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Abstract. We present an algebraic cryptanalysis of Bresson, et al.’s
spontaneous anonymous threshold signature for ad hoc groups [6, 4]. The
technique is to reduce a degenerate condition in Lagrange interpolation
to an algebraically solvable high-density knapsack problem over GF (2`).
We repair their protocol by revisiting and updating Cramer, et al.’s result
on spontaneous anonymous threshold proof-of-knowledge (partial proof-
of-knowledge). We generalize their proof by removing two assumptions,
and reduce its security to a new candidate hard problem, PoK-Collision,
in the random oracle model. To add to the urgency of our update, we
present major versions of major PoK schemes that do not satisfy their
special soundness assumption.

Feb 15, 2004.

1 Introduction

In an (n, t) signature scheme, there is a group of n members, and a pair of
signature generation algorithm and signature verification algorithm such that

– t or more members in the group can jointly achieve a signature passing the
verification;

– t − 1 or fewer members cannot generate a valid signature unless they can
solve a hard problem.

In most papers on group signatures, even in most papers on group cryptog-
raphy, the verification is based on proving knowledge of a group secret. There is
usually a setup stage in which one of the following happens:
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– (Centralized group secret generation) A group manager or a TTP (trusted
third party) generates the group secret and distribute shares to all n group
members [12, 13, 20, 14, 22].

– (Distributed group secret generation) All n members of the group jointly gen-
erate the group secret and distribute shares to all n members, often through
multiple rounds of broadcasting or member-to-member secured communica-
tions [31, 18, 25, 23, 16, 2].

– (Hybrid group secret generation) A combination of the above two [9, 10, 7, 8].

Usually, members’ personal key pairs are used to secure communications between
the members, and between the members and the group manager, the TTP, the
group clerk (combiner).

(Spontaneous Anonymous Group Cryptography: Group cryptography without
group secret.) Recently, a new class of group signature protocols (and group
cryptographic protocols) began to emerge [11, 32, 5, 1, 36, 27]. They satisfy the
definition of (n, t) signatures, yet there is no group secret. (However, there is still
a binary relation.) The verification is based on the public keys of the n members
of the group.

There is no set up. To begin with, there is no need to setup for generating
the group secret, or for secret-sharing the group secret. Furthermore, there is
no setup for selecting members to form a group. Any t entities with published
public keys can jointly select n − t other entities with published public keys to
form a group, and generate an (n, t)-signature without any participation from
the n − t conscripts (or diversion signers). In the case of 1-out-of-n signature,
i.e. t = 1, any single entity can spontaneously conscript n − 1 diversion signers
and complete the signature single-handedly.

These schemes are anonymous in the sense that they are signer-indistinguishable.
The verifier cannot tell the actual signers (insiders) from the diversion signers.
To be more specific, almost all examples of this class of schemes we list above
have

– proven unconditional (information-theoretic) anonymity;
– proven unconditionally irrevocable anonymity;
– proven unconditionally exculpable anonymity.

Even if all secret keys of all n members are revealed, along with transcripts of
all communications between insiders (actual signers) and outsiders (all other
parties), the anonymity remains information-theoretically secure. This is just
about the maximum privacy one can possibly imagine.

The combination of spontaneity and maximum privacy, makes spontaneous
anonymous group (SAG) cryptography uniquely suited to many applications.
We only name a few here.

Whistle Blowing (or How to Leak a Secret [32]) Deepthroat leaks confidential
information to Washington Post reporters. He wants information-theoretic, irre-
vocable, exculpable anonymity. Nothing less than that will do. The editor wants
proof that the information is indeed from a White House Staff before publishing
it. So Deepthroat generates an SAG signature using public keys of the entire
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White House staff. Editor is satisfied and publishes the article. Deepthroat’s
identify is protected forever. The rest, as they say, is history.

