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Abstract. We present a 1-out-of-n group signature scheme that satis-
fies three major properties. (1) Anonymity, or signer-indistinguishability.
(2) Linkability: That two signatures by the same signer can be linked.
(3) Spontaneity: No group manager or TTP, no setup stage such as in
secret sharing. The scheme has many applications where maximum pri-
vacy is protected, copycatting is prevented, and impromptu linkup is
prerogative. For example: whistle blowing, e-voting, anonymous mem-
bership authentication, and digital rights management. We show under
the random oracle model that our scheme satisfies all the three proper-
ties. Additionally, we present an e-voting system based on our scheme.
In the system, there is no involvement of voters in the registration phase
and the voting phase is only one-round. We also present a new proof of
the core lemma in rewind simulation. This is the literature’s third such
proofs, after the forking lemma [30] and the heavy-row lemma [28]. Our
proof is the most accessible of the three, relying on only the moment in-
equality from elementary probability theory. And our proof has the best
simulation efficiency of the three. Threshold extensions of our scheme
are also proposed.

Feb 17, 2004.

1 Introduction

The paper introduces a 1-out-of-n group signature scheme which has some in-
teresting properties and many useful applications. The three major properties
are: (1) Anonymity, or signer-indistinguishability. (2) Linkability: That two sig-
natures by the same signer can be linked. (3) Spontaneity: No group manager
or TTP, no setup stage such as in secret sharing.

A 1-out-of-n group signature scheme allows any member of a group of n
signers to generate a signature such that any public verifier can determine if the
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signature is generated by a group member. By anonymity, the signature hides
the identity of its author in a group so that no one can tell who the actual
signer is among the n group members. By linkability, the scheme allows one to
determine whether two signatures of the group are generated by the same signer.

Early 1-out-of-n anonymous group signature schemes [14, 15, 9, 10] often re-
quire a powerful group manager or a TTP (Trusted Third Party) which has
the power to revoke the identity of the actual signer. In addition, the group is
pre-defined with a group public key and there is a setup stage which requires
collaboration of all the group members. Spontaneity is to remove any external
party and setup stage from a 1-out-of-n group signature scheme. A spontaneously
formed group has no manager, no group public key and no setup stage at all. By
assuming that everyone in a system has an independently-generated public key
associated with and the key is already published, a signer can impromptually
and arbitrarily conscript n−1 diversion members into an ad hoc group with-
out their awareness, and generate a group signature without their participation.
The signature can be verified based on the n published public keys of the group
members, and it essentially establishes that the actual signer is a member of the
group.

The concept of spontaneity is similar to the formation of an ad hoc group. In
this paper, we present a linkable, spontaneous, and anonymous group (LSAG)
signature scheme for ad hoc groups.

The LSAG signature scheme has many applications where maximum or near
maximum privacy is required and impromptu linkup is prerogative. One scenario
is on protecting the anonymity of the so-called ”Deepthroat” who helped divulge
the Watergate scandal that led to the resignation of the US President Richard
Nixon some thirty years ago. Deepthroat wants to leak a sequence of secrets to
the press from time to time without giving out his identity. At the same time, the
press also want to ensure that Deepthroat is really working for the White House
and the sequence of secrets is really given out by the same person. This is the
scenario where both anonymity and linkability are required. Other applications
of LSAG signature schemes include detecting double voting while maintaining
anonymity of the voters in an e-voting system; providing anonymous membership
authentication with restriction on simultaneous log-ins; and implementing digital
rights management without compromising users’ privacy.

1.1 Contributions

In this paper, we present the first 1-out-of-n group signature scheme which simul-
taneously achieves linkability, spontaneity, and anonymity. All these properties
of our scheme are proven secure under the random oracle model. Our scheme
has many applications, especially where maximum or near maximum privacy
protection, copycat prevention, and impromptu linkup are desired or required.
An e-voting system based on our linkable, spontaneous and anonymous group
signature scheme is proposed. In the system, there is no involvement of voters
in the registration phase and the voting phase is only one-round. The Tally is
just a public bulletin so that everyone can do the counting.
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Additionally, we present a new proof of the core lemma in rewind simulation.
This is the literature’s third such proofs, after the forking lemma [30] and the
heavy-row lemma [28]. Our proof is the most accessible of the three, relying on
only the moment inequality from elementary probability theory. And our proof
has the best simulation efficiency of the three.

Besides the linkable, spontaneous and anonymous 1-out-of-n group signa-
ture scheme, we describe how to convert it into a suite of t-out-of-n threshold
extensions.

(Organization) The rest of the paper is organized as follows. Some related
work is reviewed in Sec. 2. It is followed by the description of the security model
of a LSAG signature scheme in Sec. 3. Our LSAG signature scheme is then
described in Sec. 4 and the security analysis is given in Sec. 5. In Sec. 6, we
construct an e-voting system using our group signature schemes. The paper is
concluded in Sec. 7.

2 Related Work

(Ring Signatures) Since the notion of ring signature was first formalized by
Rivest, et al. in [31] and similar idea appeared in the literature earlier in [16],
many other ring signature schemes have been proposed [1, 7, 8, 35, 34, 25]. A ring
signature is an anonymous spontaneous group signature which allows a signer
to impromptually and spontaneously form a group of n members by conscript-
ing n−1 diversion signers and generate a signature such that anyone can tell
if the signature is generated by a group member without identifying who the
actual signer is. All of these schemes are unlinkable. In Sec. 1, we explain that
linkability could be a very useful feature which can help detect double-voting in
an e-voting system, leak a sequence of secrets, prevent copycatting, and imple-
menting efficient anonymous membership management. Also, all the schemes are
exculpable. Exculpability allows the actual signer of a ring signature to claim
that the signature was not signed by him, even after his private key has been
revealed. This feature may become problematic if we consider a usual legal prac-
tice when an investigator backed by law to subpoena a private key and determine
the responsibility of having generated a signature by someone, say a drug dealer.

In our linkable, spontaneous and anonymous group (LSAG) signature scheme,
culpability is an additional feature which provides an option to determine the
authorship of the signature from a private key corresponding to one of the public
keys associated to it. Hence by culpability, it can be shown that an anonymous
group signature is indeed created by a particular signer after his private key is
revealed. We emphasize that it is the signers’ interest to safeguard their private
keys and therefore revealing the identity of the actual signer is at the signers’
own discretion, if it is not coerced.

We stress the distinction between this new feature and the feature of claima-
bility. Claimability allows a signer to come forth on his own volition and claim
responsibility by providing proof of having generated a given signature. This fea-
ture is easy to achieve in any of the current ring signature schemes by embedding
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some secret proof of knowledge [31]. However, culpability is not known to any of
the current ring signature schemes. In general, culpability implies claimability
but not vice versa.
(E-voting Schemes) The first e-voting scheme was proposed by Chaum in [12].
Since then, there were many different e-voting models proposed. In general, an
e-voting system consists of a group of voters, a Registry to specify the group of
eligible voters, a Voting Center for collecting votes and a Tally to count votes.
A voting event can be divided into three phases : Registration Phase, Voting
Phase and Vote-Open Phase. In the Registration phase, the Registry may need
to interact with voters to define the group of eligible voters. In the Voting phase,
eligible voters send their votes to the Voting Center. In the Vote-Open phase,
the Tally counts the votes and publishes the result.

