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Abstract. In a verifiable encryption, an asymmetrically encrypted ci-
phertext can be publicly verified to be decypherable by a designated
receiver without revealing the plaintext. In this paper, we introduce
publicly verifiable encryption that is intended for a single targeted de-
cypherer within a designated group of n receivers. The verifier can ascer-
tain that the ciphertext can be decrypted by at least one receiver, but
it cannot compute the identity of the targeted decypherer. Furthermore,
our scheme is spontaneous: the prover does not need the collaboration
from any exterior party such as TTP, group manager, or any member
of the receiver group. We also introduce two extensions. In the first ex-
tension a targeted subset of t receivers jointly recover the message. In
the second extension, any member of a targeted subset of t receivers can
recover the encrypted message. Both extensions preserve the anonymity
of the targeted subset.
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1 Introduction

Consider the following scenario. Alice wants to send a public-key encrypted
message to Bob, who works for ABC Company. The company security gateway
does not allow the message in unless it is for a company employee. However, Bob
does not wish to divulge his private key. Without knowing Bob’s private key,
how can the gateway ensure the message is intended for a company employee?
Furthermore, Alice and Bob may wish to maintain the privacy of the message
content and the anonymity of the recipient. In this paper, we present a solution
to this problem.

In a verifiable 1-out-of-n anonymous encryption scheme, a Prover wishes
to send a public-key encrypted message to a Receiver through a Verifier. The
Prover arbitrarily and spontaneously forms a group consisting of the targeted



decypherer and n−1 diversion receivers; conducts a special public-key encryp-
tion for the group of n in such a way that the public verifier can ascertain the
message can be decrypted by at least one of the group members. In addition, the
verifier cannot identify the targeted decypherer from the group, and the verifier
cannot read the message. We propose this scheme as a solution to the motivating
application above.

We also introduce two extensions. In the first extension a targeted subset of
t receivers jointly recover the message. In the second extension, any member of a
targeted subset of t receivers can recover the encrypted message. Both extensions
preserve the anonymity of the targeted subset. All our proposed schemes enjoy
perfect separability.

The extensions can be useful in the following scenario. Bob belongs to a
programming team of t members in a company of n employees. Our extension
schemes can be used to transmit confidential messages to the team, or to team
members, while keeping non-team employees and the company security gateway
at bay.

In a verifiable encryption scheme [16, 1, 4, 2, 8], a prover is able to convince
a verifier that a public-key encrypted message can be recovered by a designated
receiver, whose identity is known to the verifier. Our scheme is about a group
of possible receivers in which at least one designated receiver can receover the
message. In a verifiable group encryption scheme [4], any subset of t members
out of a group of n receivers can jointly recover the message. When t = 1, it
ensures that any receiver can decrypt the message. Our scheme is about a single
targeted but anonymous receiver (and targeted but anonymous receivers in the
extension schemes), not a threshold of any t receivers.

1.1 Contributions

We introduce the notion of verifiable 1-out-of-n anonymous encryption scheme.
It allows a prover to arbitrarily and spontaneously form a group of n receivers,
and prepare an encrypted message which can be recovered by at least one tar-
geted group member, in a way such that a public verifier can make sure that the
encrypted message can be recovered by at least one targeted group member, yet
the verifier knows nothing about the identity of the targeted decypherer.

We also make two extensions to the basic verifiable 1-out-of-n anonymous
encryption scheme. The first one requires a targeted subset of t receivers out
of n receivers to work jointly in decrypting the message. The second extension
allows any member of a targeted subset of t receivers to decrypt the message.
Both extensions preserve the anonymity of the targeted decypherers.

Our scheme is spontaneous: the prover does not need the cooperation from
any exterior party. No TTP (trusted third party), no group manager is needed.
No cooperation from any receiver, the targeted receiver or any diversion receiver,
is needed.

All our proposing schemes enjoy perfect separability [10, 7, 4]. That is, all
receivers can choose their keys independently of each other and even use different
kinds of public-key encryption schemes.



This paper is organized as follows. We describe some related work in Sec. 2.
This is followed by our security model specified in Sec. 3. Our verifiable 1-out-
of-n anonymous encryption scheme is described in Sec. 4 and two extensions are
presented in Sec. 5 and Sec. 6. The paper is concluded in Sec. 7.

2 Related Work

Stadler [16] introduced the concept of verifiable encryption in 1996. A more gen-
eral form proposed by Asokan, et al. [1] appeared later in 1998. Both results use
the cut-and-choose methodology and have security proofs. [1] provided perfect
separability.

In 2000, Bao, et al. [2] proposed a verifiable encryption scheme without us-
ing the cut-and-choose methodology. However, it requires the receiver to use
Okamoto-Uchiyama public-key encryption scheme [12]. In addition, it does not
provide semantic security [9]. Recently, Camenisch, et al. [6] and MacKenize, et
al. [11] proposed several schemes which avoid using cut-and-choose methodol-
ogy and also achieve semantic security. Both schemes require the receiver to use
Paillier encryption functions [12, 13].

All the above schemes are for a single designated receiver. There is no group
of receivers. The Verifier can ascertain that the ciphertext can be recovered by
that receiver, without knowing the plaintext content. An anonymous verifiable
encryption scheme was proposed by Camenisch, et al. [5] in 2001. However, their
scheme requires the prover to know the private key of the receiver.

There are several variants of verifiable encryption. Camenisch, et al. [4] ex-
tended the concept of verifiable encryption to verifiable threshold encryption (in
[4], the authors call it verifiable group encryption) such that a verifier can make
sure that a minimum number of t arbitrary receivers are required to work jointly
to recover a message.

Our main results are motivated by the verifiable encryption scheme due to
Asokan, et al. [1]. In Appendix A, we give a brief description of their scheme.

3 Security Model

In this section we define the security model to be used. Let Domain(f) and
Range(f) specify the domain and range of a function f . Let k ∈ N be a system-
wide security parameter. For i = 1, · · · , n, let Ei and Di denote the probabilistic
polynomial time (PPT) public-key encryption and decryption functions of re-
ceiver i, respectively. We adopt the most primitive security requirement for asym-
metric encryption scheme. No special assumptions are needed on the encryption
scheme. A triple (G,E,D) of PPTs is a secure public key encryption scheme if
for any (E,D) ∈ G(1k) such that D(E(m)) = m for any m ∈ Domain(E), any
PPT algorithm A and all sufficiently large k, we have

Pr[A(1k, E, c) = m : m ∈R Domain(E), c← E(m)] ≤ ∆(k)



where ∆ is some negligible function. A real-valued function ∆(k) is negligible
if for every c > 0, there exists a kc > 0 such that ∆(k) < k−c for all k > kc.
x ∈R X denotes an element x chosen randomly from X.

Verifiable 1-out-of-n Anonymous Encryption Scheme. A verifiable
1-out-of-n anonymous encryption scheme consists of a two-party PPT protocol
between P (Prover) and V (Verifier), a PPT algorithm R (Recovery Algorithm),
also known as the Decryption Algorithm, and a one-way function f . P accepts
as inputs k, some appropriate binary string m (a message), n public-key en-
cryption functions {Ei}1≤i≤n, and an integer π ∈ {1, · · · , n} (the index of the
targeted decypherer). V accepts as inputs k, and {Ei}1≤i≤n only. If the protocol
completes successfully without early termination, V outputs two finite binary
strings d = f(m) (commitment) and C (ciphertext). The Recovery Algorithm
R : (d, C, Di) 7→ {m′, NULL} accepts as inputs the commitment, the ciphertext
and one of the n decryption functions corresponding to {Ei}1≤i≤n and outputs
either a finite string m′ or the NULL string.