Ad Hoc Group Cryptography. In an ad hoc group, members join and leave
frequently. Furthermore, there is minimal infrastructural support for complicated
multi-round multi-party protocols. It has been observed by many authors that
the spontaneity in SAG cryptography makes it perfectly suited to cryptographic
applications in ad hoc groups [5, 6, 4, 3]. There can also be applications to mobile
communications and sensor networks.

The first SAG cryptography result was in Cramer, et al. [11]. The paper by
Rivest, et al. [32] brought envigored interests to the field. Currently the main
approaches to constructing SAG signatures include: the ring structure where the
computations can be block-diagramed as a circular ring [32, 1], the Boolean struc-
ture [5, 6, 4], the secret-sharing structure [11, 6, 4, 27], and the bilinear structure
[3]. There are also some ring-structure signatures that become fully spontaneous
only after additional assumptions [37].

1.1 Our Contributions

We present an algebraic cryptanalysis of a threshold SAG (spontaneous anony-
mous group) signature scheme for ad hoc group applications by Bresson, et al.
[6, 4]. A degenerate condition in Lagrange polynomial interpolation is used to
reduce a signature forgery problem to a high-density knapsack problem over
GF (2`) which is then solved algebraically. It is a new vulnerability in SAG cryp-
tography which does not have known counterparts in group cryptography with
group secret. We think all future research in group cryptography without group
secrets should pay attention to this new type of vulnerabilities.

We also present two patches. The first (naive) patch remains exposed to po-
tential cryptanalysis by research tools from high-density knapsack problems over
a large prime field. This provides further evidence that our new cryptanalysis
poses a wider threat to future SAG protocols in general. The second patch is
proven secure by reducing it to a new candidate hard problem: the PoK(Proof-
of-Knowledge)-Collision Problem.

The PoK-Collision Problem: Given a 3-move PoK scheme, generate a pair of
transcripts (commit, challenge, response) and (commit′, challenge′, response′)
satisfying commit = commit′.

The process of proving the second patch led us to revisit Cramer, et al. [11].
The paper contained pioneering results on proof-of-knowledge, authentication,
and signature in threshold SAG cryptography. We solve the two open problems
posed in the concluding section of that paper by generalizing its proof in remov-
ing two assumptions: that each component PoK (proof-of-knowledge) protocol
satisfies special soundness, and public flip coins are used. Essentially, we used
their protocol unaltered, but updated its proof by reducing its security to the
hardness of the PoK-Collision Problem, in the random oracle model.

We also present, and prove, major versions of major PoK schemes that our
new result above applies to but the original Cramer, et al.’s result does not apply
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to. The Feige-Fiat-Shamir PoK is included. They justify the need to revisit and
update Cramer, et al.[11].

Organization. In Sec. 2, a threshold SAG signature scheme is formalized with
a brief description of the security model. Current SAG signature schemes are
reviewed. In Sec. 3, an algebraic cryptanalysis technique is described and the
vulnerability of the scheme of Bresson, et al. is explained. A would-be patch of
their scheme is discussed. In Sec. 4, a threshold proof of knowledge protocol due
to Cramer, et al. is generalized and converted into a threshold SAG signature
scheme. The scheme is shown to be secure against adaptive adversary under the
random oracle model. The paper is concluded in Sec. 5.

2 Related Work

A t-out-of-n threshold SAG (Spontaneous Anonymous Group) signature scheme
is a triple (G, St,n, Vt,n) where

– (ŝ, P ) ← G(1k) is a probabilistic algorithm which takes security parameter
k and outputs private key ŝ and public key P .

– σ ← St,n(1k, Ŝ, L,m) is a probabilistic algorithm which takes as inputs secu-
rity parameter k, a set of t private keys Ŝ, a set of n public keys L including
the ones that correspond to the private keys in Ŝ and message m, produces
a signature σ.

