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Abstract

We consider the following problem: a user U wants to store his files in an encrypted form on
a remote file server S. Later the user U wants to efficiently retrieve some of the encrypted files
containing (or indexed by) specific keywords, keeping the keywords themselves secret and not
jeopardizing the security of the remotely stored files. For example, a user may want to store old
e-mail messages encrypted on a server managed by Yahoo or another large vendor, and later
retrieve certain messages while travelling with a mobile device.

In this paper, we offer solutions for this problem under well-defined security requirements.
Our schemes are efficient in the sense that no public-key cryptosystem is involved. Indeed, our
approach is independent of the encryption method chosen for the remote files. They are also
incremental, in that U can submit new files which are totally secure against previous queries
but still searchable against future queries.

1 Introduction

We consider the following distributed file system: a user U pays a file server S for storage service,
with the goal being that U can retrieve the stored files anytime and anywhere through Internet con-
nections. For example, U may store files containing personal data that U may want to later access
using his wireless PDA. A user might be willing to pay for such a service in order to have access to
data without carrying devices with large amount of memory, and to have the data well-maintained
by professionals. Such distributed file services already exist, such as the “Yahoo! Briefcase”.1 We
expect such services will grow with the expansion of mobile and pervasive computing.

In many cases U will not want to reveal the contents of his files to S in order to maintain security
or privacy. It follows that the files will often be stored in encrypted form. Suppose, however, that
later U wants to retrieve files based on a keyword search. That is, U wants to retrieve files containing
(or indexed by) some keyword. If the files are encrypted, there is no straightforward way for S to do
keyword search unless U is willing to leak the decryption key. A trivial solution that preserves the
security of U ’s files is to have S send all the encrypted files back to him. This may not be feasible
solution if U is using mobile devices with limited bandwidth and storage space. An additional
complication is that U may naturally also want to keep secret the keyword that he is interested in
as well.

We provide practical solutions to this problem with strong theoretical security guarantees that
require only small amounts of overhead in terms of bandwidth and storage, as we describe more
fully in the main text. Our solution utilizes the notion of a keyword index, which is created by
U . The keyword index associates each keyword with its associated files. We picture the keyword
index being created offline, with a more powerful home machine, before the user wishes to access

1Emails are actually a typical example, as they are stored on remote servers [BCOP03].
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the files remotely with a mobile device. All keyword searches by U are based on this index; hence
our scheme does not offer full pattern-matching generality with the actual text. In practice, this
should be sufficient for most users. It is worth noting that in this framework U can have complete
control over what words are keywords and which keywords are associated with which files, a power
that can be useful for many applications.

We take care in defining a proper notion of security for this problem. Intuitively, after processing
one of U ’s queries, S learns something: it learns that the encrypted files that S returns to U share
some keyword. We want this to be all that S learns. We formalize this notion in cryptographic
terms and prove that our schemes satisfies our formalization.

To set up our solution, we clarify further our methodology and our contributions. Our solutions
are two-phased. In the first phase, we assume U is at home and is going to submit his files to S,
and assume that sufficient space is available to store a dictionary. In the second phase, we assume
U becomes a mobile user and wants to retrieve some encrypted files from S by keyword searches.
This is a very natural framework describing realistic distributed computing situations. We consider
both the case that U can store a dictionary on his mobile device and the case that he cannot. The
first case may be practical in some situations, where the mobile device has sufficient storage, and
is useful for framing the solution to the second case, which is our main result.

Our main idea is the following: we let U use pseudo-random bits to mask a dictionary-based
keyword index for each file and send it to S in such a way that later U can use the short seeds to
help S recover selective parts of the index, while keeping the remaining parts pseudo-random. This
requires some additional storage overhead on S as we clarify later.

No public-key cryptosystem is required in our schemes; only pseudo-random functions are used.
We claim that this property significantly increases the practicability of our schemes, since in prac-
tice heuristic pseudo-random functions (that is, functions that appear pseudo-random enough for
the specific application) can be implemented efficiently. Moreover, because our methodology is
independent of the encryption method chosen for the remote files, our schemes have the advantage
of working for different file formats (including compressed files, multimedia files, etc.), as long as a
keyword index on the corresponding content can be built a priori.

