Tail-MAC Scheme for Stream Ciphers and
Example Application with VMPC

Bartosz Zoltak

http://www.vmpcfunction.com
bzoltak@vmpcfunction.com

Abstract. A simple algorithm for computing Message Authentication
Codes for messages encrypted with stream ciphers is described along
with the analysis of selected aspects of its security. The proposed al-
gorithm was designed to minimize the cost of additional-to-encryption
MAC-related procedures, like the udnerlying hash function in the HMAC
scheme, by taking advantage of some of the data already computed by
the cipher. The construction of the scheme, assuming a proper implemen-
tation with a selected stream cipher, appears to resist chosen ciphertext
attacks and provide practical unforgeability together with high software-
implementation efficiency, reaching a rate of about 20 cycles for a total
of encryption and authentication per byte.

Keywords: Authenticated encryption, MAC, HMAC, stream cipher, hash
function

1 Introduction

A simple algorithm for computing Message Authentication Code (MAC) of an
encrypted message, here termed " Tail-MAC scheme”, is described.

Authenticated encryption, enabling verification, with high probability, whether
the message output from the decryption process is the actual message which was
encrypted, is a significant requirement in practical applications of cryptographic
algorithms.

The NIST-approved standard, Keyed Hash Message Authentication Code
(HMAC), is broadly analyzed, considered secure and can be proven secure under
assumption of security of the underlying hash-function.

The approach here proposed was designed, on the contrary to HMAC, to
minimize the computational cost of the additional-to-encryption MAC-related
procedures while employing some of the internal-state data, already computed by
the cipher. This approach, when implemented carefully, appears to provide a full
MAC functionality, high performance in software and a comfortably-acceptable
level of resistance to forgery. According to the performed analyses, the Tail-MAC
scheme, when integrated with a fast stream cipher, like RC4 or the presented at
FSE 2004 VMPC Stream Cipher, can provide securely authenticated encryption

at a performance rate of about 20 clock-cycles per byte on a modern computer
processor.

Sections 2-4 discuss general features and definitions of the Tail-MAC scheme,
Section 5 outlines the VMPC Stream Cipher, sections 6 and 7 present an ex-
ample application of the Tail-MAC as it is integrated with VMPC, together
with software-implementation performance and Section 8 discusses security of
the Tail-MAC in a chosen ciphertext attack.

2 General description of the Tail-MAC scheme

The scheme is based on an internal state which is transformed along with the
progress of the encryption process in a manner determined by ciphertext-, key-
and Initialization Vector (IV)-derived information.

Implementation of the scheme, as it is integrated with an encryption algo-
rithm, will vary from cipher to cipher. This results from the property that the
scheme employs some of the internal-key-data already computed by the cipher.
This feature, when applied carefully, allows to eliminate, or at least significantly
reduce, any excessive computational work, which is required - besides the work
performed by the encryption process - for example by the underlying hash-
function in the HMAC scheme.

This allows to simplify the encryption-and-authentication procedure, obtain
very high efficiency in software implementations and, according to the further
discussed analyses, a reasonable level of security.

3 Definition of a d-level Tail-MAC scheme

The definition assumes existence of a cipher generating a stream of b-bit words.
The internal state of the scheme consists of the following variables T and x,,:
T: (8 x d)-element table of b-bit words. Let T'[n] denote n-th element of T.

X1,%2,...,xq: b-bit variables. Let [x1,x2,...,24] denote a (b x d)-bit word com-
bining x1,x2,...,%q

Let f denote a function and K (m) denote a part of the internal key of the
cipher in time m; f and iK will be specified differently, depending on what
cipher the Tail-MAC scheme is integrated with. Section 6 gives a proposed f
function and K (m) for the published in [6] and outlined in Section 5 VMPC
Stream Cipher.

Let h denote a function combining 7' with the cryptographic key (K), the
message-unique Initialization Vector (V') and compressing it into a word of pro-
posed size of 20 bytes (160 bits); h will vary depending on what cipher is chosen
to be used with the Tail-MAC.