– 1/0 ← Vt,n(1k, L,m, σ) is an algorithm which accepts as inputs security
parameter k, a set of n public keys L, a message m and a signature σ,
returns 1 or 0 for accept or reject, respectively. We require that

Vt,n(1k, L,m,St,n(1k, Ŝ, L,m)) = 1

for any message m, any set Ŝ of t private keys and any set L of n public
keys in which the public keys corresponding to all the private keys of Ŝ are
included. For each key in L indexed by i ∈ {1, · · · , n}, we assume that the
key pair (ŝi, Pi) is generated by G.

For simplicity, we omit the security parameter as an input of St,n and Vt,n in
the rest of the paper when it becomes clear.

A t-out-of-n threshold SAG signature scheme must satisfy the usual correct-
ness and unforgeability properties. If all the involving parties are honest and the
scheme is properly executed, the generated threshold SAG signature should be
accepted as valid with respect to the set of public keys L with overwhelming
probability; and it must be infeasible for anyone, except with negligible proba-
bility, to generate a valid threshold SAG signature with respect to L if he does
not have the threshold-of-t private keys corresponding to keys of L. We skip the
formal description of the security model due to the page limitation.

A threshold SAG signature should also be signer anonymous, in the sense
that no one even with unbounded resources can guess one of the t authors of
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a threshold SAG signature with respect to L with probability non-negligibly
greater than t/n.

Spontaneity is the crucial feature which distinguishes an SAG signature
scheme from a conventional group signature scheme or a threshold signature
scheme. It is required that any set of t entities can form an SAG (i.e. an ad hoc
group) with respect to L by including their own public keys and the public keys
of some other n−t diversion entities into L. The threshold SAG signature can
be generated using their private keys and the public keys of those diversion enti-
ties. The only assumption is that each entity in the system is already associated
with the public key of some standard signature scheme (via a PKI directory or
certificate).

The concept of threshold SAG signature scheme first appeared in [11] in
Crypto 94 as a threshold proof of knowledge protocol. When the scheme is
turned into a signature scheme using standard methods, it convinces a verifier
that a document is signed by one (or t, in the case of threshold setting) of the n
possible signers without allowing the verifier to identify the actual signer(s).

In [32], a ring-based SAG signature scheme was proposed and its security was
shown under the ideal cipher model. Several other ring-based SAG signature
schemes were later proposed [36, 15]. In [5, 6, 4], Bresson, et al. proposed two
threshold SAG signature schemes. One scheme is based on boolean construction
and the other scheme uses the polynomial interpolation technique. We show in
Sec. 3 that their polynomial-based scheme is vulnerable to an attack based on
some algebraic methods when n−t is large where n is the group size and t is the
threshold value. Other polynomial construction based (threshold) SAG signature
schemes can be found in [36, 19].

In [3], an aggregate signature scheme was proposed. It uses the special prop-
erty of a bilinear group (the group where Decisional Diffie-Hellman problem
is easy while Computational Diffie-Hellman problem is hard) to construct a 1-
out-of-n SAG signature scheme which enjoys short signature and aggregation
property.

Additional properties of (threshold) SAG signature schemes can also be found
in literature. In [1, 27], several schemes have been proposed which have the sep-
arability property, that is, allowing the mixture of keys with different key types
in one SAG. In [37], an ID-based SAG signature scheme was proposed. It is
considered to be a type of SAG signature scheme provided that the TTP is com-
pletely trustworthy. Hence we consider the scheme to be a partial SAG signature
scheme.

3 Algebraic Cryptanalysis of Bresson, et al.’s SAG
Threshold Signature

We review the captioned scheme and present a polynomial-time algebraic crypt-
analysis. The review first.

Let H : {0, 1}∗ → {0, 1}` be a hash function where ` is the security pa-
rameter. For each user i, 1 ≤ i ≤ n, let Pi be the public key. Let F and E be



6 Joseph K. Liu, Victor K. Wei, and Duncan S. Wong

a family of trapdoor permutations and a family of symmetric encryption func-
tions, respectively. Each function in F and E is defined over {0, 1}`. Without
loss of generality, suppose the actual signers are indexed by 1, · · · , t. Below is the
signature generation algorithm for message m.

