
New Approaches to Password Authenticated Key

Exchange based on RSA

Muxiang Zhang

Verizon Communications, Inc.

40 Sylvan Road, Waltham, MA 02451, USA

muxiang.zhang@verizon.com

February 4, 2004

Abstract

We investigate eÆcient protocols for password-authenticated key exchange based on the RSA
public-key cryptosystem. To date, most of the published protocols for password-authenticated
key exchange were based on DiÆe-Hellman key exchange. It appears inappropriate to design
password-authenticated key exchange protocols using RSA and other public-key cryptographic
techniques. In fact, many of the proposed protocols for password-authenticated key exchange
based on RSA have been shown to be insecure; the only one that remains secure is the SNAPI
protocol. Unfortunately, the SNAPI protocol has to use a prime public exponent e larger than the
RSA modulus n. In this paper, we present a new password-authenticated key exchange protocol,
called PEKEP, which allows using both large and small prime numbers as RSA public expo-
nents. Based on number-theoretic techniques, we show that the new protocol is secure against
the e-residue attack, a special type of o�-line dictionary attack against RSA-based password-
authenticated key exchange protocols. We also provide a formal security analysis of PEKEP
under the RSA assumption and the random oracle model. On the basis of PEKEP, we present a
computationally-eÆcient key exchange protocol to mitigate the burden on communication entities.

Key words: password authentication, o�-line dictionary attack, public-key cryptography

1 Introduction

The design of authentication and key exchange protocol is usually based on the assumption that en-
tities either share or own some secret data (called keys) which are drawn from a space so large that
an adversary can not enumerate, either on-line or o�-line, all possible keys in the space. In practice,
however, cryptographic keys may often be substituted by human-memorable passwords consisting of
only six to ten characters. The consequence is the proliferation of the so-called exhaustive guessing
or dictionary attacks against many password-based systems [27]. Password guessing attacks have
been around for so long, it seems paradoxical that strong authentication using only small passwords
would be possible. In 1992, Bellovin and Merritt [2] showed that such paradoxical protocols did
exist. They presented a family of protocols known as Encrypted Key Exchange, or EKE. By using
a combination of symmetric and asymmetric (public-key) cryptographic techniques, EKE provides
insuÆcient information for an adversary to verify a guessed password and thus defeats o�-line dic-
tionary attacks. Following EKE, a number of protocols for password-based authentication and key
exchange have been proposed, e.g., [3-5, 10-11, 15, 17-19, 26]. A comprehensive list of such protocols
can be found in Jablon's research link [16].

1

Password-authenticated key exchange protocols are attractive for their simplicity, convenience,
and strength against o�-line dictionary attacks. Unlike other public-key based key exchange protocols
such as SSL, the EKE-like protocols do not rely on the existence of a public key infrastructure (PKI).
This is desirable in many environments where the deployment of a public key infrastructure is either
not possible or would be overly complex. Over the last decade, many researchers have investigated
the feasibility of implementing EKE using di�erent public-key cryptosystems such as RSA, ElGamal,
and DiÆe-Hellman key exchange. Nonetheless, most of the well-known and secure variants of EKE
are based on DiÆe-Hellman key-exchange. It seems that EKE works well with DiÆe-Hellman key
exchange, but presents subtleties one way or the other when implemented with RSA and other
public-key cryptosystems. In fact, many of the proposed protocols for password-authenticated key
exchange based on RSA have been shown to be insecure [2, 24, 22]; the only one that remains secure
is the SNAPI protocol developed by Mackenzie, et al. [22]. Unfortunately, the SNAPI protocol
has to use a prime public exponent e which is larger than the RSA modulus n. This may render
the SNAPI protocol impractical in resource-limited platforms, such as mobile phones and personal
digital assistants.

In this paper, we investigate the design of RSA-based password-authenticated key exchange
protocols that do not restrict the size of RSA public exponent. We focus on such protocols in the
two-party setting, where two entities (say, Alice and Bob) share a password drawn from a small
space and one of the entities (say, Alice) possesses a pair of RSA public/private keys. A nice feature
of this type of protocols is that the overhead for the protocol setup is minimal; Alice and Bob
only need to establish a shared password in advance and do not need to establish other common
parameters such as a prime number p and a generator of the cyclic group modulo p. This is appealing
in environments where entities have insuÆcient resources to generate or validate public parameters
with certain properties, e.g., primality.

1.1 Related Work

In 1989, Lomas et al. [20] introduced the �rst password-authenticated key exchange protocol resistant
to o�-line dictionary attacks. Their protocol, however, assumed that one of the entities knows the
other entity's public key and thus is not a strictly password-only protocol. This type of protocol was
further studied by Gong [12] and by Halevi and Krawczyk [13].

The EKE protocol developed by Bellovin and Merritt is the �rst password-authenticated key
exchange protocol that does not require one of the entities (say, Bob) to know the public key of the
other entity (say, Alice). Following EKE, many researchers have provided a variety of extensions to
achieve additional goals, e.g., protection against server compromise [3, 19, 26]. In their original paper
[2], Bellovin and Merritt investigated the feasibility of implementing EKE using three di�erent types
of public-key cryptographic techniques: RSA, ElGamal, and DiÆe-Hellman key exchange. They
pointed out that EKE is only suitable for implementation using DiÆe-Hellman key exchange. The
problem with the EKE variant implemented using RSA is that Bob does not know the public key,
(n; e), of Alice and thus can not verify whether e is relatively prime to �(n). This fosters the so-
called e-residue attack as described in [2]. Based on number-theoretic techniques, Patel [24] further
investigated the security of the RSA-based EKE variant and concluded that simple modi�cations of
EKE would not prevent the RSA-based EKE variant from o�-line dictionary attacks. In 1997, Lucks
[21] proposed an RSA-based password-authenticated key exchange protocol (called OKE) which was
claimed to be secure against the e-residue attack. Later, Mackenzie et al. [22] found that the OKE
protocol is still subject to the e-residue attack. In [22], Mackenzie et al. proposed an RSA-based
password-authenticated key exchange protocol (SNAPI) and provided a formal security proof in the
random oracle model. The SNAPI protocol mandates that the public exponent e be a prime number
larger than the RSA modulus n. This ensures that e is relatively prime to �(n).

2

To avoid using large public exponents, Zhu et al. [28] proposed an \interactive" protocol which
is revised from an idea of [2]. In the interactive protocol, Bob sends to Alice a number of messages
encrypted using Alice's public key. If Alice can successfully decrypt the encrypted messages, then
Bob is ensured that the encryption based on Alice's public key is a permutation. A drawback of the
interactive protocol is the large communication overhead involved in the veri�cation of Alice's public
key.