On the security of the verifiable 1-out-of-n anonymous encryption scheme,
we require that a secure scheme satisfies the following requirements when k is
sufficiently large.

– Targeted Decypherability :
(Completeness) If both P and V are honest, then at the end of the protocol,
V outputs (d, C) such that R(C, Dπ) = m and d = f(m) for some 1 ≤ π ≤ n.
This holds for all m, d and C with d = f(m). Honest P and V are defined as
PPT algorithms which behave exactly as the Prover and Verifier described
in the scheme, respectively.
(Soundness) If V completes a protocol run without early termination and
outputs d and C, then V is sure that C is the encrypted value of d’s inverse.
Formally, we require that an honest V completes a protocol run without
early termination and outputs a pair (d, C) such that

Pr[V (1k, E1, · · · , En)→ (d, C) : f(R(C, Dπ)) 6= d] ≤ ∆(k)

for some 1 ≤ π ≤ n and all sufficiently large k. The probability is taken over
all possible values of d, coin flips of the public key encryption and decryption
functions, coin flips of V and R, and the values of π.

– Anonymity: The probability that V can determine π is negligibly higher than
1/n. In general, we require that for any PPT algorithm, V, and all sufficiently
large k,

Pr[V(1k, E1, · · · , En, d, T rans,Di1 , · · · , Dit)→ π : f(R(C, Dπ)) = d]

≤ 1
n− t

+∆(k)

where Trans is the set of transcripts of an honest P , and {Di1 , · · · , Dit} is an
arbitrary set of t decryption functions in which each of them is corresponding



to one in {E1, · · · , En} \ {Eπ}. The probability is taken over the values of d,
transcripts of an honest P , t-element sets of decryption functions, and coin
tosses of P , public key encryption and decryption functions.

– Confidentiality: We require that any diversion receivers even they collude
with each other cannot obtain the inverse of d. Formally, for any PPT V,
and all sufficiently large k,

Pr[V(1k, E1, · · · , En, d, C, T rans,Di1 , · · · , Dit)→ m : d = f(m)] ≤ ∆(k)

where Trans is the set of transcripts between honest P and V when V
outputs (d, C), and {Di1 , · · · , Dit} is an arbitrary set of t decryption functions
in which each of them is corresponding to one in {E1, · · · , En} \ {Eπ} and
f(R(C, Dij ) 6= d, 1 ≤ j ≤ t.

– Public Verifiability: V only requires publicly available parameters in order
to perform its computations.

– Spontaneity: P does not require the cooperation of any exterior entity to
perform its computations, including group formation, and the verifiable 1-
out-of-n anonymous encryption scheme.

Remark: There is no TTP (trusted third party), no group manager, no coop-
eration among group membership, in pre-processing or in computing the scheme
itself. Decryption is not P ’s task. Public-key encryption functions are assumed
to be publicly available.

4 The Verifiable 1-out-of-n Encryption Scheme

We specify our scheme in this section. The scheme uses the 3-choice cut-and-
choose methodology. In each of N cut-and-choose rounds, a three-move protocol
(commit, challenge, respond) is conducted between Prover P and Verifier V . V
flips a three-way coin to issue one of three possible challenges. Depending on the
challenge, P provides suitable response. If all cut-and-choose rounds are satisfac-
tory, V outputs a commitment d and a ciphertext C. Otherwise, it aborts. Each
receiver i attempts to decypher using its own asymmetric decryption function
Di, 1 ≤ i ≤ n. At least one receiver will succeed.

4.1 Preliminaries

Let (Ei, Di), 1 ≤ i ≤ n, be public-key encryption and decryption functions. Let
π index the targeted receiver. Let p, q be large primes, q | p−1, and g ∈ Fp,
order(g)=q. Let the security parameter k be as large as |q|. Let f be defined by
x→ gx which is an instantiation of the one-way group homomorphism from Zq

to < g >. Let m ∈ Zq be a message. Let N be the number of cut-and-choose
rounds. Let H1 : {0, 1}∗ → {0, 1}k and H2 : {0, 1}∗ → Zq be some statistically
independent and cryptographically strong hash functions. Sometimes, we may
pass in an element in Zq for encryption and we implicitly assume that certain



appropriate encoding method is applied. If P computes any probabilistic public-
key encryption function, P needs to send the corresponding coin flip sequence
to V and the sequence is to be carried on wherever the original message goes.
We do not explicitly specify such in the following.

Sym(n) denotes the symmetric group of order n. It consists of all permuta-
tions on n objects.

4.2 Detailed Description

Encryption.

1. P computes d = gm mod p and sends d to V .
2. Repeat the following steps N times in parallel.

a. (Commitment) P randomly picks s ∈R Zq, ri ∈R {0, 1}k for 1 ≤ i ≤ n,
and φ ∈R Sym(n). P computes

λ = E1(r1)|| · · · ||En(rn)
γ = (gH2(rφ(1)) mod p, · · · , gH2(rφ(n)) mod p)
α′ = E1(s)|| · · · ||En(s)
α = H1(α′)
β = gH2(rπ)s mod p
θ = H1(λ||γ||α||β)

P sends θ to V .

b. (Challenge) V picks b ∈R {1, 2, 3} and sends b to P .

c. (Response)
– Case b = 1, P sends r1, · · · , rn, γ, α and β to V
– Case b = 2, P sends λ, γ, and s to V .
– Case b = 3, P sends λ, γ, α′, and s′ = H2(rπ)s+m mod q to V .

d. (Verification by V )
– Case b = 1:
• Verify that r1, · · ·, rn are distinct.
• Verify that there exists a unique permutation δ ∈ Sym(n) such

that

γ = (gH2(rδ(1)) mod p, · · · , gH2(rδ(n)) mod p)

• Verify that

θ = H1(λ̂||γ||α||β)

where λ̂ = E1(r1)|| · · · ||En(rn).
Continue only if all verifications succeed.



– Case b = 2:
• Denote γ = (γ1, · · · , γn).
• Compute

α̃ = H1(E1(s) || · · · || En(s))

and βi = γsi mod p, for i = 1, · · · , n.
• Verify that

θ = H1(λ||γ||α̃||βi)

for exactly one index i ∈ {1, · · · , n}.
Continue only if the verification succeeds.

– Case b = 3:
• Compute β′ = gs

′
/d mod p

• Verify that

θ = H1(λ||γ||H1(α′)||β′)

Continue only if the verification succeeds.
3. (Output) V terminates if any verification fails in any of the N cut-and-choose

Rounds. Otherwise, it outputs d and the four-tuple sequences (α′, λ, β′, s′)
for all Case-(b=3) Rounds to all n receivers as the ciphertext, C.

Fig. 1 illustrates the protocol.

Decryption. Denote λ̄1|| · · · ||λ̄n = λ and ᾱ′1|| · · · ||ᾱ′n = α′. For d and each
four-tuple sequence (α′, λ, β′, s′), each receiver i, 1 ≤ i ≤ n, independently per-
forms the following steps.

