
The Knowledge-of-Exponent Assumptions and

3-Round Zero-Knowledge Protocols

Mihir Bellare∗ Adriana Palacio†

November 2003

Abstract

Hada and Tanaka [10, 11] showed the existence of 3-round, negligible-error zero-knowledge
arguments for NP based on a pair of non-standard assumptions, here called KEA1 and KEA2. In
this paper we show that KEA2 is false. This renders vacuous the results of [10, 11]. However we
recover these results under a suitably modified new assumption called KEA3. What we believe is
most interesting is that we show that it is possible to “falsify” assumptions like KEA2 which, by
their nature and quantifier-structure, do not lend themselves easily to “efficient falsification” [14].

∗Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported in part
by NSF grants CCR-0098123, ANR-0129617 and CCR-0208842, and by an IBM Faculty Partnership Development Award.

†Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. E-Mail: apalacio@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/apalacio. Supported
in part by an NSF Graduate Research Fellowship.

1

1 Introduction

A classical question in the theory of zero knowledge (ZK) [9] is whether there exist 3-round, negligible-
error ZK proofs or arguments for NP. The difficulty in answering this question stems from the fact
that such protocols would have to be non-black-box simulation ZK [8], and there are few approaches
or techniques to this end. A positive answer has, however, been provided, by Hada and Tanaka
[10, 11]. Their result (a negligible-error, 3-round ZK argument for NP) requires a pair of non-standard
assumptions that we will denote by KEA1 and KEA2 in this paper.

The assumptions, roughly. Let q be a prime such that 2q+1 is also prime, and let g be a generator
of the order q subgroup of Z∗

2q+1. Suppose we are given input q, g, g
a and want to output a pair (C, Y)

such that Y = Ca. One way to do this is to pick some c ∈ Zq, let C = gc, and let Y = (ga)c. Intuitively,
KEA1 can be viewed as saying that this is the “only” way to produce such a pair. The assumption
captures this by saying that any adversary outputting such a pair must “know” an exponent c such
that gc = C. The formalization asks that there be an “extractor” that can return c. Roughly:

KEA1: For any adversary A, that takes input q, g, ga and returns (C, Y) with Y = Ca, there
exists an “extractor” Ā, which given the same inputs as A returns c such that gc = C.

Suppose we are given input q, g, ga, gb, gab and want to output a pair (C, Y) such that Y = Cb. One
way to do this is to pick some c ∈ Zq, let C = gc, and let Y = (gb)c. Another way is to pick some
c ∈ Zq, let C = (ga)c, and let Y = (gab)c. Intuitively, KEA2 can be viewed as saying that these are
the “only” ways to produce such a pair. The assumption captures this by saying that any adversary
outputting such a pair must “know” an exponent c such that either gc = C or (ga)c = C. The
formalization asks that there be an “extractor” that can return c. Roughly:

KEA2: For any adversary A, that takes input q, g, ga, gb, gab and returns (C, Y) with Y = Cb,
there exists an “extractor” Ā, which given the same inputs as A returns c such that either
gc = C or (ga)c = C.

As per [10, 11], adversaries and extractors are poly-sized families of (deterministic) circuits. See
Definition 3.1 for a formalization of KEA2. (We do not formalize KEA1 in this paper since we do not
need it. It is discussed here only as an introduction to KEA2 and because it plays a role in the results
of [10, 11].)

History and nomenclature of the assumptions. KEA1 is due to Damg̊ard [6], and is used by
[10, 11] to prove their protocol is ZK. To prove soundness of their protocol, Hada and Tanaka [10, 11]
introduce and use KEA2. (In addition, they make the Discrete Logarithm Assumption, DLA.) The
preliminary version of their work [10] referred to the assumptions as SDHA1 and SDHA2 (Strong
Diffie-Hellman Assumptions 1 and 2), respectively. However, the full version [11] points out that
the formalizations in the preliminary version are flawed, and provides corrected versions called non-
uniform-DA1 and non-uniform-DA2. We refer to the latter, but use the terminology of Naor [14] which
we feel is more reflective of the content of the assumption: “KEA” stands for “Knowledge of Exponent
Assumption”, the exponent being the value c above.

Falsifying KEA2. In this paper we show that KEA2 is false. What is interesting about this —besides
the fact that it renders the results of [10, 11] vacuous— is that we are able to “falsify” an assumption
whose nature, as pointed out by Naor [14], does not lend itself easily to “efficient falsification.” Let
us explain this issue before expanding more on the result itself.

The most standard format for an assumption is to ask that the probability that an adversary
produces a certain output on certain inputs is negligible. (For example, the Factoring assumption is
of this type.) To show such an assumption is false, we can present an “attack,” in the form of an
adversary whose success probability is not negligible. (For example, an efficient factoring algorithm.)

2

KEA1 and KEA2 are not of this standard format. They involve a more complex quantification: “For
every adversary there exists an extractor such that ...”. To show KEA2 is false, we must show there
exists an adversary for which there exists no extractor. As we will see later, it is relatively simple to
identify an adversary for which there does not appear to exist an extractor, but how can we actually
show that none of the infinite number of possible extractors succeeds?

An analogy. The difficulty of falsifying an assumption with the quantifier format of KEA2 may be
better appreciated via an analogy. The definition of ZK has a similar quantifier format: “For every
(cheating) verifier there exists a simulator such that ...”. This makes it hard to show a protocol is
not ZK, for, even though we may be able to identify a cheating verifier strategy that appears hard
to simulate, it is not clear how we can actually show no simulator exists.1 Indeed, this has usually
kept us from showing protocols are not ZK.2 (It has been possible to show protocols are not black-box
simulation ZK [8], taking advantage of the fact that the quantification in this definition is different
from that of ZK itself.)

Falsification result. At an intuitive level, the weakness in KEA2 is easy to see, and indeed it is
surprising this was not noted before. Namely consider an adversary A that on input q, g, ga, gb, gab

picks c1, c2 in some fashion, and outputs (C, Y) where C = gc1(ga)c2 and Y = (gb)c1(gab)c2 . This
adversary does not appear to “know” c such that either gc = C or (ga)c = C. The difficulty, however,
as indicated above, is to prove that there does not exist an extractor. We do this by first specifying
a particular strategy for choosing c1 and c2 and then showing that if there exists an extractor for the
resulting adversary then this extractor can be used to solve the discrete logarithm problem (DLP).
Thus, our result (cf. Theorem 3.2) is that if the DLP is hard then KEA2 is false. (Note that if the
DLP is easy, then KEA2 is true, for the extractor can simply compute a discrete logarithm of C and
output it, and thus the assumption that it is hard is necessary to falsify KEA2.)

