Cryptanalysis of a Provably Secure Cryptographic Hash Function published on eprint

Jean-Sébastien Coron ${ }^{1}$ and Antoine Joux ${ }^{2}$
${ }^{1}$ Gemplus Card International
34 rue Guynemer, 92447 Issy-les-Moulineaux, France
jean-sebastien.coron@gemplus.com
${ }^{2}$ DCSSI Crypto Lab
51, Bd de Latour-Maubourg, 75700 Paris, France
antoine.joux@m4x.org

Abstract

We present a cryptanalysis of a provably secure cryptographic hash function proposed by Augot, Finiasz and Sendrier in [1]. Our attack is a variant of Wagner's generalized birthday attack. It is significantly faster than the attack considered in [1], and it is practical for two of the three proposed parameters.

1 Introduction

We describe a cryptanalysis of a provably secure cryptographic hash function proposed by Augot, Finiasz and Sendrier in [1]. The hash function is based on xoring the columns of a random binary matrix H, and is defined as follows:

Initialization: Let $s=\omega \cdot a$ be the length of the input message, split into ω blocks of a bits. Let r be the output size in bits. Let $u=2^{a}$. Generate a random matrix H of r lines and n columns where $n=\omega \cdot u$. The matrix H is split into ω sub-matrix H_{i} of size $r \times u$.
Input: a message m of s bits.

1. Split the s input bits in ω parts $s_{1}, \ldots, s_{\omega}$ of a bits.
2. Convert each s_{i} into an integer between 1 and $u=2^{a}$.
3. Choose the corresponding column in each sub-matrix H_{i}.
4. Xor the w chosen columns to obtain a r-bit string h.
5. Output the r-bit string h.

It is shown in [1] that the security of the hash function is reduced to the average case hardness of two NP-complete problems, namely the Regular Syndrome Decoding problem and the 2-Regular Null Syndrome Decoding problem.

The authors of [1] also describe an attack, called Information Set Decoding, and propose three set of parameters in order to make this attack unpractical.

The first set of parameters takes $r=160, \omega=64, u=256, n=2^{14}$ and has a conjectured security level of $2^{62.3}$. The second set of parameters takes $r=224, \omega=96$, $u=256, n=3 \cdot 2^{13}$ with a security level $2^{82.3}$ and the third set of parameters takes $r=288, \omega=128, u=64$ and $n=2^{13}$.

However, we describe in this paper a much faster attack, which is practical for the two first set of parameters.

2 Our Attack

2.1 Wagner's generalized birthday attack

Our attack is based on Wagner's generalized birthday attack [2], which is the following. Let L_{1}, \ldots, L_{4} be four lists of n-bit random integers. The task is to find $x_{i} \in L_{i}$ such that $x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}=0$. A solution exists with good probability if each list contains at least $2^{n / 4}$ integer. The obvious approach consists in generating all possible values of $x_{1} \oplus x_{2}$ and $x_{3} \oplus x_{4}$ and then look for a collision; this requires $\mathcal{O}\left(2^{n / 2}\right)$ time.

Wagner's generalized birthday attack solves this problem in time $\mathcal{O}\left(2^{n / 3}\right)$ for lists of size at least $2^{n / 3}$. First one generates a list of roughly $2^{n / 3}$ values $y=x_{1} \oplus x_{2}$ such that the $n / 3$ low-order bits of y are zero. This can be done in time $\mathcal{O}\left(2^{n / 3}\right)$. The same is done for values $z=x_{3} \oplus x_{4}$. One obtains two lists of roughly $2^{n / 3}$ integers with the $n / 3$ low-order bits set to zero. Then one looks for a collision between the two lists, and a solution is found in time $\mathcal{O}\left(2^{n / 3}\right)$.

This technique can be generalized to find a zero sum between 2^{a} lists, and requires $\mathcal{O}\left(2^{a} \cdot 2^{n /(a+1)}\right)$ time with lists of size $\mathcal{O}\left(2^{n /(a+1)}\right)$.