Last but not least, we solve the update problem, which says how to ensure the security of
the consequent submissions in presence of previous queries. Our solution enjoys very simply key
management. Deletion is also simple in all our schemes.

1.1 Related Work

In theory, the classical work of Goldreich and Ostrovsky [GO96] on oblivious RAMs can resolve
the problem of searching on encrypted data. Although their scheme is asymptotically efficient and
nearly optimal, it does not appear to be efficient in practice as large constants are hidden in the
big-O notation.

A closely related cryptographic problem is Single Database Private Information Retrieval (PIR
for short) [KO97]. PIR is a protocol between two parties: S, who has an n-bit string x, and U ,
who has an index 1 ≤ i ≤ n. The goal is for U to learn the i-th bit of x without leaking i, while
sending fewer than n bits from S to U (as otherwise the problem becomes trivial). PIR protocols
can be used to construct Oblivious Transfer protocols [CMO00], which are complete for all secure
computations [K88]. PIR differs substantially from our problem. Part of the difference is perhaps
cosmetic: our units are not individual bits but encrypted files and keywords. More importantly,
our security guarantee differs from that of PIR.

The question how to do keyword searches on encrypted data was previously raised in [SWP00].
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In that paper, they proposed a scheme which encrypts each word (or each pattern) of a document
separately. Such an approach has the following disadvantages. First, it is not compatible with
existing file encryption schemes. Instead, a specific encryption method must be used. Second, it
cannot deal with compressed data, while we believe users will often want to save in storage costs by
compressing their files, since generally the service fee is proportional to the storage space. Finally,
as the authors themselves acknowledge, their scheme is not secure against statistical analysis across
encrypted data [SWP00]. Although some heuristic remedies (and an index construction alternative)
were proposed, their security proof is at least not theoretically sound.

Recently, a new scheme aiming to solve this problem was proposed in [G04]. The idea of that
scheme is to build an index of keywords for each file using a Bloom filter [B70], with pseudo-
random functions used as hash functions. When U submits a document to S, he also submits the
corresponding Bloom filter. We suspect that the security model defined in [G04] is insufficient, as
the scheme cannot resist certain attack. Specifically, because the number of 1’s of a Bloom filter is
(roughly) proportional to the number of the distinct keywords of a document, some information is
immediately leaked from the Bloom filters themselves, and we believe that statistical analysis based
on this (and related) facts can compromise the security of the encrypted files.2 On the other hand,
one inherent problem with this Bloom-filter-based approach is that Bloom filters inevitably induce
false positives, which would potentially cause mobile users may download extra files not containing
the keyword. While sufficiently rare false positive might be acceptable, we note that our scheme
avoids this problem.

As further related work, [BCOP03] studies the problem how to search on data encrypted by a
public-key cryptosystem. In particular, they consider the problem of a user that wants to retrieve
e-mails containing a certain keyword from his e-mail server, with the e-mails encrypted by the user
using his public key. The problem setting is related to but different from ours.

2 Preliminaries

We use the notation a ← A to denote choosing an element a uniformly at random from the set
A, and use PPT to denote probabilistic polynomial time. Also, for a positive integer n ∈ N, let [n]
denote the set {1, 2, · · · , n}; for a string s, let s[i] denote its i-th bit; for a function f , let |f | denote
its output length. Moreover, we say a function is negligible in t if for any polynomial p there exists
a t0 such that for all t > t0 we have f(t) < 1/p(t). Last, all logarithms in this paper have base 2.

2.1 Cryptographic basics

For completeness we first define pseudo-random permutations and functions. Our definitions are
standard; see, e.g., [G01].

Definition 1. (Pseudo-random permutations) We say a permutation family {PK : {0, 1}n →
{0, 1}n|K ∈ {0, 1}t} is pseudo-random if it satisfies the following:

• Given x ∈ {0, 1}n and k ∈ {0, 1}t, there is a PPT algorithm to compute Pk(x).