KEA3. Providing a 3-round, negligible-error ZK protocol for NP is a challenging problem that has
attracted considerable research effort. The fact that KEA2 is false means that we “lose” one of the
only positive results [10, 11] that we had on this subject. Accordingly, we would like to “recover”
it. To this end, we propose a modification of KEA2 that addresses the weakness we found. The new
assumption is, roughly, as follows:

KEA3: For any adversary A, that takes input q, g, ga, gb, gab and returns (C, Y) with Y = Cb,
there exists an “extractor” Ā, which given the same inputs as A returns c1, c2 such that
gc1(ga)c2 = C.

Recovering the ZK result. The falsity of KEA2 invalidates Hada and Tanaka’s proof of the
soundness of their protocol, which we denote by HTP [11]. However, this does not mean that HTP
is not sound: perhaps it is and this could be proved under another assumption, such as KEA3. This
turns out to be almost but not quite true. We identify a small bug in HTP based on which we can
present a successful cheating prover strategy, showing that HTP is not sound. This is easily fixed,
however, to yield a protocol we call pHTP (patched HTP). This protocol is close enough to HTP that
the proof of ZK (based on KEA1) is unchanged. On the other hand, we are able to prove its soundness
based on KEA3 and DLA (cf. Theorem 5.3). In summary, we are able to show that assuming KEA1,
KEA3 and DLA, there exists a 3-round, negligible error ZK argument for NP.

1 For example, it is hard to imagine how one could find a simulator for the cheating verifier, for Blum’s ZK proof of
Hamiltonian Cycle [4], that produces its challenges by hashing the permuted graphs sent by the prover in the first step.
However, no proof that such a simulator does not exist has ever emerged.

2 An interesting conditional result [15] is that the parallel version of the Fiat-Shamir [7] protocol is not ZK, unless
there is no hash function that, when applied to collapse this protocol, results in a secure signature scheme. Our result
too is conditional.

3

Remark. We emphasize that we have not found any weaknesses in KEA1, an assumption used not
only in [10, 11] but also elsewhere.

Related Work. Since [10, 11] there has been more progress with regard to the design of non-black-
box simulation ZK protocols [1]. However, this work does not provide a 3-round, negligible-error ZK
protocol for NP. To date, there have been only two positive results. One is that of [10, 11], broken and
recovered in this paper. The other, which builds a proof system rather than an argument, is reported
in [13] and further documented in [12]. It also relies on non-standard assumptions, but different from
the Knowledge of Exponent type ones. Roughly, they assume the existence of a hash function such that
a certain discrete-log based protocol related to the non-interactive OT of [3] is a proof of knowledge.

2 Preliminaries

If x is a binary string, then |x| denotes its length, and if n ≥ 1 is an integer, then |n| denotes the
length of its binary encoding, meaning the unique integer ` such that 2`−1 ≤ n < 2`. The empty
string is denoted ε. We let N = {1, 2, 3, . . .} be the set of positive integers. If q is a prime number
such that 2q + 1 is also prime, then we denote by Gq the subgroup of quadratic residues of Z∗

2q+1.
(Operations are modulo 2q + 1 but we will omit writing “mod 2q + 1” for simplicity.) Recall this
is a cyclic subgroup of order q. If g is a generator of Gq then we let DLogq,g: Gq → Zq denote the
associated discrete logarithm function, meaning DLogq,g(g

a) = a for any a ∈ Zq. We let

GL = { (q, g) : q, 2q + 1 are primes and g is a generator of Gq } .

For any n ∈ N we let GLn be the set of all (q, g) ∈ GL such that the length of the binary representation
of 2q + 1 is n bits, i.e.,

GLn = { (q, g) ∈ GL : |2q + 1| = n } .

Assumptions and problems in [10, 11] involve circuits. A family of circuits C = {Cn}n∈N contains one
circuit for each value of n ∈ N. It is poly-size if there is a polynomial p such that the size of Cn is at
most p(n) for all n ∈ N. Unless otherwise stated, circuits are deterministic. If they are randomized,
we will say so explicitly. We now recall the DLA following [11].

Definition 2.1 Let I = {In}n∈N be a family of randomized circuits, and ν: N → [0, 1] a function.
We associate to any n ∈ N and any (q, g) ∈ GLn the following experiment:

Experiment Expdl
I (n, q, g)

a
$
← Zq ; A← ga ; ā

$
← In(q, g, A)

If a = ā then return 1 else return 0

We let

AdvdlI (n, q, g) = Pr
[
Expdl

I (n, q, g) = 1
]

denote the advantage of I on inputs n, q, g, the probability being over the random choice of a and the
coins of In, if any. We say that I has success bound ν if

∀n ∈ N ∀(q, g) ∈ GLn : AdvdlI (n, q, g) ≤ ν(n) .

We say that the Discrete Logarithm Assumption (DLA) holds if for every poly-size family of circuits
I there exists a negligible function ν such that I has success bound ν.

The above formulation of the DLA, which, as we have indicated, follows [11], has some non-standard
features that are important for their results. Let us discuss these briefly.

4

First, we note that the definition of the success bound is not with respect to (q, g) being chosen
according to some distribution as is standard, but rather makes the stronger requirement that the
advantage of I is small for all (q, g).

Second, we stress that the assumption only requires poly-size families of deterministic circuits to
have a negligible success bound. However, in their proofs, which aim to contradict the DLA, Hada
and Tanaka [10, 11] build adversaries that are poly-size families of randomized circuits, and then
argue that these can be converted to related poly-size families of deterministic circuits that do not
have a negligible success bound. We will also need to build such randomized adversaries, but, rather
than using ad hoc conversion arguments repeated across proofs, we note the following more general
Proposition, which simply says that DLA, as per Definition 2.1, implies that poly-size families of
randomized circuits also have a negligible success bound. We will appeal to this in several later places
in this paper.

