
Positive Results and Techniques for Obfuscation

Benjamin Lynn∗

Stanford University
Manoj Prabhakaran†

Princeton University
Amit Sahai‡

Princeton University

February 27, 2004

Abstract

Informally, anobfuscatorO is an efficient, probabilistic “compiler” that transforms a programP
into a new programO(P ) with the same functionality asP , but such thatO(P ) protects any secrets
that may be built into and used byP . Program obfuscation, if possible, would have numerous important
cryptographic applications, including: (1) “Intellectual property” protection of secret algorithms and
keys in software, (2) Solving the long-standing open problem of homomorphic public-key encryption,
(3) Controlled delegation of authority and access, (4) Transforming Private-Key Encryption into Public-
Key Encryption, and (5) Access Control Systems. Unfortunately however, program obfuscators that
work on arbitrary programscannotexist [1]. No positive results for program obfuscation were known
prior to this work.

In this paper, we provide the firstpositiveresults in program obfuscation. We focus on the goal
of access control, and give several provable obfuscations for complex access control functionalities, in
the random oracle model. Our results are obtained through non-trivial compositions of obfuscations; we
note that general composition of obfuscations is impossible, and so developing techniques for composing
obfuscations is an important goal. Our work can also be seen as making initial progress toward the goal
of obfuscating finite automata or regular expressions, an important general class of machines which are
not ruled out by the impossibility results of [1]. We also note that our work provides thefirst formal
proof techniques for obfuscation, which we expect to be useful in future work in this area.

1 Introduction

Software Obfuscation is an important cryptographic concept with wide applications. However until recently
there was little theoretical investigation of obfuscation, despite the great success theoretical cryptography
had in tackling other challenging notions of security.

Roughly speaking, the goal of (program) obfuscation is to hide the secrets inside a program while pre-
serving its functionality. Ideally, an obfuscated program should be a “virtual black box,” in the sense that
anything one can compute from it could also be computed from the input-output behavior of the program.
To be clear (but still informal), anobfuscatorO is an efficient, probabilistic “compiler” that transforms a
programP into a new programO(P ) such that:

• (Functionality Preservation.) The input/output behavior ofO(P ) is the same asP .

• (Secrecy.) “Anything that can be efficiently computed fromO(P ) can be efficiently computed given
oracle access toP .”

∗Email: blynn@theory.stanford.edu .
†Email: mp@cs.princeton.edu .
‡Email: sahai@cs.princeton.edu .

1



This second property seeks to formalize the notion that all aspects ofP which are not obvious from its
input/output behavior should be hidden byO(P ). By considering the problem of obfuscation restricted
to specific classes of interesting programs, one can further specify exactly what needs to be hidden by the
obfuscation, and what doesn’t need to be1.

Program obfuscation, if possible, would have numerous important cryptographic applications, including:
(1) “Intellectual property” protection of secret algorithms and keys in software, (2) Solving the long-standing
open problem of homomorphic public-key encryption, (3) Controlled delegation of authority and access, and
(4) Transforming Private-Key Encryption into Public-Key Encryption. (See [1] for more discussion.) We
discuss another important application, access control, in more detail below.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [1] initiated the formal cryptographic
study of obfuscation, and established several important impossibility results (which we discuss further be-
low). There have been many ad-hoc approaches to program obfuscation (seee.g.[3]); Many of these have
been broken (e.g. [4] broken by [6]), and none of these have proofs of their security properties. Proven
results are known only in models where the adversary has only partial access to the obfuscated program or
circuit [5, 7].

In this paper, we provide the firstpositiveresults in program obfuscation. We focus on the goal of access
control, and give several provable obfuscations for complex access control functionalities, in the random
oracle model. Our results are obtained through non-trivial compositions of obfuscations; we note that gen-
eral composition of obfuscations is impossible, and so developing techniques for composing obfuscations
is an important goal. Our work can also be seen as making initial progress toward the goal of obfuscating
finite automata or regular expressions, an important general class of machines which are not ruled out by
the impossibility results of [1]. We also note that our work provides thefirst formal proof techniques for
obfuscation, which we expect to be useful in future work in this area.
Context for our work. In order to understand the challenge of program obfuscation, we first recall the
impossibility results of [1]. Their central construction demonstrates the existence of a particular familyF
of programs, for which no obfuscator can exist. More precisely, every function inF has an associated
secret key such that: (1) no efficient algorithm can extract the secret key given the input/output functionality
of a random function fromF ; (2) however, there exists an adversary which canalwaysextract the secret
key givenanyprogram which implements a function inF . There are several important observations to be
made:

• The program familyF consists of programs which have inputs and outputs of bounded length. Under
a widely believed complexity assumption (factoring Blum integers is hard),F can implemented by
constant-depth polynomial-size threshold circuits (i.e. F ⊂ TC0). Furthermore,F can be embed-
ded into specific constructions of most cryptographic primitives, thus ruling out obfuscators that work
on, say, any signature scheme.

• If the obfuscated program runs in timeT , the adversary which extracts the secret key runs in time
roughly onlyÕ(T 2). Note also that the adversary’s probability of success is1.

• The impossibility result (with all the properties above) extends to the random oracle model.

The above properties highlight the difficulty of obtaining anygeneralmethods for obfuscation: Because the
adversary runs quickly and always succeeds in extracting the secret key (and the impossibility result holds

1In general, one can define a class of programs parametrized by the secrets which are meant to be protected by the obfuscation.
For instance, for a programP which sorts the input and then signs it using a secret signature keysk, one can define a program class
F = {Psk : P using keysk}. An obfuscator forF would then only be required to protect the secret key; it would not be required,
for example, to protect the exact nature of the sorting algorithm, since this is the same for all programs inF .

2



in the random oracle model), there seems little hope to relax our security requirement: General purpose
obfuscation under any meaningful relaxed secrecy definition2 would seem to find a counterexample inF .