1.2 Overview of Our Results

In this paper, we present a new protocol for password-authenticated key exchange based on RSA.
The new protocol, called PEKEP, involves two entities, Alice and Bob, who share a short password
and Alice possesses a pair of RSA keys, n; e and d, where ed � 1 (mod �(n)). Unlike the protocol
SNAPI, however, the new protocol PEKEP allows Alice to select both large and small primes for the
RSA public exponent e, In the protocol PEKEP, Bob does not need to verify if e is relatively prime
to �(n), and furthermore, Bob may even not test the primality for a large public exponent selected
by Alice. When e is a prime number larger than n, we show that the protocol PEKEP is nearly
identical to the protocol SNAPI except minor di�erences. Based on number-theoretic techniques,
we prove that the protocol PEKEP is secure against the e-residue attack as described in [2, 24]. We
also provide a formal security analysis of PEKEP under the RSA assumption and the random oracle
model.

To reduce the computational load on entities, we present a computationally-eÆcient key exchange
protocol (called CEKEP) in this paper. The protocol CEKEP is derived from PEKEP by adding two
additional
ows between Alice and Bob. With the two additional
ows, we show that the probability
for an adversary to launch a successful e-residue attack against CEKEP is less than or equal to
", where " is a small number (e.g., 0 < " � 2�80) selected by Bob. In the protocol CEKEP, the
computational burden on Bob includes two modular exponentiations, each having an exponent of
O(dlog2 "

�1e) bits. When " = 2�80, for example, the computational burden on Bob is lighter than
that in a DiÆe-Hellman based password-authenticated key exchange protocol. In the DiÆe-Hellman
based EKE variant, Bob needs to compute two modular exponentiations, each having an exponent
of at least 160 bits. We show that the computational burden on Bob could be reduced further if Bob
caches a hashed version of Alice's public key used in previous communication sessions.

The rest of the paper is organized as follows. In Section 2, we review basic concepts of number
theory used throughout this paper. We provide an overview of the security model for password-
authenticated key exchange in Section 3. We present the protocol PEKEP in Section 4 and investigate
its security against e-residue attacks. We present the protocol CEKEP in Section 5 and pursue formal
security analysis of PEKEP and CEKEP in Section 6. We conclude in Section 7.

2 Preliminaries

Let f0; 1gk denote the set of binary strings of length k and f0; 1g� denote the set of binary strings of
�nite length. Without confusion, we sometimes use s1; s2 to denote the concatenation of two strings
s1 and s2. A real-valued function �(k) of non-negative integers is called negligible (in k) if for every
c > 0, there exists k0 > 0 such that �(k) � 1=kc for all k > k0.

For every positive integer n, n > 1, it is well know that n can be expressed as a product of
nontrivial powers of distinct primes, i.e., n = pa11 pa22 : : : parr , where p1; p2; : : : ; pr are primes and
a1; a2; : : : ; ar are positive integers. Up to a rearrangement of the prime powers, this prime-power
factorization is unique. Let Zn denote the set of non-negative integers less than n and Z�

n denote the
set consisting of integers in Zn that are relatively prime to n. The number of integers in Z�

n is equal
to the Euler phi-function �(n).

3

Let a, b, and n be integers such that n > 0 and gcd(a; n) = c. If c - b, then the congruence
ax � b (mod n) has no solutions. If c j b,the congruence ax � b (mod n) has exactly c incongruent
solutions modulo n. Let x0 denote one of the solutions, then the c incongruent solutions are given
by

x = x0 + t(n=c); t = 0; 1; : : : ; c� 1: (1)

Let g and n be positive integers relatively prime to each other. The least positive integer i such
that gi � 1 (mod n) is called the order of g modulo n. If the order of g is equal to �(n), then g is
called a primitive root of n. It is known (see [1, 25]) that a positive integer n, n > 1, possesses a
primitive root if and only if n = 2; 4; pt or 2pt, where p is an odd prime and t is a positive integer.
If n has a primitive root g, then the integers g0; g1; g2; : : : ; g�(n)�1 form a cyclic group under the
modulo n multiplication. Due to this fact, we see that if a is a positive integer relatively prime to
n, then there exists a unique integer i, 0 � i � �(n) � 1, such that a = gi mod n. The integer i is
called the index of a to the base g modulo n, and is denoted by indga. With this notation, we have
a = gindga mod n.

If n and e are positive integers and a is an integer relatively prime to n, then we say that a is an
e-th power residue of n if the congruence xe � a (mod n) has a solution. If n has a primitive root,
then a is an e-th power residue of n if and only if a�(n)=b � 1 (mod n), where b = gcd(e; �(n)).

3 Security Model

We consider two-party protocols for authenticated key-exchange using human-memorable passwords.
In its simplest form, such a protocol involves two entities, say Alice and Bob (denoted by A and B),
both possessing a secret password drawn from a small password space D. Based on the password,
Alice and Bob can authenticate each other and upon a successful authentication, establish a session
key which is known to nobody but the two of them. There is present an active adversary, denoted by
A, who intends to defeat the goal for the protocol. The adversary has full control of the communi-
cations between Alice and Bob. She can deliver messages out of order and to unintended recipients,
concoct messages of her own choosing, and create multiple instances of entities and communicate
with these instances in parallel sessions. She can also enumerate, o�-line, all the passwords in the
password space D. She can even acquire session keys of accepted entity instances. Our formal model
of security for password-authenticated key exchange protocols is based on that of [5]. In the follow-
ing, we review the operations of the adversary and formulate the de�nition of security. For details
as well as motivations behind the model, we refer the readers to [5].

Initialization. Let I denote the identities of the protocol participants. Elements of I will often
be denoted A and B (Alice and Bob). We emphasis that A and B are variables ranging over I
and not �xed members of I. Each pair of entities, A;B 2 I, are assigned a password w which is
randomly selected from the password space D. The initialization process may also specify a set of
cryptographic functions (e.g., hash functions) and establishes a number of cryptographic parameters.

Running the Protocol. Mathematically, a protocol � is a probabilistic polynomial-time algo-
rithm which determines how entities behave in response to received input. For each entity, there
may be multiple instances running the protocol in parallel. We denote the i-th instance of entity A
as �i

A. The adversary A can make queries to any instance; she has an endless supply of �i
A oracles

(A 2 I and i 2 N). In response to each query, an instance updates its internal state and gives its
output to the adversary. At any point in time, the instance may accept and possesses a session key
sk, a session id sid, and a partner id pid. The query types, as de�ned in [5], include:

4

- Send(A; i;M): This sends message M to instance �i
A. The instance executes as speci�ed by

the protocol and sends back its response to the adversary. Should the instance accept, this
fact, as well as the session id and partner id will be made visible to the adversary.

- Execute(A; i;B; j): This call carries out an honest execution between two instances �i
A and

�j
B , where A;B 2 I;A 6= B and instances �i

A and �j
B were not used before. At the end of the

execution, a transcript is given to the adversary, which logs everything an adversary could see
during the execution (for details, see [5]).

- Reveal(A; i): The session key skiA of �i
A is given to the adversary.