Proposition 2.2 Assume the DLA, and let J = {Jn}n∈N be a poly-size family of randomized circuits.
Then there exists a negligible function ν such that J has success bound ν.

As is typical in such claims, the proof proceeds by showing that for every n there exists a “good”
choice of coins for Jn, and by embedding these coins we get a deterministic circuit. However, which
coins are “good” can depend not only on q, g but also on the random challenge A, and thus it may
not be clear a priori that a single choice depending only on n exists. For completeness we provide a
proof of Proposition 2.2 in Appendix A.

3 KEA2 is false

We begin by recalling the assumption. Our presentation of it is slightly different, but clearly equivalent
to, that of [11]: we have merged the two separate conditions of their formalization into one. Recall
that they refer to this assumption as “non-uniform-DA2”, and it was referred to, under a different and
incorrect formalization, as SDHA2 in [10].

Definition 3.1 Let A = {An}n∈N and Ā = {Ān}n∈N be families of circuits, and ν: N → [0, 1] a
function. We associate to any n ∈ N, any (q, g) ∈ GLn, and any A ∈ Gq the following experiment:

Experiment Expkea2
A,Ā

(n, q, g, A)

b
$
← Zq ; B ← gb ; X ← Ab

(C, Y)← An(q, g, A,B,X) ; c← Ān(q, g, A,B,X)

If (Y = Cb AND gc 6= C AND Ac 6= C) then return 1 else return 0

We let

Advkea2
A,Ā

(n, q, g, A) = Pr
[
Expkea2

A,Ā
(n, q, g, A) = 1

]

denote the advantage of A relative to Ā on inputs n, q, g, A. We say that Ā is a kea2-extractor for A

with error bound ν if

∀n ∈ N ∀(q, g) ∈ GLn ∀A ∈ Gq : Advkea2
A,Ā

(n, q, g, A) ≤ ν(n) .

We say that KEA2 holds if for every poly-size family of circuits A there exists a poly-size family of
circuits Ā and a negligible function ν such that Ā is a kea2-extractor for A with error bound ν.

We stress again that in this formulation, following [11], both the adversary and the extractor are
families of deterministic circuits. One can consider various variants of the assumption, including an
extension to families of randomized ciruits, and we discuss these variants following the theorem below.

5

An(q, g, A,B,X)

C ← gA

Y ← BX

Return (C, Y)

Jn(q, g, A)

b
$
← Zq ; B ← gb ; X ← Ab

c← Ān(q, g, A,B,X)

C ← gA

If gc = C then ā← (c− 1) mod q EndIf

If (Ac = C AND c 6= 1) then ā← (c− 1)−1 mod q EndIf

Return ā

Figure 1: Adversary A = {An}n∈N for the KEA2 problem and adversary J = {Jn}n∈N for the DLP,
for the proof of Theorem 3.2.

Theorem 3.2 If the DLA holds then KEA2 is false.

The basic idea behind the failure of the assumption, as sketched in Section 1, is simple. Consider
an adversary given input q, g, A,B,X, where A = ga, B = gb and X = gab. The assumption says
that there are only two ways for the adversary to output a pair C, Y satisfying Y = C b. One way
is to pick some c, let C = gc and let Y = Bc. The other way is to pick some c, let C = Ac and
let Y = Xc. The assumption thus states that the adversary “knows” c such that either C = gc

(i.e., c = DLogq,g(C)) or C = Ac (i.e., c = DLogq,A(C)). This ignores the possibility of performing
a linear combination of the two steps above. In other words, an adversary might pick c1, c2, let C =
gc1Ac2 and Y = Bc1Xc2 . In this case, Y = Cb but the adversary does not appear to necessarily know
DLogq,g(C) = c1+c2DLogq,g(A), and neither does it necessarily know DLogq,A(C) = c1DLogq,A(g)+c2.

However, going from this intuition to an actual proof that the assumption is false takes some
work, for several reasons. The above may be intuition that there exists an adversary for which there
would not exist an extractor, but we need to prove that there is no extractor. This cannot be done
unconditionally, since certainly if the discrete logarithm problem (DLP) is easy, then in fact there is an
extractor: it simply computes DLogq,g(C) and returns it. Accordingly, our strategy will be to present
an adversary A for which we can prove that if there exists an extractor Ā then there is a method to
efficiently compute the discrete logarithm of A.

An issue in implementing this is that the natural adversary A arising from the above intuition
is randomized, picking c1, c2 at random and forming C, Y as indicated, but our adversaries must be
deterministic. We resolve this by designing an adversary that makes certain specific choices of c1, c2.
We now proceed to the formal proof.

Proof of Theorem 3.2. Assume to the contrary that KEA2 is true. We show that the DLP is easy.
The outline of the proof is as follows. We first construct an adversaryA for the KEA2 problem. By

assumption, there exists for it an extractor Ā with negligible error bound. Using Ā, we then present
a poly-size family of randomized circuits J = {Jn}n∈N and show that it does not have a negligible
success bound. By Proposition 2.2, this contradicts the DLA.

The poly-size family of circuits A = {An}n∈N is presented in Figure 1. Now, under KEA2, there
exists a poly-size family of circuits Ā = {Ān}n∈N and a negligible function ν such that Ā is an
extractor for A with error bound ν. Using Ā, we define the poly-size family of circuits J = {Jn}n∈N
shown in Figure 1.

Claim 3.3 For all n ∈ N, all (q, g) ∈ GLn and all A ∈ Gq

Pr
[
ā

$
← Jn(q, g, A) : gā 6= A

]
≤ ν(n) .

6

Note the claim shows much more than we need. Namely, J does not merely have a success bound that
is not negligible. In fact, it succeeds with probability almost one.