• For any PPT oracle algorithm A, the following value is negligible in t:

|Pr
k←{0,1}t [A

Pk(1t) = 1]−Prp←Up
[A

p
(1t) = 1]|,

where Up is the set of all the permutations on {0, 1}n.
2The latest version of [G04] proposes a new security model and a new scheme to deal with this problem.
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Definition 2. (Pseudo-random functions) We say a function family {FK : {0, 1}n → {0, 1}m|K ∈
{0, 1}t} is pseudo-random if it satisfies the following:

• Given x ∈ {0, 1}n and k ∈ {0, 1}t, there is a PPT algorithm to compute Fk(x).

• For any PPT oracle algorithm A, the following value is negligible in t:

|Pr
k←{0,1}t [A

Fk(1t) = 1]−Pr
f←Uf

[A
f
(1t) = 1]|,

where Uf is the set of all the functions mapping {0, 1}n to {0, 1}m.

Next, the following lemma says it is safe to feed pseudo-random functions with pseudo-random
seeds instead of truly random seeds.

Lemma 1. Consider two pseudo-random function families {FK : {0, 1}n → {0, 1}m|K ∈ {0, 1}t}
and {GK : {0, 1}` → {0, 1}t|K ∈ {0, 1}t}. For any PPT oracle algorithm A and any x ∈ {0, 1}`,
the following value is negligible in t:

|Pr
σ←{0,1}t,k=Gσ(x)

[AFk(1t) = 1]−Pr
f←Uf

[A
f
(1t) = 1]|,

where Uf is the set of all the functions mapping {0, 1}n to {0, 1}m.

Proof. If (A, x) is a counterexample, then there is a construction of a PPT algorithm B using
A, x, FK such that the following value is not negligible in t:

|Pr
σ←{0,1}t [B

Gσ(1t) = 1]−Prg←Ug
[B

g
(1t) = 1]|,

where Ug is the set of all the functions mapping {0, 1}` to {0, 1}t. Clearly, it induces a contradiction.

In practice, we can use HMAC-SHA1 [BCK96] to implement a pseudo-random function. Also, it is
well known that a pseudo-random permutation can be constructed using a pseudo-random function
in three rounds [LR85, NR97].

2.2 Problem setting

We define the problem of Privacy Preserving Keyword Searches on Remote Encrypted Data
(PPSED for short) in this section, and will hereafter use PPSED to denote this problem. Recall
that we allow the user U to specify the relationship between files and keywords. That is, U can
associate any collection of keywords with a file. Generally, when files are text files, keywords will be
actual words of text. In order to formalize a clear definition, we only consider queries containing a
single keyword. We emphasize that to deal with queries containing Boolean operations on multiple
keywords in the security setting of PPSED remains a challenging open problem.

The formal definition of PPSED is as follows:

Definition 3. (PPSED) PPSED is a multi-round protocol between a remote file server S and a
user U . S has a set of n encrypted files ζ = {E1(m1), E(m2), · · · , En(mn)} where for each i ∈ [n], Ei

is an encryption function and mi is a file. The user U has decryption algorithms D1,D2, · · · ,Dn

such that D1(E1(m1)) = m1,D2(E2(m2)) = m2, · · · ,Dn(En(mn)) = mn. Moreover, in each round
j ∈ N, U prepares a keyword wj ∈ {0, 1}∗. An implementation of PPSED with security parameter
t must satisfy the following:
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1. Correctness: In round j, for i ∈ [n], if wj is a keyword of mi, U can obtain Ei(mi).

2. Limits on the bandwidth and the storage space:
Consider round j, and let Ij = {i| i ∈ [n], wj is a keyword of mi}.

– The number of bits sent from S to U is
∑

i∈Ij

|Ei(mi)|+ O(1).

– The number of bits sent from U to S is O(t) per keyword search.

– The number of bits stored on U is O(t).