- Test(A; i): The instance �i
A generates a random bit b and outputs its session key skiA to the

adversary if b = 1, or else a random session key if b = 0. This query is allowed only once, at
any time during the adversary's execution.

- Oracle(M): This gives the adversary oracle access to a function h, which is selected at random
from some probability space
 . The choice of
 determines whether we are working in the
standard model, or in the random-oracle model (see [5] for further explanations).

In additional to the above query types, we introduce another query type:

- Impersonate(A; i; �; paras): This replaces the password and the parameters of the instance �i
A

by � and paras, respectively, where �i
A was not used before. After this query, the internal

state of �i
A is visible to the adversary. Each query of this type is also called an impersonation

attempt.

We use the Impersonate type to model an impersonation attack, which allows the adversary to test
a guessed password on-line. In an impersonation attack, the adversary picks a password � as her
guess and then impersonates as an instance �i

A to start the protocol towards another instance �j
B .

By observing the decision of �j
B (i.e., accepts or rejects), the adversary tests the correctness of the

guessed password �. Furthermore, by analyzing, o�-line, the transcript of the execution, the adver-
sary may be able to test passwords other than �. For a secure protocol, we expect that the adversary
can only test a single password in each impersonation attempt. Certainly, the impersonation attack
can be implemented by solely using the Send query type. The number of Send queries called by the
adversary, however, may vary with di�erent protocols. Using the Impersonate type, we can explicitly

de�nes the number of impersonation attempts performed by the adversary. We assume that the
adversary always use an impersonated instance to launch an impersonation attack.

Definitions. Let �i
A and �i

B , A 6= B, be a pair of instances. We say that �i
A and �i

B are partnered
if both instances have accepted and hold the same session id sid and the same session key sk. Here,
we de�ne the sid of �i

A (or �i
B) as the concatenation of all the messages sent and received by �i

A

(or �i
B). We say that �i

A is fresh if: i) it has accepted; ii) it is not impersonated; and iii) a Reveal

query has not been called either on �i
A or on its partner. With these notions, we now de�ne the

advantage of the adversary A in attacking the protocol. Let Succ denote the event that A asks a
single Test query on a fresh instance, outputs a bit b0, and b0 = b, where b is the bit selected during
the Test query. The advantage of the adversary A is de�ned as AdvakeA = 2Pr(Succ)� 1.

De�nition 1 A protocol � is called a secure password-authenticated key exchange protocol if for

every polynomial-time adversary A that makes at most v impersonation attempts, the following two

conditions are satis�ed:

1) Except with negligible probability, each oracle call Execute(A; i;B; j) produces a pair of partnered
instances �i

A and �j
B.

5

2) AdvakeA � v=jDj + �, where jDj denotes the size of the password space and � is a negligible
function.

The �rst condition basically says that when the adversary carries out an honest execution between
two instances �i

A and �j
B (A 6= B), both instances accept and hold the same session key and the

same session id. To explain the second condition, let Ev denote the event the adversary makes (at
most) v impersonation attempts and one of them obtains a correct guess of the password of A (or
B). When Ev is true, the adversary's success probability in attacking the protocol could be 1. When
Ev is false (denoted by :Ev), we expect that the adversary's success probability in attacking a secure
protocol is bounded by 0:5 + �0, where �0 is negligible. Hence, for a secure protocol �, we have

AdvakeA = 2Pr(Succ)� 1

= 2Pr(SuccjEv)Pr(Ev) + 2Pr(Succj:Ev)Pr(:Ev)� 1

�
2v

jDj
+ 2(0:5 + �0)(1�

v

jDj
)� 1

=
v

jDj
+ �

where � = 2�0(1 � v=jDj). So, the conditions of De�nition 1 capture our expectation for a secure
password-authenticated key exchange protocol.

4 Password Enabled Key Exchange Protocol

In this section, we present a new protocol, called Password Enabled Key Exchange Protocol, or simply,
PEKEP. It is an RSA-based password-authenticated key exchange protocol, but it allows using both
large and small prime numbers as RSA public exponents. Let A and B denote the identities of Alice
and Bob who share a password w drawn from a password space D. Alice has also generated a pair
of RSA keys n; e and d, where n is a large positive integer (e.g., n > 21023) equal to the product
of two primes of (roughly) the same size, e is a positive integer relatively prime to �(n), and d is a
positive integer such that ed � 1 (mod �(n)). The encryption function is de�ne by E(x) = xe mod
n, x 2 Zn. The decryption function is D(x) = xd mod n. For a positive integer m, we de�ne Em

recursively as
Em(x) = E(Em�1(x)) = xe

m

mod n:

Likewise,
Dm(x) = D(Dm�1(x)) = xd

m

mod n:

De�ne hash functions H1;H2;H3 : f0; 1g
� ! f0; 1gk and H : f0; 1g� ! Zn, where k is a security

parameter, e.g., k = 160. Note that H can be implemented using a standard hash function h :
f0; 1g� ! f0; 1g`, where ` is the length of n, i.e., ` = dlog2 ne. On input x;H(x) = h(x), if h(x) < n,
and H(x) = h(x) � dn=2e if else. Assume that h is a random function, then for any integer b 2 Zn,
it can be proved that jPr(H(x) = b)� 1

n j < 2�`; the bias is negligible. In the following, we assume
that H1;H2;H3 and H are independent random functions.

The protocol PEKEP is described in Fig. 1. Alice starts the protocol by sending her public key
(n; e) and a random number rA 2R f0; 1g

k to Bob. Bob veri�es if e is an odd prime and n is an
odd integer. If not, Bob rejects; otherwise, Bob computers an integer m = bloge nc and selects two
random numbers a 2R Z�

n, and rB 2R f0; 1g
k . Bob then computes � = H(w; rA; rB ; A;B; n; e) and

checks if gcd(�; n) = 1. If gcd(�; n) 6= 1, Bob assigns a random number of Z�
n to �; otherwise, Bob

assigns � to �. Next, Bob computes z = Em(�E(a)) and sends rB and z to Alice. Subsequently,
Alice computes � using her password w and checks if � and n are relatively prime. If gcd(�; n) 6= 1,

6

Alice (A) Bob (B)
password: w password: w
RSA keys: n; e; d

rA 2R f0; 1gk rA; n; e; A
-

e odd prime? and n odd?
If yes, m = bloge nc

a 2R Z
�

n; rB 2R f0; 1gk

� = H(w; rA; rB ; A;B; n; e)
If gcd(�; n) = 1; � = �

else � 2R Z
�

n

z = Em(�E(a))rB ; z
�

� = H(w; rA; rB ; A;B; n; e)
If gcd(�; n) 6= 1, b 2R Zn
else b = D(��1Dm(z))
� = H1(b; rA; rB ; A;B; n; e)

�
-

�
?
= H1(a; rA; rB ; A;B; n; e)

Reject if not, else

� = H2(a; rA; rB ; A;B; n; e)
sk = H3(a; rA; rB ; A;B; n; e)

�
�

�
?
= H2(b; rA; rB ; A;B; n; e)

Reject if not, else

sk = H3(a; rA; rB ; A;B; n; e)

Figure 1: Password Enabled Key Exchange Protocol (PEKEP)

Alice assigns a random number of Zn to the variable b. If gcd(�; n) = 1 and z is an em-th power
residue of n, Alice sets b = D(��1Dm(z)). Next, Alice and Bob authenticate each other using a and
b and generate a session key sk upon successful authentication.