As one of the applications of our LSAG signature scheme, we propose a new
e-voting system which has the following properties. There is no involvement of
voters in the registration phase and the voting phase is only one-round. The Tally
is just a public bulletin so that everyone can do the counting. In Appendix B,
we provide a more detailed description on the common security definitions of an
e-voting scheme and the classification of current e-voting schemes.

3 The Security Model

A (1-out-of-n) linkable spontaneous anonymous group (LSAG) signature scheme
is a triple of algorithms (G, S, V).

– (ŝ, P ) ← G(1k) is a probabilistic algorithm which takes security parameter
k and outputs private key ŝ and public key P .

– σ ← S(1k, ŝ, L,m) is a probabilistic algorithm which takes as inputs security
parameter k, private key ŝ, a set L of n public keys which includes the one
corresponding to ŝ and message m, produces a signature σ.

– 1/0 ← V(1k, L,m, σ) is an algorithm which accepts as inputs security pa-
rameter k, a set L of n public keys, a message m and a signature σ, returns
1 or 0 for accept or reject, respectively. We require that for any message m,
any (ŝ, P ) generated by G(1k) and any L that includes P ,

V(1k, L,m,S(1k, ŝ, L,m)) = 1.

We omit the denotation of the security parameter as an input of the algorithms
in the rest of the paper.

3.1 Two Models of Adaptive Chosen Message Attack for
Unforgeability of LSAG Signature Schemes

A secure LSAG signature scheme should be able to thwart signature forgery
under certain security models. Under the model of adaptive chosen message
attack, existential unforgeability [22] means that given the public keys of all
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group members but not any of the corresponding private keys, an adversary,
who can even adaptively obtain valid signatures for any messages that he wishes,
cannot forge a signature for any message m.

We address one interesting subtlety of this model for LSAG signature schemes.
This subtlety for signature schemes at large has already been in many cryptog-
raphers’ minds for quite a while. However, it has not been clearly explored in
the setting of ring or LSAG signature schemes before.

In the security model of Rivest, et al. [31], the adversary who targets to
forge a signature of message m subjects to the condition that m has never been
presented to a signing oracle3. Hence given a ring or LSAG message-signature
pair (m′, σ′) with respect to a public-key set L, if another pair (m,σ) with respect
to L is forged such that m 6= m′, then this is considered as a successful forgery
in the model. However given a signature σ of m, if the adversary forges another
signature σ′, σ′ 6= σ, of the same message m, then this is not considered as a
successful forgery in the model. In particular, it is not considered as a successful
forgery even if the corresponding public-key sets of σ and σ′ are different. Hence
a ring or LSAG signature scheme has been proven to be existential unforgeable
under this security model may still allow anyone to add or remove public keys
associated to a given signature. This case is not considered in the security model.
Comparing to another model described below, we refer to this model as the model
of restricted adaptive chosen message attack.

Another model first specified by Abe, et al. [1] allows the adversary who
targets to forge a signature of message m to query the signing oracle even with
m. The only restriction is that the forged message-signature pair of the adversary
should not appear in the transcript of the signing oracle. This model is stronger
than the restricted one in the sense that existential unforgeability in this model
does not allow the list of public-keys corresponding to an SAG signature of m
to be altered.

The RST scheme of Rivest, et al. has been shown to be existential unforgeable
in the model of restricted adaptive chosen message attack under the ideal cipher
model [31]. It is also believed to be secure in the stronger model of adaptive
chosen message attack without modifying the scheme. In fact, we find that most
of the existing ring signature schemes are secure in both models. This observation
leads us to find examples of which it can make distinction between these two
models. Luckily, we find that the ring signature scheme of Boneh, et al. [6] based
on bilinear maps is proven secure against restricted adaptive chosen message
attack but not against the stronger attack. In Appendix A, we show that their
scheme is forgeable under the stronger model by describing how to let anyone
add an arbitrary number of public keys to given signatures.

In this paper, we adopt the stronger model of adaptive chosen message attack
for defining the existential unforgeability of a LSAG signature scheme. The fol-
lowing definition is similar to that of [1] which also captures the adaptive chosen
public-key attack.

3 The signing oracle receives a message m′ and a set L′ of public keys and returns a
signature σ′ such that 1← V(L′,m′, σ′).
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Definition 1 (Existential Unforgeability against Adaptive Chosen Mes-
sage Attack). Let L = {P1, · · · , Pn} be a set of n public keys. Each public key
in L is generated by G with security parameter k. Let SO(L′,m′) be a signing
oracle that accepts as inputs any L′ ⊆ L and any message m′, produces a sig-
nature σ′ such that V(L′,m′, σ′) = 1. A LSAG signature scheme is unforgeable
if, for any PPT (probabilistic polynomial-time algorithm) A with signing oracle
SO such that (L,m, σ) ← ASO(1k,L), its output satisfies V(L,m, σ) = 1 only
with negligible probability in k. Restriction is that L ⊆ L and (L,m, σ) should
not be found in the set of all oracle queries and replies between A and SO.

Some additional features can be introduced into this model as well. For ex-
ample, the model can be changed to allow the queries of the signing oracle to
specify which private key corresponding to the set of public keys should be used
in generating the signatures. This model captures the scenario that the adver-
saries are given not only some signatures but also the identities of the actual
signers. We call this model an adaptive chosen insider attack. However this model
cannot be used in defining the signer anonymity below. We give more details in
the following.

3.2 Signer Anonymity

By signer anonymity, we require that given a LSAG signature with respect to a
group of keys, it is infeasible to identify which private key is used to generate
the signature. In this paper, we focus on providing near maximum privacy in
such a way that the chance of guessing correctly which key of a set of n keys
generated by G with security parameter k is used to generate a given signature
is negligibly greater than 1/n provided that the signing key is chosen at random
and the adversary only knows the public keys (but not the private keys). If
t private keys of the set are also known by the adversary, where t < n, but
the signing private key is not one of them, then the success probability of the
adversary should still be negligibly greater than 1/(n− t).

The notion of signer anonymity above is different from those of [31, 1] which
require that revealing private keys does not reduce the level of signer anonymity.
However, we specify the weaker form for supporting the property of culpability.
On the other hand, the original notion of [31, 1] should be used if exculpability
is required.

On the security model, our LSAG signature scheme described later in this
paper can be shown to be signer anonymous under the same chosen message
attack model described in Def. 1. The additional feature in the signer anonymity
model is that the adversary can adaptively choose up to t group members to
corrupt by asking their private keys. We require that the best way of figuring
out the actual signer’s identity of a LSAG signature σ of message m with respect
to a set L of n public keys is to take a wild guess. The condition is that the private
key of the actual signer is still a secret even though a few other private keys (up
to t) of the n keys specified by L may be chosen by the adversary after (L,m, σ)
is given.



Linkable and Anonymous Signature for Ad Hoc Groups 7

Note that the adaptive chosen insider attack model described in Sec. 3.1
cannot be applied to LSAG signer anonymity. This can be seen more clearly
when considering the property of linkability which will be formalized shortly.
Suppose the signing oracle for the adversary of signer anonymity also receives
an index for the actual signer from the query and the oracle has to return a
signature generated by the actual signer. By linkability defined below, the query
will help find out the identity of all linked signatures once the identity of the
actual signer of at least one of these linked signatures is revealed.