3. Security requirement:
For k ∈ N, let Ck be all the communications S receives from U before round k, and let
C∗

k = {ζ, Q0 ≡ ∅, Q1, · · · , Qk−1}, where for each j ∈ [k − 1], Qj is an n-bit string such that
for i ∈ [n], Qj [i] = 1 if and only if wj is a keyword of mi.

– For k ∈ N, for any PPT algorithm A, any ∆k = {m1, · · · ,mn, w0 ≡ ∅, w1, · · · , wk−1},
any function h, there is a PPT algorithm A∗ such that the following value is negligible
in t:

|Pr[A(Ck, 1t) = h(∆k)]−Pr[A∗(C∗
k , 1t) = h(∆k)|.

(Note the requirement captures the following: everything about ∆k that can be computed
given Ck can also be computed given C∗

k .)

On the security requirement. Recall that our goal is the following: in round j, S can learn
nothing more than “a keyword is shared by the sent encrypted files.” To this end, consider an ideal
case: U records in advance a set of linked lists such that each file index is associated with a list of
all the keywords of the corresponding file. In this case, U knows for sure which files contain the
keyword in round j, namely wj , and hence it is enough for U to send S an n-bit string Qj such that
for i ∈ [n], Qj [i] = 1 if and only if wj is a keyword of mi (and S has to send Ei(mi) back). Note C∗

k

exactly consists of such communications from U before round k. To be sure that the security of an
implementation P of PPSED is not worse than that of the ideal case, we ask all the communications
from U before round k in the execution of P , namely Ck, cannot leak more information than C∗

k .
Specifically, we ask everything about ∆k that can be computed given Ck can also be computed
given C∗

k . Notice that this ideal case is not a practical solution itself to the PPSED problem, since
it would require U store these linked lists, which would be Ω(n) bits in total. (In particular, these
lists would generally require significantly more storage than a dictionary.) It would also require
potentially sending n bits from U to S for every query.

3 Efficient Schemes

In this section, we consider the following two cases separately: (1) a dictionary can be stored on
U ’s mobile device, and (2) a dictionary cannot be stored on U ’s mobile device (ostensibly due to
lack of space). We study the first case both for its own merit and to lead us to the solution of the
second case. In either case, our scheme consists of two phases. In the first phase, we assume U is
at home and is going to submit his files to S, and assume a keyword dictionary is always available
to U . However, we do not exclude the possibility that S has a dictionary that is totally the same
(i.e. the dictionary may be publicly accessible). In the second phase, U becomes a mobile user, and
wants to retrieve certain files by keyword searches via his mobile device. The main idea behind
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our schemes is the following: U uses pseudo-random bits to mask a keyword index for each file and
sends it to S so that later U can use the short seeds to help S recover selective parts of the index,
while keeping the remaining parts pseudo-random.

3.1 When a dictionary can be stored on U ’s mobile device

We formalize the keyword dictionary as 2d index-word pairs (i, wi), with i ∈ [2d], wi ∈ {0, 1}∗ for
some constant d. Next, given the security parameter t, for K ∈ {0, 1}t, let PK(x) be a family
of pseudo-random permutations with domain {0, 1}d, let FK(x) be a family of pseudo-random
functions mapping {0, 1}d to {0, 1}t, and let GK(x) be a family of pseudo-random functions mapping
[n] to {0, 1}. Here is our two-phase PPSED scheme.

Scheme1

Noninteractive Setup at Home

• U chooses s, r ∈ {0, 1}t uniformly at random and keeps them secret.

• Initially, for each file mj , 1 ≤ j ≤ n, U prepares a 2d-bit index string Ij such that if mj

contains wi, U sets Ij [Ps(i)] to be 1, and otherwise Ij [Ps(i)] is set to 0.

• Next, U computes ri = Fr(i) for i ∈ [2d], and for each file mj,j∈[n], computes a 2d-bit masked
index string Mj such that Mj [i] = Ij [i]⊕Gri(j).