In the protocol PEKEP, both Alice and Bob intend to reject when they detect the event gcd(�; n) 6=
1. To avid leaking any information about this event, Alice and Bob use random numbers to compute
their responses �, z, and �. If n = pq is the product of two large primes of about the same size, then
the probability of such an event is negligible. When gcd(�; n) = 1, Alice and Bob agree on a secret
number b = a and thus can use the secret number to authenticate each other and establish a shared
session key.

Note that, when e is a prime number larger than n, Bob sets m = 0. In this case, the run of
PEKEP is nearly identical to that of SNAPI. A minor di�erence between the two protocols is that,
in SNAPI, Alice rejects immediately when she detects the event gcd(�; n) 6= 1; while in PEKEP,
Alice sends a random number as her response to Bob and expects Bob to reject. As mentioned
above, the event gcd(�; n) 6= 1 occurs with negligible probability if n = pq is the product of two
large primes of about the same size. In the protocol PEKEP, Bob only veri�es if the public exponent
e is an odd prime and the RSA modulus n is an odd integer; Bob does not verify if e is relatively
prime to �(n). This may foster the so-called e-residue attack as described in [2, 24]. In the e-residue
attack, an adversary, say, Eva, selects �0 2 D as her guess of Alice's password. She also selects an
odd prime number e and an odd integer n such that e j �(n), i.e., (n; e) is not a valid RSA public
key. Then Eva impersonates as Alice and starts the protocol PEKEP by sending rE ; n; e; A to Bob,

7

where rE 2 f0; 1g
k is a random number generated by Eva. After receiving rB and z from Bob, Eva

Computes � and sends it back to Bob. If Bob accepts, then Eva has a successful guess of Alice's
password (i.e., �0). If Bob rejects, on the other hand, Eva excludes her guess �0 from the password
space D. Furthermore, Eva may exclude more passwords by repeating, o�-line, the following three
steps:

1) Eva selects a password � from D.

2) Eva computes � = H(�; rE ; rB ; A;B; n; e).

3) Eva tests if gcd(�; n) = 1. If not, Eva returns to step 1; otherwise, Eva veri�es if the congruence
(�xe)e

m

� z (mod n) has a solution in Z�
n. If the congruence has a solution, Eva returns to

step 1. If the congruence has no solution in Z�
n, then Eva knows that � is not the password of

Alice. Next, Eva excludes � from D and returns to step 1.

We say that Eva succeeds if she can exclude more than one password in the e-residue attack as
described above. In the following, we show that the protocol PEKEP is secure against e-residue
attacks.

Theorem 1 Let n, n > 1, be an odd integer with prime-power factorization n = pa11 pa22 : : : parr . Let m
be a non-negative integer and e an odd prime such that for any prime-power paii of the factorization of

n, em+1 - �(paii); 1 � i � r. If z is an em-th power residue of n, then for any � 2 Z�
n, the congruence

(�xe)e
m
� z (mod n) has a solution in Z�

n.

Proof. To prove that (�xe)e
m

� z (mod n) has a solution in Z�
n, we only need to prove that, for each

prime power paii of the factorization of n, the following congruence

(�xe)e
m

� z (mod paii) (2)

has a solution in Z�
p
ai
i

.

Let ni = paii ; 1 � i � r. Then �(ni) = pai�1
i (pi � 1). Since n is odd, pi is an odd prime. Thus,

the integer ni possesses a primitive root. Let g be a primitive root of ni, that is, g
�(ni) = 1 mod ni,

and for any 0 � i; j � �(ni) � 1; i 6= j, gi 6= gj mod ni. Let gcd(em; �(ni)) = ec; 0 � c � m. We
consider the following two cases:

(1) If c = 0, then e and �(ni) are relatively prime. In this case, it is clear that the congruence
(�xe)e

m
� z (mod ni) has a unique solution in Z�

ni.
(2) Next, we consider the case that 1 � c � m. Since z is an em-th power residue of n, the

congruence ye
m
� z (mod n) has solutions in Z�

n. By the Chinese Remainder Theorem, the following
congruence

ye
m

� z (mod ni) (3)

has solutions in Z�
ni. Let indgz denote the index of z to the base g modulo ni and let y 2 Z�

ni be a
solution of (3), then

ge
mindgy�indgz � 1 (mod ni):

Since the order of g modulo ni is �(ni), we have

emindgy � indgz (mod �(ni)) (4)

Also since gcd(em; �(ni)) = ec, equation (4) has exactly ec incongruent solutions modulo �(ni) when
taking indgy as variable. This indicates that equation (3) has ec solutions in Z�

ni. Let y0 denote one
of the solutions of (3), by (1), the ec incongruent solutions of (4) are given by

indgy = indgy0 + t�(ni)=e
c (mod �(ni)); 0 � t � ec � 1: (5)

8

For any � 2 Z�
n, we have

indgy � indg� � indgy0 � indg�+ t�(ni)=e
c (mod �(ni)); 0 � t � ec � 1:

Under the condition that em+1 - �(ni), it is clear that e - �(ni)=e
c. Hence, �(ni)=e

c � 1 (mod e).
So, there exists an integer t, 0 � t � e� 1, such that

indgy0 � indg�+ t�(ni)=e
c � 0 (mod e);

which implies that there exists an integer y 2 Z�
ni, such that ye

m
� z (mod ni) and y��1 is an e-th

power residue of ni. Therefore, equation (2) has a solution in Z�
ni, which proves the theorem. �

In PEKEP, Bob sets m equal to bloge nc. Thus, for every prime-power paii of the factorization
of n, we have em+1 > n � paii . By Theorem 1, for any � 2 Z�

n, the congruence (�x
e)e

m

� z (mod
n) has a solution in Z�

n, where z is the e-th power residue computed by Bob. Hence, by repeating
(o�-line) the three steps as described previously, Eva could not exclude any password from the space
D. So, the protocol PEKEP is secure against e-residue attacks. In Section 6, we will provide a formal
analysis of PEKEP within the security model described in Section 3.