Let g,m; 1, j;q,r be temporary variables
Let Pt[m] denote m-th b-bit word of plaintext
Let Ct[m] denote m-th b-bit word of ciphertext

Table 1. The Tail-MAC scheme

1. Set g,m,r to 0; Set ¢ to 1
2. Encrypt Pt[m] and store output in Ct[m]
3. For j from d down to 2: execute step 4: *!
4. z; = (z; + xj—1) modulo 256
5. z1 = f(z1,iK(m), Ctm] X q)
6. xor T[g,g+1,...,9+d— 1] with [z1,2,..., x4 **
7.9 = (g +d) modulo (8 x d)
8 r=r+1-—gq
9.if r = (8 x d): Go to step 14

10. Increment m
11. If m is lower than total number of plaintext words: Go to step 2

12. Set ¢ to 0
13. Go to step 3

14. MAC = h(K,V,T)

*1 In the following (d — 1) steps j will take on values d, (d — 1), (d — 2),...,2.
*2 xor T[g] with z1; xor T[g + 1] with xa; ...; xor T[g + d — 1] with z4.

4 Design rationale

The Tail-MAC scheme is designed to keep a sufficiently long record of the in-
formation derived from ciphertext-, key- and IV-data in the tail comprising a
set of variables x1, xo,...,xq4 and mark the T table with the tail in an extent
sufficient to make it hard to manipulate the ciphertext in a way which would
allow to generate an unchanged 7" table for a changed message.

Selection of K and the f function should be carried out in such way as to
ensure corruption of any predictable patterns of the ciphertext which could be
conveyed onto the tail and successively onto the T' table in a chosen ciphertext
attack.

The value of the d parameter, defining the length of the tail, indirectly implies
the computational effort which would be required to forge the MAC in a chosen
ciphertext attack. Further analysis of the scheme suggests that d = 4 provides a
well sufficient security level (analyzed in detail in Sections 6 and 8) and enables
a comfortable implementation of the system (as described in Section 6).

Applying the compression function h at the end of the process (h can be
based either on the internals of the employed cipher or on one of the widely-
analyzed hash-functions) is aimed mostly at preventing a possible leakage of
key-information. A dedicated analysis of this aspect is however required sepa-
rately for a specific implementation of the Tail-MAC with a selected encryption
algorithm.

The scheme was designed to make it computationally unfeasible to obtain
two identical T tables at any moment when processing two different messages
encrypted with the same key and the same Initialization Vector. The extent of
this difficulty is partly established by the d parameter determining the length
of the tail, and magnified by the fact that T keeps record of reasonably many
(8 x d) past values of x1,2a,..., 24 in a single run. A forgery attack would need
to revert all the changes of the xq,...,z4 variables and of the T table. The
size of T (8 x d) and a proposed length of the tail, d = 4, appear to provide a
comfortable resistance to the possible to predict attacks aimed at reverting these
changes, as discussed in detail in Section 8.

Observation of other messages encrypted with the same key and IV (in prac-
tical applications the IV should be message-unique for messages encrypted with
the same key) does not lead to a noticeable advantage the attacker might acquire
(e.g. by trying to learn about the behavior of the f function by introducing differ-
ent ciphertexts, observing the resulting MACs and trying to use this knowledge
to revert the changes of x1,...,24 and T for his new message) mostly because
of the use of the h compression function in the final step. Construction of the h
function should corrupt any partial regularities of T', from observing which the
attacker might benefit.

The post-processing of the T' table (the final (8 x d) iterations initialized in
step 12) is designed to prevent possible forgery attempts through processing very
short messages (one or a few bytes long), through manipulating only one or a few
first or last bytes of the message or through appending or prepending attacker-
chosen data to the message, which might be aimed at obtaining two messages
differing minorly and generating the same T tables. The post-processing extends
all the changes of the message or data appended/prepended to the message onto
variables x1, za,...,24 and onto all the (8 x d) elements of the T table, which
should make these changes hard to control. This effect is additionally magnified
by the h compression function.

