).

10.1 Application to Auctions

Mix-nets with conditional privacy have many applications. For example, onecan use them to im-
plement an anonymous auction protocol (with open bids). Users submit theirbids through the mix-
network. In the message delivery point the bids are sorted from the highest to lowest and the identity
of the highest bidder is revealed by performing the “open” operation of the traceable signature. More-
over a user can claim that a certain public bid as his own, if he is asked to; for example an employee
of a company can prove that he submitted a bid by performing the claiming protocol. On the other
hand if a certain user is found to be misbehaving (e.g., he won an auction andhe refused to pay)
then all his current bids must be identified and invalidated: this is possible by employing the tracing
functionality of a traceable scheme.
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