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Abstract. In their paper, Miyaji, Nakabayashi and Takano [12] describe
a simple method for the creation of elliptic curves of prime order with
embedding degree 3, 4, or 6. Such curves are important for the realisation
of pairing-based cryptosystems on ordinary (non-supersingular) elliptic
curves. We provide an alternative derivation of their results, and extend
them to allow for the generation of many more suitable curves.
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1 Introduction

There has been a recent surge of interest in so-called pairing-based crypto-
graphic protocols, and many with novel properties have been proposed, for key-
exchange [17], digital signature [4], encryption [3], and signcryption [13]. Such
schemes require very special elliptic curves.

An elliptic curve E(Fq) with q = pm and characteristic p > 3 can be described
in the Weierstraß parameterisation as the set of solutions (x, y) over Fq to an
equation of the form E : y2 = x3 + Ax + B, where A,B ∈ Fq, together with an
additional point at infinity, denoted O. We will also consider the same equation
over Fqk for a positive integer k, although A,B remain in Fq. Here we restrict
our interest to the case where m = 1 and q = p. The number of points on such a
curve is denoted #E(Fq), and is called the curve order. If #E(Fq) known, then
#E(Fqk) can be calculated easily using Weil’s Theorem [11].

An (additive) Abelian group structure is defined on E by the well known
secant-and-tangent method [16]. Let n = #E(Fq). The order of a point P ∈
E(Fq) is the least nonzero integer r such that rP = O, where rP is the sum of
r terms equal to P . The order of a point divides the curve order, so r | n. For a
given integer r, the set of all points P ∈ E such that rP = O is denoted E[r].
Commonly this set forms a single cyclic group. However, on the curve E(Fqk)
multiple subgroups of prime order r (where r2 - n) will exist with embedding
degree k for some k > 0 if r | qk − 1 and r - qs − 1 for any 0 < s < k.
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For our purposes, a divisor is a formal sum A =
∑

P aP (P ) of points on
the curve E(Fqk). An Abelian group structure is defined on the set of divisors
by the addition of corresponding coefficients in their formal sums; in particular,
nA =

∑
P (naP )(P ). The degree of a divisor A is the sum deg(A) =

∑
P aP .

Let f : E(Fqk) → Fqk be a function on the curve and let deg(A) = 0. We define
f(A) ≡ ∏

P f(P )aP . The divisor of a function f is (f) ≡ ∑
P ordP (f)(P ). A

divisor A is called principal if A = (f) for some function (f). A divisor A is
principal if and only if deg(A) = 0 and

∑
P aP P = O [11, theorem 2.25]. Two

divisors A and B are equivalent, A ∼ B, if their difference A − B is a principal
divisor. Let P ∈ E(Fq)[r] where r is coprime to q, and let AP be a divisor
equivalent to (P )− (O); under these circumstances the divisor rAP is principal,
and hence there is a function fP such that (fP ) = rAP = r(P )− r(O).

The Weil pairing of order r is the map er : E(Fqk)[r]×E(Fqk)[r] → F∗qk given
by er(P, Q) = fP (B)/fQ(A) for some divisors A ∼ (P )−(O) and B ∼ (Q)−(O).
The Weil pairing is bilinear, and will be non-degenerate if P and Q are chosen
from distinct subgroups; for efficiency reasons, P is usually chosen on the base
curve E(Fq).

From the Hasse bound we know that n = q + 1− t, where t (the trace of the
Frobenius) satisfies |t| 6 2

√
q. In many applications the optimal case is a prime

curve order, so n = r. In general, however, n = hr for some integer h > 1.

The discrete logarithm problem in E(Fq)[r] must be intractable, and since
the Weil pairing establishes a correspondence between the discrete logarithm
problem in E(Fq)[r] and its counterpart in a subgroup of order r in F∗qk , the latter
must be intractable as well. However, we do not want k to be unnecessarily large,
as otherwise the computation costs will rise prohibitively. For contemporary
levels of security qk should be at least 1024 bits in length to resist index-calculus
attacks [14], so k lg(q) ≈ 1024. The group order r should be at least 160 bits to
resist Pohlig-Hellman attacks [14], so lg(r) ≈ 160. Note that r cannot be much
bigger than q as a direct consequence of the Hasse bound; on the other hand,
it could be much smaller than q, which is undesirable since all arithmetic is
conducted in Fqk . We define ρ = lg(q)/ lg(r), and we would like ρ to be close to
one. We would also like q to fit snugly into a multiple of computer words as this
will optimise the multi-precision arithmetic.