• For 1 ≤ j ≤ n, U submits Ej(mj) to S along with the corresponding masked index string Mj .

• U copies the two secret keys s, r and the dictionary to his mobile device before leaving home.

1-round Mobile Retrieval

• In order to retrieve files with a keyword wλ, U first retrieves the corresponding index λ from
his dictionary, and then sends p = Ps(λ) and f = Fr(p) to S.

• S then computes Ij [p] = Mj [p]⊕Gf (j) for j ∈ [n]. If Ij [p] = 1, S sends Ej(mj) to U .

Theorem 2. Scheme1 is an implementation of PPSED where S sends
∑

i∈Ij

|Ei(mi)| total bits, U
stores 2t bits plus a dictionary of constant size, and U sends (d + t) bits per keyword search.

Proof. Because the correctness and the communication complexity of Scheme1 can be easily verified,
it suffices to prove U ’s security. W.l.o.g. we assume U does not make the same query twice, and
hence the protocol consists of at most 2d retrieval rounds.

In the following, by “the view of S” we mean all the communications S receives from U . Let ζ
denote {E1(m1), E2(m2), · · · , En(mn)}. Next, let

I(a) = {I1[a], I2[a], · · · , In[a]},
M(a) = {M1[a], M2[a], · · · ,Mn[a]},
G(a) = {Ga(1), Ga(2), · · · , Ga(n)},

and let M = {M(1),M(2), · · · ,M(2d)}. Moreover, let λv denote the dictionary index of the
keyword in round v, and define pv = Ps(λv) and fv = Fr(pv). In addition, let Cv denote the view
of S before round v, so we have

C1 = {ζ,M}, C2 = {ζ,M, p1, f1}, C3 = {ζ,M, p1, p2, f1, f2}, . . . .
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Consider the ideal case which meets our security requirement perfectly: U records in advance
a set of linked lists such that each file index is associated with a list of all the keywords of the
corresponding file. In this case, the only message U needs to send in round v is the n-bit string Qv

such that for j ∈ [n], Qv[j] = 1 if and only if mj contains the keyword in round v (and S has to
send Ej(mj) back). So if we let C∗

v denote the view of S before round v in the ideal case, we have

C∗
1 = {ζ}, C∗

2 = {ζ, Q1}, C∗
3 = {ζ, Q1, Q2}, . . . .

Observe that Qv = I(pv) for v ∈ [2d].
Our goal is to prove the following (for k ∈ [2d + 1]): for any PPT algorithm A, any ∆k =

{m1, · · · ,mn, w0 ≡ ∅, w1, · · · , wk−1}, any function h, there is a PPT algorithm A∗ such that the
following value is negligible in t:

ρ = |Pr[A(Ck, 1t) = h(∆k)]−Pr[A∗(C∗
k , 1t) = h(∆k)|.

Intuitively, suppose A∗ on input C∗
k can generate a view C ′

k that is indistinguishable from Ck. Then
A∗ can simulate running A with C ′

k to give the desired result (that is, that ρ is negligible in t). We
shall follow this intuition.

For k = 1, A∗ just needs to choose M′ from {0, 1}n2d
uniformly at random, and feeds A

with {ζ,M′}. We claim A∗ is as desired as otherwise the pair (A,A∗) is a PPT distinguisher for
pseudo-random bits and truly random bits. For k > 1, the strategy of A∗ is as follows:

• A∗ chooses f ′1, f
′
2, · · · , f ′k−1 uniformly at random from {0, 1}t, and chooses s′ = (p′1, p

′
2, · · · , p′k−1)

uniformly at random from S = {s | s ⊂ {1, 2, · · · , 2d}, |s| = k − 1}.
• A∗ computes M′ = {M′(1),M′(2), · · · ,M′(2d)} in the following way:

– For i ∈ [2d], i 6= p′1, p
′
2, · · · , p′k−1, choose M′(i) uniformly at random from {0, 1}n.

– For i ∈ [k − 1], set M′(p′i) = Qi ⊕ G(f ′i).