1. Compute ri = E−1
i (λ̄i) and s = E−1

i (ᾱ′i).
2. Compute m′ = s′ −H2(ri)s mod q.
3. Verify that gs

′
= gm

′
β′ mod p. If the verification succeeds, then receiver i is

the targeted decypherer and it outputs the decrypted message m′ and halts.
Otherwise, the receiver repeats the steps for another four-tuple sequence.

4.3 Security Analysis

The overall probability that an honest verifier is cheated is no better than 3−N .
We believe that N ≈ 40− 50 should be sufficient for most applications in prac-
tice. In order to have an overwhelming chance of successful verification, P must
provide compatible responses for all three cases in every cut-and-choose round. It
keeps V honest. At the same time, V only views one of three possible responses.
It prevents him from identifying the targeted decypherer.

Based on the proof and security analysis in Appendix B, we have the following
theorem.



Prover P Verifier V

d = gm mod p
d -

Repeat N times:

s ∈R Zq
ri ∈R {0, 1}k, 1 ≤ i ≤ n
φ ∈R Sym(n)

λ = E1(r1)|| · · · ||En(rn)

γ = (gH2(rφ(1)) mod p, · · · , gH2(rφ(n)) mod p)
α′ = E1(s)|| · · · ||En(s)

α = H1(α′)

β = gH2(rπ)s mod p

θ = H1(λ||γ||α||β)
θ -

b ∈R {1, 2, 3}
b�

Case b = 1
r1, · · · , rn, γ, α, β -

ri
?

6= rj , ∀i, j ∈ {1, · · · , n}, i 6= j

¿ ∃! δ ∈ Sym(n), γ = (gH2(rδ(1)), · · · , gH2(rδ(n)))

λ̂ = E1(r1)|| · · · ||En(rn)

θ
?
= (λ̂||γ||α||β)

Case b = 2
λ, γ, s -

(γ1, · · · , γn)← γ

α̃ = H1(E1(s)|| · · · ||En(s))

βi = γsi mod p, 1 ≤ i ≤ n
¿ ∃! i ∈ {1, · · · , n}, θ = H1(λ||γ||α̃||βi)

Case b = 3

s′ = H2(rπ)s+m mod q
λ, γ, α′, s′ -

β′ = gs
′
/d mod p

θ
?
= H1(λ||γ||H1(α′)||β′)

If no rejection in all N rounds,

output d and (α′, λ, β′, s′) for all Case-(b = 3) rounds

Note: The symbol ¿ reads as ‘verify’.

Fig. 1. Verifiable 1-out-of-n anonymous encryption scheme.

Theorem 1. The verifiable 1-out-of-n anonymous encryption scheme described
in Sec. 4 satisfies Targeted Decypherability, Anonymity, Confidentiality, Public
Verifiability, and Spontaneity defined in Sec. 3, if the discrete logarithm problem
is hard, the public key encryption functions Ei, 1 ≤ i ≤ n, are secure, and H1

and H2 behave like ideal hash functions [3].



We emphasize the importance of having H2 to be a cryptographically strong
hash function and making sure that H2 is not used elsewhere in order to have
the implementation of our basic scheme secure in practice. This prevents any
possible interaction with the public key encryption functions especially consid-
ering the impact of given both E(x) and gH2(x) of some secret x. In our proofs
in Appendix B, we always assume that H2 behaves like a random oracle [3].

Our security definitions in Sec. 3 suggest the term “decypherment” to be
getting the entire bit string of a message, m, with overwhelming probability
for any m randomly chosen in Zq. Similar to conventional verifiable encryption
schemes, d may leak certain bits of information of m. When m is short (for
example, d = gm without mod p), m may even be able to recover from d directly.
Hence our focus in this paper is on protecting a message from being recovered
completely with non-negligible success rate if the message is randomly chosen
from Zq. In practice, some efficient encoding mechanism can be deployed to
eliminate this concern. Due to space limitation, we do not cover the details in
this paper.

The proofs given in Appendix B suggest that the security of the scheme relies
on the problem of inverting any of the underlying encryption schemes. Hence
stronger public-key encryption functions such as those secure against adaptive
chosen-ciphertext attack [14] can also be used in our scheme. This also leads us to
believe that the scheme also enjoys Perfect Separability, in that each individual
receiver can select a key pair arbitrarily and use a different kind of asymmetric
cipher. Using a standard argument, our scheme trivially supports this property.
We omit details in this paper.

4.4 Performance

Assume the length of p and the ranges of all the public key encryption functions
are all l bits long. Note that other detailed security specifications of the public
key encryption functions can be given but they would not affect the order of the
scheme complexity. Therefore, we can safely simplify the performance evaluation
by making the assumption above.

In one protocol run between P and V , the expected size of the transcripts is
N/3 · ((6+n)k + (6n+1)l + 6) + l bits which is in O((k + l)Nn). The expected
size of the ciphertexts is N/3 · (k + (2n+1)l) + l which is in O(lNn). Hence the
complexity is linear in the size of the receiver group. For k = 160, l = 1024 and
N = 40, the size of all the transcripts is 847KB for n = 10. It raises to 8MB
for n = 100. The size of the ciphertexts would be 283KB and 2.6MB for n = 10
and n = 100, respectively. For resource-constrained systems where lightweight
operation groups are used, such as elliptic curves defined over finite fields, the
sizes of the transcripts and ciphertexts can be reduced three folds for the same
security level.

On the network efficiency, all the N commit-challenge-respond rounds can be
carried out in parallel. Hence there are only four message flows in one protocol
runs.



5 Verifiable (t, t, n) Anonymous Encryption

In our basic verifiable 1-out-of-n anonymous encryption scheme, only a single
targeted member can decrypt the message. Here we make an extension such that
a targeted t-member subset of the group of n receivers can jointly recover the
message. On the notation of (t, t, n), symbol ‘n’ represents that P spontaneously
forms a group of n receivers; the second symbol ‘t’ represents that t targeted
members of the group can recover a message; and the first symbol ‘t’ means
that all the t targeted members need to work jointly to recover the message. By
using similar notation, we propose another extension in Sec. 6 which allows any
member of a targeted t-member subset of the group of n receivers to recover the
message. Hence the notation of the second extension is (1, t, n).

Below is the verifiable (t, t, n) anonymous encryption scheme.

Encryption. Here we use π1, · · · , πt to index the targeted receivers, where t < n
and π1, · · · , πt ∈ {1, · · · , n} are distinct. The encryption algorithm is similar to
the basic scheme described in Sec. 4.2, with the following modifications.

1. P also sends t to V before Commitment.
2. (Commitment) Compute as before, except

β = (gH2(rπ1 ) · gH2(rπ2 ) · . . . · gH2(rπt ))s mod p

3. (Response) Compute as before, except that in Case b=3:

s′ = (H2(rπ1) + · · ·+H2(rπt))s+m mod q

4. (Verification)
(a) Case b=1: Same as before.
(b) Case b=2: Process γ, α̃, βi as before. Verify

θ = H1(λ || γ|| α̃ || βi1 · · ·βit)

for a unique t-element subset {i1, · · · , it} ⊂ {1, · · · , n}.
(c) Case b=3: No change.