Supersingular curves exhibit the required behaviour for k ∈ {2, 3, 4, 6} [11],
and indeed this setting was originally chosen for pairing-based schemes. How-
ever, there is some concern regarding the deployment of supersingular curves;
furthermore, many of them exist only for curves of small characteristic, and for
these yet more powerful index calculus attacks exist [6].

Miyaji et al. [12] were the first to describe a method to systematically con-
struct ordinary (non-supersingular) curves of prime order with embedding degree
k ∈ {3, 4, 6}. Other methods for arbitrary k have since been proposed [2, 8], but
these have usually ρ ≈ 2. Recent work by Brezing and Weng [5] allows for curves
with smaller ρ under certain circumstances (for instance, ρ = 5/4 for k = 8),
but attaining ρ ≈ 1 in general remains elusive.
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Here we address the problem of finding suitable non-supersingular curves
which exhibit the required behaviour for small values of k. Our contribution is
to extend the MNT construction, to present examples of useful curves that were
found, and to demonstrate that such curves are plentiful enough for use in real
applications.

This paper is organised as follows. In section 2 we review the MNT scheme. In
section 3 we extend it and suggest a simple search algorithm. In the next section
we present some results in the form of elliptic curves particularly suitable for
use in pairing-based protocols. Finally a new alternative algebraic construction
is suggested which allows for many more pairing-friendly curves. We draw our
conclusions in section 6.

2 MNT curves

In their paper [12] Miyaji, Nakabayashi and Takano describe an explicit con-
struction for the generation of non-supersingular curves E(Fq) of prime order
n = r (and so ρ = 1), which have embedding degree k ∈ {3, 4, 6}. Unfortunately,
only relatively few of the curves which can be found using this construction are
ideal for actual deployment. However if a prime curve order is insisted upon,
these are the only curves available.

Nonetheless in some applications such as short signatures [4, 18] there are
reasons other than those of performance which require ρ ≈ 1.

The complex multiplication (CM) method [7] will find an elliptic curve with
a given modulus q and a trace t if a solution can be found for the CM equation
for “small” values of D

DV 2 = 4q − t2

Note that for arbitrary choices of q and t satisfying the Hasse condition
(which ensures that the right-hand side is non-negative), the non-square part
D will be very large. However the CM method is only practical if the solution
should yield small values for D. Substituting n = hr = q + 1− t gives

DV 2 = 4hr − (t− 2)2

Recall that the condition for the embedding degree to be k in the subgroup
of prime order r is that r | qk − 1 and r - qi − 1 for any 0 < i < k. Let x = t− 1.
As shown in [2, Lemma 1] this condition is equivalent to r | Φk(x), and r - Φi(x)
for all 0 < i < k, where Φk(x) is the k-th cyclotomic polynomial [10].

Now let Φk(x) = dr for some x, and substitute into the CM equation

DV 2 = 4h
Φk(x)

d
− (x− 1)2

The challenge now is to find integer solutions to this equation for small D
and arbitrary V . This approach generalises not only the original MNT technique
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described in [12] (which only considers h = d = 1), but also that of [2] (which
allows h > 1 but misses d > 1).

For k ∈ {3, 4, 6} the cyclotomic polynomial is quadratic:

Φ3(x) = x2 + x + 1
Φ4(x) = x2 + 1
Φ6(x) = x2 − x + 1

Clearly in these cases the CM equation is quadratic as well. Next we make
the substitution x = (y−ak)/b to remove the linear term in x, where a3 = 2h+d,
a4 = d, a6 = −2h + d, and b = 4h − d. Finally set fk = a2

k + b2 and g = dbD.
The CM equation then simplifies to

y2 − gV 2 = fk

This is the generalised Pell equation, well known in number theory, which
may have many solutions for y and V given non-zero fk and positive g. There
are no solutions for negative g, and therefore b must be positive, so we have
the constraint 4h > d. In what follows we assume that an efficient computer
algorithm is available which outputs all the solutions (y, V ) when provided with
the input (g, fk).

For each solution y we must check that x = (y − ak)/b is an integer, that
r = Φk(x)/d is prime, and that q = hr + x is also prime. These conditions are
fairly restrictive, and not many solutions will be found. Furthermore we want
useful solutions, in that the sizes of q and r should also ideally satisfy the criteria
given above. In practice, useful solutions are extremely rare. In the original MNT
paper [12], the authors go on to derive explicit conditions for q and r for the
case h = 1, and furthermore prove that only these solutions exist.