This has consequences for the techniques we can hope to develop to build and prove obfuscations. One
of the most useful techniques we could hope for is composition. However, note that any single logic gate
is trivially obfuscatable; indeed even a depth 1 threshold circuit (TC0

1) is trivially obfuscatable since it is
learnable with oracle queries. Obviously, an arbitrary circuit can be built from a composition of logic gates;
and anyTC0 circuit can be built from just aconstantnumber of compositions ofTC0

1 circuits. Thus,
no general theorem showing how to compose even a constant number of obfuscations is possible (under
reasonable complexity assumptions).
Our Results. We now describe our results in more detail. The starting point for our work is the simple
observation that a commonly used practice for hiding passwords can be viewed as a provably secure ob-
fuscation of a “point function” under the random oracle model. That is, consider the family of functions
{fα} wherefα(x) = 1 if x = α, andfα(x) = 0 otherwise. IfR is a random oracle3 (with a large enough
range), then the program which storesρ = R(α), and on inputx outputs 1 iffR(x) = ρ is an obfuscation
of fα with high probability overR. Starting with this most basic of access control functionalities, we give a
number of novel reduction and composition techniques for obfuscation, and use these to build obfuscations
of much more complex access control functionalities.

We show how to obfuscate a functionality we call anAccess Automaton. Consider a large organization
(such as a government) that wishes to implement a complex hierarchical access control system for a large
collection of private information. In such a system, a single piece of information may need to accessible by
persons with a variety of different credentials (e.g.the co-chair of one subcommittee and the secretary of an
unrelated working group may need access to the same piece of secret information). In our setting, we allow
for anexponentialnumber of sets of credentials to give access to a common piece of information. We model
this framework as an arbitrary directed graph, where each edge is labeled with a password/credential, and
each node is attached to a secret. At the start, the structure of the graph is completely unknown to a user, but
by supplying passwords/credentials, the user can explore and learn as much of the graph as she has access
to, given the set of passwords/credentials she has. We show how to provably obfuscate this functionality in
the random oracle model. We also show that our obfuscation can be dynamically updated, such that secrecy
is preserved even if the adversary observes the entire history of obfuscated programs.

A potential drawback of the above functionality concernsweakpasswords. Suppose there is a document
which is accessible by giving a sequence of 5 passwords, but the adversary has partial information allowing
him to narrow each password to a (different) set of104 possibilities. The adversary could efficiently “break”
each password one by one, and access the document, even though the document itself hadlog(1020) “bits”
of security. We show how to address this problem: Suppose we have a public regular expression over hidden
strings (e.g.the expression “x1(x1|x4)∗(x2|x3)x3x4)”, wherex1, x2, x3, x4 are unknown strings). Then we
show how to essentially obfuscate this expression in a way that preserves the natural security inherent in
the expression. In the example above, the adversary would not gain any partial information even if he knew

2There is one intriguing, if limited, possibility that we can imagine: There is nothing known to rule out a general purpose
obfuscator that takes circuits of sizes, and outputs circuits of size, say,O(sk), such that no adversary running in timeΩ(sk2)
could obtain meaningful information. Ifk were large enough, this could conceivably provide enough of a slowdown to be useful in
some cases. No such transformation is known to exist.

3The work of [2] on “perfectly one-way hash functions” can be seen as a way to implement the random oracle within this
obfuscation in certain models. By considering an extension of such models, it is possible to apply the techniques of [2] to remove
the random oracles from all our constructions. However, these models are not satisfactory, because in general [2] cannot deal with
partial information being available to the adversary, which is an important part of the obfuscation model we consider. Extending [2]
to deal with partial information is an important open problem. Progress there would lead to progress toward removing the random
oracle in our constructions. However, since we seek to give thefirst positive results regarding obfuscation, we do not concern
ourselves with removing the random oracle in this work. We stress that it is indeed an important problem to address in the future.

3



thatx3 was one of only two possibilities – without knowingx1 andx4, he cannot resolve his uncertainty
aboutx3. The main difference between this case and the Access Automaton is that the overall structure of
the regular expression is not hidden by the obfuscation. We also give another obfuscation for public regular
expressions over “black boxes” – this does not have the security property above, but can be seen as providing
a nontrivial obfuscation of a composition of individually obfuscatable functions. We also show how to go
beyond just “equality checking” by giving an obfuscation forproximity checkingin tree metrics.

We believe that the proof techniques we introduce are as important as the results we obtain. In particular,
we give a new notion of reduction between classes of functions which implies that if one is obfuscatable, then
so is the other. We also show that our proof techniques allow for important compositions of obfuscations. In
particular, by making use of our composition theorems, in the Access Automaton obfuscation, every edge
can be controlled by not just a single password, but a regular expression of the type mentioned above, or an
approximate tree metric proximity checker. We believe our techniques will be of further use in the nascent
field of program obfuscation.

2 Preliminaries

Following Barak et al. [1] we define obfuscation of a family of functionsF as follows.

Definition 1 A family of functionsF is obfuscatableif there exists an algorithmO which takes a Turing
Machine (or circuit) that computesF ∈ F and outputs a Turing Machine (circuit, respectively) such that
the following conditions hold (the TM or circuit is also denoted byF ).

1. (Functionality) For allF ∈ F and all inputsx ∈ {0, 1}∗ we haveO(F )(x) = F (x)

2. (Polynomial Slowdown) There exists a polynomialp such that for allF ∈ F we have|O(F )| ≤
p(|F |) and (in the case of Turing Machines) ifF takest time steps on an inputx ∈ {0, 1}∗, O(F )
takes at mostp(t) time steps.

3. (Virtual Blackbox) For all PPTA, there exists a PPTS and a negligible functionν such that for all
F ∈ F we have

|Pr [A(O(F ))) = 1]−Pr [SF (1|F |) = 1]| ≤ ν(|M |).

Here the probabilities are taken over the randomness ofA andS (andO andF if they are randomized).
O is called anobfuscatorfor F , andO(F ) an obfuscation ofF . O is said to beefficient if it runs in

polynomial time, in which case we sayF is efficiently obfuscatable.

Now we extend this definition so that random oracles are taken into account.
We consider a parameterk associated with the familyFk of functions being obfuscated. The size of

F ∈ Fk is polynomial ink, and the random oracle that can be used in the obfuscation will be a random
member ofRk, the set of all functions from{0, 1}∗ to {0, 1}`(k) for some polynomial̀ . We shall refer tok
as thefeasibility parameter.

Definition 2 (Obfuscation in the Random Oracle Model)An oracle algorithmO which takes as input
a Turing Machine (or circuit) and produces an oracle Turing Machine (or oracle circuit) is said to be an
obfuscator of the familyF = ∪kFk if we have that

1′. (Approximate Functionality) There exists a negligible functionν such that, for allk, for all F ∈ Fk

we havePr [∃x ∈ {0, 1}∗ : OR(F )(x) 6= F (x)] ≤ ν(k).4

4A weaker requirement would be that for allF ∈ Fk andx ∈ {0, 1}∗, we havePr [OR(F )(x) 6= F (x)] ≤ ν(k).