3.3 Linkability

Two LSAG signatures are linked with respect to the same set L of public keys
if they are generated using the same private key. Formally,

Definition 2 (Linkability). Let L = {P1, · · · , Pn} be a set of n public keys.
Each public key in L is generated by G with security parameter k. A LSAG
signature scheme is linkable if there exists a PPT F1 which outputs 1/0 with

Pr[F1(1k, L,m1,m2, σ1, σ2) = 0 : π1 = π2] ≤ ε(k)

and
Pr[F1(1k, L,m1,m2, σ1, σ2) = 1 : π1 6= π2] ≤ ε(k)

for all sufficiently large k, any π1, π2 ∈ {1, · · · , n}, any messages m1,m2 and
any σ1 ← S(ŝπ1 , L,m1), σ2 ← S(ŝπ2 , L,m2). ε is some negligible function.

The algorithm F1 outputs 1 if it thinks the two signatures are linked, that
is, are signed by the same group member. Otherwise, it outputs 0.

Linkability defined above requires that the set of public keys L is fixed while
there is no additional requirement on the messages of the signatures. A general
form of linkability is discussed in Sec. 4.4. When describing our basic scheme in
Sec. 4, we follow the definition above for simplicity.

3.4 Culpability

A LSAG signature scheme is culpable if given a message-signature pair and the
private key of a group member, anyone can determine if that group member is
the actual signer. Formal definition is below. But first a technical definition. Let
f0(L, ŝ) = i, 1 ≤ i ≤ n, where L = P1|| · · · ||Pn and (ŝ, Pi) is a key pair. Let
f0(L, ŝ) = 0 if no such key pair exists.

Definition 3 (Culpability). Let L = {P1, · · · , Pn} be a set of n public keys.
Each key is generated by G with security parameter k. A LSAG signature scheme
is culpable if there exists a PPT F2 which outputs 1/0 with

Pr[F2(1k, L,m, σ, ŝ, j) = 0 : j = f0(L, ŝ)] ≤ ε(k)

and
Pr[F2(1k, L,m, σ, ŝ, j) = 1 : j 6= f0(L, ŝ)] ≤ ε(k)
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for all sufficiently large k, any message m, any signature σ = S(ŝ, L,m) where
f0(L, ŝ) = π for some π, 1 ≤ π ≤ n, and any j, 1 ≤ j ≤ n. ε is some negligible
function.

The algorithm F2 outputs 1 if it thinks member j is the signer (culprit).
For any valid culpable LSAG signature, by revealing the actual signer’s private
key, the public can be convinced that the signature is generated by the signer.
On the other side, if the private key of a non-participating user specified in L
is revealed, the public can also be convinced that the signature is not generated
by that user. This requirement of culpability induces the chance of guessing
correctly the identity of the actual signer in the definition of signer anonymity
(Sec. 3.2).

4 A LSAG Signature Scheme

Let G = 〈g〉 be a group of prime order q such that the underlying discrete
logarithm problem is intractable. Let H1 : {0, 1}∗ → Zq and H2 : {0, 1}∗ → G
be some statistically independent cryptographic hash functions. We require that
for any α ∈ {0, 1}∗, the discrete logarithm of H2(α) to the base g in G is
intractable. For i = 1, · · · , n, each user i has a distinct public key yi and a
private key xi such that yi = gxi . Let L = {y1, · · · , yn} be the set of the n public
keys. Sometimes, we may pass in the set L for hashing and we implicitly assume
that certain appropriate encoding method is applied.

For some message m ∈ {0, 1}∗, a user (signer) π uses his private key xπ to
generate a LSAG signature with respect to L as follows.

4.1 Signature Generation

1. Compute h = H2(L) and ỹ = hxπ .
2. Pick u ∈R Zq, and compute

cπ+1 = H1(L, ỹ, m, gu, hu).

3. For i = π+1, · · · , n, 1, · · · , π−1, pick si ∈R Zq and compute

ci+1 = H1(L, ỹ, m, gsiycii , h
si ỹci).

4. Compute sπ = u− xπcπ mod q.

The signature is σL(m) = (c1, s1, · · · , sn, ỹ).

4.2 Signature Verification

A public verifier checks a signature σL(m) = (c1, s1, · · · , sn, ỹ) on a message m
and a set of public keys L as follows.

1. Compute h = H2(L) and for i = 1, · · · , n, compute z′i = gsiycii , z′′i = hsi ỹci

and then ci+1 = H1(L, ỹ,m, z′i, z
′′
i ) if i 6= n.

2. Check whether c1
?= H1(L, ỹ,m, z′n, z

′′
n). If yes, accept. Otherwise, reject.
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4.3 Linkability and Culpability

For a fixed set of public keys L, given two signatures associating with L, namely
σ′L(m′) = (c′1, s

′
1, · · · , s′n, ỹ′) and σ′′L(m′′) = (c′′1 , s

′′
1 , · · · , s′′n, ỹ′′), where m′ and

m′′ are some messages, a public verifier after verifying the signatures to be
valid, checks if ỹ′ = ỹ′′. If the congruence holds, the verifier concludes that the
signatures are created by the same signer. Otherwise, the verifier concludes that
the signatures are generated by two different signers.

For a valid signature σL(m) = (c1, s1, · · · , sn, ỹ) on some message m and
some set of public keys L, an investigator subpoenas a private key xi from user
i. If xi is the private key of some yi ∈ L (that is, yi = gxi) and ỹ = H2(L)xi ,
then the investigator conducts that the authorship of the signature belongs to
user i.

4.4 Generalization

We denote the signature with respect to L by σL. That it, linkability is only
meaningful in the context of having two LSAG signatures associate with the
same set of parameters, which is L in the description above. In general, a LSAG
signature can be specified with respect to any other parameters, not limited
to L. For example, in Sec. 6, we specify the set of parameters to be L and a
unique e-voting event identifier ID. In this case, we compute h = H2(L, ID).
The corresponding signature is denoted by σL,ID. We give more examples in
Sec. F.1 when describing a suite of threshold extensions of our LSAG signature
scheme.

5 Security Analysis

In this section, we analyze the security of our proposed scheme with the assump-
tion that all the hash functions are distinct and behave like random oracles [3].
First, we present a new proof of the core lemma in rewind simulation. This is the
literature’s third such proofs, after the forking lemma [30] and the heavy-row
lemma [28]. Our proof is the most accessible of the three, relying on only the
moment inequality from elementary probability theory. And our proof has the
best simulation efficiency of the three.

5.1 ROS (Rewind-on-Success Lemma)

In a typical rewind simulation [20, 30, 28], a reduction master M invokes an
adversarial algorithm A to obtain a certain output. The simulation proceeding,
including the coin flip sequences, are recorded on a simulation transcript tape T .
M rewinds T to a certain header position H, and redo the simulation from then
onward to obtain another transcript T ′. The two transcripts T and T ′ use the
same code A, have the same coin flips up to H, but have different coin flips after
H. After both simulations are done, M processes T and T ′ to obtain answers.
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Assume the probability of success of A, which equals the probability of suc-
cess of T , is ε. The forking lemma [30], or the heavy-row lemma [28], can be
used to show that the probability of success of T ′, which equals the probability
of success of A with given transcript header H, is at least ε/4. The complexity
of M is essentially twice that of A, and the probability of success of M is at
least ε2/4.

In our proof, we used the technique based on ROS (Rewind-on-Success)
lemma. M invokes A once to obtain transcript T . Then M processes T to
conditionally decide the next step. Then M rewinds T to an adaptively-chosen
header H and re-simulates A to obtain T ′. Finally, M processes T and T ′ to
obtain answers.