3 Extending the MNT construction

The condition h = 1 is clearly required if we insist on finding curves of prime
order. Allowing small values of h > 1, we can find many more suitable curves.
The discussion in the previous section suggests the following search algorithm.
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choose k ∈ {3, 4, 6}
λ ← −2bk/2c+ 4
for h ← 1 to hmax do

for d ← 1 to 4h− 1 do
ak ← λh + d, b ← 4h− d, fk ← a2

k − b2

for D ← 1 to Dmax such that D is square-free do
g ← dbD
for each solution of y2 − gV 2 = fk such that b | (y − ak) do

x ← (y − ak)/b
if d | Φk(x) then

r ← Φk(x)/d, n ← hr, q ← n + x
if q is prime and r is prime then

output q, r, h,D
end if

end if
end for // y

end for // D
end for // d

end for // h

One of the conditions above can be loosened a little. If r is found to be not
a prime, but rather a near-prime such that r = ms where m is small and s is
prime, then we still have the option of using the subgroup of prime order s. This
clearly still satisfies the conditions for the embedding degree of this subgroup to
be k.

The outputs from this algorithm can be input directly into a program which
implements the CM method [15] as described in the appendix to the IEEE-1363
standard [9], and this will output the actual curve parameters A and B.

The values for hmax and Dmax can be determined by experimentation, but
we are only really interested in solutions with small h (to keep ρ small) and not
too large D (to facilitate the CM algorithm).

The time taken for the search can be greatly reduced by exploiting certain
congruential restrictions. These can be used to limit the search by eliminating
“impossible” solutions. For example it is important that d | Φk(x), and by el-
ementary arguments one can establish that for k = 4 then d ∈ {1, 2} mod 4,
and for k ∈ {3, 6} then d ∈ {1, 3} mod 6. Also the quadratic expression for q in
terms of x must not allow for an algebraic factorisation, and by checking for this
condition the search can be further restricted. General viability conditions on D
are presented in [9, appendix A.14.2.1]. In [12] it is determined by very specific
arguments for the case h = 1 and k = 3 that solutions are only possible with
D ≡ 19 (mod 24). Here we do not, however, attempt to enumerate all such spe-
cific conditions. Rather, we are content to point out that some combinations of k,
h, d, and D are “luckier” than others3, in that they suffer less from congruential
restrictions on the search, and hence yield more solutions.
3 We found empirical evidence that a useful rule-of-thumb in practice is to restrict the

search to D ≡ 3 (mod 8). Most of the examples in section 4 satisfy this condition.
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4 Some results

In all cases below we sought to generate curves of form E(Fq) : y2 = x3−3x+B
for some B ∈ Fq using the CM method. Such curves are preferred for efficiency
reasons [9].

The search algorithm described in section 3 was initially tested with k = 6,
hmax = 4 and Dmax = 10000. The rather loose criteria for suitability were that
768 6 k lg(q) 6 1536 and the generated r not necessarily prime but r = ms for
small m and prime s, but lg(s) > 128 (probably, as in some cases r was not
completely factored and the curve discarded).

Table 1. Number of curves found, k = 6

h d curves

1 1 12
2 1 13
2 3 21
3 1 6
3 7 4
4 1 22
4 7 4
4 13 271

Observe that the case h = 4 and d = 13 generates many more curves than
the rest put together. This alone justifies the extension of the search for MNT
curves to the case h > 1.

A curve with k = 6, lg(q) ≈ lg(r) ≈ 160, r a prime, would be close to ideal for
most pairing-base cryptosystems, particularly for short signature schemes [4, 18].
Such a curve could be implemented efficiently on a 32-bit computer, each field
element in Fq fitting tightly into 5 computer words. A search using the original
MNT scheme and D 6 109 failed to find any. However, changing the requirement
slightly to accept a prime group order of 158–160 bits quickly produced this one:

D = 62003

q = 625852803282871856053922297323874661378036491717

h = 3

r = 208617601094290618684641029477488665211553761021

B = 423976005090848776334332509669574781621802740510

where q is a 159-bit prime, and r a 158-bit prime.
Setting hmax = 4 produced the following curve for d = 3, where q is a 159-bit

prime, and r is a 158-bit prime:
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D = 7847065

q = 726603276565856308231681324679631345400083766009

h = 2

r = 363301638282928154115841184332371857360701634617

B = 343011569054375008804697453550711897985034356169

However as expected most results were found with h = 4 and d = 13. Six
curves were found where q is a 160-bit prime and r is a 158-bit prime.