4



2′. (Polynomial Slowdown) There exists a polynomialp such that for allk, for all F ∈ Fk we have
|O(F )| ≤ p(k) and (in the case of Turing Machines) ifF takest time steps on an inputx ∈ {0, 1}∗,
O(F ) takes at mostp(t) time steps.

3′. (Virtual Blackbox) For all PPTA, there exists a PPTS and a negligible functionν such that for all
k, for all F ∈ Fk we have

|Pr [AR(OR(F ))) = 1]−Pr [SF (1k) = 1]| ≤ ν(k)

Here the probabilities are taken overR ∈ Rk as well as the randomness ofA and S (andO if it is
randomized).
O is called anobfuscatorfor F , andO(F ) an obfuscation ofF . O is said to beefficient if it runs in

polynomial time, in which case we sayF is efficiently obfuscatable.

In the sequel, all our results will apply to the definition presented here (in the random oracle model). For
notational convenience we shall often abbreviateOR,AR etc. to simplyO,A etc.

3 Reductions and Composition

3.1 Reductions

Definition 3 A class of Turing Machines (or circuits)F is said to bepolynomial-time black-box imple-
mentable relative toG (denotedF � G ) if there exist polynomial time TMs (circuits)M andN such that
for everyF ∈ F there is aG ∈ G , such thatMG computes the same function asF , andNF computes the
same function asG.

So, if F � G , for everyF ∈ F , G contains a functionG which is “equivalent” toF in some extended
sense. Now we give the main tool which lets us reuse results on obfuscatability.

Lemma 1 If F � G andG is obfuscatable (when everyG ∈ G is given asNF for anF ∈ F ),5 then so
is F . Further if G is efficiently obfuscatable, thenF is efficiently obfuscatable too.

Proof: GivenF ∈ F , letG ∈ G be such thatMG ≡ F andG ≡ NF . SinceG is obfuscatable, letO′

be an obfuscator forG . We claim thatO(F ) = MO′(G) (i.e., the code ofM and the codeO′(G)) is an
obfuscation ofF .

Clearly, conditions1′ and2′ of Definition 2 are satisfied. To prove condition3′, consider any adversary
A which accepts the codeO(F ) = MO′(G). We need to demonstrate a PPTS as required by condition3′.
First, we build an adversaryA′ which accepts the codeO′(G), adds the code ofM to it to getO(F ),
passes it on to an internally simulated copy ofA, and outputs whateverA outputs. Now, sinceO′(G) is an
obfuscation ofG, there exists a simulatorS ′ such that

|Pr [S ′G(|O′(G)|) = 1]−Pr [A′(O′(G)) = 1]| ≤ ε (1)

for some negligible functionε(|O′(G)|).
We useS ′ to buildS, as follows. Note thatS gets oracle access toF and receives|O(F )| as input.SF

can implement an oracle equivalent toG asNF , using its oracle access toF . It runsS ′ with oracle access

5If G ∈ G is obfuscatable only when represented in some other format, still this Lemma holds, but now the obfuscator forF
takesF asMG with G specified in that obfuscatable format.

5



toG implemented in this way, and input|O′(G)| calculated from|O(F )| (by subtracting the size ofM ). S
outputs whateverS ′ outputs.

Clearly, by construction,

Pr [A(O(F )) = 1] = Pr [A′(O′(G)) = 1]

Pr [SF (|O(F )|) = 1] = Pr [S ′G(|O′(G)|) = 1]

and so by Equation (1),|Pr [SF (|O(F )|) = 1] − Pr [A(O(F )) = 1]| ≤ ε. Finally |O(F )| ≥ |O′(G)|, so
thatε is still negligible when considered a function ofO(F ), completing the proof.

Note that in buildingO(F ) = MO′(G), the obfuscatorO needs to obtainO′(G), givenF . SinceG can
be specified asNF toO′, if O′ is efficient so isO. �

3.2 Extending Lemma 1

We extend Definition 3, and Lemma 1 to allow reductions to probabilistic families of functions. We do
this for proving Theorem 10. In fact, somewhat more general extensions are possible. But for the sake
of simplicity we restrict ourselves more or less to the minimum extensions we will need. The reader may
skip this section, and return to it while reading Section 5. The other results in this paper do not need these
extensions.

Definition 4 SupposeG̃ is a family of probabilistic Turing Machines (or circuits), andF a family of deter-
ministic TMs (circuits). We sayF �∗ G̃ if there exist probabilistic polynomial time TMs (circuits)M and
N such that for everyF ∈ F there is aG ∈ G̃ , such that the distributions of outputs ofMG andF are
computationally indistinguishable, and those ofNF andG are computationally indistinguishable.

Note that unlike Definition 3, the above definition isnot information theoretic. It involves the notion
of computational indistinguishability, and hence inherently all the results which use the following lemma
requires the adversary (A andS) to be PPT machines or circuits.

Lemma 2 SupposeF �∗ G̃ . Let G be the family of deterministic TMs (circuits) obtained by fixing in all
possible ways the random-tapes of the TMs (circuits) inG̃ . Then, ifG is obfuscatable, so isF .

Proof: The proof closely follows that of Lemma 1. First we propose an obfuscatorO for F . ForF ∈ F ,
let G, M andN be as guaranteed by the fact thatF �∗ G̃ : i.e.,G ∈ G̃ andMG ≈ F andG ≈ NF . On
input F the obfuscatorO picks a random-tape forG, and constructs the deterministic programGr ∈ G .
SinceG is obfuscatable, it has an obfuscator, sayO′. ThenO outputsMO′(Gr) (i.e., the code ofM and the
codeO′(Gr)). We claim thatO is an obfuscator forF .