1. Compute c0 ← H(P1, · · · , Pn). For i = t+1, · · · , n, do xi
R← {0, 1}` and

yi ← FPi(xi)
2. Interpolate a polynomial f over GF(2`) such that deg(f) = n− t, f(0) = c0,

and f(i) = EH(m,i)(yi), for i = t+1, · · · , n.
3. For i = 1, · · · , t, do xi = F−1

Pi
(E−1

H(m,i)(f(i))).
4. Output the signature tuple σ = (m,P1, · · · , Pn, x1, · · · , xn, f).

The verification is to check if f(0) = H(P1, · · · , Pn) and f(i) = EH(m,i)(FPi(xi))
for i = 1, · · · , n.

We now describe a polynomial-time forgery algorithm. There are three steps
to understand it.
1. We derive a condition which degenerates the polynomial interpolated from
n− t+ 2 evaluations to degree n− t.

2. We convert that condition to a high-density knapsack problem over GF (2`).
3. We algebraically solve the high-density knapsack problem over GF (2`).

The subset sum (knapsack) problem [35]. Given integers B and A1, · · · , An′ ,
a Decisional Subset Sum Problem is to determine if there exists binary values
b1, · · · , bn′ ∈ {0, 1} such that B =

∑n′

i=1 biAi. (B,A1, · · · , An′) is called a cargo
vector. A Computational Subset Sum Problem over the same cargo vector is
defined as computing the binary values b1, · · ·, bn when the decisional knapsack
problem returns positive.

Lemma 1 (Degenerate condition in polynomial interpolation). Given
c0 and ci, i = t, · · · , n. A polynomial f of degree n − t or less and f(0) = c0,
f(i) = ci, i = t, · · · , n, exists if and only if

[f(0) f(t) f(t+ 1) · · · f(n)] · [v0 vt vt+1 · · · vn] = 0

for a specific vector v = [v0 vt vt+1 · · · vn] whose is the dual to the vector space
formed by the following n− t row vectors

ei = [0i ti (t+ 1)i · · · ni], 0 ≤ i ≤ n− t
Proof. Let f(x) =

∑n−t
i=0 fix

i denote a polynomial of degree n− t or less. Then

f := [f(0) f(t) f(t+ 1) · · · f(n)] =
n−t∑
i=0

fiei

and consequently f · v = 0. Conversely if a vector f is in the dual space, i.e.
f · v = 0, then it can be expressed as a linear combination of the base vectors as
follows

f =
n−t∑
i=0

fiei

ut
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3.1 A Forgery Algorithm

Without loss of generality, suppose the forger A knows the private keys of
P1, · · · , Pt−1.

1. Compute c0 ← H(P1, · · · , Pn). For each i, t ≤ i ≤ n, randomly generate xi,0
and xi,1. Compute yi,b = FPi(xi,b) and ci,b = EH(m,i)(yi,b) for b ∈ {0, 1}.

2. Solve the subset sum problem with

(B,At, · · · , An) = (−c0v0 −
n∑
i=t

ci,0vi, (ct,1 − ct,0)vt, · · · , (cn,1 − cn,0)vn) (1)

to obtain a solution (bt, · · · , bn) ∈ {0, 1}n−t+1 satisfying

−c0v0 −
n∑
i=t

ci,0vi =
n∑
i=t

bi(ci,1 − ci,0)vi

=
n∑
i=t

(ci − ci,0)vi

where ci = ci,bi for each i, t ≤ i ≤ n. Then we have

c0v0 +
n∑
i=t

civi = 0

i.e. c · v = 0.
3. Interpolate a polynomial f of degree n−t satisfying f(0) = c0 and f(i) = ci =
ci,bi for t ≤ i ≤ n. By the above equality and Lemma 1, such a polynomial
exists.