Proof of Claim 3.3: We let Pr[·] denote the probability in the experiment of executing Jn(q, g, A).
We first write some inequalities leading to the claim and then justify them:

Pr
[
gā 6= A

]
≤ Pr [gc 6= C ∧Ac 6= C] (1)

≤ Advkea2
A,Ā

(n, q, g, A) (2)

≤ ν(n) . (3)

We justify Equation (1) by showing that if gc = C or Ac = C then gā = A. First assume gc = C.
Since C = gA, we have gc = gA, whence A = gc−1. Since we have set ā = (c − 1) mod q, we have
A = gā. Next assume Ac = C. Since C = gA, we have Ac = gA, whence Ac−1 = g. Now observe that
c 6= 1, because otherwise Ac = A 6= gA. Since c 6= 1 and q is prime, c − 1 has an inverse modulo q
which we have denoted by ā. Raising both sides of the equation “Ac−1 = g” to the power ā we get
A = gā.

Expkea2
A,Ā

(n, q, g, A) returns 1 exactly when Y = Cb and gc 6= C and Ac 6= C. By construction of A, we

have C = gA and Y = BX, and thus Y = Cb, so Expkea2
A,Ā

(n, q, g, A) returns 1 exactly when gc 6= C

and Ac 6= C. This justifies Equation (2).

Equation (3) is justified by the assumption that Ā is an extractor for A with error bound ν.

Claim 3.3 implies that J does not have a negligible success bound, which, by Proposition 2.2, shows
that the DLP is not hard, contradicting the assumption made in this Proposition. This completes the
proof of Theorem 3.2.

Extensions and variants. There are many ways in which the formalization of Definition 3.1 can
be varied to capture the same basic intuition. However, Theorem 3.2 extends to these variants as well.
Let us discuss this briefly.

As mentioned above, we might want to allow the adversary to be randomized. (In that case, it
is important that the extractor get the coins of the adversary as an additional input, since otherwise
the assumption is clearly false.) Theorem 3.2 remains true for the resulting assumption, in particular
because it is stronger than the original assumption. (Note however that the proof of the theorem
would be easier for this stronger assumption.)

Another variant is that adversaries and extractors are uniform, namely standard algorithms, not
circuits. (In this case we should certainly allow both to be randomized, and should again give the
extractor the coins of the adversary.) Again, it is easy to see that Theorem 3.2 extends to show that
the assumption remains false.

4 The KEA3 assumption

The obvious fix to KEA2 is to take into account the possibility of linear combinations by saying this
is the only thing the adversary can do. This leads to the following.

Definition 4.1 Let A = {An}n∈N and Ā = {Ān}n∈N be families of circuits, and ν: N → [0, 1] a
function. We associate to any n ∈ N, any (q, g) ∈ GLn, and any A ∈ Gq the following experiment:

Experiment Expkea3
A,Ā

(n, q, g, A)

b
$
← Zq ; B ← gb ; X ← Ab

7

(C, Y)← An(q, g, A,B,X) ; (c1, c2)← Ān(q, g, A,B,X)

If (Y = Cb AND gc1Ac2 6= C) then return 1 else return 0

We let

Advkea3
A,Ā

(n, q, g, A) = Pr
[
Expkea3

A,Ā
(n, q, g, A) = 1

]

denote the advantage of A relative to Ā on inputs n, q, g, A. We say that Ā is a kea3-extractor for A

with error bound ν if

∀n ∈ N ∀(q, g) ∈ GLn ∀A ∈ Gq : Advkea3
A,Ā

(n, q, g, A) ≤ ν(n) .

We say that KEA3 holds if for every poly-size family of circuits A there exists a poly-size family of
circuits Ā and a negligible function ν such that Ā is a kea3-extractor for A with error bound ν.

We have formulated this assumption in the style of the formalization of KEA2 of [11] given in
Definition 3.1. Naturally, variants such as discussed above are possible. Namely, we could strengthen
the assumption to allow the adversary to be a family of randomized circuits, of course then giving the
extractor the adversary’s coins as an additional input. We do not do this because we do not need it
for what follows. We could also formulate a uniform-complexity version of the assumption. We do
not do this because it does not suffice to prove the results that follow. However, these extensions or
variations might be useful in other contexts.

5 Three-round zero-knowledge

The falsity of KEA2 renders vacuous the result of [10, 11] saying that there exists a negligible-error,
3-round ZK arguments for NP. In this section we look at recovering this result.

We first consider the protocol of [10, 11], here called HTP. What has been lost is the proof of
soundness (i.e. of negligible error). The simplest thing one could hope for is to re-prove soundness of
HTP under KEA3 without modifying the protocol. However, we identify a bug in HTP that renders
it unsound. This bug has nothing to do with the assumptions on which the proof of soundness was or
can be based.

The bug is however small and easily fixed. We consider a modified protocol called pHTP, for
patched-HTP. We are able to show it is sound (i.e. has negligible error) under KEA3. Since we have
modified the protocol we need to re-establish ZK under KEA1 as well, but this is easily done.

Arguments. We begin by recalling some definitions. An argument for an NP language L [5] is a
two-party protocol in which a polynomial-time prover tries to “convince” a polynomial-time verifier
that their common input x belongs to L. (A party is said to be polynomial time if its running time is
polynomial in the length of the common input.) In addition to x, the prover has an auxiliary input
a. The protocol is a message exchange at the end of which the verifier outputs a bit indicating its
decision to accept or reject. The probability (over the coin tosses of both parties) that the verifier
accepts is denoted Acc

P,a
V (x). The formal definition follows.

Definition 5.1 A two-party protocol (P, V), where P and V are both polynomial time, is an argument

for L with error probability δ : N→ [0, 1], if the following conditions are satisfied:

Completeness: For all x ∈ L there exists w ∈ {0, 1}∗ such that Acc
P,w
V (x) = 1.

Soundness: For all probabilistic polynomial-time algorithms P̂ , all sufficiently long x /∈ L, and all

a ∈ {0, 1}∗, Acc
P̂ ,a
V (x) ≤ δ(|x|).

We say (P, V) is a negligible-error argument for L if there exists a negligible function δ : N → [0, 1]
such that (P, V) is an argument for L with error probability δ.

8

Prover P̄ Verifier V̄

Initial State St = (x,w,R)

((Cmt, q, g),St)← P̄ (ε;St) d← 1
(Cmt, q, g)-

n← |x|
If (q, g) /∈ GLn then d← 0 EndIf

r
$
← Z∗

q ; Ch← gr

Ch¾
(Rsp,St)← P̄ (Ch;St)

Rsp -
If DECx((Cmt, q, g),Ch,Rsp) = 0 then

d← 0 EndIf

Figure 2: A 3-round argument. The common input is x. Prover P̄ has auxiliary input w and
random tape R, and maintains state St . Verifier V̄ returns boolean decision d.