5 Description of the VMPC Stream Cipher and its KSA

VMPC was introduced at FSE 2004 as a simple and software-efficient stream
cipher with a specified Key Scheduling Algorithm and Initialization Vector man-

agement procedure. The internals of VMPC can be comfortably employed to
construct an efficient encrypt-and-authenticate system based on the Tail-MAC
scheme. Following [6], the VMPC Stream Cipher, generating a stream of 8-bit
words, is specified in Table 2.

Variables:
P : 256-byte table storing a permutation initialized by the VMPC KSA
s : 8-bit variable initialized by the VMPC KSA

n : 8-bit variable
L : desired length of the keystream in bytes

Table 2. VMPC Stream Cipher

1.n=0

2. Repeat steps 3-6 L times:
3. s = P[(s + P[n]) modulo 256]
4. Output P[(P[P]s]] + 1) modulo 256]
5. Temp = P[n|
P[n] = PJs]
P[s] = Temp
6. n = (n+ 1) modulo 256

The VMPC Key Scheduling Algorithm (Table 3) transforms a cryptographic key
(K) and (optionally) an Initialization Vector (V') into the 256-element permu-
tation P and initializes variable s.

Variables as for VMPC Stream Cipher, with:

c : fixed length of the cryptographic key in bytes, 16 < ¢ < 64
K : c-element table storing the cryptographic key

z : fixed length of the Initialization Vector in bytes, 16 < z < 64
V : z-element table storing the Initialization Vector

m : 16-bit variable

Table 3. VMPC Key Scheduling Algorithm

1.s=0
2. for n from 0 to 255: P[n] =n

3. for m from 0 to 767: execute steps 4-6:
4. n = m modulo 256
5. s = P[(s + P[n] + K[m modulo ¢]) modulo 256]
6. Temp = P[n]
P[n] = Pls]
P[s] = Temp

7. If Initialization Vector is used: execute step &:

8. for m from 0 to 767: execute steps 9-11:
9. n = m modulo 256
10. s = P|(s + P[n] + V[m modulo z]) modulo 256]
11. Temp = Pn]
Pln] = Pls]
P[s] = Temp

According to [6] there are no known security problems regarding this cipher and
its KSA. The cipher is described to have a number of security advantages over
the RC4 keystream generator, its KSA is reported to provide a random-looking
diffusion of changes of one bit (or byte) of the cryptographic key of size up to
64 bytes onto the generated P permutation and onto output generated by the
cipher. The cipher is also claimed to perform at a rate of about 12.7 clock-cycles
per byte on a Pentium 4 processor. These features make the described algorithm
a plausible candidate to illustrate a practical application of the Tail-MAC scheme
on.

6 d-level Tail-MAC scheme integrated with VMPC
Stream Cipher

Let b=8 and z1,x2,...,x4, T, Pt, Ct, m, g, q be defined as in Section 3.

Let P, s, n, L, V, z be defined as in Section 5.

Table 4. Tail-MAC scheme with VMPC Stream Cipher

1. Run the VMPC Key Scheduling Algorithm
2. Set T, x1,x2,...,24,m,g,n to 0; Set ¢q to 1

3. s = P[(s + P[n]) modulo 256]
4.if ¢ = 1: Ct[m] = Pt[m] xor P[(P[P[s]] + 1) modulo 256]

5. For j from d down to 2: execute step 6:
6. x; = (z; + z;—1) modulo 256

7. x1 = P[(z1 + s + Ct[m] X ¢) modulo 256]

8. For j from 0 to (d — 1): execute step 9:
9. xor T'[g + j] with x;

10. Temp = P[n]; P[n] = P[s]; P[s] = Temp

11. g = (g + d) modulo (8 x d)

12. n = (n + 1) modulo 256

13. Increment m

14. If m=L: Set gto0

15. If m < (L + 8 x d): Go to step 3

16.1. Store table T in table V
16.2. Set z to (8 x d)
16.3. Execute step 8 of the VMPC Key Scheduling Algorithm (Table 3)
17.1. Set L to 20
17.2. Execute step 2 of the VMPC Stream Cipher (Table 2) and
save the 20 generated outputs as a 160-bit MAC.