In the unforgeability proof below, we only use a very simple adaptive mech-
anism: rewind on success. Suppose there are qH queries of H1 and H2 altogether
in one simulation.M rewinds to the `-th query if produces a valid (`, π)-forgery.
Abort if T is a failure. Assume the probability of success of T is ε, then the prob-
ability of success of T ′, which equals the probability of success of A with a given
header H which was selected because it was the header of a successful T , is also
ε. Then the complexity of M is essentially twice that of A, and its probability
of success is essentially ε2. The proof of this probability bound depends on a
well-known moment inequality in probability theory: 〈X2〉 ≥ 〈X〉2.

The success rate bound in our adaptive rewind simulation is 4 times better
than that of the (indiscriminate) rewind simulation. More importantly, the suc-
cess rate of subsequent rewind simulations remain the same as the success rate
of the first simulation. This fact makes adaptive rewind simulation potentially
more powerful than (indiscriminate) rewind simulation in proof scenarios where
multiple layers of rewinding are nested.

In the following, we review proofs of the forking lemma for the (indiscrimi-
nate) rewind simulation and the new ROS (Rewind-on-Success) lemma for our
adaptive rewind simulation.

Lemma 1 (ROS (Rewind-on-Success) Lemma). Let M invokes A to ob-
tain transcript T . If T is successful, then M rewinds T to a header H and re-
simulates A to obtain transcript T ′. If Pr[T succeeds] = ε, then Pr[T ′ succeeds] =
ε.

Sketch of Proof: All probabilities are with respect to all coin flips. For each H is
a suitable domain of prefixes, let

εH =
∑

T :H prefixes T ,T succeeds

Pr[T ]

= Pr[T succeeds|H prefixes T ]
= Pr[T ′ succeeds|H prefixes T ′]

Then

Pr[T ′ succeeds] =
∑
H

Pr[H prefixes T ′]Pr[T ′ succeeds|H prefixes T ′]
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=
∑
H

Pr[H]εH∑
H′ Pr[H ′]εH′

εH

=
〈ε2H〉
〈εH〉

≥ 〈εH〉 = ε

ut
(Indiscriminate) Forking Lemma: Use notations as above. There exists a set of
prefixes H, such that

∑
H∈H εH ≥ ε/2 and Pr[T ′ succeeds|H prefixes T ′] ≥ ε/2

for each H ∈ H.
Sketch of Proof: Let H = {H1,H2,H3, · · ·} denote the set of all possible prefixes
arranged in a way such that

εH1 ≥ εH2 ≥ εH3 ≥ · · ·

Let i be the integer such that∑
j<i

Pr[Hj ] < ε/2 ≤
∑
j≤i

Pr[Hj ]

We assert that εHi ≥ ε/2 which proves the lemma. Suppose the opposite that
εHi < ε/2. Then∑

j

εHjPr[Hj ] =
∑
j<i

εHjPr[Hj ] +
∑
j≥i

εHjPr[Hj ]

=
∑
j<i

Pr[Hj ] + εHi
∑
j≥i

Pr[Hj ]

< ε/2 + εHi < ε/2 + ε/2

But the left-hand-side of the above equation equals ε, a desired contradiction.
ut

5.2 Security of Our LSAG Signature Scheme

According to the following theorem, which is shown in Appendix C, our LSAG
signature scheme is existentially unforegable against adaptive chosen message
and chosen public-key attacks defined in Def. 1.

Theorem 1 (Existential Unforgeable). Let SO be a signing oracle which
returns valid signatures according to our LSAG scheme described in Sec. 4. Let
H1 and H2 be two distinct and ideal hash functions [3]. Let L be a set of n distinct
public keys defined in Sec. 4. Suppose there exists a PPT A which makes at most
qH queries to H1 and H2 combined and at most qS queries to SO such that

Pr[A(1k, L)→ (m,σ) : V(L,m, σ) = 1] >
1

Q1(k)

for some polynomial Q1 where V is the signature verification algorithm according
to Sec. 4.2. Then, there exists a PPT which can solve the Discrete Logarithm
Problem (DLP) with probability at least ( 1

n(qH+nqS)Q1(k) )2.
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Based on the proof and security analysis in Appendix D, we have the following
theorem.

Theorem 2 (Signer Ambiguous). Let L be a set of n public keys defined
in Sec. 4. Suppose there exists a PPT A such that for any m ∈ {0, 1}∗, π ∈
{1, · · · , n}, and t (t < n) private keys ŝi1 , · · · , ŝit where ij 6= π, 1 ≤ j ≤ t,

Pr[A(1k,m, L, ŝi1 , · · · , ŝit , σ)→ π : σ ← S(ŝπ, L,m)] >
1

n− t
+

1
Q2(k)

for some polynomial Q2 and the signature generation algorithm S according
to Sec. 4.2. Then another PPT can be constructed which solves the Decisional
Diffie-Hellman Problem (DDHP) with probability at least 1

2 + 1
4Q2(k) .

On linkability, we obtain the following theorem with proof given in Ap-
pendix E.

Theorem 3 (Linkable). Let L = {y1, · · · , yn} be a set of public keys where
each key is defined according to Sec. 4. Let xi, 1 ≤ i ≤ n, be the corresponding
private keys. Suppose there is a PPT A such that for any L, π ∈ {1, · · · , n} and
k,

Pr[A(1k, L, xπ)→ (m′,m′′, σ′L, σ
′′
L) : V(L,m′, σ′L) = 1,V(L,m′′, σ′′L) = 1, ỹ′ 6= ỹ′′]

>
1

Q3(k)

for some polynomial Q3 where ỹ′ and ỹ′′ are the last components of σ′L and σ′′L,
respectively, and V is the signature verification algorithm according to Sec. 4.2.
Then another PPT can be constructed which computes the discrete logarithm of
at least one public key in L other than yπ with non-negligible probability.

Theorem 4 (Culpable). Let L = {y1, · · · , yn} be a set of public keys where
each key is defined according to Sec. 4. Let xi, 1 ≤ i ≤ n, be the corresponding
private keys. Let σL = (c1, s1, · · · , sn, ỹ) where c1, si ∈ Zq, 1 ≤ i ≤ n and ỹ ∈ G.
Let m ∈ {0, 1}∗ be a message. For any L and (m,σL) such that V(L,m, σ) = 1,
ỹ = H2(L)xπ for some π ∈ {1, · · · , n} where V is the signature verification
algorithm described in Sec. 4.2.

Test if hxπ = y0. The proof is trivial and omitted.

6 An E-voting System

An e-voting system consists of a Registry (R), a Voting Center (V C), a Tally
(T ) and a group of users who are identified by their distinct public keys. In each
voting event, there are three phases: Registration phase, Voting phase and Vote-
Open phase. Let k be a system-wide security parameter and h : {0, 1}∗ → {0, 1}k
be a cryptographic hash function. We assume that each voter is associated with
a certified public key of some standard signature scheme such as DSA [26]. In
the following, we describe each phase of a voting event one by one.
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Registration Phase.

1. The Registry R randomly picks a number ID ∈R {0, 1}k and publishes it as
the unique identifier of this voting event.

2. R then specifies a group of eligible voters and announces the group to the
public by publishing L which is the set of public keys of all the eligible voters.
Let n be the number of eligible voters.

Voting Phase. The Voting Center C is a public bulletin. We assume that once
something is sent to C and ‘published’ on the bulletin, the information becomes
public and cannot be altered further. In addition, C is assumed to know nothing
about sender’s identity when receiving something. This assumption is similar to
the requirement of having an anonymous channel from voters to C.