2.2 Our attack

Our attack against the previous hash function is then as follows. Our goal is to produce a collision, that is to produce two messages $m \neq m^{\prime}$ such that $H(m)=H\left(m^{\prime}\right)$. Therefore, for each of the ω matrices H_{i} of u columns, we must select two columns, so that the xor of the 2ω columns gives 0 .

For each sub-matrix H_{i}, we can generate a list L_{i} of roughly $u^{2} / 2$ values x_{i} which are the xor of 2 columns of H_{i}. Then we apply Wagner's algorithm to find a generalized birthday attack among the ω lists:

$$
x_{1} \oplus x_{2} \oplus \ldots \oplus x_{\omega}=0
$$

More precisely, let ℓ such that $2^{\ell}=u^{2} / 2$. There are $2^{2 \ell}$ elements $x_{1} \oplus x_{2}$, where $x_{1} \in L_{1}$ and $x_{2} \in L_{2}$, among which 2^{ℓ} are such that the rightmost ℓ bits are 0 . This gives a list L_{1}^{\prime}, which can be generated in time $\mathcal{O}\left(2^{\ell}\right)$. We can do the same with the lists $\left(L_{3}, L_{4}\right)$ and obtain L_{2}^{\prime}.

Then, by the birthday paradox, we can find an element in $L_{1}^{\prime} \oplus L_{2}^{\prime}$ with the 3ℓ rightmost bits equal to zero, in time $\mathcal{O}\left(2^{\ell}\right)$. Therefore, if $\omega=4$ and the hash size is $r=3 \ell$, we can find a collision in time $\mathcal{O}\left(2^{\ell}\right)$. We can generalize this to higher values of ω by building the corresponding tree and we obtain that we can find a collision in time $\mathcal{O}\left(\omega \cdot 2^{\ell}\right)$ if:

$$
r \leq\left(\log _{2}(\omega)+1\right) \cdot \ell
$$

where $\ell=2 \log _{2}(u)-1$.
Unfortunately, this is not enough for breaking the hash function for the recommended parameters, so we can generalize this by first taking all the $2^{2 \ell}$ elements
$x_{1} \oplus x_{2}$, and working with a tree with the same depth minus one. It is easy to see that one can find a collision in time $\mathcal{O}\left(\omega \cdot 2^{2 \ell}\right)$ if :

$$
r \leq 2\left(\log _{2} \omega\right) \cdot \ell
$$

This breaks the first instance with $r=160, \omega=64, u=256$ and $\ell=15$, in time 2^{36} (instead of 2^{62} for the attack considered in the paper).

For the second instance ($r=224, \omega=96, u=256, \ell=15$), we can first group the lists L_{i} by three, which gives 32 lists of 2^{45} elements, from which we take only 2^{38}. If $\omega=6$, we can zero $2 \cdot 38=76$ bits, if $\omega=12$, we can zero $3 \cdot 38=114$ bits, and with $\omega=96$, we can zero $6 \cdot 38=228$ bits, which breaks the hash function in time $32 \cdot 2^{38}=2^{43}$ (instead of 2^{82} operations for the attack considered in the paper).

For the third instance ($r=288, w=128, u=64, \ell=11$), we can group the lists L_{i} by six, and take 2^{58} elements instead of 2^{66}. With $\omega=12$, we can zero $2 \cdot 58=116$ bits, and with $\omega=96<128$, we can zero $5 \cdot 58=290$ bits, which breaks the hash function in time $16 \cdot 2^{58}=2^{62}$ (but this is probably not optimal).

3 Conclusion

We have described a cryptanalysis of a provably secure cryptographic hash function proposed by Augot, Finiasz and Sendrier in [1]. Our attack is a variant of Wagner's generalized birthday attack, and it is significantly faster than the attack considered in [1]. We have shown that it is practical for two of the three proposed parameters.

References

1. D. Augot, M. Finiasz and N. Sendrier, A Fast Provably Secure Cryptographic Hash Function, Cryptology ePrint Archive, Report 2003/230. Available at http://www.iacr.org/eprint.
2. D. Wagner, A Generalized Birthday Problem, Proceedings of Crypto '02, LNCS vol. 2442, Springer-Verlage, 2002.