Decryption. Same as before, except that t targeted decypherers jointly com-
pute

m′ = s′ − (H2(rπ1) + · · ·+H2(rπt))s mod q

6 Verifiable (1, t, n) Anonymous Encryption

We introduce another extension to our basic scheme, the verifiable (1, t, n) anony-
mous encryption scheme. Different from the verifiable (t, t, n) anonymous encryp-
tion scheme described in Sec. 5, the verifiable (1, t, n) anonymous encryption
allows any one in a targeted set of t receivers to recover the encrypted message.



Encryption. Let π1, · · · , πt be the index of t targeted receivers. The encryption
algorithm is similar to the basic scheme described in Sec. 4.2, with the following
modifications.

1. P also sends t to V before Commitment.
2. (Commitment) Same as before except

β = gH2(rπ1 )s mod p || · · · || gH2(rπt )s mod p

3. (Response) Same as before except in Case b=3, replace the original s′ with

s′i = H2(rπi)s+m mod q

for i = 1, · · · , t.
4. (Verification) Same as before except in

(a) Case b=2, verify that

θ = H1(λ || γ || α̃ || (βi1 || · · · ||βit))

for a unique t-member ordered tuples {i1, · · · , it} ⊂ {1, · · · , n}.
(b) Case b = 3, compute

β′ = gs
′
1/d mod p || · · · || gs

′
t/d mod p

5. (Output) Same as before except replacing the original s′ with s′1, · · · , s′t.

Decryption. The decryption algorithm is similar to the basic scheme described
in Sec. 4.2, with the following modifications.

– Denote β̄′1 || · · · || β̄′t = β′.
– Step 2 is modified as: receiver i computes m′i,j = s′j − H2(ri)s mod q for
j = 1, · · · , t.

– Step 3 is modified as: receiver i checks if gs
′
j

?= gm
′
i,j β̄′j mod p for j = 1, . . . , t.

If one of them equal, then receiver i is one of the targeted decypherers.

The modifications from our basic scheme to the (t, t, n) extension and (1, t, n)
extension cause further alterations. For example, the (1, t, n) extension allows at
least t targeted receivers to recover a message. This is because the t targeted
receivers of one Case-(b=3) round do not need to be identical to that of another
Case-(b=3) round. Similarly, the (t, t, n) extension allows at least one targeted
t-member subset of a group of n receivers to work jointly to recover the message.

7 Concluding Remarks

In this paper, we propose a new notion of Verifiable 1-out-of-n Anonymous
Encryption scheme which allows the prover to spontaneously specify any set
of n receivers and send an encrypted message such that the verifier can make



sure that the encrypted message can be decrypted by at least one of the receivers.
Yet the verifier knows nothing about the identity of the targeted receiver. The
complexity of our proposing scheme is linear in the size of the receiver group.

We further propose two extensions to the basic scheme. The first one allows a
targeted subset of t receivers out of n receivers to work together and recover the
message. The second one allows any member of a targeted subset of t receivers
out of n receivers to recover the message. Both extensions preserve the anonymity
of those specific t receivers and their complexities are also linear in the size of
the receiver group. All the proposed schemes also enjoy perfect separability. We
consider these schemes to have many useful applications in practice.

We believe that other intriguing and efficient verifiable 1-out-of-n anonymous
encryption schemes and various security models can be attained. Other variants
and features may also be constructed. For example, it would be interesting to
construct a general verifiable (k, t, n) anonymous encryption scheme or a similar
scheme which has the deniability property.
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A A Verifiable Encryption Scheme by Asokan, et al. [1]

Our main results are motivated by the verifiable encryption scheme due to
Asokan, et al. [1]. Here we give a brief description of their scheme. Let k be a se-
curity parameter. Let G1 and G2 be some homomorphic groups and θ : G1 → G2

be a one-way group homomorphism. There is a publicly known group element
d ∈ G2 and a secret s ∈ θ−1(d). The goal is to encrypt s under some public
key in such a way that it can be publicly verified that when it is decrypted, an
inverse of d is obtained. In addition to it, there is also a publicly known label
x ∈ {0, 1}k which will be used by the decypherer to determine if this decryption
is authorized.

The protocol consists of two parties, namely Prover (P), Verifier (V), and a
Decryption Algorithm (R). Let E and D be the public-key encryption function
and decryption function, respectively. To encrypt a string y, one chooses a ran-
dom string t ∈R {0, 1}k, and computes E(t, y). We require y = D(E(t, y)) for
any appropriate binary string y and t ∈ {0, 1}k.

Let H1 : {0, 1}∗ → {0, 1}k × G1, H2 : {0, 1}∗ → {0, 1}k and H3 : {0, 1}∗ →
{0, 1}k be three statistically independent cryptographic hash functions. Let N
be another security parameters. The scheme proceeds as follows.

Encryption. P publishes d = θ(s) and executes the following N times in
parallel.

1. P selects r ∈R {0, 1}Q(k) for some polynomial Q, computes (t, s′) = H1(r)
and sends

h = H2(E(t, (s′,H3(x))), θ(s′))

to V .
2. V randomly picks b ∈R {0, 1} and sends b to P .



3. Case b = 0, P sends r to V .
Case b = 1, P sends α = E(t, (s′,H3(x))) and s′′ = s′ + s to V .

4. Case b = 0, V computes (t, s′) = H1(r) and checks if

h
?= H2(E(t, (s′,H3(x))), θ(s′)).

Case b = 1, V checks if h ?= H2(α, θ(s′′)− d).
If any of the checks fails, V rejects.

V rejects if it rejects in any of the N rounds. Otherwise, it accepts and
outputs the set of all the ciphertexts {α, s′′} in those rounds when b = 1. This
algorithm is shown in Fig. 2.

Prover P Verifier V

publicly known: x

message: s

publicly known label: d = θ(s)

repeat N times:

r ∈R {0, 1}Q(k) , (t, s′) = H1(r)

h = H2(E(t, (s′, H3(x))), θ(s′))

h -
b ∈R {0, 1}b�

Case b = 0 r -
(t, s′) = H1(r)

h
?
= H2(E(t, (s′, H3(x))), θ(s′))

Case b = 1

α = E(t, (s′, H3(x))
s′′ = s′ + s

α, s′′ -

h
?
= H2(α, θ(s′′)− d)

If no rejection in all N rounds,

output {α, s′′} for all Case-(b=1) rounds

Fig. 2. The Verifiable Encryption Algorithm by Asokan, et al. [1]

Decryption.

R = “On inputs d, x, a set of ciphertexts {α, s′′} and D,
1. Compute (s′, X) = D(α) for each ciphertext.
2. Check if X ?= H3(x).
3. Compute s = s′′ − s′ and output s if θ(s) = d for at least one of these

values.”



B Proof of Theorem 1

Targeted Decypherability:
(Completeness) Clear.
(Soundness) Assume Prover P has an overwhelming probability of passing

the verification in all cut-and-choose rounds. Then in each round, P must supply
the following parameters in response to various challenge values generated by an
honest V , and these parameters must pass all verifications in their respective
Cases: θ̌ (for Commitment); r̂1, · · · , r̂n, γ̂, α̂, β̂ (for Case b = 1); λ̃, γ̃, s̃ (for Case
b = 2); λ̄, γ̄, ᾱ′, s̄′ (for Case b = 3). We show below then there exists a unique
decypherer. Furthermore, it recovers the message m accurately, for all m ∈ Zq.