At the beginning of PEKEP, Bob needs to test the primality of the public exponent e selected
by Alice. When e is small, e.g., e = 17, the primality test only induces moderate overhead on Bob.
When e is large (e.g., e > 2512), however, the computational load for the primality test would be
tremendous. In the following, we show that primality test of large public exponents by Bob could
be avoided with slight modi�cation of PEKEP. In the protocol PEKEP, Bob can actually select a
small prime number e0 (e.g., e0 = 3) and replaces Alice's public key (n; e) by (n; e0), that is, Bob
computes m;�; z; �; sk using (n; e0) instead of Alice's public key (n; e). Theorem 1 demonstrates that
the replacement does not lead to e-residue attacks, even if e0 is not relatively prime to �(n). So,
when the public exponent e received from Alice exceeds a threshold, Bob replaces e by a smaller
prime number e0 (2 < e0 < e) of his own choosing. Bob sends rB ; z, and e

0 to Alice in the second
ow.
After receiving e0 from Bob, Alice tests if e0 is relatively prime to �(n). If gcd(e0; �(n)) 6= 1, Alice
sends a random number � 2 f0; 1gk to Bob; Alice may select a smaller prime number for e in the
next communication session. If gcd(e0; �(n)) = 1, Alice replaces her decryption key by d0 and then
proceeds as speci�ed in Fig. 1, where e0d0 � 1 (mod �(n)). If n is the product of two safe primes p
and q, that is, (p� 1)=2 and (q � 1)=2 are also prime numbers, then for every odd prime number e0

less than (p� 1)=2 and (q � 1)=2, e0 is always prime to �(n).
In each run of PEKEP, Bob computes m + 1 encryptions using Alice's public key (n; e), where

m = bloge nc. The computation time for the m + 1 encryptions is O((log2 n)
3), which means that

the computational load on Bob is about the same as that in SNAPI. Since Alice has knowledge of
�(n), she only needs to perform two decryptions in each run of PEKEP; one using the decryption
key d1 = d and another using the decryption key d2 = dm mod �(n). Note that the computational
load on Bob is high even when e is small. In Section 5, we present a computationally-eÆcient key
exchange protocol which greatly reduces the computational load on Bob.

5 Computationally-EÆcient Key Exchange Protocol

In this section, we present a Computationally-EÆcient Key Exchange Protocol (CEKEP), which
is described in Fig. 2. The protocol CEKEP is based on PEKEP, but the number of encryptions
performed by Bob is less than bloge nc, where (n; e) is the public key of Alice. In the protocol CEKEP,
Bob possesses a small number ", 0 < " � 2�80, which determines the probability of a successful e-
residue attack against the protocol CEKEP. Alice starts the protocol CEKEP by sending her public
key n; e and two random numbers �; rA 2R f0; 1g

k to Bob. Bob veri�es if e is an odd prime and

9

Alice (A) Bob (B)
password: w password: w
RSA keys: n; e; d 0 < " � 2�80

�; rA 2R f0; 1gk �; rA; n; e; A
-

e odd prime? and n odd?

If yes, m = dloge "
�1e

% 2R f0; 1gk

H(n; e; �; %; A;B;m) 2 Z�n%, m
�

 = H(n; e; �; %; A;B;m)
u = Dm(
) u

-

?
= Em(u)

Reject if not, else
a 2R Z�n; rB 2R f0; 1gk

� = H(w; rA; rB ; A;B; n; e)
If gcd(�; n) = 1; � = �

else � 2R Z
�

n

z = Em�1(�E(a))z, rB
�

� = H(w; rA; rB ; A;B; n; e)
If gcd(�; n) 6= 1, b 2R Zn
else b = D(��1Dm�1(z))
� = H1(b; rA; rB ; A;B; n; e) �

-

�
?
= H1(a; rA; rB ; A;B; n; e)

Reject if not, else
� = H2(a; rA; rB ; A;B; n; e)
sk = H3(a; rA; rB ; A;B; n; e)�

�

�
?
= H2(b; rA; rB ; A;B; n; e)

Reject if not, else.
sk = H3(a; rA; rB ; A;B; n; e)

Figure 2: Computationally-EÆcient Key Exchange Protocol (CEKEP)

n is an odd integer. If not, Bob rejects. Else, Bob computers an integer m based on e and " as
m = dloge "

�1e. Then Bob selects a random number % 2R f0; 1g
k such that
 = H(n; e; �; %;A;B;m)

is relatively prime to n. Bob sends % and m to Alice. After receiving % and m, Alice computes
u = Dm(
) and sends it back to Bob. Subsequently, Bob veri�es if Alice has made the right
decryption, i.e., Em(u) =
. If
 6= Em(u), Bob rejects. Else, Alice and Bob executes the rest of the
protocol as in PEKEP.

A major di�erence between CEKEP and PEKEP is that the protocol CEKEP adds two additional

ows between Alice and Bob. Through the two
ows, Alice and Bob establish a random number

 2 Z�

n. Then Alice decrypts the random number
 repeatedlym times. If them repeated decryption
is correct, i.e.,
 = Em(u), then it can be concluded that, except with probability as small as e�m,
the integer em does not divide �(paii) for every prime-power paii of the factorization of n.

Theorem 2 Let n, n > 1, be an odd integer with prime-power factorization n = pa11 pa22 : : : parr . Let

m be a positive integer and e an odd prime. If there exists a prime power, say paii , of the factorization
of n such that em j �(paii), then for an integer
 randomly selected from Z�

n, the probability that
 is

10

an em-th power residue of n is less than or equal to e�m.

Proof. Let ni = paii be a prime power of the factorization of n such that em j �(ni). Since n is odd,
ni possesses a primitive root. Let g be a primitive root of ni. For an integer
 randomly selected
from Z�

n, let indg
 denote the index of
 to the base g modulo ni. Then
 is an em-th power residue
of ni if and only if the congruence xe

m

� v (mod ni) has a solution, or equivalently, if and only if

ge
m indgx�indg
 � 1 (mod ni);

which is equivalent to
emindgx � indg
 (mod �(ni)):

Since em j �(ni),
 is an em-th power residue of ni if and only if em j indg
.
Let n0i = n=ni, then ni and n0i are relatively prime. For any integer � 2 Z�

n, it is clear that
� mod ni and � mod n0i are integers of Z�

ni and Z�
n0i
, respectively. On the other hand, for two

integers �1 2 Z�
ni and �2 2 Z�

n0i
, by the Chinese Remainder Theorem, there is an unique integer

� 2 Z�
n, such that � � �1 (mod ni), and � � �2 (mod n0i). So, the number of integers � 2 Z�

n

which satisfy the congruence � � �1 (mod ni) is �(n
0
i). If
 is randomly selected from Z�

n, then for
any integer s, 0 � s � �(ni)� 1, we have

Pr(gs =
 mod ni) = �(n0i)=�(n) = 1=�(ni);

which implies that
Pr(indg
 = s) = 1=�(ni):

Hence,

Pr(em j indg
) =
X

emjs; 0�s<�(ni)

Pr(indg
 = s)

= �(ni)e
�m=�(ni)