4. For each i, 1 ≤ i ≤ t−1, xi ← F−1
Pi

(E−1
H(m,i)(f(i))).

5. Output the signature (m,P1, · · · , Pn, x1, · · · , xn, f).

The density of the knapsack problem is roughly

d <
n− t

avg. log2(|ci,1 − ci,0|vi)
≈ n− t
`− 1

≈ n− t
`

When n− t > `, the chance of having the cargo vector in (1) be a valid
subset sum problem is non-negligible. Our forgery algorithm above is required
to solve the computational subset sum problem: Given B,At, · · · , An ∈ GF (2`),
find (bt, · · · , bn) ∈ {0, 1}n−t+1 satisfying

∑n
i=t biAi = B in GF(2`).

The above is positive and polynomial-time computable when n− t > `. Let α
be a primitive element of GF(2`). Then {α2i : 0 ≤ i ≤ `− 1} form a (standard)
basis of GF(2`). For each element β ∈ GF(2`), there exists a unique `-tuple
(β0, · · · , β`−1 ∈ {0, 1}` such that β =

∑`−1
i=0 βiα

2i . Therefore the elements of
GF(2`) form a vector space of dimension ` over GF(2). In the forgery algorithm,
if n− t > `, then there exists a linear dependence relationship can be computed
in polynomial time to complete the signature generation.
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From (1), let

B =
`−1∑
i=0

βiα
2i

where α is a primitive element of GF(2`), βi ∈ {0, 1}. {α2i : 0 ≤ i ≤ `−1}
forms a (standard) basis of GF(2`). For each element B ∈ GF(2`), there exists
a unique `-tuple (β0, · · · , β`−1) ∈ {0, 1}` such that B =

∑`−1
i=0 βiα

2i .
Let

Ai =
`−1∑
j=0

γi,jα
2j , t ≤ i ≤ n

where γi,j ∈ {0, 1}.
Find (bt, · · · , bn) ∈ {0, 1}n−t+1 such that

 β0

...
β`−1

 =

 γt,0 γt+1,0 · · · γn,0
...

...
γt,`−1 γt+1,`−1 · · · γn,`−1



bt

...

bn


We have ` equations but n − t + 1 unknowns (Note: n − t + 1 ≥ `). Hence a
sequence of (bt, · · · , bn) can be chosen to complete the signature generation.

In the special case when t = 1, that is, generating a 1-out-of-n SAG signature,
the attacking technique works as long as n is comparable to ` (if not greater
than).

To the best of our study of the proof of Theorem 1 in [6], we agree to the
probability that there exists two EH(m,i)-query for which the answer equals f(i)
is at most qE/2` but we disagree with the argument that there are at least t
indices for which A made an E−1-query on f∗(i).

Remark: One observation is that the computation of c0 may not be chosen
carefully in the BSS algorithm. The attack works because of the irrelevancy
between the computation of c0 and the choices of ct, · · · , cn.

In the following, we evaluate a would-be patch of BSS scheme. In this patch,
f is over GF(p) where the prime p ≈ 2`. We argue that this would-be patch may
also be crackable when n − t is large. In particular, the important case when
t = 1 may also be at risk in this scenario.

3.2 A naive patch that may not work

Cryptanalysis above shows that the original BSS scheme is susceptible to an
attack which is provably polynomial time for f being over GF(2`). We now
evaluate a would-be patch which turns the polynomial f from over GF(2`) to
over GF(p) where the prime p ≈ 2`. We assume other needed modifications are
also feasible without going into details.