Canonical protocols. The 3-round protocol proposed by [10, 11], which we call HTP, is based on
a 3-round argument (P̄ , V̄) for an NP-complete language L with the following properties:

(1) The protocol is of the form depicted in Figure 2. The prover is identified with a function P̄
that given an incoming message Min (this is ε when the prover is initiating the protocol) and its
current state St , returns an outgoing message Mout and an updated state. The initial state of
the prover is (x,w,R), where x is the common input, w is an auxiliary input and R is a random
tape. The prover’s first message is called its commitment. This is a tuple consisting of a string
Cmt, a prime number q and an element g, where (q, g) ∈ GL|x|. The verifier selects a challenge

Ch uniformly at random from Gq, and, upon receiving a response Rsp from the prover, applies
a deterministic decision predicate DECx((Cmt, q, g),Ch,Rsp) to compute a boolean decision.

(2) For any x /∈ L and any commitment (Cmt, q, g), where (q, g) ∈ GL|x|, there is at most one
challenge Ch ∈ Gq for which there exists a response Rsp ∈ {0, 1}∗ such that DECx((Cmt, q, g),
Ch,Rsp) = 1. This property is called strong soundness.

(3) The protocol is honest-verifier zero knowledge (HVZK), meaning there exists a probabilistic
polynomial-time simulator S such that the following two ensembles are computationally indis-
tinguishable:

{S(x)}x∈L and {View
P̄ ,W (x)

V̄
(x)}x∈L ,

where W is any function that given an input in L returns a witness to its membership in L,

and View
P̄ ,w

V̄
(x), is a random variable taking value V̄ ’s internal coin tosses and the sequence of

messages it receives during an interaction between prover P̄ (with auxiliary input w) and verifier
V̄ on common input x.

If (P̄ , V̄) is a 3-round argument for an NP-complete language, meeting the three conditions above,
then we refer to (P̄ , V̄) as a canonical argument. In what follows, we assume that we have such
canonical arguments. They can be constructed in various ways. For example, a canonical argument

9

Prover P Verifiers V, V ′

Initial State St = (x,w,R)

((Cmt, q, g),St)← P̄ (ε;St)

a
$
← Zq ; A← ga d← 1

(Cmt, q, g, A)-
n← |x|
If (q, g) /∈ GLn then d← 0 EndIf

b
$
← Z∗

q ; B ← gb ; X ← Ab

(B,X)¾
If X 6= Ba then abort

else c
$
← Z∗

q ; C ← gc ; Ch← Bc

(Rsp,St)← P̄ (Ch;St) EndIf
(Rsp, C,Ch)-

If Ch 6= Cb ∨ Ch = 1 ∨
DECx((Cmt, q, g),Ch,Rsp) = 0 then
d← 0 EndIf

Figure 3: HTP and pHTP. Verifier V of protocol HTP = (P, V) does not include the highlighted
portion. Verifier V ′ of protocol pHTP = (P, V ′) does.

can be constructed by modifying the parallel composition of Blum’s zero-knowledge protocol for the
Hamiltonian circuit problem [4], as described in [10, 11].

The Hada-Tanaka protocol. Let (P̄ , V̄) be a canonical argument for an NP-complete language L,
and let DEC be the verifier’s decision predicate. The Hada-Tanaka protocol HTP = (P, V) is described
in Figure 3. Note V ’s decision predicate does not include the highlighted portion of its code.

We now observe that the HTP protocol is unsound. More precisely, there exist canonical arguments
such that the HTP protocol based on them does not have negligible error. This is true for any
canonical argument (P̄ , V̄) satisfying the extra condition that for infinitely many x 6∈ L there exists a
commitment (Cmtx, qx, gx) for which there is a response Rspx to challenge 1 that will make the verifier
accept. There are many such canonical arguments. For instance, a canonical argument satisfying
this condition results from using an appropriate encoding of group elements in Hada and Tanaka’s
modification of the parallel composition of Blum’s zero-knowledge protocol for the Hamiltonian circuit
problem.

Proposition 5.2 Let HTP be the Hada-Tanaka protocol based on a canonical argument satisfying
the condition stated above. Then there exists a polynomial-time prover for HTP that can make the
verifier accept with probability one for infinitely many common inputs not in L.

Proof of Proposition 5.2: Let (P̄ , V̄) be the canonical protocol and let V be the verifier of the corre-
sponding protocol HTP. Consider a cheating prover P̂ that on initial state (x, ((Cmtx, qx, gx),Rspx), ε)
selects an exponent a ∈ Zqx uniformly at random, and sends (Cmtx, qx, gx, g

a
x) as its commitment to

verifier V . Upon receiving a challenge (B,X), it checks if X = Ba. If not, it aborts. Otherwise, it
sends (Rspx, 1, 1) as its response to V . By the assumption about protocol (P̄ , V̄), for infinitely many

10

x 6∈ L there exists an auxiliary input y = ((Cmtx, qx, gx),Rspx) ∈ {0, 1}
∗ such that Acc

P̂ ,y
V (x) = 1.

Patched HTP. The above attack can be avoided by modifying the verifier to include the highlighted
portion of the code in Figure 3. We call the resulting verifier V ′. The following guarantees that the
protocol pHTP = (P, V ′) is sound under KEA3, if the DLP is hard.

Theorem 5.3 If KEA3 holds, the DLA holds, and (P̄ , V̄) is a canonical 3-round argument for an
NP-complete language L, then pHTP = (P, V ′) as defined in Figure 3 is a negligible-error argument
for L.

Proof of Theorem 5.3. Completeness follows directly from the completeness of protocol (P̄ , V̄).
To prove soundness, we proceed by contradiction. Assume that pHTP is not sound, i.e., there is

no negligible function δ such that the soundness condition in Definition 5.1 holds with respect to δ.
We show that the DLP is easy under KEA3.