Again it is condition3′ of Definition 2 that we need to argue about. Consider any adversaryA which
accepts the codeO(F ) = MO′(Gr). We build an adversaryA′ which accepts the codeO′(Gr), adds the
code ofM to it to getO(F ), passes it on to an internally simulated copy ofA, and outputs whateverA
outputs. Now, sinceO′ is an obfuscator forG , there exists a simulatorS ′ such that, for allr,

|Pr [S ′Gr(|O′(Gr)|) = 1]−Pr [A′(O′(Gr)) = 1]| ≤ ε (2)

for some negligible functionε(|O′(Gr)|).
We useS ′ to build a simulatorS as follows. Note thatS gets oracle access toF and receives|O(F )|

as input. Using this oracle accessSF can implementNF which is indistinguishable from the probabilistic

6



machineG = {Gr}r. Choosing a random-taper′ for N , fixes a random-taper for G. S runsS ′ with oracle
access toNF

r′ (equivalent to oracle access toGr for somer) and input|O′(Gr)| (calculated from|O(F )| by
subtracting the size ofM from |O(F )|; we assume that the size of|O′(Gr)| is independent of the specific
random-taper). S outputs whateverS ′ outputs.

From the construction we have the following:

Pr [A(O(F )) = 1] = Er[Pr [A′(O′(Gr)) = 1]]

Pr [SF (|O(F )|) = 1] = Pr [S ′NF
(|O′(Gr)|) = 1] = Er[Pr [S ′Gr(|O′(Gr)|) = 1]

and so by Equation (2),|Pr [SF (|O(F )|) = 1] − Pr [A(O(F )) = 1]| ≤ ε. Finally |O(F )| ≥ |O′(G)|, so
thatε is still negligible when considered a function ofO(F ), completing the proof. �

3.3 Composition of Obfuscations

An obfuscated program can be idealized as oracle access to the corresponding function. We ask if ob-
fuscations compose: can we put together different obfuscations and expect them to behave ideally as the
corresponding collection of oracles. Note that here we use the termcomposein the same way as one refers
to composition of cryptographic protocols- to ask whether having multiple instances in the system breaks
the security or not. It does not necessarily refer to composition of functions in the usual mathematical sense,
something which we will address later in this section. We make the following definition to define a simple
composition of obfuscations, where there is no interaction between the different instances.

Definition 5 Anarrayof t functionsF1, . . . , Ft is defined as follows:

JF1, . . . , FtK(i, x) = Fi(x) if i ∈ {1, . . . , t}; else⊥

Let JO(F ),O(G)K, by abuse of notation stands for the code which consists of the codesO(F ) and
O(G) as modules, and a small driving unit which directs the calls to one of the modules as appropriate.

Definition 6 (Simply Composing Obfuscations)An obfuscatorO for a familyF is said to producesimply
t-self-composing obfuscationsif O∗(JF1, . . . , FtK) = JO(F1), . . . ,O(Ft)K is an obfuscation of the family
{JF1, . . . , FtK|Fi ∈ F}.6

This can be extended to multiple families of obfuscatable functions to define a set ofsimply composing
obfuscations.

In fact, in the random oracle model we have the following claim (which we conjecture to extend to the plain
model too):

Claim 3 There exists a class of functionsF , and an obfuscatorO for F in the random oracle model, such
that obfuscations produced byO arenotsimply 2-self-composing.

Proof: We consider the class of point functionsP (defined later, in Section 4). By Lemma 6, this class
is obfuscatable in the random oracle model. Note that whenF andG are identical (randomly chosen)
functions, oracle access to the functionJF,GK does not reveal the fact that they are identical, to a PPT
machine. On the other hand the obfuscation given in Lemma 6 does reveal this. (Of course, it is easy to
modify the obfuscation, in order to avoid this problem.) Thus no simulator can simulate the behaviour of an
adversaryA (which has access to these obfuscations) which outputs 1 ifF = G and 0 otherwise. �

6We can havet constant, or polynomial in the feasibility parameterk.

7



Conjecture 1 If there are non-trivial obfuscations in the plain model, Claim 3 holds in the plain model too.
Indeed, in that case, we conjecture that there exists an obfuscatable familyF , such thatA = {JF,GK :
F,G ∈ F} is unobfuscatable.

The difficulty in attempting to prove this conjecture is that it requires a non-trivial obfuscatable familyF ,
and we have virtually nothing known beyond what is being presented in this work (which is in the random
oracle model).

On the other hand, an obfuscatable function composes with anytrivially obfuscatablefunction (defined
below).

Definition 7 A family of functionsF is learnable as polynomial time circuitsif there exists an oracle circuit
P such that for allF ∈ F , PF outputs a polynomial sized circuitCF which computesF .

If F is learnable it is obfuscatable: the obfuscatorO takes a circuit forF and runsP with oracle access
to that circuit; it outputsCF produced byP asO(F ). This is clearly an obfuscation, because for every
adversaryA, a simulatorS simply runsP with the oracle forF , obtainsCF and runsA on it.

Definition 8 A family of learnable functions is called afamily of trivially obfuscatable functions. The
obfuscation obtained via learning the function is called thetrivial obfuscation of the function.

Simple as the following lemma is, it is interesting that its intuitive extension fromtrivially obfuscatable
family to anyobfuscatable family is an open problem.

Lemma 4 LetF be a trivially obfuscatable family of functions. Then,G is obfuscatable, if and only if the
family of functionsA = {JF,GK : F ∈ F , G ∈ G } is obfuscatable.

Proof: First, we show thatG � A . Then it follows from Lemma 1 thatG is obfuscatable ifA is.
To see thatG � A , for eachG ∈ G we chooseA = JF,GK ∈ A , whereF ∈ F is a fixed function for

all G. Then a machineM which internally implementsF can implementA with access to onlyG. On the
other hand a machineN which has access toA can clearly implementG.

Now we show thatA is obfuscatable ifG is. Intuitively, an obfuscation ofA does not “hide” theF
component (which is easily learnable). So it is sufficient if we are able to obfuscate theG part. Formally,
we show that forA = JF,GK ∈ A , the following is a valid obfuscation:O(A) = JO′(F ),O′(G)K, where
O′(F ) is the trivial obfuscation ofF andO′(G) is the obfuscation ofG given by the assumption thatG
is obfuscatable. As earlier the notationJO′(F ),O′(G)K refers to the code which hasO′(F ) andO′(G) as
internal modules, plus a small control module to activate the appropriate one depending on the input.

To show thatO(A) is a valid obfuscation, for every adversaryA which acceptsO(A), we shall show
a simulatorS such that|Pr [SA(|O(A)|) = 1] − Pr [A(O(A)) = 1]| is negligible. The structure of the
argument is similar to that in the proof of Lemma 1.