Since H1 is ideal, we have λ̂ || γ̂ || α̂ || β̂ = λ̃ || γ̃ || α̃ || β̃ = λ̄ || γ̄ || ᾱ || β̄
with overwhelming probability, where

λ̂ = E1(r̂1) || · · · || En(r̂n)
α̃ = H1(E1(s̃) || · · · || En(s̃))
β̃ = γ̃s̃` , ` is the unique index found in Verification Case b=2
ᾱ = H1(ᾱ′)

β̄ = gs̄
′
/d mod p

Combining and with overwhelming probability, we have

β̄ = gs̄
′
/d = β̃ = γ̃s̃` = γ̂s̃` = gH2(r̂δ(`))s̃ mod p

s̄′ − m̄ = H2(r̂δ(`))s̃ mod q

where δ ∈ Sym(n) is the permutation from Case b=1, and m̄ is such that gm̄ = d.
Denote λ̄ = λ̄1 || . . . || λ̄n and let r̄i = E−1

i (λ̄i), for 1 ≤ i ≤ n. That λ̄ = λ̂
implies r̄δ(`) = r̂δ(`). Denote ᾱ′ = ᾱ′1 || . . . || ᾱ′n and let s̄i = E−1

i (ᾱ′i), for
1 ≤ i ≤ n. That ᾱ = α̃ implies s̄δ(`) = s̃. Therefore,

m̄ = s̄′ −H2(r̄δ(`))s̄ = s̄′ −H2(E−1
δ(`)(λ̄δ(`)))E

−1
δ(`)(ᾱ

′
δ(`)) mod q

Member δ(`), 1 ≤ δ(`) ≤ n, can decypher the message m̄ satisfying gs
′

= gm̄β′,
where β′ = β̄. From Case b=2, δ is unique. From Case b=1, r̂1, · · ·, r̂n are distinct
and thus δ is unique. Therefore, the decypherer is unique with overwhelming
probability.

We already have gm̄ = d above. In a Completeness proof, P is honest and
d = gm. Therefore, m̄ = m, the message recovery is accurate.

The above proves that if V satisfies with probability non-negligibly higher
than 2/3 in an individual cut-and-choose round, then there exists a unique de-
cypherer for that round. In our current cut-and-choose scheme, the unique de-
cypherer from different rounds may differ.

Anonymity:
Assume the verifier V can compute the identity of the targeted decypherer

with probability 1/n+ ε(k), where ε is a non-negligible function. We say that ε



is non-negligible if there exists a polynomial ρ such that ε(k) > 1/ρ(k). Then V
must solve one of the following problems with probability at least 1/n+ ε(k).

A. V can compute the identity (with probability at least 1/n + ε(k)) in Case
b = 1 of an individual round.

B. V can compute the identity in Case b = 2 of an individual round.
C. V can compute the identity in Case b = 3 of an individual round.
D. V can compute the identity based on transcripts (commit, challenge, re-

sponse) of multiple rounds, all of which are Cases b = 3.
E. V can compute the identity based on all N transcripts.

Problem A: Given (r1, · · · , rn, γ, α, β) where ri ∈ {0, 1}k, 1 ≤ i ≤ n, γ =
(gH2(rφ(1)), · · · , gH2(rφ(n))), α = H1(E1(s)|| · · · ||En(s)), β = gH2(rπ)s for some
φ ∈ Sym(n), s ∈ Fq, and π ∈ {1, · · · , n}, find π.

In the following, we show in the random oracle model that if Problem A is
easy, the discrete logarithm problem (DLP) is easy.

Lemma 1. Suppose a PPT algorithm V , with H1 and H2 being random ora-
cles, solves Problem A with probability at least 1/n + ε(k). There exists a PPT
algorithm M, which invokes V and simulates the view of V by answering all its
H1-queries and H2-queries, can compute the discrete logarithm problem (DLP)
with probability at least n

n−1ε(k).

We construct M as follows.

M = “On input Y ∈ G,
1. Randomly pick r1, · · · , rn ∈R {0, 1}k and R1, · · · , Rn ∈R Fq. Set the

values of H2(ri) = Ri, for all 1 ≤ i ≤ n.
2. Randomly pick α ∈R {0, 1}k.
3. Set β = Y and γ = (gR1 , · · · , gRn)
4. Randomly generate secure asymmetric encryption functions Ē1, · · · , Ēn

(whose decryption functions are generated by, and known to, M).
5. Run V on corresponding inputs and reply all the queries of H1 and H2

in the following manner.
– For any H2-query with input ri, 1 ≤ i ≤ n, Ri is replied.
– For a H1-query with input Z1|| · · · ||Zn, compute s′i ← Ē

−1
i (Zi),

1 ≤ i ≤ n, and determine if s′1 = · · · = s′n and Y = gR`s
′
1 , for

some 1 ≤ ` ≤ n. If they are true, output R`s′1 and halt. Otherwise,
randomly pick an element from {0, 1}k \ {α} as the reply.

– For any other queries of H1 and H2, random numbers are generated
in the corresponding range of H1 and H2 as the replies.

– For query consistency, for any query with an input value which has
been received before, the same reply as the last time is returned.

6. Halt with no output if V stops.”



Since V is a PPT, the complexity of M is also in polynomial time. Let E
denote the event that V queries H1 with Z1|| · · · ||Zn such that s = Ē

−1
1 (Z1) =

· · · = Ē
−1
n (Zn) and Y = gR`s for some 1 ≤ ` ≤ n. Then

1/n+ ε(k) ≤ Pr[V solves Problem A]
≤ Pr[E]Pr[V solves Problem A|E] + Pr[Ē]Pr[V solves Problem A|Ē]
≤ η(k) · 1 + (1− η(k)) · (1/n) = (1/n) + (1 − 1/n)η(k)

where η(k) = Pr[E]. In the event E, which has non-negligible probability η(k) ≥
n/(n−1) · ε(k), M obtains its DLP answer. This contradicts Theorem assump-
tions.

Remark : To see why V cannot do better than random guess in the event Ē,
assume V mysteriously obtains a value X such that β = gX . Notice that for
each Ri, 1 ≤ i ≤ n, there is a value si such that X = Ri · si. In the event Ē,
the outcome of the following n queries are yet to be generated by M’s random
tape: H1(Ē1(si)|| · · · ||Ēn(si)), 1 ≤ i ≤ n. These outcomes are not yet generated
by the time V returns its output toM, and thus V essentially cannot do better
than random guess, even if it mysteriously knows the discrete logarithm of β.
The detailed proof is technical and omitted.

(V colluding with diversion receivers) By similar approach, we can see that
V ′ cannot do better than the probability of 1/n+∆(k) to compute the identity
even if all the corresponding decryption functions Di, 1 ≤ i ≤ n, are known.

Problem B is equivalent to Problem B’ below.
Problem B’ : Given ` such that π = φ(`), E1(r1)|| · · · ||En(rn), gH2(rφ(1)),

· · ·, gH2(rφ(n)), s, and gH2(rπ)s, compute π. Note φ ∈ Sym(n) and r1, · · ·, rn are
unspecified.