= e�m

which indicates that, for an integer
 randomly selected from Z�
n, the probability that
 is an em-th

power residue of ni is equal to e�m. So, the probability that
 is an em-th power residue of n does
not exceed e�m. �

Theorem 2 demonstrates that, if there exits a prime-power paii of the factorization of n such that
em j �(paii), then for a random number
 2 Z�

n, the probability that Alice can decrypt
 repeatedly
m times is less than or equal to e�m. If the number u received from Alice satis�es the equation
Em(u) = ue

m
=
 mod n, i.e.,
 is an em-power residue of n, then Bob is ensured with probability

greater than or equal to 1�e�m that, for every prime-power paii of the factorization of n, em - �(paii).
Since m = dloge "

�1e, e�m � ". By Theorem 1, it is clear that the probability for an adversary to
launch a successful e-residue attack against CEKEP is upper-bounded by "

In the protocol CEKEP, the computational burden on Bob includes two modulo exponentiations,
i.e., ue

m

mod n and (�ae)e
m�1

mod n, where m = dloge "
�1e. When e < "�1, each modulo exponen-

tiation has an exponent consisting of O(dlog2 "
�1e) bits. The computation time for the two modulo

exponentiations is O(2(log2 "
�1)(log2 n)

2). If "�1 � n, then the computational load on Bob is greatly
reduced in CEKEP in comparison with that in PEKEP (or in SNAPI). The parameter " determines
the computational load on Bob. It also determines the level of security against e-residue attacks. In
practice, Bob can make a trade-o� between the computational load and the security level o�ered by
the protocol. When " = 2�80, for example, Bob needs to compute two modular exponentiation, each

11

having an exponent of about 80 bits. In this case, the computational load on Bob is lighter than
that in a DiÆe-Hellman based password-authenticated key exchange protocol. In the DiÆe-Hellman
based EKE variant, for example, Bob needs to compute two modular exponentiation, each having
an exponent of at least 160 bits.

The computational load on Bob could be reduced further if Bob maintains a cache in the protocol
CEKEP (or PEKEP). The cache stores a hashed version of Alice's public key (n; e) used in a previous
sessions, that is, H1(n; e;A). Initially, the cache is empty. In the next run of CEKEP (PEKEP), Bob
computes the hashed value of the public key received from Alice and checks if it is in the cache. If it
is in the cache, Bob sets m = 1 (m = 0 for PEKEP) and then directly sends rB; z;m to Alice (Bob
does not send %;m to Alice). Otherwise, Bob and Alice behave as usual (i.e. as speci�ed in Fig. 1
or Fig. 2) and at the end of a success run, Bob updates the cache using Alice's new public key. In
general, Alice would most likely use the same RSA key pairs in many sessions, although for perfect
forward secrecy, Alice would need to choose a new key pair in each session. In such a circumstance,
Bob may compute a single RSA encryption in a run of CEKEP (PEKEP).

6 Formal Security Analysis

In this section, we analyze the security of PEKEP and CEKEP within the formal model of security
given in Section 3. Our analysis is based on the random-oracle model of Bellare and Rogaway [7].
In this model, a hash function is modeled as an oracle which outputs a random number for each new
query. If the same query is asked twice, identical answers are returned by the oracle. In our analysis,
we also assume the intractability of the RSA problem.

RSA Assumption: Let ` be the security parameter of RSA. Let key generator GE de�ne a family
of RSA functions, i.e., (e; d; n) GE(1`), where n is the product of two primes of the same size,
gcd(e; �(n)) = 1, and ed � 1 (mod �(n)). For any probabilistic polynomial-time algorithm C, the
following probability

Pr(xe = c mod n : (e; d; n) GE(1`); c 2R f0; 1g
`; x C(1`; c; e; n))

is negligible.

Under the above assumptions, we have the following Theorem 3. The proof of this theorem is
given in Appendix A.

Theorem 3 Both protocols, PEKEP and CEKEP, are secure password-authenticated key exchange

protocols under the RSA assumption and the random oracle model.

We notice that the random oracle model in Theorem 3 is less desirable than a standard crypto-
graphic assumption. To avoid the random oracle model, we could use the proof technique of [13],
which require a public-key encryption scheme secure against chosen-ciphertext attacks. Unfortu-
nately, the most commonly used RSA schemes (e.g. [6, 8]) which are secure against chosen-ciphertext
attacks are also based on the random oracle model. Nevertheless, it is encouraging to see that eÆ-
cient password-authenticated key exchange protocols with security proof in the random oracle model
can be constructed without severe restriction on the public key of RSA.

7 Conclusion

In this paper, we investigate the design of RSA-based password-authenticated key exchange protocols
that do not restrict the size of RSA public exponent. Based on number-theoretic techniques, we

12

develop a password enabled key exchange protocol (PEKEP) which allows using both large and
small primes as RSA public exponents. We show that the protocol PEKEP is secure against e-
residue attacks. We also provide a formal security analysis of PEKEP under the RSA assumption
and the random oracle model. Based on PEKEP, we develop a computationally-eÆcient key exchange
protocol to mitigate the burden on communication entities.

In both protocols PEKEP and CEKEP, Alice and Bob only need to establish a shared password
beforehand; they do not need to establish other common parameters such as a prime number p and a
generator of the cyclic group modulo p. This provides convenience both for the implementation and
for the application of the two protocols. One the other hand, both PEKEP and CEKEP require that
Alice and Bob have cleartext access to the shared password. When the two protocols are used for
client-server communications, the server has cleartext access to all the passwords of its clients. This
may raise concern on the database security of the server. To mitigate the risk of server compromise,
we recommend that storage-security techniques [9, 14] be implemented in the server side.

References

[1] E. Bach and J. Shallit, Algorithmic Number Theory, vol. 1: EÆcient Algorithms, MIT Press,
1997.

[2] S. M. Bellovin and M. Merritt, Encrypted key exchange: Password-based protocols secure
against dictionary attacks, Proc. of the IEEE Symposium on Research in Security and Privacy,
Oakland, May 1992, pp. 72-84.

[3] S. M. Bellovin and M. Merritt, Augmented encrypted key exchange: A password-based pro-
tocol secure against dictionary attacks and password �le compromise, Proc. of the 1st ACM

Conference on Computer and Communications Security, ACM, November 1993, pp. 244-250.

[4] V. Boyko, P. MacKenzie, and S. Patel, Provably secure password authenticated key exchange
using DiÆe-Hellman, Advances in Cryptology - EUROCRYPT 2000 Proceedings, Lecture Notes
in Computer Science, vol. 1807, Springer-Verlag, 2000, pp. 156-171.

[5] M. Bellare, D. Pointcheval, and P. Rogaway, Authenticated key exchange secure against dic-
tionary attack, Advances in Cryptology - EUROCRYPT 2000 Proceedings, Lecture Notes in
Computer Science, vol. 1807, Springer-Verlag, 2000, pp. 139-155.