FromA, we first build an adversaryA′ which takes as inputO′(G), uses it to build the codeO(A)
=JO′(F ),O′(G)K, passes it on to an internally simulated copy ofA, and outputs whateverA′ outputs.
Using the fact thatO′(G) is an obfuscation ofG, there exists a simulatorS ′ such that

|Pr [S ′G(|O′(G)|) = 1]−Pr [A′(O′(G)) = 1]| ≤ ε (3)

for some negligible functionε(|O′(G)|).
We useS ′ to build a simulatorS as follows. Note thatS gets oracle access toA and receives|O(A)|

as input. Oracle access toA in particular gives oracle access toF . SinceF is trivially obfuscatable, it
is possible to obtain the trivial obfuscationO′(F ) just using this oracle access toF . SoS first computes

8



O′(F ). Next, note that given oracle access toA, oracle access toG can also be implemented. SoS runsS ′
with oracle access toG implemented in this way, and input|O′(G)| calculated from|O(A)| (by subtracting
the size ofO′(F )). S outputs whateverS ′ outputs.

By construction,

Pr [A(O(A)) = 1] = Pr [A′(O′(G)) = 1]

Pr [SA(|O(A)|) = 1] = Pr [S ′G(|O′(G)|) = 1]

and so by Equation (3),|Pr [SF (|O(F )|) = 1] − Pr [A(O(F )) = 1]| ≤ ε. Finally to complete the proof,
we note that|O(A)| ≥ |O′(G)| and soε is still negligible when considered a function ofO(A). �

Now we consider the question of more complex composition of obfuscations. We ask if obfuscations
of composed functions can be obtained by using obfuscations of the component functions. In particular we
look at function compositions (in the usual mathemaical sense, of one function invoking another).

Conjecture 2 Conjecture on Obfuscatability of Function Compositions: Given two classesF and G of
obfuscatable programs, the familyA = {A(x) = F (G(x)) : F ∈ F , G ∈ G } is obfuscatable.

Theorem 5 The Conjecture on Obfuscatability of Function Compositions is false, if factoring Blum integers
is hard or the DDH assumption is true.

Proof Sketch: The Conjecture on Obfuscatability of Function Compositions, if true, could be used any
constant number of times: in particular ifF is obfuscatable,∪t{A(x) = F1(F2(· · · (Ft(x)) · · · ))|Fi ∈ F}
is obfuscatable. However, it is known that if the assumptions of the theorem hold, then there exists a family
of functionsA ⊂ TC0 that is unobfuscatable. On the other hand it is not hard to see thatF = TC0

1,
the family of depth 1 threshold circuits, is trivially obfuscatable, because they can be easily learned from
input/output queries. Noting thatA is obtained by a constant number of compositions of functions fromF
completes the contradiction, and the proof. �

4 Point Functions and Extensions

In this section we define a few basic functions which can be obfuscated under the random oracle model. The
proofs are easy and we include a couple of them.

Definition 9 (Class of Point Functions)A point functionPα : {0, 1}k → {0, 1} is defined byPα(x) = 1 if
x = α and 0 otherwise. DefinePk = {Pα : α ∈ {0, 1}k} andP = ∪kPk.

We observe that the following simple obfuscation heuristic is indeed an obfuscation in the random oracle
model (Definition 2).

Lemma 6 For random oraclesR : {0, 1}∗ → {0, 1}2k, letOR(Pα) be a program which storesr = R(α),
and on inputx ∈ {0, 1}k, checks ifR(x) = r; if so it outputs 1, else 0.

Then,O is an obfuscator ofP as defined in Definition 2.

9



Proof: Polynomial Slowdown is evident (by convention oracle queries are answered in one time step). The
Approximate Functionality condition is true since

PrR[∃x ∈ {0, 1}k\{α} : R(x) = R(α)] ≤
∑

x∈{0,1}k\{α}

PrR[R(x) = R(α)] = (2k − 1)/22k

which is negligible ink.
To show the Virtual Black-Box property(3′), for any adversaryA, define the simulatorS (with oracle

access toPα which does the following. Pick a random stringr ← {0, 1}2k, prepare a purported obfuscation
of Pα with this r and hand it to an internally simulated copy ofA. Recall thatA can make queries to a
random oracle, which in this case will be simulated byS. W.l.o.g we assumeA’s queries to the oracle are
distinct, since oracle replies can be cached. WhenA makes a queryq to the random oracle,S queries the
Pα oracle withq. If Pα answers 1, it answersA’s query withr. Else it picks a random string in{0, 1}2k

and sends it toA. Finally S outputs whateverA outputs. It is easy to see that the view of this internally
simulatedA is identical to that of anA which receives the obfuscation and access to the random oracle.
Thus the Virtual Black-box requirement is satisfied (withν(k) = 0). �

Though we defined the point function asPα : {0, 1}k → {0, 1} with α ∈ {0, 1}k, it is easy to see that
it can be modified toPα : ∪k

i=0{0, 1}i → {0, 1} with α ∈ ∪k
i=0{0, 1}i

4.1 Composable Obfuscations of Point Functions with General Output

Definition 10 (Class of Point Functions with General Output)A point function with general output
Q(α,β) : {0, 1}k → {0, 1}s(k) is defined byQα,β(x) = β if x = α and⊥ otherwise. DefineQk =
{Pα : α ∈ {0, 1}k} andQ = ∪kQk.

We omit the proof of the following theorem, as it is similar to the proof of Lemma 6.

Theorem 7 For random oraclesR : {0, 1}∗ → {0, 1}2k+s(k), let OR(Pα,β) be a program as follows:
LetR1(·) denote the first2k bits ofR(·), andR2(·) denote the remaining bits. Chooseψ at random from
{0, 1}k. Leta = R1(ψ, α) andb = R2(ψ, α). The program storesψ, a andc = β⊕b. On inputx ∈ {0, 1}k,
it computesa′ = R1(ψ, x) andb′ = R2(ψ, x); if a′ = a it outputsb′ ⊕ c; else it outputs⊥.

Then,O is an obfuscator ofP as defined in Definition 2.

We further observe that the above obfuscation self-composes according to Definition 6. As long as
there only polynomially many (polynomial ink) obfuscations in the system, the probability that two of
the obfuscations will have the same value ofψ is negligible. Conditioned on this (negligible probability)
event not happening, a simulator with black-box access to all the (polynomially many)Qα,β functions can
perfectly simulate the behavior of an adversary with access to the obfuscations. Note that here the obfuscator
is a randomized algorithm.