D = 717595

q = 1222965701665972809446759943409454109976443779851

r = 305741425416493202361689487439975889605713608671

B = 115419023237406278170081633675601601871533058985

D = 1397298

q = 1441003788997091610941692474587273733446074744953

r = 360250947249272902735423659667977575990831685241

B = 869162499697119307832270469253122499480256839113

D = 1523371

q = 1111714005232005195378928817611642038201497628289

r = 277928501308001298844732679604875270588641845889

B = 235171041487846717590241335242181466193965979052

D = 1983787

q = 838037236404643753535652736111836980504069202251

r = 209509309101160938383913596612876134598919947551

B = 44112466049244884646865750001748101994738264659

D = 8807457

q = 936544197843263925649712528430294091367497781089

r = 234136049460815981412428568267567317450442849889

B = 323027702724246759086521620944702075414456757583

D = 9154385

q = 1159996789981722242622772974376630336217379556429

r = 289999197495430560655693729005681927098069593789

B = 1067782606939229981648974648369145174879546988730

4.1 Extending the search

Further extending the search program for Dmax = 108 produced many more
curves, too many to list here. For example we found this nice curve with 160-bit
prime q and 159-bit prime r.

D = 85700746

q = 867258523307518647087182620127316278179122196339

h = 2

r = 433629261653759323543591880345997196086391622887

B = 194856775885459025831105686028633928753660625487

7



A further 16 curves featuring a 160-bit prime q and 158-bit prime r were also
found in this range.

Pushing on even further (Dmax > 109) eventually resulted in two examples
of “ideal” 160-bit curves.

D = 1173931627

q = 730996464809526906653170358426443036650700061957

r = 730996464809526906653171213409755627912276816323

B = 259872266527491431103791444700778440496305560566

D = 1175123707

q = 801819385093403524905014779542892948310645897957

r = 801819385093403524905015674986573529844218487823

B = 237567233982590907166836683655522398804119025399

The CM method took 9 hours 15 minutes to find this last curve, running on
an Athlon XP 1.6 GHz.

As one would expect, curves with different sizes can be found as easily. All
of the following examples fit exactly into a multiple of 32 bits.

192 bits:

D = 3371809

q = 4691249309589066676602717919800805068538803592363589996389

h = 2

r = 2345624654794533338301358959942345572918215737398529094837

B = 3112017650516467785865101962029621022731658738965186527433

224 bits:

D = 496659

q = 15028799613985034465755506450771565229282832217860390155996483840017

h = 1

r = 15028799613985034465755506450771561352583254744125520639296541195021

B = 345630277172740421841095258617873363855538472122976053007521156770

256 bits:

D = 56415963

q = 111414920022524430892658400746600150808275514432674525726456574716059022448901

h = 1

r = 111414920022524430892658400746600150808609303168288123734064824116395715749571

B = 50021741514441995821714012698370511401516690246238845488497341645903187725596
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5 An alternative solution

The original MNT construction is only applicable to k ∈ {3, 4, 6}. We now extend
it to k = 2. To this end we adopt an algebraic strategy (see [2, section 3.1]
and [5]).

In this case the condition ρ ≈ 1 is clearly impossible to achieve due to the
Hasse condition. Recalling the CM equation:

DV 2 = 4h
Φk(x)

d
− (x− 1)2

Our approach is to choose h and d so that the two terms on the RHS have a
common factor, and then forcing x to have a special form.

Since Φ2(x) = x + 1, setting h = (x− 1)/2 and d = 2 the RHS evaluates as
2(x− 1). If we substitute x = 2Dz2 +1, then the RHS becomes 4Dz2 = D(2z)2.
Therefore we have a solution to the CM equation with q = (x2 + 4x− 1)/4 and
r = (x + 1)/2. Solutions will be plentiful, as any value of D can be chosen. Of
course q and r should be prime for the chosen z.

A similar approach also finds many solutions for k = 6. Set h = (x − 1)/12
and d = 1. The CM equation now becomes

DV 2 =
x− 1

3
(x− 2)2

Substituting x = 12Nz2+1, the RHS becomes D[(2z)(12Dz2−1)]2 and again
we have a solution to the CM equation, this time with q = (x3−2x2+14x−1)/12,
r = x2−x+1 and ρ ≈ 1.5. As before any choice of D can be made when searching
for solutions, and careful choice of z makes it easy to find solutions of any size.

Note that these types of solution naturally allow for the choice of r with a
low Hamming weight (by imposing that z and D themselves have low Hamming
weight). This is useful to speed up the Weil or Tate pairing calculation [1].
Unfortunately, we were not able to extend this approach to other values of k.

6 Conclusion

A method for the generation of non-supersingular elliptic curves with small em-
bedding degree suitable for use with pairing based cryptosystems, has been ex-
tended to permit the generation of many more suitable curves. Some example
curves particularly suitable for use with a short signature scheme have been
presented. In practice it has not proven difficult to find curves with near-ideal
properties.

An alternate strategy has also been proposed for the cases k = 2 and k =
6 which allows for the generation of many more curves suitable for use with
pairings.
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