[6] M. Bellare and P. Rogaway, Optimal asymmetric encryption, Advances in Cryptology - EURO-

CRYPT '94 proceedings, Lecture Notes in Computer Science, vol. 950, Springer-Verlag, 1995,
pp. 92{111.

[7] M. Bellare and P. Rogaway, Entity Authentication and key distribution, Advances in Cryptology
- Crypto 93 Proceedings, Lecture Notes in Computer Science Vol. 773, Springer-Verlag, 1994,
pp. 22-26.

[8] D. Boneh, Simpli�ed OAEP for the RSA and Rabin functions, Advances in Cryptology - Crypto

2001 Proceedings, Lecture Notes in Computer Science, Vol. 2139, Springer-Verlag, 2001, pp.
275-291.

[9] J. Chirillo and S. Blaul, Storage Security: Protecting, SANs, NAS, and DAS, John Wiley &
Sons, 2002.

13

[10] R. Gennaro and Y. Lindell, A framework for password-based authenticated key exchange, Ad-
vances in Cryptology - Eurocrypt 2003 Proceedings, Lecture Notes in Computer Science Vol.
2656, Springer-Verlag, 2003, pp.524-542.

[11] O. Goldreich and Y. Lindell, Session-key generation using human passwords only, Advances in
Cryptology - Crypto 2001 Proceedings, Lecture Notes in Computer Science Vol. 2139, Springer-
Verlag, 2001, pp.408-432.

[12] L. Gong, Optimal authentication protocols resistant to password guessing attacks, Proc. IEEE
Computer Security Foundation Workshop, June 1995, pp. 24-29

[13] S. Halevi and H. Krawczyk, Public-key cryptography and password protocols, Proc. of the Fifth
ACM Conference on Computer and Communications Security, 1998, pp. 122-131,

[14] J. Hughes and J. Cole, Security in storage, IEEE Computer, January 2003, pp. 124-125.

[15] D. Jablon, Strong password-only authenticated key exchange, Computer Communication Re-

view, ACM SIGCOMM, vol. 26, no. 5, 1996, pp. 5-26.

[16] D. Jablon, http://www.integritysciences.com.

[17] J. Katz, R. Ostrovsky, and M. Yung, EÆcient password-authenticated key exchange using
human-memorable passwords, Advances in Cryptology { Eurocrypt'2001 Proceedings, Lecture
Notes in Computer Science, Vol. 2045, Springer-Verlag, 2001.

[18] K. Kobara and H. Imai, Pretty-simple password-authenticated key-exchange under standard
assumptions, IEICE Trans., vol. E85-A, no. 10, 2002, pp. 2229-2237.

[19] T. Kwon, Authentication and key agreement via memorable passwords, Proc. Network and

Distributed System Security Symposium, February 7-9, 2001.

[20] M. Lamos, L. Gong, J. Saltzer, and R. Needham, Reducing risks from poorly chosen keys, Proc.
of the 12th ACM Symposium on Operating System Principles, ACM Operating Systems Review,
1989, pp. 14-18.

[21] S. Lucks, Open key exchange: How to defeat dictionary attacks without encrypting public keys,
Proc. Security Protocol Workshop, Lecture Notes in Computer Science, Vol. 1361, Springer-
Verlag, 1997, pp. 79-90.

[22] P. MacKenzie, S. Patel, and R. Swaminathan, Password-authenticated key exchange based on
RSA, Advances in Cryptology|ASIACRYPT 2000 Proceedings, Lecture Notes in Computer
Science, vol. 1976, Springer-Verlag, 2000, pp. 599{613.

[23] A. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryptography, CRC Press,
1997.

[24] S. Patel, Number theoretic attacks on secure password schemes, Proc. IEEE Symposium on

Security and Privacy, Oakland, California, May 5-7, 1997.

[25] K. H. Rosen, Elementary Number Theory and Its Applications, 4th ed., Addison Wesley Long-
man, 2000.

[26] T. Wu, The secure remote password protocol , Proc. Network and Distributed System Security

Symposium, San Diego, March 1998, pp. 97-111.

14

[27] T. Wu, A real-world analysis of Kerberos password security, Proc. Network and Distributed
System Security Symposium, February 3-5, 1999.

[28] F. Zhu, D. Wong, A. Chan, and R. Ye, RSA-based password authenticated key exchange for
imbalanced wireless networks, Proc. Information Security Conference 2003 (ISC'02), Lecture
Notes in Computer Science, vol. 2433, Springer-Verlag, 2002, pp.150-161.

A Proof of Theorem 3

It is easy to verify that the protocol PEKEP satis�es the �rst condition of De�nition 1. To prove that
the protocol PEKEP also satis�es the second condition of De�nition 1, we �rst prove the following
Lemma 1:

Lemma 1 Let A be a polynomial-time adversary who makes v impersonation attempts in attacking

the protocol PEKEP. Let �1; �2; : : : ; �v denote her guesses of the password w of A and B in the v
impersonation attempts. Let Ev denote the event that one of her guesses, say �i, is a correct guess

and let :Ev denote that event that �1; �2; : : : ; �v are incorrect guesses. Then, under the condition

that :Ev is true, the adversary's success probability in attacking the protocol PEKEP is

Pr(Succj:Ev) = 1=2 + �;

where � is negligible.

Proof. As described in Section 3, the adversary A always uses an impersonated instance to launch
an impersonation attack. The adversary may guess the password of A and B at the beginning of
the attack or in the middle of the attack. Assume that the adversary A makes a Test query on a
fresh instance, which is either �i

A or �j
B , and succeeds with probability Pr(Succ). To prove that

Pr(Succj:Ev)� 1=2 is negligible, we consider the following two cases:
Case 1: Test query is called on �i

A. Assume that the instance �i
A sent out rA; n; e; A in the �rst

ow and received rB and z in the second
ow. Also assume that the instance �i
A queried the oracle

H on the input w; rA; rB ; A;B; n; e and received an answer �. When gcd(�; n) = 1, the instance
computed b = D(��1Dm(z)), where m = bloge nc. Then the instance �i

A queried the oracle H1

on the input b; rA; rB ; A;B; n; e and obtained the answer �. After receiving � in the last
ow, the
instance �i

A accepted and generated the session key skjB by querying the oracle H3 on the input
b; rA; rB ; A;B; n; e. Without loss of generality, we assume that random numbers generated by �i

A

and by random oracles H;H1;H2;H3 never repeat. Let Auth denote the event that rB ; z and � were
sent by an instance which was not impersonated by A. In the following, we show that the probability
Pr(:Authj:Ev) is negligible.