For i = 1, · · · , n,
1. voter i casts a vote V otei;
2. randomly picks bi ∈R {0, 1}k and computes Ci = h(V otei, bi) as a com-

mitment ;
3. generates a LSAG signature σL,ID(Ci) using the signing algorithm de-

scribed in Sec. 4.1;
4. and sends (Ci, σL,ID(Ci)) to C.

Each signature is publicly verified using the signature verification algorithm
described in Sec. 4.2. For each pair of signatures, linkability is determined ac-
cording to Sec. 4.3. If any pair of signatures are linked, then both signatures are
marked to be void in the bulletin. They would not be counted in the Vote-Open
phase.

Vote-Open Phase. The Tally T is another public bulletin with the same as-
sumptions as C. The Vote-Open phase begins only after the Voting phase is
completed. Hence no one can send any more commitment with signature to C
when the Vote-Open phase starts.

1. For i = 1, · · · , n, voter i sends V otei and bi to T .

2. It is publicly verified if Ci
?= h(V otei, bi) for 1 ≤ i ≤ n.

A dishonest T may refuse to post a vote in practice. This can be identified
easily by having the corresponding voter send the vote anonymously to several
“independent parties” (e.g. some solicitors) who are assumed not collaborating
with each other. There may no be such concern in the Voting phase. As the value
of each vote and the identity of its sender are both not known to C, C does not
have any motivation to alter or reject posting any incoming commitments.
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6.1 Additional Features

(“Vote-and-Go” Feature) In the e-voting system above, a voter sends a com-
mitment and a LSAG signature in the Voting phase and reveals the vote in the
Vote-Open phase. A “Vote-and-Go” e-voting system does not require the voter
to be involved in the Vote-Open phase. This feature may improve efficiency and
reduce the complexity of the entire system. Our system above can be modified to
a “Vote-and-Go” e-voting system easily by requiring each voter to encrypt their
vote using a probabilistic encryption function under a public key of a trusted
third party called an Arbitrator (A). The public key is assumed to be unique for
each voting event and is published during the Registration phase. In practice,
the role of A can also be played by R. In the Vote-Open phase, A publishes the
corresponding private key for decrypting the votes and conducting the ballot
count by the public.

(Receipt-freeness) A receipt-free e-voting system prevents a voter from claim-
ing the authorship of a particular vote. Since the LSAG signature scheme is
claimable, the e-voting system above is not receipt-free. Our systems can be
modified to support receipt-freeness by using a tamper-resistant randomizer [24].
A built-in randomizer is responsible for generating all the random numbers for
probabilistic functions carried out in the device. Users are only allowed to enter
their vote choices and their devices do the rest without further intervention. This
is a practical model and we omit the details due to the page limitation.

6.2 Comparison with Previous Schemes

In Sec. 2, previous e-voting schemes are classified into two types. There are
several advantages of this scheme over previous ones. Compare with Type 1
schemes (described in Sec. B.2), anonymity is maintained without trusting the
Tally. The system does not leak any information on who has voted and who has
not. In addition, voters among different voting events are unlinkable. The scheme
is more scalable and performs almost the same no matter the votes are “yes/no”
type, 1-out-of-n type or even t-out-of-n type. Compare with Type 2 schemes
(described in Sec B.2), the Registration phase is simplified and no involvement
of the voters is needed. Detecting double voting can be done by employing the
linkability property of the underlying LSAG signature scheme.

7 Conclusions

In this paper, we present the first LSAG signature scheme which simultaneously
achieves linkability, spontaneity, and anonymity. Another feature called culpabil-
ity is also introduced and realized. All these properties of our scheme are proven
secure under the random oracle model. Our scheme has many applications, espe-
cially where maximum or near maximum privacy protection, copycat prevention,
and impromptu linkup are desired or required. In Appendix F, we describe how
to convert our LSAG scheme into a suite of t-out-of-n threshold extensions.
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An e-voting system based on our LSAG signature scheme is proposed. In the
system, there is no involvement of voters in the registration phase and the voting
phase is only one-round (that is, vote-and-go). The Tally is just a public bulletin
so that everyone can do the counting.

Additionally, we present a new proof of the core lemma in rewind simulation.
This is the literature’s third such proofs, after the forking lemma [30] and the
heavy-row lemma [28]. Our proof is the most accessible of the three, relying on
only the moment inequality from elementary probability theory. And our proof
has the best simulation efficiency of the three.

There are many interesting problems that are to be solved. For example, it
is interesting to design a LSAG signature scheme which still maintains uncondi-
tional anonymity. In addition, LSAG signature schemes may also be constructed
based on other hard problems such as factorization. To obtain more scalable
e-voting systems, much shorter and more efficient LSAG signature schemes are
to be devised.
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A Security of a Bilinear SAG Signature Scheme Under
Different Security Models

In Sec. 5 of [6], Boneh et al. devised a bilinear SAG signature scheme. We first
review their scheme and show that their scheme allows anyone to add new public
keys to given signatures.

Let G1, G2 and GT be three (multiplicative) cyclic groups of prime order p.
Let g1 and g2 be the generators of G1 and G2, respectively. Let ψ : G2 → G1 be
a computable isomorphism with ψ(g2) = g1. Let e be a computable bilinear map
e : G1×G2 → GT with the following properties: (1) Bilinear: for all u ∈ G1, v ∈
G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab; (2) Non-degenerate: e(g1, g2) 6= 1. These
properties imply that for any u1, u2 ∈ G1, v ∈ G2, e(u1u2, v) = e(u1, v) ·e(u2, v);
and for any u, v ∈ G2, e(ψ(u), v) = e(ψ(v), u).

For each user i, 1 ≤ i ≤ n, pick random x ∈R Zp and compute v = gx2 .
The user’s public key is v ∈ G2. The user’s secret key is x ∈ Zp. Suppose π,
1 ≤ π ≤ n, be the index of the actual signer. Let H : {0, 1}∗ → G1 be a hash
function. The signature generation for message m ∈ {0, 1}∗ proceeds as follows.

1. For each user i, 1 ≤ i ≤ n and i 6= π, randomly generate ai ∈R Zp and
compute σi = gai1 .

2. Solve the following system to obtain σπ;

H(m) = h = σxππ ψ(
n∏

i=1,i 6=π

vaii )

3. The signature is σ = (σ1, · · · , σn) ∈ Gn1 .

To verify the signature, check if e(h = H(m), g2) =
∏n
i=1 e(σi, vi).
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Add a New Public Key to a Given Signature. Given a bilinear signature
σ = (σ1, · · · , σn), we can add a public key, vn+1, by setting the following.

1. For i = 1, · · · , n−1, set σ′i ← σi.
2. Set σ′n ← σn · ψ(vrn+1) where r ∈R Zp.
3. Set σ′n+1 ← ψ(v−rn ).

The new signature is σ′ = (σ′1, · · · , σ′n+1). The technique can be generalized to
let anyone add an arbitrary number of public keys to given signatures.

This scheme is provably secure under random oracle model that it is exis-
tential unforgeable against restricted chosen message attack. However it is no
longer true under the stronger model of adaptive chosen message attack (See
Sec. 3.1 for details).

B Background on E-Voting Schemes

In this section, we provide an overview of the security requirements of an e-
voting scheme and specify the two major types of previously proposed e-voting
schemes.