4.2 Multi-Point Functions with General Output

Finally, we define a multi-point functionwith general outputas follows.

Definition 11 (Class of Multi-Point Functions with General Output) A multi-point functionQ(α1,β1)...,(αt,βt) :

{0, 1}k →
(
{0, 1}s(k)

)t
is defined byQ(α1,β1)...,(αt,βt)(x) = b ∈

(
{0, 1}s(k)

)t
where bi = βi if if

x = αi, and elsebi = ⊥. DefineQt
k = {Q(α1,...,αt(k)) : αi ∈ {0, 1}k} and Qt = ∪kQ

t
k. Define

Q∗ = ∪polynomialstQ
t.

10



Since from last section we have a self-composable obfuscation for the single point function with gen-
eral output, we simply put together thet programsO(Qαi,βi

), i = 1, . . . , t to obtain an obfuscation for
Q(α1,β1)...,(αt,βt).

Lemma 8 The family of functionsQ∗ is efficiently obfuscatable in the random oracle model, in a self-
composable manner.

Proof Sketch: It is easy to see thatQt � {JF1, . . . , FtK : Fi ∈ Q}. Since the obfuscation in Theorem 7 is
self-composable,{JF1, . . . , FtK : Fi ∈ Q} is obfuscatable, and by Lemma 1, so isQt (and henceQ∗). To
see that this composition is self-composable, note that the obfuscation of an array of functions fromQ∗ is
identical to the obfuscation of a (much larger) array of functions fromQ. �

5 Obfuscating a Complex Access Control Mechanism

Consider the following (interactive) access control task. There are multiple access points to various functions
or secrets. There is an underlying directed multi-graph (possibly with multiple edges between nodes, and
self-loops), with each node representing an access point. The user starts at a predefined access point, or
“start node” and proceeds to establish her access privileges which allows her to move from one access point
to another, through the edges of the graph. The access control task is the following:

• The user can reach an access point only by presenting credentials that can take her from the start node
to that point.

• The user gains complete access to a function or secret available at an access point if and only if the
user has reached that access point.

• The user does not learn anything about the structure of the graph, except what is revealed by the
secrets at the access points she reached and the edges she traversed.

We specify this task as access to a black-box with which the user interacts, giving her credentials at
various points and receiving the secrets; the black-box internally maintains the current access point of the
user. But we would like to implement this task as a program which we then hand over to the user. To
maintain the security of the task, we need to obfuscate this program.

In this section we explore this obfuscation problem. We show that in the random oracle model this access
control mechanism can indeed be obfuscated. We model the interactive task as a non-interactive function
(formulated below) which takes the “history” of interaction and gives a response to the last query.

Definition 12 A graph-based access control problemXG with parametersk andd is defined by the follow-
ing:

1. Directed multi-graphG onk vertices. Each nodeu ∈ k has at mostd ordered neighborsµ(1)
u , . . . , µ

(d)
u .

LetE = {(u, v, i) : v = µ
(i)
u for somei ∈ [d] } be the set of all edges (i is used to differentiate be-

tween the multiple edges possible between the same pair of nodes).

2. A set of passwords on the edges{πe|e ∈ E}, and

3. A set of secrets at the nodes{σv|v ∈ [k]}.

11



Then,

XG((i1, x1), . . . , (in, xn)) =


(vn, σvn) if ∃v0, . . . , vn,∈ [k] ande0, . . . , en−1 ∈ E

such thatv0 = 1, ej = (vj , vj+1, ij), andxj = πej

⊥ otherwise.

We define the family of functionsX as the set of allXG with parameters(k, d) over all multi-graphs
G, sets of edge-passwords and sets of node-secrets.

Above,(i, x) is a query in which the user provides a purported passwordx for thei-th edge going out of the
“current” node. For later notational convenience we shall assume that there is no secret available at node 1:
i.e.,σ1 = ⊥.

We are interested in cases where the inputs toXG are of size polynomial ink andd. We point out that
there may be exponentially manyvalid inputs for whichXG outputs a secret (though the number of distinct
secrets is onlyk). So it is not possible to obfuscateXG directly using Lemma 8.

Instead we proceed as follows: each node is represented by the tuple(v, σv, e1, . . . , ed, πe1 , . . . , πed
)

whereei ∈ E (if there are less thand outgoing edges pick dummy values for the remaining edges). For each
node1 < u ≤ k pick a random “key”κu from {0, 1}`; let κ1 = 0` (recall that 1 is the start node). Define
the functionW κ̄

G as follows:

W κ̄
G(u, z, i, x) =


(v, σv, κv) if z = κu and

∃v ∈ [k] such thatπu,v,i = x

⊥ otherwise.

The obfuscation consists of an obfuscation ofW κ̄
G (which is a multi-point function with at mostkd input

points where the output is not⊥, and hence can be obfuscated).
Intuitively, this is a good obfuscation because the adversary cannot find the randomly chosen key of a

nodeκv, unless it was given out by the (obfuscated) functionW κ̄
G. But the only way to obtain that is to give

πe for an edge leading tov from a nodeu to which the adversary already has the key. Since, to start with,
the only key the adversary knows isκ1, it must indeed traverse a path from 1 tov by providing the all the
edge-passwords in order to get tov.

Formally, we first define a probabilistic program̃WG which picks the random keys above to get a partic-
ular deterministic functionW κ̄

G. Then we show that the familyX �∗ W̃ , whereW̃ is the family of allW̃G

as above.

Definition 13 Define the randomized algorithm̃WG as follows: forv ∈ [k], pick random keysκv ←
{0, 1}k. On input(u, z, i, x) returnW κ̄

G(u, z, i, x).
We define the family of functions̃W as the set of all̃WG (with parameters(k, d)) over all multi-graphs

G, sets of edge-passwords and sets of node-secrets.

Lemma 9 X �∗ W̃ .

Proof: ForXG ∈ X we pickW̃G ∈ W̃ and demonstrateM andN as required by the definition of the
relation�∗.

12



M such thatMW̃
G ≡ XG : On input(i1, x1), . . . , (in, xn) queryW̃G with (1, 0`, i1, x1); if W̃G returns

(v2, σv2), query it with(v2, σv2 , i2, x2) and so on, until it either returns⊥ or we reach the end of the input
and receive(vn, σvn). In either case output this value.