(a) Assume that rB ; z were sent by an instance �
j
B which was impersonated by A. After receiving

rA; n; e; A from �i
A, the impersonated instance �j

B generated two random numbers a 2 Z�
n and

rB 2 f0; 1g
k . Let �0 denote the answer of the oracle H on the input �; rA; rB ; A;B; n; e, where � is

the adversary's guess of the password of A. Since (n; e) is valid RSA public key, the probability that
�0 is not relatively prime to n is negligible. Without loss of generality, assume that gcd(�0; n) = 1,
then z = Em(�0E(a)). Under the condition that :Ev is true, we have �

0 6= �, which implies that

b = D(��1Dm(z)) 6= a:

Hence, the message � was not sent by the impersonated instance �j
B . Next, we show that, except

with negligible probability, � could not be sent by A. Due to the randomness assumption of H2, the
adversary needs to know b in order to generate �. Assume that the adversary can recover the integer

15

b from z and � with probability pb. Then, for any integers � and z randomly selected from Z�
n, the

adversary can obtain the solution of the congruence

(�xe)e
m

= z mod n (6)

with probability pb. If pb is non-negligible, we turn the adversary A into an eÆcient algorithm C for
the RSA problem as follows: given c 2R Z�

n, algorithm C selects � 2R Z�
n and computes z = (�c)e

m
,

then algorithm C runs the adversary A to obtain the solution of (6). It is clear that if � is the
solution of (6), then �e = c mod n, i.e., � is the plaintext of c. Hence, under the RSA assumption,
the probability for A to recover b is negligible. So, under the condition :Ev, the probability that
rB ; z and � were sent by A or by an impersonated instance is negligible.

(b) Assume that rB; z and � were sent by an instance �j
B which was not impersonated by A.

Then �j
B is partnered with �i

A. Under the assumption that random numbers generated by entity

instances and by random oracles never repeat, it is clear that �j
B is the only instance partnered with

�i
A. Thus, the session key skiA could not be held by any instance other than �i

A and �j
B . Due to the

randomness assumption of H3, the session key skiA is just a random session key for anyone without
knowing the integer b shared between A and B. From the above analysis, if the adversary A can
recover b with non-negligible probability, then we can turn A into an eÆcient algorithm C for the
RSA problem. Thus, under the RSA assumption, the probability for A to recover b is negligible.

(c) Let Secc denote the event that A does not know the session key skiA of �i
A. The analysis in

(a) and (b) shows that both Pr(:Authj:Ev) and Pr(:SeccjAuth) are negligible. Hence, we have

Pr(Succj:Ev) = Pr(Succj:Auth)Pr(:Authj:Ev) + Pr(SuccjAuth)Pr(Authj:Ev)

� Pr(:Authj:Ev) + Pr(SuccjAuth)

= Pr(:Authj:Ev) + Pr(SuccjSecc)Pr(SeccjAuth) + Pr(Succj:Secc)Pr(:SeccjAuth)

� Pr(:Authj:Ev) + Pr(SuccjSecc)(1� Pr(:SeccjAuth)) + Pr(:SeccjAuth)

Note that the success probability of A is equal to 1=2 if A does not know the session key skiA of �i
A,

that is, Pr(SuccjSecc) = 1=2. Therefor, it follows that

Pr(Succj:Ev) �
1

2
+ Pr(:Authj:Ev) +

1

2
Pr(:SeccjAuth);

which indicates that Pr(Succj:Ev)� 1=2 is negligible.
Case 2: Test query is called on �j

B. Assume that the instance �j
B received rA; n; e; A in the �rst

ow and sent out rB and z in the second
ow, where z = (�ae)e
m

mod n, a 2R Z�
n. The integer �

is equal to � = H(w; rA; rB ; A;B; n; e) if gcd(�; n) = 1, and else, � is a random number of Z�
n. The

instance �j
B accepted after receiving �, which is equal to the answer of the oracle H1 on the input

a; rA; rB ; A;B; n; e. As in Case 1, we �rst show that, under the condition :Ev, the probability that
rA; n; e and � were sent by A or by an impersonated instance is negligible.

(a) Assume that rA; n; e was sent by an instance �
i
A which was impersonated by A. The adversary

selected a password � 2 D and a pair of odd integers n and e for the impersonated instance �i
A.

Note that (n; e) is not necessarily a valid RSA public key. Let �0 denote the answer of the oracle
H on the input �; rA; rB ; A;B; n; e. Then, under the condition that Ev is false, we have � 6= �0. If
gcd(�0; n) 6= 1, the impersonated instance �i

A selects a random number b 2 Z for the computation
of �. In this scenario, we have

Pr(b = a) = 1=�(n):

For all integers n � 5, it is known (see [23]) that

�(n) > n=(6 ln lnn):

16

Thus, the probability that � was sent by �i
A is negligible if gcd(�0; n) 6= 1. Now, let us assume that

�0 is relatively prime to n. By Theorem 1, the congruence

(�0xe)e
m

= z mod n (7)

has solutions in Z�
n. On the other hand, since z is an e

m-th power residue of n, for any integer b 2 Z�
n,

there exists an � 2 Z�
n such that b is a solution of the congruence

(�xe)e
m

= z mod n:

Hence, for a random number �0 not equal to �, the probability that a is a solution of (7) is equal
to 1=�(n). Therefore, under the condition :Ev, the probability that rA; n; e and � were sent by the
impersonated instance �i

A is negligible.
(b) Next, assume that rA; n; e and � were sent by an instance which was not impersonated by A.

As shown in Case 1(b), the probability that A can recover the session key skjB of �j
B is negligible.

Following the analysis in Case 1(c), it can be proved that Pr(Succj:Ev) � 1=2 is also negligible in
Case 2. �

Proof of Theorem 3. Now, we prove that the protocol PEKEP satis�es the second condition of
De�nition 1. Let us �x a polynomial-time adversary A who makes v impersonation attempts in
attacking the protocol PEKEP. Let �1; �2; : : : ; �v denote her guesses of the password of A and B
in the v impersonation attempts. Let Ev denote the event that one of her guesses, say �i, is a
correct guess. Under the condition that Ev is true, it is clear that the adversary's success probability
Pr(Succ) in attacking the protocol PEKEP would be 1, i.e., Pr(SuccjEv) = 1. Let :Ev denote that
event that Ev is false, i.e., �1; �2; : : : ; �v are incorrect guesses. By Lemma 1, � = Pr(Succj:Ev)� 1=2
is negligible. Hence, we have

AdvakeA = 2Pr(Succ)� 1

= 2Pr(SuccjEv)Pr(Ev) + 2Pr(Succj:Ev)Pr(:Ev)� 1

�
2v

jDj
+ 2(0:5 + �)(1�

v

jDj
)� 1

=
v

jDj
+ �

where � = 2�(1� v=jDj). So, PEKEP is a secure password-authenticated key exchange protocol.
Following the security analysis for the protocol PEKEP, it can be proved that the protocol

CEKEP also satis�es the two conditions of De�nition 1 and thus is a secure password-authenticated
key exchange protocol. �

17