By the assumption that pHTP is not sound and a result of Bellare [2], there exists a probabilistic
polynomial-time algorithm P̂ such that the function

Err
P̂
(n) = max{Acc

P̂ ,a
V ′ (x) : x ∈ {0, 1}

n ∧ x 6∈ L ∧ a ∈ {0, 1}∗ }3

is not negligible. Hence there exists a probabilistic polynomial-time algorithm P̂ , a polynomial p, and
an infinite set S = { (x, a) : x ∈ {0, 1}∗ \ L ∧ a ∈ {0, 1}∗ } such that for every (x, a) ∈ S

Acc
P̂ ,a
V ′ (x) > 1/p(|x|) , (4)

and { x ∈ {0, 1}∗ : ∃a ∈ {0, 1}∗ such that (x, a) ∈ S } is infinite.
Since P̂ takes an auxiliary input a, we may assume, without loss of generality, that P̂ is deter-

ministic. We also assume that, if (Cmt, q′, g′, A′) is P̂ ’s commitment on input ε when the initial state
is (x, a, ε), for some x, a ∈ {0, 1}∗ with |x| = n, then (q′, g′) ∈ GLn. (There exists a prover P̂ ′ for

which Acc
P̂ ′,a
V ′ (x) = Acc

P̂ ,a
V ′ (x) for every x, a ∈ {0, 1}∗ and this assumption holds.) We will use P̂

to construct an adversary A for the KEA3 problem. By assumption, there exists for it an extractor
Ā with negligible error bound. Using Ā and P̂ , we then present a poly-size family of randomized
circuits J = {Jn}n∈N and show that it does not have a negligible success bound. By Proposition 2.2,
this shows that the DLP is not hard.

Let K = { n ∈ N : ∃ (x, a) ∈ S such that |x| = n }. We observe that K is an infinite set. For
each n ∈ K, fix (x, a) ∈ S such that |x| = n. The poly-size family of circuits A = {An}n∈N is
presented in Figure 4. Now, under KEA3, there exists a poly-size family of circuits Ā = {Ān}n∈N
and a negligible function ν such that Ā is an extractor for A with error bound ν. For each n ∈ K,
let a′ = DLogq′,g′(A

′), where (Cmt, q′, g′, A′) is P̂ ’s commitment on input ε when the initial state is
(x, a, ε). Using Ā, we define the poly-size family of circuits J = {Jn}n∈N shown in Figure 4.

Claim 5.4 For infinitely many n ∈ N there exists (q, g) ∈ GLn such that for every A ∈ Gq

Pr
[
ā

$
← Jn(q, g, A) : gā = A

]
>

1

p(n)2
−

8

2np(n)
− 2ν(n) .

Proof: We let Pr[·] denote the probability in the experiment of executing Jn(q, g, A). We show that

3We note that this set is finite since P̂ is a polynomial-time algorithm and Acc
P̂ ,a

V ′ (x) depends only on the first tP̂ (|x|)

bits of a, where tP̂ (·) is the running time of P̂ .

11

An(q, g, A,B,X) // n ∈ K

St ← (x, a, ε) ; ((Cmt, q′, g′, A′),St)← P̂ (ε;St)

If q′ 6= q ∨ g′ 6= g ∨A′ 6= A then return (1, 1)

else ((Rsp, C,Ch),St)← P̂ ((B,X);St) ; return (C,Ch) EndIf

An(q, g, A,B,X) // n 6∈ K

Return (1, 1)

Jn(q, g, A) // n ∈ K

St ← (x, a, ε) ; ((Cmt, q′, g′, A′),St)← P̂ (ε;St)

If q′ 6= q ∨ g′ 6= g then return ⊥ EndIf

b
$
← Zq ; B ← A · gb ; X ← Ba′

((Rsp, C,Ch),St1)← P̂ ((B,X);St) ; (c1, c2)← Ān(q, g, A
′, B,X)

If DECx((Cmt, q, g),Ch,Rsp) = 0 ∨Ch 6= Bc1Xc2 then return ⊥ EndIf

b′
$
← Zq ; B

′ ← gb′ ; X ′ ← B′a′

If B = B′ then ā← b′ − b mod q ; return ā EndIf

((Rsp′, C ′,Ch′),St ′1)← P̂ ((B′, X ′);St) ; (c′1, c
′
2)← Ān(q, g, A

′, B′, X ′)

If DECx((Cmt, q, g),Ch′,Rsp′) = 0 ∨Ch′ 6= B′c′1X ′c′2 then return ⊥ EndIf

If c1 + a′c2 6≡ 0 (mod q) then

ā← (b′c′1 + b′a′c′2 − bc1 − ba′c2) · (c1 + a′c2)
−1 mod q ; return ā

else return ⊥ EndIf

Jn(q, g, A) // n 6∈ K

Return ⊥

Figure 4: Adversary A = {An}n∈N for the KEA3 problem and adversary J = {Jn}n∈N for the DLP,
for the proof of Theorem 5.3.

for every n ∈ K such that n ≥ 4, if (Cmt, q, g, A′) is P̂ ’s commitment on input ε when the initial state
is (x, a, ε), then for every A ∈ Gq

Pr
[
gā = A

]
>

1

p(n)2
−

8

2np(n)
− 2ν(n) .

Since K is infinite and, by our assumption about the output of P̂ , q, g are such that (q, g) ∈ GLn, this
proves the claim.

Fix n ∈ K such that n ≥ 4. Let (Cmt, q, g, A′) be P̂ ’s commitment on input ε when the initial state is
(x, a, ε), and let A ∈ Gq. We first write some inequalities leading to the claim and then justify them:

Pr
[
gā = A

]

≥ Pr [DECx((Cmt, q, g),Ch,Rsp) = 1 ∧Ch = Bc1Xc2 ∧B 6= B′ ∧

DECx((Cmt, q, g),Ch′,Rsp′) = 1 ∧Ch′ = B′c′1X ′c′2 ∧ c1 + a′c2 6≡ 0 (mod q)] (5)

≥ Pr [DECx((Cmt, q, g),Ch,Rsp) = 1 ∧Ch = Bc1Xc2 ∧Ch 6= 1 ∧B 6= B′ ∧

DECx((Cmt, q, g),Ch′,Rsp′) = 1 ∧Ch′ = B′c′1X ′c′2 ∧Ch′ 6= 1] (6)