Title Suppressed Due to Excessive Length 9

The vulnerability of this modified BSS scheme lies with the high-density
knapsack problem. The density of the subset sum problem is

d ≈ n− t
`

The problem is a low-density knapsack problem if d < 1. Low-density knapsack
problems with d < 2/n′ are provably polynomial time [28]. Main technique is
the LLL (Lenstra-Lenstra-Lovasz) lattice reduction algorithm [24]. Many low-
density knapsack problems with 2/n′ < d < 1 are almost provably polynomial
time, and/or considered insecure due to empirical results. Knapsack problems
with large high densities are often crackable [21]. However, the general knapsack
problem is proven NP-complete, and many researchers continue to believe, with
the right balance of design parameters around a knapsack problem with density
near 1, a secure asymmetric crypto-system can be constructed and proven NP-
complete to cryptanalyze [21].

If n − t = (1 − ε1)`, where the constant ε1 > 0, then the probability of the
existence of a polynomial f in the forgery algorithm is roughly 2−ε1`, negligible.
The modified BSS algorithm may be secure in this case. So assume n − t =
(1+ε2)`, where the constant ε2 > 0. When ε2 is large, the high-density knapsack
problem tends to be insecure, and so does the modified BSS algorithm. Note
that the important case t = 1 may be at risk in this scenario.

4 Generalizing the Proof of Cramer, et al.’s Threshold
Proof of Knowledge

We present the captioned generalization. In fact, we only generalize its proof by
removing two requirements: that component PoK’s need to satisfy only ordinary
soundness not special soundness, and that random oracle replaces public coins.
We do not alter their protocol. For simplicity, we assume a polynomial-based
secret sharing, instead of the monotone access structure contained in the original
paper, is used. We adopt their notations, and their main protocol in Section 4.

4.1 Security Model and Results.

Entities: Dealer D, Simulator S, Forger F .
The Game, assume the component PoK protocol has been given:

1. D generates n, t, and n public keys, gives them to S and asks for t PoK-
Collision pairs corresponding to t of the n public keys.

2. S constructs a set of n public keys, and asks F to produce an (n, t) threshold
PoK.

3. F computes and makes queries to signing oracle SO and random oracle H,
both simulated by S, and then delivers a valid answer to S.

4. S computes and solves D’s hard problem instantiations.
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Further model details:
The signing oracle Model. F can query SO with any set of public keys. But n
and t are fixed.

The adaptive adversary model. We use just about the most challenging adap-
tive adversary model imaginable. S does not know any secret key in the hard
problem instantiation received from D. F can adaptively corrupt any t−1 secret
keys in the problem it receives from S, with erasure-freeness, active adversary,
and all other advantages. SO does not know any secret key in queries to it.

Remark: It is interesting to observer that security against very strong adap-
tive adversary models can be routinely proved for group cryptography without
group secret, while even much weaker adaptive adversary models pose daunting
challenges in group cryptography with group secrets.

Definition 1 ((n, t)-PoK). Given a three-move PoK protocol P , public keys
wi, 1 ≤ i ≤ n, the triple of n-vectors (m1, c,m2) is an (n, t)-PoK if there exists
a polynomial f of degree no more than n − t such that f(i) = c(i), 1 ≤ i ≤ n,
and f(0) = H(m(1)

1 , · · · ,m(n)
1 ), and each conversation (m(n)

1 , c(n),m
(n)
2 ) is valid

for wi, 1 ≤ i ≤ n, where m1 = (m(1)
1 , · · · ,m(n)

1 ), c = (c(1), · · · , c(n)), where
m2 = (m(1)

2 , · · · ,m(n)
2 ).

Definition 2 (Existential Forger). A probabilistic Turing machine F is an
existential forger if it can produce (n, t)-PoK with non-negligible probability when
given n public keys by D.

Definition 3 (PoK-Collision). Given P which is a three-move honest verifier
zero-knowledge proof of knowledge for relation R satisfying soundness, produce
two conversations (m1, c,m2) and (m1, c

′,m′2), c 6= c′, valid in P .

Theorem 1. There exists a PPT Turing Machine for generating (n, t)-PoK
spontaneously which is existentially unforgeable by adaptive chosen public key
adersaries in the random oracle model, provided PoK-Collision is hard.