N such thatNXG ≈ W̃G : N internally maintains two tables: one table is for keysκi, and one forpathsto
each nodev from node 1, with edge passwords for each edge appearing on the edge. Initially it setsκ1 = 0k

and all other keys as⊥, and does not have any paths recorded for any node. On input(u, z, i, x) N checks
if z = κu 6= ⊥. If not it returns⊥. Else it will have recorded a path(v1 = 1, v2, i1, x1), . . . , (vt, vt+1 =
u, it, xt) such thatxj = π(vj ,vj+1,ij). It makes a query(i1, x1), . . . , (it, xt), (i, x) to XG. If XG responds
with ⊥, N outputs⊥. Else, it receives(v, σv) fromXG. It checks if a key has been already assigned tov;
if not it picks a random key and assigns that tov. Then it returns(v, σv, κv).

It is not hard to see that for any PPTS ′ interacting withW̃G orNXG , the output distribution ofNXG is
the same as that of̃WG, but both distributions conditioned on the event thatS ′ never makes a query with a
valid key which it did not receive as answer to a previous query. But that event is of negligible probability,
and soNXG ≈ W̃G. �

Note thatW̃ is a family of probabilistic machines, such that if we consider the family obtained by fixing
the random-tapes of machines iñW in all possible ways, we get a sub-family ofQ∗ (Definition 11). This
sub-family is obfuscatable (becauseQ∗ is obfuscatable, by Lemma 8). Then, from the above lemma and
Lemma 2, we conclude the following.

Theorem 10 The familyX is efficiently obfuscatable in the random oracle model.

6 Regular Expressions and Obfuscations

Let Σ be an alphabet (of constant size). We consider regular expressions overΣ ∪ {ζL1 , . . . , ζLt}, where
ζLi are formal symbols corresponding to languagesLi. We define whether or not a strings ∈ Σ∗ matches
such a regular expressionρ(L1, . . . , Lt) as follows:s matches a symbolζLi if s ∈ Li. The rest of the rules
are the usual ones: a single charactera ∈ Σ matches itself;s ∈ Σ∗ matchesρ1|ρ2 if it matches eitherρ1 or
ρ2; s matchesρ1 · ρ2 if s = s1 · s2 such thats1 matchesρ1 ands2 matchesρ2; finally s matchesρ∗ if s is
the null-string, ors = s1 · s2 · · · sk where eachsi matchesρ. If s matches a regular expressionρ, we write
s ∼ ρ. BelowLρ(L1,...,Lt) stands for the language defined as the set of all strings matchingρ(L1, . . . , Lt).

6.1 ObfuscatingLρ(Pα1 ,...,Pαt )

Consider the case when the languagesLi above are the point functionsPαi . In this section we consider a
family of functionsUρ = ∪kUρk where for allk and allUα1,...,αt

ρ ∈ Uρk there is a single fixed regular
expressionρ. However, for eachk, the point functionsPαi belong to thePk, the family of point functions
on∪k

j=0{0, 1}j . For brevity we denoteLρ(Pα1 ,...,Pαt )
byLρ(α1,...,αt).

Definition 14 Define the functionUα1,...,αt
ρ as follows: on inputx ∈ {0, 1}∗, check ifx ∈ Lρ(α1,...,αt). If so

returnα1, . . . , αt; else return⊥. LetUρk = {Uα1,...,αt
ρ : αi ∈ ∪k

j=0{0, 1}j}, andUρ = ∪kUρk.

Unless a string in the languageLρ(α1,...,αt) is given as inputUα1,...,αt
ρ reveals nothing beyond the fact

that the string is not in the language. We show that this function can be completely obfuscated.

Theorem 11 For any regular expressionρ, the familyUρ is efficiently obfuscatable in the random oracle
model.

13



To prove this, we introduce another family of functionsVρ, and show thatUρ � Vρ. Then, we show
thatVρ can be obfuscated (in the random oracle model).

Recall thatρ is a regular expression over the symbolsΣ ∪ {ζα1 , . . . , ζαt}. We can convert this to a
deterministic finite-state automaton (DFA), with some of the edges labeled withζαi . Define a setZρ ⊆ 2[t]

of subsets of[t] as follows. If there is a path in the above DFA from the start state to some accept state, in
which the set of non-Σ symbols appearing are{ζαi : i ∈ Z ⊆ [t]}, thenZ ∈ Zρ. In other words,Zρ is the
set of all subsets ofαi’s, such that knowingαi’s in any of these subsets will enable one to construct a string
in Lρ(α1,...,αt). Note thatZρ can be constructed fromρ, independent ofα1, . . . , αt.

Definition 15 Define the functionV α1,...,αt
ρ as follows: on input(β1, . . . , βt), βi ∈ {0, 1}∗, check if∃Z ∈

Zρ such that∀i ∈ Z, βi = αi. If so returnα1, . . . , αt; else return⊥. Let Vρk = {V α1,...,αt
ρ : αi ∈

∪k
j=0{0, 1}j}, andVρ = ∪kVρk.

Lemma 12 Uρ � Vρ for all regular expressionsρ.

Proof: Corresponding toUα1,...,αt
ρ ∈ Uρ we pickV α1,...,αt

ρ ∈ Vρ.

Constructing M such thatMV
α1,...,αt
ρ ≡ Uα1,...,αt

ρ : As inputMV
α1,...,αt
ρ receives a stringx ∈ {0, 1}∗. It

needs to check ifx ∈ Lρ(α1,...,αt). M choosest substrings ofx as guesses forα1, . . . , αt. If |x| = n there
areO(n2t such choices. But by our convention, sinceρ is fixed,t is a constant andn2t is still polynomial
in n, the size of input toM . For each such guess(β1, . . . , βt), M queriesV α1,...,αt

ρ on (β1, . . . , βt). If
V α1,...,αt

ρ returns⊥ for all choices,M also outputs⊥. If V α1,...,αt
ρ returns(α1, . . . , αt) for any choice of

(β1, . . . , βt), thenM constructs the complete DFA (replacing the variablesζαi with αi) and checks ifx is
accepted by the DFA. If so,M outputsα1, . . . , αt; if not it outputs⊥.