B.1 Security Requirements

According to a popular definition of a secure e-voting scheme given by Fujioka
et al. in [21], there are seven requirements needed to fulfill: completeness, sound-
ness, privacy, unreusability (detecting double voting), eligibility, fairness and
verifiability. Completeness requires that all valid votes should be counted cor-
rectly. Soundness requires that all invalid votes should not be counted. Privacy
means that all votes should be kept secret until all votes have been collected
and are ready to count. Unreusability prevents any voter to vote twice or more.
Eligibility prevents unauthorized entities to vote. Fairness requires that noth-
ing can affect the result. Verifiability ensures that the voting result is publicly
verifiable.

Recent researches suggest some additional requirements. One is receipt-free
voting systems [5, 23]. Such a system prevents a voter from claiming the author-
ship of a particular vote. Another requirement is non-transferability. In most of
the e-voting systems, the voting right can be transferred because the authenti-
cation document is irrelevant to the voter. A non-transferable e-voting system
ensures the transfer of the voting right is equivalent to the transfer of all the
secret information owned by the voter. This requirement is considered in [11].

B.2 Classification: The Two Types

Previous e-voting systems can mainly be classified into two types [21]. In the first
type, each voter sends the ballot to a trusted third party, the Voting Center, in
an encrypted form. In the second type, each voter sends the ballot to the Voting
Center through an anonymous channel [12, 29].
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Type 1 In the Voting phase, voters send their votes with their signatures to a
public bulletin which acts as the Voting Center. Votes are encrypted with
the public key of a trusted third party, say the Tally, using homomorphic
encryption schemes. The homomorphic encryption scheme allows the Tally
to sum up the votes and obtain the final result without decrypting each
individual vote.
There are several advantages. First, double voting is prevented since voters
sign their encrypted votes which are publicly verifiable in the bulletin. Sec-
ond, no interaction with the voters is required for the Registry to define the
group of eligible voters. Hence the registration phase is simplified. Third,
the Tally outputs the vote result without decrypting each individual vote.
Hence the vote of each voters is protected from being known by others.
However, the system leaks information on who has voted and who has not.
In addition, the Tally needs to be trusted for protecting privacy. In order
to reduce the risk, secret sharing techniques [33] or threshold cryptosystems
[19] are suggested to use with this type of e-voting systems. Another draw-
back is that although homomorphic encryption protocols work efficiently for
“yes/no” type ballot, it becomes inefficient when it applies to 1-out-of-n type.
It is even less practical when there is a large election scale or a t-out-of-n
type of votes are conducted for t being close to n/2.
Examples of this type of e-voting systems are [4, 32, 17, 18, 23, 2].

Type 2 In Voting phase, a voter sends a vote to the Voting Center through an
anonymous channel which can be established easily in practice. The anony-
mous channel protects the identity of the voter. It is more practical for large
scale election since the communication and computation overheads are rea-
sonable even if the number of voters is large [21].
However, as the channel is anonymous, special mechanisms are needed to
prevent or detect double voting and to check the eligibility of a voter. Hence
interaction with voters is necessary in the Registration phase to have the
Registry dispatch some token or voting pass to each eligible voter. Blind
signature is usually used. Examples of this type are [13, 21, 27].

C Proof of Theorem 1 (Unforgeability)

Proof. We prove by rewind simulation, together with the classification technique.
Parameters p, q, g are fixed throughout this paper, and omitted from nota-

tions. Let L be a set of public keys of which each key is generated according
to the description in Sec. 4. Assume PPT adversary A, which makes at most
qH queries to H1 and H2 combined and at most qS queries to SO, can forge
(1,n)-LSAG signature with non-negligible probability, i.e.

Pr[ASO,H1,H2(1k,L)→ (L,m, σ) : L ⊆ L,VH1,H2(L,m, σ) = 1] >
1

Q1(k)

for some polynomial Q1, and qH , qS and |L| being no more than polynomially
growing with respect to the security parameter k. Note SO is a signing oracle
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which returns valid signatures, upon A’s query, other than the one A eventu-
ally produces. The independent random oracles H1 and H2 produces random
outcomes, except to maintain consistencies among duplicated queries. Note that
SO also makes queries to H1 and H2, and consistencies between its queries and
A’s queries are maintained.

We construct a PPT simulator (i.e. the reduction master) M which calls
A and solves DLP of at least one of the public keys in L with non-negligible
probability. Denote a subset of L by L = {y1, · · · , yn}, and denote the forged
signature with respect to L by

σ = (c1, s1, · · · , sn, ỹ)

where it satisfies the Verification (Sec. 4.2) including the following n equations:

ci+1 = H1(L, ỹ,m, gsiycii , h
si ỹci), for 1 ≤ i ≤ n− 1;

c1 = H1(L, ỹ,m, gsnycnn , h
sn ỹcn).

The masterM will invokeA with constructed inputs, receive and process outputs
from A, and may invoke A for multiple times depending on A’s outputs from
previous invocations. In the random oracle model, M flips the coins for the
random oracles H1 and H2 and record queries to the oracles. Consider each
invocation of A to be recorded on a simulation transcript tape. Some transcripts
produce successful signature forgeries. Others do not.

The Signing Oracle: Given any message m, any sequence of public keys L =
(y1, · · · , yn), the signing oracle SO generates a signature. M simulates SO to
generate a signature without knowing any secret key but by back patching H as
follows:

Assume without loss of generality, H2(L) has been queried before andM has
simulated it by randomly picking r and returning H2(L) = gr. To simulate SO,
M randomly picks π ∈R {1, · · · , n}, and randomly picks c1, · · ·, cn, s1, · · ·, sn.
Compute ỹ = yrπ. Back patch to

H1(L, ỹ,m, gsiycii , g
rsiyrciπ ) = ci+1

for 1 ≤ i ≤ n with the short-hand notation that subscript n+ 1 means subscipt
1.

Remark: The signature returned by SO looks just like one actually signed
by signer π.

Let E be the event that each of the n queries corresponding to the n Ver-
ification queries have been included in the qH queries A made to the random
oracles, or in the queries made by the signing oracle on behalf of A in its qS
signing queries. In the event Ē, M needs to flip additional coins in order to
Verify A’s signature forgery. Then the probability of c1 satisfying the (final)
Verification equation is at most 1/(q − qH − nqS) because A can only guess the
outcomes of queries used in Verification that he has not made. Therefore

1
Q1(k)

< Pr[E]Pr[A forges|E] + Pr[Ē]Pr[A forges|Ē]
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≤ Pr[E]Pr[A forges|E] + 1 · ( 1
q − qH − nqS

)

and

Pr[E and A forges] >
1

Q1(k)
− (

1
q − qH − nqS

)

Hence the probability of A returning a forged signature and having already
queried the random oracles for all the n queries used in Verification is essentially
greater than 1/Q1(k) as 1

q−qH−nqS is negligibly small.
Therefore, in each A transcript which produced a valid signature, there exists

n queries to H1, denoted by Xi1 , · · ·, Xin , 1 ≤ i1 < · · · < in, such that they
match the n queries made in Verification. This happens with each transcript that
A successfully produces a valid signature, with negligible exceptions. Queries to
random oracles H1 and H2 made by the signing oracle SO when it responds to
A’s requests to sign have a negligible effect.