4.2 Proof

Our proof agenda is as follows:

1. Specify a pair of (n, t)-PoK generation and verification algorithm. Confirm
completeness, soundness, spontaneity.

2. Specify SO simulation.
3. Specify witness extraction, and the condition when this succeeds.
4. Specify the entire Simulator S, its complexity and success probability.

Protocol: VERIFY. It is straightforward to verify the definition.
Protocol: Generate (n, t)-PoK. Denote the given public keys as w1, · · ·,

wn. Denote the given secret keys as {xi : i ∈ I} where I ⊂ {1, · · · , n}, |I| = t.
Denote the given component PoK as P . The generation algorithm:



Title Suppressed Due to Excessive Length 11

1. For each i /∈ I, simulates P as described in [11] to produce a valid conversa-
tion (m(i)

1 , c(i),m
(i)
2 ).

2. For each i ∈ I, randomly picks m(i)
1 .

3. Compute c0 = H(m1).
4. Interpolate a polynomial f satisfying f(i) = ci for each i /∈ I and f(0) = c0.

Note the degree of f is no more than n− t.
5. For each i ∈ I, let c(i) = f(i) and use the given secret key xi to compute
m

(i)
2 and produce a valid conversation (m(i)

1 , c(i),m
(i)
2 ).

6. Output the (n, t)-PoK (m1, c,m2).

Completeness, soundness, spontaneity are straightforward. We do not treat
robustness in this paper.

Simulating SO. Given public keys w1, · · ·, wn, generate (n, t)-PoK.

1. Randomly pick c(i), 0 ≤ i ≤ n, subject to the condition that the n+ evalua-
tions f(i) = c(i), 0 ≤ i ≤ n, interpolate a polynomial f with degree no more
than n− t.

2. For each i, 1 ≤ i ≤ n, simulate P as described in [11] to produce a valid
conversation (m(i)

1 , c(i),m
(i)
2 ).

3. Back patch the random oracle to H(m1) = c0.
4. Output the (n, t)-PoK (m1, c,m2).

Witness ExtractionWE. S extracts t witnesses for t of the n hard problem
instantiations via one rewind, at the `-th H query. Denote the `-th query as
H(m1,`) and denote its outputs in two first forks as c0 and ĉ0 respectively.
Denote the results delivered by F in the two forks as (m1, c,m2) and (m̂1, ĉ, m̂2)
respectively.

If m1 = m′1 = m1,`, then S achieves desired witness extraction: By properties
of (n, t) secret-sharing, there exists I ⊂ {1, · · · , n}, |I| = t, such that c(i) 6= ĉ(i),
and (m(i)

1 , c(i),m
(i)
2 ) and (m̂(i)

1 , ĉ(i), m̂
(i)
2 ) is a PoK-Collision pair.

The sequencing, complexity, and probability of S. We use the classi-
fication proof technique. Assume F is a (T, ε)-forger, which makes qH queries to
the random oracle and makes qS queries to the signing oracle. For `, 1 ≤ qH+qS ,
let p` denote the probability that F succeeds in forgery and the `-th random
oracle query, counting in those made by SO, is the H-query used in verifying
F ’s result.

By the lunchtime attack argument, it is of negligible probability that F does
not make the query H(m1) where m1 is contained in the result F eventually
delivers to S. Therefore, there exists `, such that p` ≥ ε/(qH + qS). If S rewinds
at the `-th query, then F succeeds in the second query also with probability
ε/(qH + qS) according to the RoS Lemma [26]. Alternatively, the forking lemma
of the heavy-row lemma can be used, albeit with inferior simulation efficiency.