12

≥ Pr [DECx((Cmt, q, g),Ch,Rsp) = 1 ∧Ch = CDLogq,g(B) ∧Ch 6= 1 ∧B 6= B′ ∧

DECx((Cmt, q, g),Ch′,Rsp′) = 1 ∧Ch′ = C ′DLogq,g(B
′) ∧Ch′ 6= 1]−

(
Pr [Ch 6= Bc1Xc2 ∧Ch = CDLogq,g(B)]+ Pr [Ch′ 6= B′c′1X ′c′2 ∧Ch′ = C ′DLogq,g(B

′)]
)
(7)

≥
(
Acc

P̂ ,a
V ′ (x)

)2
−

1

q − 1
Acc

P̂ ,a
V ′ (x)− 2Advkea3

A,Ā
(n, q, g, A′) (8)

>
1

p(n)2
−

1

(q − 1)p(n)
− 2ν(n) (9)

≥
1

p(n)2
−

8

2np(n)
− 2ν(n) . (10)

We justify Equation (5) by showing that if DECx((Cmt, q, g),Ch,Rsp) = 1, Ch = Bc1Xc2 , B 6= B′,
DECx((Cmt, q, g),Ch′,Rsp′) = 1, Ch′ = B′c′1X ′c′2 and c1 + a′c2 6≡ 0 (mod q) then gā = A. Assume
that the former statement holds. By the strong soundness property of protocol (P̄ , V̄), Ch = Ch′,
whence Bc1Xc2 = B′c′1X ′c′2 . Thus we have

gā = g(b
′c′1+b′a′c′2−bc1−ba′c2)·(c1+a′c2)−1 mod q =

(
gb′c′1+b′a′c′2

)(c1+a′c2)−1

g−b

=
(
B′c′1X ′c′2

)(c1+a′c2)−1

g−b = (Bc1Xc2)(c1+a′c2)−1

g−b

=
(
Bc1Ba′c2

)(c1+a′c2)−1

g−b =
(
Bc1+a′c2

)(c1+a′c2)−1

g−b

= Bg−b = A,

as desired.

To justify Equation (6) we observe that if Ch = Bc1Xc2 and Ch 6= 1 then c1+ a′c2 6≡ 0 (mod q), and
that adding the condition Ch′ 6= 1 can only decrease the probability further.

Equation (7) is justified as follows.

Pr [DECx((Cmt, q, g),Ch,Rsp) = 0 ∨Ch 6= Bc1Xc2 ∨Ch = 1 ∨B = B′ ∨

DECx((Cmt, q, g),Ch′,Rsp′) = 0 ∨Ch′ 6= B′c′1X ′c′2 ∨Ch′ = 1]

≤ Pr [DECx((Cmt, q, g),Ch,Rsp) = 0 ∨Ch 6= CDLogq,g(B) ∨Ch = 1 ∨B = B′ ∨

DECx((Cmt, q, g),Ch′,Rsp′) = 0 ∨Ch′ 6= C ′DLogq,g(B
′) ∨Ch′ = 1 ∨

(
Ch 6= Bc1Xc2 ∧Ch = CDLogq,g(B)

)
∨
(
Ch′ 6= B′c′1X ′c′2 ∧Ch′ = C ′DLogq,g(B

′)
)
]

≤ Pr [DECx((Cmt, q, g),Ch,Rsp) = 0 ∨Ch 6= CDLogq,g(B) ∨Ch = 1 ∨B = B′ ∨

DECx((Cmt, q, g),Ch′,Rsp′) = 0 ∨Ch′ 6= C ′DLogq,g(B
′) ∨Ch′ = 1]+

Pr [Ch 6= Bc1Xc2 ∧Ch = CDLogq,g(B)]+ Pr [Ch′ 6= B′c′1X ′c′2 ∧Ch′ = C ′DLogq,g(B
′)] .

Expkea3
A,Ā

(n, q, g, A′) returns 1 exactly when Y = CDLogq,g(B) and gc1A′c2 6= C. By construction of

A, we have Y = Ch, and thus Ch = CDLogq,g(B) ∧ Ch 6= Bc1Xc2 implies that Expkea3
A,Ā

(n, q, g, A′)

returns 1. Similarly, Ch′ = CDLogq,g(B
′) ∧ Ch 6= B′c′1X ′c′2 implies that Expkea3

A,Ā
(n, q, g, A′) returns 1.

13

To justify Equation (8) it remains to show that

Pr [DECx((Cmt, q, g),Ch,Rsp) = 1 ∧Ch = CDLogq,g(B) ∧Ch 6= 1 ∧B 6= B′ ∧

DECx((Cmt, q, g),Ch′,Rsp′) = 1 ∧Ch′ = C ′DLogq,g(B
′) ∧Ch′ 6= 1]

≥
(
Acc

P̂ ,a
V ′ (x)

)2
−

1

q − 1
Acc

P̂ ,a
V ′ (x) . (11)

Let RES denote the event in the experiment of executing Jn(q, g, A) whose probability is bounded from
below in Equation (11). Note that the corresponding sample space is Z∗

q × Z∗
q . Let ACC denote the

event that in an interaction between P̂ (with initial state (x, a, ε)) and V ′ (with input x), the latter

accepts (i.e., Pr [ACC] = Acc
P̂ ,a
V ′ (x)). The sample space of the corresponding experiment is Z∗

q . We
observe that if b ∈ ACC, b′ ∈ ACC and b 6= b′ then (b, b′) ∈ RES. Therefore,

|RES| ≥ |ACC|(|ACC| − 1) and

Pr [RES] =
|RES|

|Z∗
q × Z∗

q |
≥
|ACC|

|Z∗
q |

(
|ACC|

|Z∗
q |
−

1

|Z∗
q |

)
=
(
Acc

P̂ ,a
V ′ (x)

)2
−

1

q − 1
Acc

P̂ ,a
V ′ (x) .

Equation (9) is justified by Equation (4) and the assumption that Ā is an extractor for A with error
bound ν.

The assumption that (q, g) ∈ GLn implies that |2q + 1| = n, i.e., 2n−1 ≤ 2q + 1 < 2n, and hence
q − 1 ≥ 2n−3 (recall that n ≥ 4). This justifies Equation (10).