In a successful signature forgery σ by A, consider the set of all queries made
by A that were used (including duplicate queries) in Verification. Let Xi1 , · · ·,
Xin denote the first appearance of each of the queries used in Verification, i1 <
· · · < in. Let π be such that

Xin = H1(L, ỹ,m, gsπ−1y
cπ−1
π−1 , h

sπ−1 ỹcπ−1)

in Verification. We call π the gap of σ.
We call a successful forgery σ by A a (`, π)-forgery if i1 = `. I.e. the first

appearance of all Verification-related queries is the `-th query and the gap equals
π. Queries made by S to random oracles on behalf of A are counted. There exist
` and π, 1 ≤ ` ≤ qH , 1 ≤ π ≤ n, such that the probability A produces (`, π)-
forgery is no less than 1/(n(qH + nQS)Q1(k)).

In the following, M will do a rewind-simulation for each value of ` and π.
In the rewind-simulation for a given (`, π), M first invokes A to obtain its

output and its Turing transcript T .M computes the output and the transcript to
determine whether they form a successful (`, π)-forgery. If not, abort. Otherwise
continue. This can be done in at most polynomial time because M records
queries made by A to the random oracles. The transcript T is rewound to the
`-th query and given to A for a rewind-simulation to generate transcript T ′.
New coin flips independent of those in T are made for all queries subsequent to
the `-th query while maintaining consistencies with the prior queries. T and T ′
use the same code in A. The `-th query, common to T and T ′, is denoted

H1(L, ỹ,m, gu, hv).

M knows gu and hv but not u or v at the time of the rewind. After A returns
the output from the rewind simulation, M proceeds to compute the DL of yπ.

Let H` denote the common prefix of T and T ′ whose length is exactly up to
the `-th query. Let

ε`,π(H`) =
∑

T :H` prefixes T ,T (`,π)-forgers
Pr[T ]/Pr[H`]
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= Pr[T (`, π)-forges|H` prefixes T ]
= Pr[T ′(`, π)-forges|H` prefixes T ′]

Note that

Pr[H`] =
∑

H` prefixes T
Pr[T ]

∑
`,π

∑
H

ε`,π(H) ≥ 1/Q1(k)

Pr[H` prefixes T ′] =
ε`,π(H`)Pr[H`]∑
H ε`,π(H)Pr[H]

Then

Pr[T ′ (`, π)-forges]

=
∑
H`

Pr[H` prefixes T ′]Pr[T ′ (`, π)-forges|H` prefixes T ′]

=
∑
H`

(
ε`,π(H`)Pr[H`]∑
H ε`,π(H)Pr[H]

) · ε`,π(H`)

=
〈ε`,π(H`)2〉
〈ε`,π(H`)〉

≥ 〈ε`,π(H`)〉

The last inequality is well-known in probability theory.
Remark: The above proves the technical lemma critical to the proof concern-

ing ROS (Rewind-on-Success) lemma (Sec. 5.1). It depends on the well-known
moment inequality 〈χ2〉 ≥ 〈χ〉2 from probability theory. Alternatively, the heavy-
row lemma [28] or the forking lemma [30] can be used to prove a similar technical
lemma for our rewind simulation, albeit with inferior constant. The main differ-
ence is that our rewinding is adaptive – it rewinds only on successful transcripts
T . In the traditional forking lemma or heavy-row lemma, T is indiscriminately
rewound whether it is a success or not.

The tape T and a rewind-simulation tape T ′ produce two (`, π)-forgery sig-
natures with

gu = gsπycππ = gsπ+xπcπ , from T
hv = hsπ ỹcπ = hsπ+rπcπ , from T

gu = gs
′
πy

c′π
π = gs

′
π+xπc

′
π , from T ′

hv = hs
′
π ỹc

′
π = hs

′
π+rπc

′
π , from T ′

where y0 = hrπ mod q0. Solve to obtain

xπ =
s′π − sπ
cπ − c′π

mod q and rπ =
s′π − sπ
cπ − c′π

mod q (1)
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The reduction master M solves for xπ based on recorded and computed cπ,
sπ, c̄π, s̄π as shown above. There exists (`, π) such that

〈ε`,π(H`)〉 ≥
1

n(qH + nqS)
1

Q1(k)

ThereforeM achieves a solution in at least one of its runs for all possible values of
(`, π), 1 ≤ ` ≤ qH +nqS , 1 ≤ π ≤ n, with the above probability. The complexity
of M is no more than n(qH + nqS) times that of A. The probability of success
of M is at least ( 1

n(qH+nqS)Q1(k) )2, still non-negligible. Desired contradiction.
Theorem 1 is proved.

Remark: The following improved simulator M can achieve complexity no
more than twice that ofA, and success probability at least 1/(n(qH+nqS)Q2

1(k)).
M invokes A to obtain a transcript T . If M confirms T is a successful (`, π)-
forgery then rewind to `-th query. Otherwise abort. an (`, π)-forgery with prob-
ability 〈ε`,π〉. The probability of M succeeding both in the first invocation and
the rewind simulation is∑

`,π

Pr[T ′ (`, π)-forges, T (`, π)-forges]

=
∑
`,π

Pr[T ′ (`, π)-forges|T (`, π)-forges]Pr[T (`, π)-forges]

=
∑
`,π

∑
H`

Pr[T ′ (`, π)-forges|H` prefixes T ′, T (`, π)-forges]

· Pr[T (`, π)-forges|H` prefixes T ] Pr[H`]

=
∑
`,π

∑
H`

ε`,π(H`)ε`,π(H`)Pr[H`]

=
∑
`,π

〈ε2`,π〉 ≥
1

n(qH + nqS)
(
∑
`,π

〈ε`,π〉)2 ≥ 1
n(qH + nqS)

1
Q2

1(k)

ut

D Proof of Theorem 2 (Signer-Ambiguity)

Proof. For simplicity, we prove for the case t = 0 Other cases are similar and
omitted. The parameters p, q, g are fixed throughout this paper, unless explicitly
stated otherwise.

Assume A is a PPT adversary who can crack anonymity, i.e.

Pr[A(H1,H2, L,m, σ) = f0(L, ŝ) : random L,m; (ŝ, P )← G(1k);

σ ← S(ŝ, L,m);V(L,m, σ) = 1] >
1
n

+
1

Q(k)

for some polynomial Q. The we construct below, a PPT simulatorM which can
solve the Decisional Diffie-Hellman Problem (DDHP)
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Pr[M(α, β, γ) = b : random `0, `1, `2, `
′
0, `
′
1, `
′
2 ∈R {1, · · · , q − 1};

α0 = g`0 , β0 = g`1 , γ0 = g`2 , α1 = g`
′
0 , β1 = g`

′
11, γ1 = g`

′
0`
′
1 ; b← {0, 1};

(α, β, γ) = (αb, βb, γb)] =
1
2

+
1

Q2(k)

for some polynomial Q2.
We will prove by back patching to H2(L) = β.
To simulate,M computes a ”candidate signature” σ′ as follows before calling

A:

1. Randomly generate n, L, m. Generate π ∈R {1, · · · , n}. Randomly generate
` ∈R {1, · · · , q − 1} and let c′π = g`. Set yπ = α.

2. For i = π′, · · · , n, 1, · · · , π′ − 1, randomly generate si and compute

ci+1 = H1(L, γ,m, gsiycii , h
siγci)

querying the oracle H1 along the way.
3. Set the oracle outcome

H1(L, γ,m, gsπ−1y
cπ−1
π−1 , h

sπ−1γcπ−1) = cπ

4. σ′ = (c1, s1, · · · , sn, γ)

In the simulation, M calls A with H1, H2, L, m, and σ′. The oracles H1

and H2 will produce random outcomes upon A’s queries, except H2(L) = β
and H1(L, γ,m, gsiycii , h

siγci) are predetermined, for 1 ≤ i ≤ n, to maintain
consistencies on duplicated inputs with queries already made by M. By the
random oracle model, these pre-dispositions affect the randomness of H1 and
H2 only negligibly.