• A∗ feeds A with C ′
k = {ζ,M′, p′1, p

′
2, · · · , p′k−1, f

′
1, f

′
2, · · · , f ′k−1}.

We explain why this strategy works as follows. First, recall Qv = I(pv) for v ∈ [k−1], and consider
the following imaginary case: for each i ∈ [2d], i 6= p1, p2, · · · , pk−1, U does not generate M(i)
according to Scheme1; instead, U chooses M(i) from {0, 1}n uniformly at random. Clearly, in this
case, the only difference between the generation of C ′

k and the generation of Ck comes from the
employment of truly randomness in place of pseudo-randomness. Specifically, C ′

k is generated using
truly random p′j and f ′j for j ∈ [k − 1], yet Ck is generated using pseudo-random pj and fj for
j ∈ [k − 1]. So we claim ρ must be negligible in t in this case as otherwise the pair (A,A∗) can be
used to invalidate either PK or FK .

Next, consider the real case (that U does follow every step of Scheme1). An observation is for
each i ∈ [2d], i 6= p1, p2, · · · , pk−1, M(i) remains pseudo-random before round k. However, since this
is the only difference between the real case and the imaginary case, we claim ρ must be negligible
in t in the real case as otherwise the pair (A,A∗) can be used to invalidate GK . In consequence,
we have proven the desired security guarantee.

Analysis. We examine the practicability of the above scheme with realistic parameters. First, if
we set d = 18, the storage overhead on server is 32 kilobytes per file. Note the latest Merriam-
Webster’s Collegiate Dictionary contains only 225,000 definitions [M03]. So even if U adds new
words by himself, 218 could be a reasonable upper-bound in practice for the number of all the
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distinct words in U ’s dictionary as well as in his documents. Second, notably only a few bits
are sent from U per keyword search. If we set t = 2030, for example, only 256 bytes are required.
Clearly, our scheme is independent of the encryption method chosen for the remote files, so it works
for different file formats (including compressed files, multimedia files, etc.), as long as a keyword
index on the corresponding content can be built. Moreover, only pseudo-random functions (and
permutations) are used in the construction of our scheme. As mentioned earlier, these functions
can be implemented efficiently by heuristic algorithms.

Although we assume the availability of a dictionary on U ’s mobile device, the assumption is
not far-fetched as most of today’s mobile devices are equipped with built-in electronic dictionaries
(or can store one on a memory card). Actually, if we estimate the average length of a keyword
by 23 ASCII characters, a dictionary only amounts to (218)(23)(8) = 2 megabytes, which can be
improved further using compression.

3.2 When a dictionary cannot be stored on U ’s mobile device

We now consider the same setting as the previous section, except that a dictionary cannot be stored
on U ’s mobile device. Our new scheme is almost the same with Scheme1, with the pivotal difference
being that U is asked to store an encrypted dictionary on S.

Let wmax upper-bound the length of a word in U ’s local dictionary at home, let Φ be a family of
pseudo-random permutations on {0, 1}wmax , and let F ∗

K(x) be a family of pseudo-random functions
mapping {0, 1}d+wmax to {0, 1}t. Here is our two-phased PPSED scheme.

Scheme2

Noninteractive setup at home

• U follows the first two steps of Scheme1, except he also chooses τ ∈ {0, 1}t uniformly at
random and keeps it secret.

• Next, U sends to S the following in order: ϕ1 = Φτ (wi1), ϕ2 = Φτ (wi2), · · · , ϕ2d = Φτ (wi
2d

)
such that Ps(ij) = j for j ∈ [2d]. (S then records (j, ϕj) for j ∈ [2d], following the order.)

• Next, U computes ri = F ∗
r (i, ϕi) for i ∈ [2d], and for each file mj,j∈[n], computes a 2d-bit

masked index string Mj such that Mj [i] = Ij [i]⊕Gri(j).

• U follows the last two steps of Scheme1, except he copies τ , instead of the dictionary, to his
mobile device before leaving home.