The above implementation was designed to conform the general rationale
described in Section 4. It makes use of the diffusion effect provided by the VMPC
KSA in the construction of the h function (steps 16.1-17.2) to make h corrupt
any possible patterns that might occur in the T table. The h function this way
magnifies the avalanche effect, already ensured by the post-processing phase in
steps 3-15 for ¢ = 0, which yields a hard to control or predict correlation of the
ciphertext-, key- and IV-data with the resulting MAC. The same properties of
the A function also provide a significant level of resistance against attempts of
deducing any information about the internal key, stored in the P permutation,
from the resulting MAC. Construction and extent of the post-processing phase
(8 x d? updates of the T table performed before passing 7' to the h function) is
aimed at thwarting attempts to manipulate the ciphertext by changing any part

of it or by appending or prepending any data to it with the purpose of obtaining
an unchanged T table for a changed message.

Construction of the f function and i K (m) (step 7) fulfils its roles described in
Section 4 by taking advantage of the pseudo-randomness, key- and IV-dependence
and secrecy of the P permutation and the s variable. Any possible pattern an at-
tacker might want to convey from a chosen ciphertext onto x7 and consecutively
onto xo,...,xq and T will be corrupted by P and s.

The most efficient forgery attack found against the described scheme is pre-
sented in Section 8.

7 Performance of the VMPC Stream Cipher with
Tail-MAC scheme

Performance of a moderately optimized 32-bit assembler implementation of the
Tail-MAC scheme integrated with the VMPC Stream Cipher, measured on an
Intel Pentium 4, 2.66 GHz processor, is given in Table 5. Table 6 gives a perfor-
mance rate of the bare Tail-MAC scheme, computed as a difference between the
speed of the VMPC-with-Tail-MAC and the bare VMPC Stream Cipher.

Table 5. Performance of VMPC Stream Cipher with Tail-MAC scheme

MBytes/s | MBits/s | cycles/byte
127 1016 20.9

Table 6. Performance of bare Tail-MAC scheme

MBytes/s | MBits/s | cycles/byte
324 2592 8.2

The Tail-MAC integrated with RC4 would obtain a total performance rate
of less than 20 cycles / byte, however due to several statistical weaknesses of
RC4 and some security concerns regarding its KSA, the VMPC Stream Cipher,
so far considered free from known weaknesses, was chosen for the example im-
plementation of the Tail-MAC.

8 Chosen ciphertext attack against the Tail-MAC scheme

The most efficient chosen ciphertext attack found against the Tail-MAC scheme
is described in this section. The complexity of the attack is 2'*4, which can
be considered a well-sufficient security level in any practical applications in the
possible to predict future. In case a higher level of resistance against the discussed
attack model was required - it can be obtained by increasing the d parameter.

The attack assumes that the attacker has full passive and active access to
the ciphertext and can use an unlimited number of verification attempts for the
new message. The purpose of the attacker is to introduce a new ciphertext which
conforms the MAC of the original one.

The attack model begins with a random (or intended by the attacker) change
of one bit (or byte) of the ciphertext - C't[m]. The purpose of the attacker is to
hide this change by manipulating the remaining part of the ciphertext in such
way as to leave the resulting MAC unchanged.

The attack is illustrated on an example of the system described in Section
6, for d = 4 and b = 8, however analogous approach would apply for different d
and b parameters and different choice of ciphers.

Let x,,(m) denote the value of the z,, variable of the tail in iteration m;
we{l,2,...,d}

Let n = (m x d) modulo (8 x d).

Let ”(+)” denote addition modulo (8 x d).

A change of Ct[m] unconditionally causes a change of z1(m), since P is a per-
mutation.

Because x1(m) and only z1(m) directly updates z2(m + 1) and indirectly up-
dates x3(m+2) and x4(m+3), the variables zo(m+1), z3(m+2) and z4(m+3)
will be unconditionally changed too.