The adversary A returns an integer j, 1 ≤ j ≤ n, to M. By convention, A
returns 0 if it cannot identify a signer. The simulator M outputs 1 if j = π;
outputs 0 if j = 0; and outputs 1/0 with equal probability otherwise. Then

Pr[M(α, β, γ) = b|b = 1]
= Pr[M(α, β, γ) = b|b = 1,A(H1,H2, L,m, σ

′) = π]
+ Pr[M(α, β, γ) = b|b = 1,A(H1,H2, L,m, σ

′) 6= π, 6= 0]

≥ 1 · ( 1
n

+
1

Q(k)
) +

1
2

(1− 1
n
− 1
Q(k)

)

≥ 1
2

+
1

2n
+

1
2Q(k)

If b=0, then all signers are symmetric from A’s perspectives, and A can do no
better than random guessing. Averaging over M’s random choice of π, 1 ≤ π ≤
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n, we obtain

Pr[M(α, β, γ) = b|b = 0]
= Pr[M(α, β, γ) = b|b = 0,A(H1,H2, L,m, σ

′) = π]
+ Pr[M(α, β, γ) = b|b = 0,A(H1,H2, L,m, σ

′) 6= π]

≥ 0 · 1
n

+
1
2

(1− 1
n

)

Combining, we have Pr[M(α, β, γ) = b] ≥ 1
2 + 1

4Q(k) . Therefore M solves
DDHP with probability non-negligibly over 1/2. Desired contradiction. Signer-
ambiguity is proved.

Remark on the randomness of H1 and H2: H2(L) = β. But L and β are
random, therefore so is H2. The randomness is H1 is more complicated. The set
of all random oracles can be partitioned into q parts, according to the value of
i in

i = H1(L, γ,m, gsπ−1y
cπ−1
π−1 , h

sπ−1γcπ−1)− cπ

Averaging over all q parts, A has a non-negligibly probability above 1/n of
producing results. However, there could be pedagogical examples where A is a
PPT adversary over random H1 but not the kind of oracle randomized over q
partitions. Under the random oracle model, we assume the oracle H1 constructed
above by M behaves like random oracles, and PPT adversary A can compute
results given H1 in place of a true random oracle. ut

E Proof of Theorem 3 (Linkability)

Proof. If PPTA can produce two unlinkable signatures with non-negligible prob-
ability ε, then there exists a simulatorM which can compute the discrete log of
two public keys among y1, · · ·, yn. Since A is in possession of at most one secret
key, M will have solved a hard problem: the DLP.

The proof is by rewinding twice the simulation transcript at two suitable
forks. We follow notations in the Proof of Theorem 1. Consider that A pro-
duces a pair of signatures (σ, σ′) that are (`, π)-forgeries and (`′, π′)-forgeries,
respectively, with Turing transcript T . Denote σ = (c0, s1, · · · , sn, ỹ) and σ′ =
(c′0, s

′
1, · · · , s′n, ỹ′). Let ỹ = hrπ and ỹ′ = hr

′
π denote the linkability tag in the two

signatures respectively, where rπ and r′π are yet to be determined.
Suppose A always produces, with negligible exception, signature pairs with

π = π′. By rewinding T to just before the `-th query and re-simulate, A can
produce with non-negligible probability another signature pair (σ̂, σ̂′), which
are (`, π)-forgeries and (`′′, π′′)-forgeries respectively with transcript T ′. Denote
σ̂ = (ĉ0, ŝ1, · · · , ŝn, ˆ̃y) and and σ̂′ = (ĉ′0, ŝ

′
1, · · · , ŝ

′
n, ˆ̃y
′
). By a derivation similar to

that which led to Equation (1), we find that

xπ = rπ =
ŝn − sn
cn − ĉn

mod q
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where y0 = hrπ and yπ = gxπ mod p.
Then a second rewind simulation. By rewinding T to the `′-th query and

re-simulate, M obtains with non-negligible probability, another signature pair
(σ̂, σ̂′) where the second signature is an (`′, π)-forgery. A similar argument shows

r′π = x′π mod q

where y′0 = hr
′
π and yπ = gx

′
π mod p. Therefore, xπ = x′π = rπ = r′π mod q and

y0 = y′0. The two signatures σ and σ′ are linked. But then y0 = y′0 = hxπ mod p
and the two signatures are linked.

Therefore, A can generate with non-negligible probability signature pairs
with different gaps, i.e. π 6= π′. In particular, there exists (`, π, `′, π′) satisfying
1 ≤ π < π′ ≤ n, 1 ≤ `, `′ ≤ qH + nqS , such that A can generate, with non-
negligible probability, signatures pairs that are (`, π)-forgery and (`′, π′)-forgery
respectively. Then the rewind simulation technique can be used, twice, to show
that M can enslave A to compute the discrete log of yπ and yπ′ .

In the above, A is assumed to query the random oracles no more than qH
times and the signing oracle no more than qS times. Theorem 3 is secure against
adaptive chosen-plaintext attackers by the above proof. ut

F Threshold Extensions

A (t, n)-threshold LSAG signature allows a public verifier to tell if the signature
is generated by t distinct signers out of n possible signers without getting any
information on which t signers are. In the following, we describe how to extend
the basic scheme described in Sec. 4 and construct a (t, n)-threshold LSAG
signature scheme.

We use the same notations as we denoted in Sec. 4. For a message m ∈ {0, 1}∗
and a set of n public keys L, a linkable and culpable (t, n)-threshold LSAG
signature is generated as follows.

1. For i = 1, · · · , t, user i constructs a signature σiL,t(m) with respect to L
and t using the signing algorithm described in Sec. 4.1. That is, we compute
h = H2(L, t).

2. The (t, n)-threshold LSAG signature, denoted by σ(t,n)
L,t (m), is

(σ1
L,t(m), · · · , σtL,t(m))

The signature verification is done in the obvious way. First, each of the
t (1, n)-LSAG signature is verified using the verification algorithm given in
Sec. 4.2. Second, the algorithm for detecting linkability described in Sec. 4.3
is carried out. If all the signature verifications are passed successfully and no
two signatures are generated by the same signer, the verifier concludes that the
signature is valid. Otherwise, the verifier rejects the signature.
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F.1 Variations

Dropping t from the subscript of the signature notation σ
(t,n)
L,t (m) above means

that linkability is now in the context of the public key set L only. This allows
one to find out how many signers have participated in the generation of two
threshold LSAG signatures even the two signatures are having different values
of t, provided that L is the same for both signatures.

One technical remark is that the value of t must be committed in the sig-
nature. The reason can be easily seen by noting that the value of t of such a
(t, n)-threshold LSAG signature can later be reduced arbitrarily by removing
some (1, n)-LSAG signatures from it. This issue can easily be fixed by requiring
the ‘message’ to be (m, t) instead of m alone. Hence we denote this variant of
(t, n)-threshold LSAG signature by σ(t,n)

L (m, t).
Continue working on this variant and replace L by a nonce denoted by r

which is distinct for each signature, then we obtain an unlinkable but culpable
(t, n)-threshold LSAG signature scheme. We denote this variant by σ(t,n)

r (m, t).
Similar idea can also be applied to our basic scheme for generating unlinkable
but culpable (1, n)-LSAG signatures. The security analysis will be given in the
full paper.