2-round mobile retrieval

• In order to retrieve files with keyword wλ, U sends ϕ = Φτ (wλ) to S.

• Let (p, ϕp) be such that ϕp = ϕ. S sends p to U , who then sends f = F ∗
r (p, ϕ) to S.

• S then computes Ij [p] = Mj [p]⊕Gf (j) for j ∈ [n]. If Ij [p] = 1, S sends Ej(mj) to U .

Theorem 3. Scheme2 is an implementation of PPSED where S sends
∑

i∈Ij

|Ei(mi)| + d total bits,

U stores 3t bits, and U sends (wmax + t) bits per keyword search.
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Proof. We first prove U ’s security, employing some of the notation in the proof of Theorem 2. Let
C̃k denote the view of S before round k in Scheme2. It suffices to prove the following: for all k, for
any PPT algorithm Ã, any ∆k = {m1, · · · ,mn, w0 ≡ ∅, w1, · · · , wk−1}, and any function h, there
is a PPT algorithm A such that the following value is negligible in t:

|Pr[Ã(C̃k, 1t) = h(∆k)]−Pr[A(Ck, 1t) = h(∆k)|.

Recall Ck is the view of S before round k in Scheme1. In other words, we ask everything about ∆k

that can be computed given C̃k can also be computed given Ck. In other words, the information
leakage of Scheme2 is essentially no worse than that of Scheme1.

Since the retrieval phase is interactive, we know U ’s ongoing action depends on S’s message,
namely p. So we must consider the case that S might dishonestly send an arbitrary p′ 6= p to U .
However, let us start from the simplified case that S always sends the correct p to U .

In the simplified case, we can assume w.l.o.g. that U always sends back p, along with f , to S.
Note this does not jeopardize U ’s security since U learns p from S, while the difference between
C̃k and Ck now comes from {ϕj}j∈[2d] + {ϕ = ϕp}.3 An observation is A can simulate each ϕj by
flipping coins and can simulate ϕ by setting ϕ to be the simulated ϕp, in that each ϕj represents t
pseudo-random bits and p is known to A (as p ∈ Ck is part of the input to A). So all A needs to
do is to feed Ã with Ck and the simulated results.

Next, let us consider the case that S might be dishonest. Note if S sends p′ 6= p to U , then the
returning message from U , namely f ′ = F ∗

r (p′, ϕ), cannot be used for decryption and represents
nothing more than t pseudo-random bits. Hence we can assume w.l.o.g. that S always simulate f ′

by flipping t coins and discarding f ′ from his view (C̃k) in this case. Accordingly, it is enough to
prove that for all k, for any PPT algorithm Ã, any ∆k = {m1, · · · ,mn, w0 ≡ ∅, w1, · · · , wk−1}, any
function h, there is a PPT algorithm A such that the following value is negligible in t:

|Pr[Ã(C̃k, 1t) = h(∆k)]−Pr[A(ck, 1t) = h(∆k)|,

where ck ⊂ Ck is the reduced Ck defined as follows: ck is constructed by mimicking S’s dishonest
behavior to discard the corresponding f from Ck. Clearly, A just needs to do the same simulations
as in the simplified case and feeds Ã with ck and the simulated results. Hence, we have finished
the security proof by describing this PPT algorithm A.

There server S must send an additional d bits (namely p) beyond the files themselves. The
on-mobile-device dictionary is replaced by a small storage overhead of t bits (namely the key to
ΦK). Moreover, we claim the correctness follows the fact that ΦK is injective, and the user-side
communication complexity can be easily verified.

Analysis. If we estimate the maximal length of a word by 24 ASCII characters, we have wmax =
(24)(8) = 128. Hence the encrypted dictionary amounts to (218)(128) = 4 megabytes per user. The
server-side storage overhead is the same with Scheme1. On the other hand, the communication
complexity changes only slightly: S needs to send additional d bits per keyword search, while U
now needs to send (wmax + t) bits per keyword search.