The following elements of table T will be updated and unconditionally changed
by those variables: T'[n] changed by z1(m), T[n(4)5] changed by z2(m + 1),
T'[n(+)10] changed by zs(m + 2) and T'[n(+)15] changed by x4(m + 3).

The most efficient method of reverting these changes found forces the attacker
to perform the following changes of the ciphertext:

1. Change Ct[m + 1] in such way as to make z4(m + 4) return to its origi-
nal value. The unavoidable cost of this is a change of z1(m + 1), z2(m + 2) and

x3(m + 3). ! [x3(m + 3) must be changed in such way as to make z4(m + 4) =
(x4(m + 3) + x3(m + 3)) modulo 256 return to its original value 2].

As a result T[n(+)4] is changed by x1(m + 1), T[n(+)9] is changed by
z2(m+2) and T'[n(+)14] is changed by z3(m+3). T[n(+)19] remains unchanged
because the change of z4(m + 4) was reverted.

2. Change Ct[m + 2] in such way as to make xz3(m + 4) return to its original
value. The unavoidable cost of this is a change of z1(m + 2) and z2(m + 3).

As a result T'[n(+)8] is changed by z1(m + 2) and T'[n(+)13] is changed by
x2(m + 3). T[n(+)18] remains unchanged because the change of xz3(m + 4) was
reverted.

3. Change Ct[m + 3] in such way as to make za(m + 4) return to its original
value. The unavoidable cost of this is a change of x1(m + 3).

As aresult T'[n(+4)12] is changed by 1 (m+3). T'[n(4)17] remains unchanged
because the change of xo(m + 4) was reverted.

4. Change Ct[m + 4] in such way as to make x1(m + 4) return to its origi-
nal value. As a result T'[n(+)16] remains unchanged.

At this moment the attacker succeeded in stopping the avalanche of changes
of elements of T, resulting from a change of Ct[m], by reverting the changes
of x1,x2,...,x4 in the earliest possible iteration m + 4. The cost of this is an
unavoidable change of 10 elements of the T table (T'[n, n(+)4, n(+)5, n(+)8,
n(+)9, n(+)10, n(+)12, n(+)13, n(+)14, n(+)15]).

To complete a successful forgery, the attacker needs to revert the changes of
these elements of T', too. Operations similar to steps 1-4 need to be performed
to refrain =1, 9, ..., x4 from causing more damage to T" and the additional re-
quirement - to revert the already caused changes to T - needs to be satisfied.
The most efficient approach found achieves that in the following steps 5-9:

5. Change Ct[m + 8] in such way as to change x1(m + 8) in such way as to
revert the change of T'[n], make z2(m + 9) change in such way as to revert the
change of T'[n(+)5], make x3(m+ 10) change in such way as to revert the change
of T'n(+)10], and make z4(m + 11) change in such way as to revert the change
of T'[n(+)15].

6. Change Ct[m + 9] in such way as to make x4(m + 12) return to its original
value, make x1(m + 9) change in such way as to revert the change of T'[n(+)4],

! The algorithm can be varied into making some of the variables (e.g. x2(m + 2))
remain unchanged, which yields an apparent improvement, however further analysis
shows that this actually leads to higher complexity of the complete attack.

2 The approach by which the first variable to return to its original value is 4, rather
than e.g. &1 or x2, in further analysis shows to lead to much lower complexities of
the complete attack.

make zo(m + 10) change in such way as to revert the change of T'[n(+)9], make
x3(m + 11) change in such way as to revert the change of T'[n(+)14]. T[n(+)19]
remains unchanged because the change of x4(m + 12) was reverted.

7. Change Ct[m + 10] in such way as to make z3(m + 12) return to its original
value, make x1(m + 10) change in such way as to revert the change of T'[n(+)8],
make z3(m + 11) change in such way as to revert the change of T'[n(+)13].
T'[n(+4)18] remains unchanged because the change of x3(m + 12) was reverted.

8. Change Ct[m + 11] in such way as to make xzo(m + 12) return to its orig-
inal value, make x1(m + 11) change in such way as to revert the change of
T[n(+)12]. T[n(+)17] remains unchanged because the change of zo(m + 12) was
reverted.