For each 1 ≤ ` ≤ qH + q, S makes a simulation run rewinding at the `-th
query. Then S is a (2T (qH + qS), ε2(qH + qS)−2) Turing Machine to solve t of n
of D’s hard problem instantiations. ut

.
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4.3 Discussions

In the reduction proof of [11], the security of the protocol is actually reduced
to PoK-Collision. Then by the assumption of another property of the component
PoK, namely the special soundness property defined below, a witness ŝ of a
problem instance in {P1, · · · , Pn} can be obtained in polynomial time with non-
negligible probability.

Definition 4 (Special Soundness Property). Given a problem instance P ,
let c1, c2 ∈R {0, 1}k for some parameter k. For any prover P̃ , given any two
conversations between P̃ and V, (m′, c1,m′′1) and (m′, c2,m′′2) with respect to P ,
where c1 6= c2, an element of ŝ(P ) can be computed in polynomial time.

Hence the special soundness property implies that PoK-Collision is equivalent
to finding a witness of a problem instance P .

Why is ordinary soundness important? Cramer, et al. stated that [11]
”all known proofs of knowledge have [special soundness] property, or at least
a variant where computation of the witness follows from some small number
of correct answers.” The Guillou-Quisquater’s RSA root protocol [17], Parallel
version of Ohta-Okamoto’s identification protocol [29], Schnorr’s identification
protocol [34], and an extension due to Okamoto [30] satisfy special soundness.

However, there are major versions of major PoKs that do not satisfy special
soundness, e.g. Feige-Fiat-Shamir, and new PoK’s that arise from SAG cryptog-
raphy [27]. Therefore, there is added importance to update the Cramer, et al.
result.

Now we give details on Feige-Fiat-Shamir PoK’s lack of special soundness.
First we review the version in [33]. Let n be the product of two large primes.
The public key of the Prover (Peggy) is v = (v1, · · · , vk) where each vi is a QR
in Zn, and her secret key is s = (s1, · · · , sk) where each si is the smallest square
root of vi in Zn. It is a t-round protocol, each round consists of three moves. In
the τ -th round, 1 ≤ τ ≤ t, the three moves are (xτ , eτ , yτ ) where

1. Prover picks rτ ∈ {1, · · · , n− 1}, sends xτ = r2
τ mod n to Verifier.

2. Verifier picks bτ = (bτ,1, · · · , bτ,k) ∈ {0, 1}k.
3. Prover sends back yτ = rτ

∏k
j=1 s

bτ,j
τ,j mod n.

The verification at the end of the three moves is that xτ = y2
τ

∏k
j=1 v

bτ,j
j . We

convert it to a one-round three-move protocol in the natural way: vectorization.
Let the three-move conversation be denoted (x,b,y) where x = (x1, · · · , xt),
b = (b1, · · · ,bt), y = (y1, · · · , yt).

To prove Feige-Fiat-Shamir does not have special soundness, we exhibit a
qualified pair of conversations that does not allow polynomial-time extraction of
Prover’s secret s. The pair consists of (x,b,y) and (x,b′,y′) where

{bτ ⊕ b′τ : 1 ≤ τ ≤ t} = 0k−log2 t||{0, 1}log2 t.

Then only the tail log2 t bits of Prover’s secret s can be extracted, which do not
constitute a witness.
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5 Conclusions

We present an algebraic cryptanalysis of a threshold SAG signature scheme by
Bresson, et al. [5, 6, 4]. Their design took a chance away from safe overengineer-
ing by not including enough parameters in their hash inputs. There are reasons
to suspect that these renowned researchers knew the risk but still braved the re-
search challenge in using minimal hash inputs for the noble purpose of exploring
theoretical boundaries.

It is found that their scheme is insecure when n − t is large. This includes
the important case t = 1. The new field of SAG cryptography is intrigued with
hitherto unknown vulnerabilities, that researchers should be on the lookout for.

We also generalize the proof of Cramer, et al.’s [11] threshold PoK protocol
to remove two assumptions. We use their protocols without alteration. In retro-
spect, our generalization can be viewed as merely an update of their proof using
techniques developed after the publication of their paper.
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