Claim 5.4 implies that J does not have a negligible success bound, which, by Proposition 2.2, shows
that the DLP is not hard, contradicting the assumption made in this Theorem.

Zero knowledge of pHTP. Having modified HTP, we need to revisit the zero-knowledge. Hada
and Tanaka proved that if the canonical argument is HVZK (property (3) above) then HTP is zero-
knowledge under KEA1. However, we observe that pHTP modifies only the verifier, not the prover.
Furthermore, only the decision predicate of the verifier is modified, not the messages it sends. This
means that the view (i.e., the internal coin tosses and the sequence of messages received during an
interaction with a prover P) of verifier V ′ of pHTP is identical to that of verifier V of HTP. Thus,
zero-knowledge of pHTP follows from zero-knowledge of HTP, and in particular is true under the same
assumptions, namely KEA1.

References

[1] B. Barak. How to go beyond the black-box simulation barrier. Proceedings of the 42nd Symposium on

Foundations of Computer Science, IEEE, 2001.

[2] M. Bellare. A note on negligible functions. Journal of Cryptology, Vol. 15, No. ???, pp. 271–284, June
2002.

[3] M. Bellare and S. Micali. Non-interactive oblivious transfer and applications. Advances in Cryptology

– CRYPTO ’89, Lecture Notes in Computer Science Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

[4] M. Blum. How to prove a theorem so no one else can claim it. Proceedings of the International Congress

of Mathematicians, pp. 1444–1451, 1986.

[5] G. Brassard, D. Chaum and C. Crépeau. Minimum disclosure proofs of knowledge. J. Computer

and System Sciences, Vol. 37, No. 2, pp. 156–189, October 1988.

14

[6] I. Damg̊ard. Towards practical public-key cryptosystems provably-secure against chosen-ciphertext at-
tacks.Advances in Cryptology – CRYPTO ’91, Lecture Notes in Computer Science Vol. 576, J. Feigenbaum
ed., Springer-Verlag, 1991.

[7] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature prob-
lems. Advances in Cryptology – CRYPTO ’86, Lecture Notes in Computer Science Vol. 263, A. Odlyzko
ed., Springer-Verlag, 1986.

[8] O. Goldreich and H. Krawczyk. On the Composition of Zero Knowledge Proof Systems. SIAM J. on

Computing, Vol. 25, No. 1, pp. 169–192, 1996.

[9] S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of interactive proof systems.
SIAM Journal of Computing, Vol. 18, No. 1, pp. 186–208, February 1989.

[10] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. Advances in Cryptology

– CRYPTO ’98, Lecture Notes in Computer Science Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.
[Preliminary version of [11].]

[11] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. Cryptology ePrint
Archive: Report 1999/009, March 1999. http://eprint.iacr.org/1999/009/. [Final version of [10].]

[12] M. Lepinski. On the existence of 3-round zero-knowledge proofs. SM Thesis, MIT, June 2002. http:
//theory.lcs.mit.edu/~cis/theses/lepinski-masters.ps.

[13] M. Lepinski and S. Micali. On the existence of 3-round zero-knowledge proof systems. MIT LCS Tech-
nical Memo. 616, April 2001. http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TM-616.
pdf.

[14] M. Naor. On cryptographic assumptions and challenges. Invited paper and talk, Advances in Cryptology

– CRYPTO ’03, Lecture Notes in Computer Science Vol. 2729 , D. Boneh ed., Springer-Verlag, 2003.

[15] K. Sakurai and T. Itoh. On the discrepancy between serial and parallel of zero-knowledge protocols.
Advances in Cryptology – CRYPTO ’92, Lecture Notes in Computer Science Vol. 740, E. Brickell ed.,
Springer-Verlag, 1992.

A Proof of Proposition 2.2

Let K = { n ∈ N : GLn 6= ∅ }. For each n ∈ K we let (qn, gn) ∈ GLn be such that

∀(q, g) ∈ GLn : AdvdlJ (n, q, g) ≤ Advdl
J (n, qn, gn) . (12)

For n ∈ K, let R(n) denote the set from which Jn draws its coins on inputs n, qn, gn. We say that
r ∈ R(n) is n-good if

Pr
[
A

$
← Gqn ; ā← Jn(qn, gn, A; r) : gā = A

]
≥ AdvdlJ (n, qn, gn) .

Claim A.1 For each n ∈ K there exists a r ∈ R(n) such that r is n-good.

Proof: Define X: Gqn × Zqn → {0, 1} as follows:

X(A, r)
ā← Jn(qn, gn, A; r)
If gā = A then return 1 else return 0

Then we have:

∑

r∈R(n)

1

|R(n)|
· Pr

[
A

$
← Gqn ; ā← Jn(qn, gn, A; r) : gā = A

]

15

=
∑

r∈R(n)

1

|R(n)|

∑

A∈Gqn

1

qn
·X(A, r)

=
∑

A∈Gqn

1

qn

∑

r∈R(n)

1

|R(n)|
·X(A, r)

= AdvdlJn
(n, qn, gn) .

This means that there must exist a r ∈ R(n) such that

Pr
[
A

$
← Gqn ; ā← Jn(qn, gn, A; r) : gā = A

]
≥ AdvdlJn

(n, qn, gn) ,

which proves the claim.

We now define a poly-size family I = {In}n∈N of (deterministic) circuits, as follows. Let n ∈ N. If
n 6∈ K then we define In arbitrarily. If n ∈ K then Claim A.1 tells us that there exists a string, which
we denote by rn, that is n-good. We then define In as follows:

In(q, g, A)
If q 6= qn or g 6= gn then abort
ā← Jn(qn, gn, A; rn)
Return ā

Since I is a poly-size family of deterministic circuits, the assumption that the DLP is hard says that
there is a negligible function ν such that I has success bound ν. Now putting this together with
Equation (12) and Claim A.1 we have

∀n ∈ K ∀(q, g) ∈ GLn : AdvdlJ (n, q, g) ≤ Advdl
J (n, qn, gn) ≤ AdvdlI (n, qn, gn) ≤ ν(n) .

This means that J also has success bound ν, which proves the Proposition.

16