9. Change Ct[m + 12] in such way as to make x1(m + 12) return to its orig-
inal value. As a result T'[n(+)16] remains unchanged.

A total complexity of the described attack is determined by the total num-
ber of changes to variables z1,xa,...,24 and T[0,1,...,8 x d — 1], which need
to be reverted. Steps 1-9 determine this complexity, for the assumed d = 4 and
b =8, to 256'% = 2144,

Extending the length of the tail to d = 5 would, in an analogous attack, yield
a complexity of 25625 = 2200 (which would also imply an increase of the size of
the MAC to 25 or more bytes), however the implementation of the scheme would
not be as comfortable as for d = 4 (while still easily achievable) which, given the
fact that 2144 is a well out of reach security level, encourages to propose d = 4
as sufficient for possible practical applications of the Tail-MAC scheme.

9 Conclusions

A simple and efficient algorithm for computing Message Authentication Codes
for stream ciphers was proposed. Implementation of the scheme will vary depend-
ing on what cipher it is applied with, however the performed security analyses
were intended to be cipher-independent and provide a general view of the resis-
tance of the scheme against forgery in a chosen ciphertext attack.

An example application of the scheme as it is integrated with the VMPC
Stream Cipher was given together with performance rates of its software imple-
mentation and some discussion of the security of this particular system.

The proposed Tail-MAC scheme appears to be a simple to implement and
analyze, efficient in software implementations and, according to analyses per-
formed so far, secure approach to provide authenticated encryption for stream
ciphers.

References

10.

11.

12.

13.

Federal Information Processing Standards Publication 198:
The Keyed-Hash Message Authentication Code (HMAC), 2002
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

. Mihir Bellare, Ran Canetti, Hugo Krawczyk: Message Authentication using Hash

Functions the HMAC Construction, CryptoBytes, Vol 2, No. 1, RSA Laboratories,
1996

Mihir Bellare, Chanathip Namprempre: Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm, Proceedings
of ASTACRYPT 2000, LNCS vol. 1976 Springer-Verlag, 2000

Phillip Rogaway, Mihir Bellare, John Black, Ted Krovetz: OCB: A Block-Cipher
Mode of Operation for Efficient Authenticated Encryption (2001), Eighth ACM
Conference on Computer and Communications Security (CCS-8) (August 2001),
ACM Press.

T. Bellare, J. Guerin, and P. Rogaway: XOR MACs: New methods for message au-
thentication using finite pseudorandom functions, Proceedings of CRYPTO 1995,
LNCS vol. 963, Springer-Verlag, 1994

Bartosz Zoltak: VMPC One-Way Function and Stream Cipher, FSE 2004 Confer-
ence, proceedings to appear in LNCS, Springer-Verlag

NESSIE consortium Portfolio of recommended cryptographic primitives, 2003,
www.cryptonessie.org

NESSIE consortium: Performance of Optimized Implementations of the NESSIE
Primitives, 2003 www.cryptonessie.org

Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, Sven Verdoolaege:
Analysis Methods for (Alleged) RC4. Proceedings of ASTACRYPT 1998, LNCS,
vol. 1514, Springer-Verlag, 1998.

Scott R. Fluhrer, David A. McGrew: Statistical Analysis of the Alleged RC4
Keystream Generator. Proceedings of FSE 2000, LNCS, vol. 1978, Springer-Verlag,
2001.

Itsik Mantin, Adi Shamir: A Practical Attack on Broadcast RC4. Proceedings of
FSE 2001, LNCS, vol. 2355, Springer-Verlag, 2002.

Scott Fluhrer, Itsik Mantin, Adi Shamir: Weaknesses in the Key Scheduling Algo-
rithm of RC4. Proceedings of SAC 2001, LNCS, vol. 2259, Springer-Verlag 2001.
Jovan Dj. Golic: Linear Statistical Weakness of Alleged RC4 Keystream Generator.
Proceedings of EUROCRYPT 1997, LNCS, vol. 1233, Springer-Verlag 1997.