Lemma 2. Suppose a PPT V ′, after making qH2 queries of H2, computes Prob-
lem B’ with probability 1/n+ ε(k). There exists a PPT M which invokes V ′ and
answers all H2-queries, can invert one of the asymmetric encryption functions
E1, · · ·, En with probability at least n

n−1 ·
1
qH2
· ε(k).

To compute at least one of the asymmetric inversions E−1
1 (Z1), · · ·, E−1

n (Zn),
M randomly generates φ ∈R Sym(n), π, s, Y1, · · ·, Yn, and invokes V ′ with inputs
` such that π = φ(`), Z1|| · · · ||Zn, gYφ(1) , · · ·, gYφ(n) , s, and gYπs.

Let E denote the event that V ′ queries H2 with z satisfying Zi ← Ei(z) for
some i, 1 ≤ i ≤ n. Let Pr{E} = η(k). Then

1/n+ ε(k) ≤ Pr{V ′ solves}
= Pr{E}Pr{V ′ solves |E}+ Pr{Ē}Pr{V ′ solves |Ē}
≤ η(k) · 1 + (1− η(k))(1/n) = (1/n) + (1− 1/n)η(k)

Note in the event of Ē, V ′ essentially cannot do better than random guess even
if he knows all values r1, · · ·, rn because the query outcomes H2(rφ(1)), · · ·



H2(rφ(n)) are yet to be randomly generated by M’s random tape by the time
V ′ completes.

Note that M has to identify the occurrence of event . This may be ac-
complished to test any given query z of H2 such that Zi = Ei(z), for some i,
1 ≤ i ≤ n. However, M may not be able to do this if a probabilistic public-key
encryption function Ei’s random tape for generating Zi is unknown. M has to
randomly pick one query out of qH2 H2-queries and hopes it is the right moment
of event E. Therefore, M succeeds in inverting at least one of the asymmet-
ric encryption function with probability at least nε(k)

(n−1)qH2
. This contradicts the

Theorem assumption that each Ei is secure against PPT adversaries.
(V colluding with diversion receivers) Modify Problem B’ such that t (t < n)

corresponding decryption functions excluding Dπ are also given, we can con-
struct for contradiction another reduction master to invert one of the unknown
asymmetric encryption functions if there exists a PPT which can solve the mod-
ified problem with probability at least 1/(n− t) + ε(k). The detailed proof is
omitted.

Problem C: We re-iterate Problem C below. We assume V has t colluders,
denoted E−1

1 , · · ·, E−1
t without loss of generality.

Problem C : Given λi = Ei(ri), 1 ≤ i ≤ n, γ = gH2(rφ(1))|| · · · ||gH2(rφ(n)),
α′ = E1(s)|| · · · ||En(s), s′ = H2(rπ)s+m, d = gm, θ = H1(λ||γ||H1(α′)||gs′/d),
E1, · · ·, En, E−1

1 , · · ·, E−1
t , H1, H2, and t < π ≤ n, compute π. Note φ ∈ Sym(n),

s, and ri, · · · , rn are unspecified.
Problem C is reducible to inverting at least one of the asymmetric encryptions

Et+1, · · ·, En, under the random oracle model. We use a special form of the
random oracle.

(A formulation of the random oracle with n permutable back patches) For
asymmetric encryption functions E1, · · ·, En, let H(t, E1, · · · , En) denote the
random oracle which generates its outputs in the following way:

1. H randomly generates n distinct values Z1, · · ·, Zn ∈ {1, · · · , q}.
2. H randomly generates n distinct values Y1, · · ·, Yn ∈ {1, · · · , q}.
3. Let X be a query to H. If X has never been queried before, H checks if
Ei(X) = Zi for some i, 1 ≤ i ≤ n. Case yes and 1 ≤ i ≤ t, set H(X) = Yi.
Case yes and t < i ≤ n, randomly select a member Y from {Yt+1, · · · , Yn}
which has never been selected before and set H(X) = Y . Case no, set H(X)
to a random member of {1, · · · , q} \ {Y1, · · · , Yn} which has never been out-
putted by H before. On duplicated queries X, H maintains consistency with
previous outputs.

Remark: The above remains a random oracle.

Lemma 3. Suppose a PPT algorithm V , knowing the decryption functions E−1
1 ,

· · ·, E−1
t , solves Problem C with probability at least 1/(n− t)+ ε(k). There exists

a PPT algorithm, M, which invokes V and simulates the view of V by replacing
its queries to H2 by queries to H(t, E1, · · · , En), can compute at least one of
(distinct) E−1

t+1(Zt+1), · · ·, E−1
n (Zn), with probability at least n−t

n−t−1ε(k). The
complexity of M is in the same order as that of V .



In the following we abbreviateH = H(t, E1, · · · , En). Assume PPT algorithm
V solves Problem C with probability 1/(n− t)+ε(k).M randomly generates, on
behalf of H, the values Z1, · · ·, Zn, Y1, · · ·, Yn. Further, M randomly generates
m, s, and ` with t ≤ ` ≤ n. Then M invokes V with inputs λ1 = Z1, · · ·,
λn = Zn, γ = gY1 || · · · ||gYn , α′ = E1(s)|| · · · ||En(s), s′ = Y`s + m, d = gm,
θ = H1(λ||γ||H1(α′)||gs′/d). As V executes, M records its queries to H, M
simulatesH in answering queries including flips coins, andM checks the eventual
output from V. Note M can simulate H in polynomial time.

Let Ē denote the event V does not query H with any input X satisfying
Ei(X) = Zi for any i with t < i ≤ n. In the event E, V queries H with an
input X satisfying Hi(X) = Zi for some i, t < i ≤ n. ThenM has obtained the
desired asymmetric decryption X = E−1

i (Zi). In the event Ē, the correspondence
between the Yi’s and the Zi’s in the third step of H specification has not yet
been decided by the time V completes. The value of π such that there exists X
with Eπ(X) = Zπ and H(X) = Y` has yet to be decided with at least n − t
equally probable candidates π ∈ {t + 1, · · · , n}. M will have to flip additional
coins in order to choose π among the candidates. Therefore

1
n− t

+ ε(k) ≤ Pr{V succeeds}

= Pr{E}Pr{V succeeds|E}+ Pr{Ē}Pr{V succeeds|Ē}

≤ η · 1 + (1− η)
1

n− t

where η = Pr{E}. M’s probability of success is at least η and η ≥ n−t
n−t−1ε(k).

Problem D: For simplicity, we prove for the scenario where there are two
rounds with Case b=3. Other scenarios are similar. Problem D is reiterated
below, where V has t colluders denoted E−1

1 , · · ·, E−1
t without loss of generality.

Problem D: Given gm, E1, · · ·, En, λ = E1(r1)|| · · · ||En(rn), λ̄ = E1(r̄1)|| · · · ||
En(r̄n), γ = gH2(rφ(1)) || · · · || gH2(rφ(n)), γ̄ = gH2(r̄φ̄(1))|| · · · ||gH2(r̄φ̄(n)), α′ =
E1(s)|| · · · ||En(s), ᾱ′ = E1(s̄)|| · · · ||En(s̄), s′ = H2(rπ)s+m, s̄′ = H2(r̄π)s̄+m,
θ = H1(λ||γ||H1(α′)||gs′/d), θ̄ = H1(λ̄||γ̄||H1(ᾱ′)||gs̄′/d), and E−1

1 , · · ·, E−1
t ,

compute π, where t < π ≤ n.
Problem D is reducible to inverting at least one of the asymmetric encryptions

Et+1, · · ·, En, under the random oracle model. Like Problem C, We use a special
form of the random oracle.