4 Secure Updating

In this section, we study the problem how to securely update the remote files. First, we have
two observations: (1) to delete a remote file along with its encrypted index is straightforward in

3W.l.o.g. we can assume FK(j) ≡ F ∗K(j, ϕj) for all j ∈ [2d], i.e. {ϕj}j∈[2d] is part of the description of FK .
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our schemes (we simply ignore it and its index henceforth), and (2) to update a remote file can
be thought as deleting the old one and then adding a new file. Hence we can reduce the update
problem to how to securely submit new files.

Basically U can follow all the steps in the first phase of either Scheme1 or Scheme2 to submit
a new set of files, but some additional care is indispensable. First note if U treats the new files as
a continuum of the old ones, or say, if U still uses the old pseudo-random seeds {ri}i∈[2d], then for
any keyword that U has queried, S can learn (for free) whether the newly added files contain the
(unknown) keyword or not as he already knows the corresponding pseudo-random seed. This says
the newly submitted files suffer from a-prior information leakage before any query.

A solution is to choose independently a truly random seed rθ to generate {rθ
i }i∈[2d] for each file

set ζθ, and to let S memorize the separating points amongst the asynchronous sets. When U makes
a query, he should compute for each set ζθ a pseudo-random seed corresponding to the keyword
index (using the truly random seed rθ), and send all of them to S, who then decodes the encrypted
index accordingly. In this way, the aforementioned a-priori information leakage can be avoided.
However, this approach suffers from an increasing number of truly random seeds that have to be
stored on the mobile device: it works well only when the updating process is not so frequent.

Fortunately, we can apply another pseudo-random function to generate each rθ, which is thus
not truly random anymore. But similarly to our previous approaches, we know it is safe to feed
pseudo-random functions with pseudo-random seeds, and therefore we just need one truly random
seed for the new pseudo-random function (and for all the sets). In consequence, we claim our
schemes are incremental in the following sense: U can submit new files which are totally secure
against previous queries but still searchable against future queries. Moreover, they both have very
simple key management.

5 Discussion

It is worth considering the extending the security requirement of PPSED to something stronger.
For example, we could require indistinguishability, in the manner of PIR. Clearly, to work out an
efficient solution with reasonable bounds on the number of bits transmitted and stored under such
a strong security requirement is very difficult. If we give up on such bounds, and ask instead just
that the communication from S to U should be strictly less than the sum of remote encrypted files
(just as how PIR is defined), we can develop a possible solution using PIR as a subroutine. Here
the trick is simple: follow the ideal case to record a set of linked lists, and then use PIR to retrieve
the matched files. Other variations are possible, but they do not seem as efficient or practicable as
our schemes.

Dealing with queries containing Boolean operations on multiple keywords remains the most
significant and challenging open problem.4 Similarly, allowing general pattern matching, instead of
keyword matching, remains open. Solving these open questions would greatly enhance the utility
of these schemes.

Our schemes can also deal with occurrence queries in a less efficient way. An occurrence query is
a query like “I want to retrieve all the files containing more than 10 occurrences of PRIVACY.” One
simple solution coupled with our schemes is to also record each occurrence of a word in the encrypted
index. Hence if the word PRIVACY appears 12 times in a document, each appearance would be

4[G04] proposed a method to deal with such Boolean queries by letting S learn both which files contain x and
which files contain y and send the intersection set back to U . However, this approach cannot capture the intuition
that S should only learn the intersection set instead of separate sets when a Boolean query x ∧ y is made. In fact,
the same method can also be applied to our schemes, yet the security of this method is unsatisfactory.
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labelled separately as PRIVACY1, PRIVACY2, . . ., and a query could be done on PRIVACY10.
This approach can dramatically increase the storage overhead on the sever-side. We shall consider
more efficient methods for this problem in the final version of this paper.

We believe these problems are of growing importance, as keyword searches on encrypted data
might have a broad range of applications in distributed multi-user settings. For example, [BGHP02]
studies the problem how to efficiently share encrypted data on P2P networks. In similar settings,
keyword searches on encrypted data are indispensable.
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