(A formulation of the random oracle in terms of 2n relations) For asymmetric
encryption functions E1, · · ·, En, letHD(t, E1, · · · , En) denote the random oracle
which generates its outputs in the following way:

1. HD randomly generates 2n distinct values Z1, · · ·, Zn, Z̄1, · · ·, Z̄n such that
Zi, Z̄i are in the range of Ei, for all i, 1 ≤ i ≤ n.

2. HD randomly generates 2n distinct values Y1, · · ·, Yn, Ȳ 1, · · ·, Ȳ n ∈R Zq.
3. Let X be a query to HD. If X has never been queried before, HD checks if
Ei(X) = Zi for some i, 1 ≤ i ≤ n. Case yes and 1 ≤ i ≤ t, set HD(X) = Yi.
Case yes and t < i ≤ n, randomly select a member Y from {Yt+1, · · · , Yn}



which has never been selected before and set HD(X) = Y . Case no, set
HD(X) to a random member of {1, · · · , q} \ {Y1, · · · , Yn} which has never
been outputted byHD before. Otherwise :HD checks if Ei(X) = Z̄i for some
i, 1 ≤ i ≤ n. If yes and 1 ≤ i ≤ t, set HD(X) = Ȳ i. If yes and t < i ≤ n,
randomly select a member Y from {Ȳ t+1, · · · , Ȳ n} which has never been
selected before and setHD(X) = Y . If no, setHD(X) to a random member of
{1, · · · , q}\{Y1, · · · , Yn, Ȳ 1, · · · , Ȳ n} which has never been outputted by HD
before. On duplicated queries X, HD maintains consistency with previous
outputs.

Remark: The above remains a random oracle.

Lemma 4. Suppose a PPT algorithm V , knowing the decryption functions E−1
1 ,

· · ·, E−1
t , solves Problem D with probability at least 1/(n − t) + ε(k). There

exists a PPT algorithm, M, which invokes V and simulates the view of V by
replacing its queries to H2 by queries to HD(t, E1, · · · , En), can compute (the
discrete logarithm of) at least one of (distinct) E−1

t+1(Zt+1), · · ·, E−1
n (Zn), with

probability at least n−t
n−t−1ε(k). The complexity of M is in the same order as that

of V .

In the following we abbreviate HD = HD(t, E1, · · · , En). Assume PPT al-
gorithm V solves Problem D with probability 1/(n − t) + ε(k). M randomly
generates, on behalf of HD, the values Z1, · · ·, Zn, Y1, · · ·, Yn. and Z̄1, · · ·, Z̄n,
Ȳ 1, · · ·, Ȳ n. Further, M randomly generates m, s, s̄, ` with t ≤ ` ≤ n. ¯̀ with
t ≤ ¯̀ ≤ n. Then M invokes V with inputs gm, E1, · · ·, En, λ = Z1|| · · · ||Zn,
λ̄ = Z̄1|| · · · ||Z̄n, γ = gY1 || · · · ||gYn , γ̄ = gȲ1 || · · · ||gȲn , α′ = E1(s)|| · · · ||En(s),
ᾱ′ = E1(s̄)|| · · · ||En(s̄), s′ = Y`s+m, s̄′ = Ȳ ¯̀s̄+m, θ = H1(λ||γ||H1(α′)||gs′/d),
θ̄ = H1(λ̄||γ̄||H1(ᾱ′)||gs̄′/d), E−1

1 , · · ·, E−1
t .

The rest of the proof is similar to that of the previous Lemma and omitted.

Problem E: This problem can be re-iterated as a collection of Problem E(i),
1 ≤ i ≤ 3N :

{Find π from T i : m← Fq; T i ← (i, P )}

where P is a honest prover defined in Sec. 4 and T i is a particular transcript
formally specified as follows.

(Transcripts T i) Let i = (b1, · · · , bN ) in ternary notation. Let

{1, · · · , N} = A ∪C ∪ F = {a1, · · · , aN1} ∪ {c1, · · · , cN2} ∪ {f1, · · · , fN3}

where N = N1 +N2 +N3 and A, C and F are the sets of indices corresponding
to Rounds with b = 1, 2, 3, respectively.

T i ← P : {(E1, · · · , En)← G(1k);

d; θ(i), 1 ≤ i ≤ N ; (r(i)
1 , · · · , r(i)

n ), i ∈ A;

γ(i), 1 ≤ i ≤ n;α(i), i ∈ A;β(i), i ∈ A;
λ(i), i ∈ C ∪ F; s(i), i ∈ C;α′(i), i ∈ F; s′(i), i ∈ F}

(Problem E) Solve Problem E(1), · · ·, or E(3N ).



Lemma 5. Suppose a PPT algorithm V , with H1 and H2 being random oracles,
achieves

max
1≤i≤3N

Pr[V solves problem E(i)] ≥ 1
n

+ ε(k)

for some non-negligible function ε. There exists a PPT algorithm M, which
invokes V and simulates the view of V by answering all its H1-queries and H2-
queries, can solve at least one of the following problems: Discrete Logarithm
Problem or inverting a secure public-key encryption function, with probability at
least (n− 1)/n · ε(k).

We construct M as follows.

M = “On
1. inputs {Y (i) ∈ G : i ∈ A}, for each a ∈ A,

(a) Randomly pick r
(a)
1 , · · · , r(a)

n ∈R {0, 1}k and R
(a)
1 , · · · , R(a)

n ∈R Fq.
Set the values of H2(ri) = R

(a)
i , for all 1 ≤ i ≤ n.

(b) Randomly pick α(a) ∈R {0, 1}k.
(c) Set β(a) = Y (a) and γ(a) = (gR

(a)
1 , · · · , gR(a)

n )
(d) Generate n secure public-key encryption functions Ē(a)

1 , · · · , Ē(a)
n at

random (whose decryption functions are generated by, and known
to, M).

(e) Run V on corresponding inputs and reply all the queries of H1 and
H2 in the following manner.
– For any H2-query with input r(a)

i , 1 ≤ i ≤ n, R(a)
i is replied.

– For a H1-query with input Z(a)
1 || · · · ||Z

(a)
n , compute the inversion

s
′(a)
i ← Ē

−1(a)
i (Z(a)

i ), 1 ≤ i ≤ n, and determine if s′(a)
1 = · · · =

s
′(a)
n and Y (a) = gR

(a)
` s
′(a)
1 , for some 1 ≤ ` ≤ n. If they are

true, output R(a)
` s
′(a)
1 as the discrete logarithm of Y (a) and halt.

Otherwise, randomly pick an element from {0, 1}k \{α(a)} as the
reply.

– For any other queries of H1 and H2, random numbers are gen-
erated in the corresponding range of H1 and H2 as the replies.

– For query consistency, for any query with an input value which
has been received before, the same reply as the last time is re-
turned.

2. and inputs (Z(a)
1 , · · · , Z(a)

n ), a ∈ C”, where each Z(a)
i is in the range of a

secure public-key encryption function Ei, 1 ≤ i ≤ n, for each a ∈ C, M
sets λ(a) = Z

(a)
1 || · · · ||Z

(a)
n and randomly generates Y (a)

i ∈R G, 1 ≤ i ≤ n
and s(a) ← Fq, and set γ(a) = (Y (a)

1 , · · · , Y (a)
n ). Then M runs V on

corresponding inputs and reply all the queries of H1 and H2 in the
similar manner to the above. Besides ensuring randomness in replies
and maintaining query consistency,M evaluates the input value of each
H2-query, denoted by r(a), and determine if Z(a)

i = Ei(r(a)), for some i,



1 ≤ i ≤ n. If this is the case, M outputs r(a) as the plaintext of Z(a)
i

and halts;
3. and inputs (Z(a)

1 , · · · , Z(a)
n ), a ∈ F”, where each Z

(a)
i is in the range of

a secure public-key encryption function Ei, 1 ≤ i ≤, for each a ∈ F, M
prepares the appropriate inputs for V and invokes V and answering all
the queries of H1 and H2 in the similar manner to Step 2 above.

4. Halt with no output if V stops.”

If V does not make any queries to H1 or to H2 in any of the N rounds, then
he can best randomly guess π becauseM has not decided on the value of π yet.
If V makes any ”qualified” query, then M succeeds.

Remark on Probabilistic Public-key Encryption Functions : In the formulation of
H and HD above, the functions are required to check if Ei(X) is computed to Zi
for some i, 1 ≤ i ≤ n. In general, this may not be feasible if Ei is probabilistic
while the corresponding encryption coin flip sequence as well as E−1

i are un-
known. In our scheme described in Sec. 4.1, the corresponding coin flip sequence
of Ei for yielding Zi from X is also given. One may also consider the coin flip
sequence to be part of the message X. For the case when coin flip sequences
are not carried over to places where encryptions are not required, for example,
computing gH2(rφ(i)), we can use the technique of the proof of Lemma 2 instead.
Therefore for simplicity, we assume that all the underlying public key encryption
functions used in most parts of our proof are deterministic.

Proof of Confidentiality:
If a PPT adversary V can break Confidentiality, then it must be able to

break Confidentiality in at least one of the following five scenarios:

A. V can break Confidentiality in an individual Round with b = 1.
B. V can break Confidentiality in an individual Round with b = 2.
C. V can break Confidentiality in an individual Round with b = 3.
D. V can break Confidentiality in multiple Rounds all with b = 3.
E. V can break Confidentiality based on transcripts from all N Rounds.

Problem A: If V can compute m from inputs d = gm, θ = H1(λ||γ||α||β)
and r1, · · ·, rn, γ, α, β, then V can compute the discrete logarithm of d because
other parameters are all unrelated to m. This can be shown by simple reduction
from DLP and hence details are omitted.

Problem B: If V can compute m from inputs d = gm, θ = H1(λ||γ||α||β
and λ, γ, and s, then V can compute the discrete logarithm of d because other
parameters are all unrelated to m. The proof is similar to that of the Problem
A.

Problem C: We re-iterate Problem C below.
Problem C: Given d, θ, λ, γ, α′, s′, E1, · · ·, En, H1, H2, where d = gm,

θ = H1(λ||γ||α||β), λ = E1(r1)|| · · · ||En(rn), γ = gH2(rφ(1))|| · · · ||gH2(rφ(n)), α′ =
E1(s)|| · · · ||En(s), s′ = H2(rπ)s + m, for some m, r1, · · ·, rn, s, φ ∈ Sym(n),
compute m.



Assume that E−1
1 , · · ·, E−1

t are known (due to collusion among the t possible
receivers), for some t, t < n. Then s is known to these colluders. In the worst
case when t = n−1, that is, all diversion receivers are colluding with each other,
π is known. We have the following problem for these n− 1 colluders.

Problem C’: Given d, Eπ(rπ), gH2(rπ), s, s′, Eπ, H1, H2 where d = gm,
s′ = H2(rπ)s+m, for some m and rπ, compute m.

Problem C’, is strictly easier than Problem C: solving Problem C while other
parameters which include s, π and φ.

Now a classic problem:
Simple Proof of Knowledge (SPoK):

{Compute x from (σ, y, α) : x, r ← Fq; y = gx, α = gr, σ = x+ r}

This is computationally equivalent to finding the private key in Schnorr’s Iden-
tification Scheme [15] and is also equivalent to the discrete logarithm problem
(DLP). To see this, suppose there is an algorithm OracleSPoK which accepts on
inputs y, α, σ described in SPoK above and outputs x such that y = gx (as-
sume that the domain parameters are publicly known). Then we can apply the
crooked attacking technique [15] to build the following algorithm DLPSolver to
solve DLP.

DLPSolver = “On input y,
1. Random pick r ← Fq and set σ = r.
2. Compute α = gry−1.
3. Output x = OracleSPoK(y, α, σ).”

Lemma 6. SPoK is computationally equivalent to Problem C’. Therefore sup-
pose a PPT algorithm solves Problem C with non-negligible probability, then
there exists a PPT algorithm that solves SPoK with non-negligible probability.
In other words, we have SPoK ≡P Problem C ′ ≤P Problem C.

(Problem C ′ ≤P SPoK) The following correspondence does it:

x = m, y = d, r = H2(rπ)s, σ = s′

(SPoK ≤P Problem C ′) Suppose a PPT V with random oracle H2 solves
Problem C’ with probability greater than 1/Q(k) where Q is some polynomial.
We construct the following algorithm for solving SPoK.

SPoKSolver = “On inputs (σ, y, α) as denoted in SPoK,
1. Randomly generate a secure public-key encryption function E (so that

SPoKSolver knows E−1)
2. Randomly pick Z in the range of E.
3. Run V with inputs (y, Y, α, 1, σ, E) and reply all the queries of H2 in the

following manner.
– For any H2-query with input x such that Y 6= E(x), return a random

number as the answer.



– If a H2-query with input x such that Y = E(x), the algorithm halts
with failure.

– For consistency, for any query which is the same as one of the pre-
vious queries, the same reply as the last time is returned.

4. If V terminates successfully and returns a value denoted by m, output
m and halt.”

The complexity of SPoKSolver is in the same order as that of V and therefore
is in polynomial time. We now evaluate the success rate. Let E be the event that
all the H2-queries are answered successfully without failure. Suppose there are
qH H2-queries in the simulation. Since E is secure, the chance of obtaining x
such that Y = E(x) is negligibly greater than 1/q. This is the condition when
SPoKSolver fails. Therefore, Pr[E] = (1− 1/q)qH ≥ 1− qH/q.

Pr[SPoKSolver solves SPoK] = Pr[V solves Problem C’ |E] · Pr[E]

>
1

Q(k)
(1− qH

q
)

Problem D: Problem D is mutually reducible with SPoK with multiple wit-
nesses. Proof omitted.

Simple Proof of Knowledge (SPoK) with multiple witnesses:

{Compute x from (y, σ1, α1, · · · , σ`, α`) : x, r1, · · · , r` ← Fq;
y = gx, α = gr1 , σ = x+ r1, · · · , α = gr` , σ = x+ r`}

Problem E: All rounds with b=1 or 2 do not involve m. Therefore solving
Problem E is reduced to solving Problem D.

Public Verifiability and Spontaneity:
These properties are implied directly from the scheme described in Sec. 4.