If x ∈ Lρ(α1,...,αt), then there is some path in the DFA forρ which acceptsx. Let Z be the set of all
i such thatζαi appears on this accepting path. By the wayZρ was constructed,Z ∈ Zρ. Further all these
ζαi appear as part ofx. Thus, for some guessβ1, . . . , βt, it will be the case that for all ofi ∈ Z βi = αi.
Thus if x ∈ Lρ(α1,...,αt), M will obtain all of α1, . . . , αt from V α1,...,αt

ρ , and will be able to verify that
x ∈ Lρ(α1,...,αt). On the other hand ifx 6∈ Lρ(α1,...,αt) eitherα1, . . . , αt are not revealed toM , or they are
andM will discover thatx 6∈ Lρ(α1,...,αt). In either caseM will output⊥, as required.

Constructing N such thatNU
α1,...,αt
ρ ≡ V α1,...,αt

ρ : As inputNU
α1,...,αt
ρ receivest strings(β1, . . . , βt). It

needs to check if there is anyZ ∈ Zρ such that∀i ∈ Z αi = βi. Associated with eachZ is a path from the
start state to an accept state in which the variableζαi appear for exactly thosei ∈ Z. N chooses for eachZ
such a path, and constructs a stringxZ corresponding to that path, substitutingβi for ζLi . It then submitsxZ

toUα1,...,αt
ρ (to which it has oracle access). IfUα1,...,αt

ρ responds with⊥ for all xZ , Z ∈ Zρ thenN outputs
⊥. If Uα1,...,αt

ρ responds withα1, . . . , αt for anyxZ , thenN then checks if∃Z ∈ Zρ ∀i ∈ Z αi = βi, and

responds accordingly. It can be easily verified thatNU
α1,...,αt
ρ ≡ V α1,...,αt

ρ . �

To complete the proof of Theorem 11, we need to show thatVρ is obfuscatable. This is done by noticing
thatVρ�Q∗, whereQ∗ is the class of multi-point functions with general output (Definition 11), which by
Lemma 8 is obfuscatable.

Lemma 13 Vρ�Q∗

14



Proof: Let Zρ = {Z1, . . . , Z`}, and for eachZi ∈ Zρ, let the stringγi be (γ1
i , . . . , γ

t
i ) where if j ∈ Zi,

γj
i = αj and elseγj

i = 0.
For everyV α1,...,αt

ρ ∈ Vρ, considerQ = Q(γ1,∆),...,(γ`,∆) ∈ Q∗ where∆ = (α1, . . . , αt) (i.e., if Q is
given one of the stringsγ1, . . . , γ`, it outputs∆. It is easy to verify that the following machinesM andN
are as required by Definition 4.

MQ, on input(β1, . . . , βt) does the following: for eachZi ∈ Zρ it constructs a stringδi = (δ1i , . . . , δ
t
i)

where if j ∈ Zi, δ
j
i = βj and elseδj

i = 0; then it queriesQ with δi; if for any i it receives∆ from Q it
outputs that and else⊥.

NV
α1,...,αt
ρ on inputδ = (δ1, . . . , δt), queriesV α1,...,αt

ρ with δ. If it receives⊥ as an answer, it also
outputs⊥. Else it receives∆, and can then can computeQ(δ), which it outputs.

�

We remark that the construction above can easily be extended to also produce an arbitrary secret output
if the input matches the regular expression.

6.2 Obfuscating a function related toρ(L1, . . . , Lt)

In this section we allowρ to be part of the function (and therefore can have size polynomial ink). We are
interested in matching a given string againstρ(L1, . . . , Lt) without compromising the black-box nature of
JL1, . . . , LtK. The family of functions we are interested in isFC below.

Definition 16 DefineGL1,...,Lt
ρ andFL1,...,Lt

ρ as follows:

GL1,...,Lt
ρ (a, x) =


ρ if a = 1 (i.e., give the regular expression overΣ ∪ {ζL1 , . . . , ζLt})
La−1(x) if a ∈ {2, . . . , t+ 1}
⊥ otherwise

FL1,...,Lt
ρ (a, x) =


1 if a = 0 andx matchesρ(L1, . . . , Lt)
0 if a = 0 andx does not matchρ(L1, . . . , Lt)
GL1,...,Lt

ρ (a, x) otherwise

GC = {GL1,...,Lt
ρ : ρ a regular expression andLi ∈ C}

FC = {FL1,...,Lt
ρ : ρ a regular expression andLi ∈ C}

In other words, bothGL1,...,Lt
ρ andFL1,...,Lt

ρ provide access to the languagesLi and to (the description of)
the regular expressionρ. In addition,FL1,...,Lt

ρ gives access to the language defined by the regular expression
ρ(L1, . . . , Lt).

Theorem 14 FC is obfuscatable if and only if{JL1, . . . , LtK : Li ∈ C} is. Further this statement holds
restricted to efficient obfuscations too.

First we prove the following lemma, which is the heart of the proof. It shows how to evaluate the regular
expressions involvingLi’s just with access toGC .

Lemma 15 FC � GC andGC � FC , for all familiesC.

15



Proof: It is easy to see thatGC � FC : for everyG = GL1,...,Lt
ρ ∈ GC we considerF = FL1,...,Lt

ρ ∈ FC ,
whereρ is the null regular expression. ThenF andG are essentially equivalent, and simple oracle machines
M andN exist as required in Definition 3.

ForF = FL1,...,Lt
ρ ∈ FC letG = GL1,...,Lt

ρ ∈ GC . We have to demonstrate the polynomial time oracle
machinesM andN as in Definition 3.N is trivial: on input(a, x), a 6= 0 it callsF with the same input and
returns the answer; ifa = 0 it returns⊥. In the rest of the proof we describe and analyze the algorithm for
M .

M gets oracle access toG. and wants to evaluateF on input(a, x). Fora 6= 0 M can directly useG
to evaluateF . The non-trivial case is whena = 0: M should match the inputx with the regular expression
ρ with only black-box access toLi. We give a fairly efficient algorithm using dynamic programming to
achieve this.

FirstM obtains the regular expressionρ fromG (by giving input(1, ε). It constructs a tree corresponding
to ρ with leaf nodes corresponding to symbols fromΣ∪{ζL1 , . . . , ζLn}. Each internal node corresponds to
one of the three operators|, · and∗; in the first two cases the node will have two children and in the last case
a single child. The root node corresponds to the whole regular expressionρ. The algorithm will consider the
setS of all substrings of the input stringx = x1 . . . xn; i.e.,S = {xj

i : 1 ≤ i ≤ j ≤ n} ∪ {ε}. For each
node it will try to find out all the strings inS which match the regular expression at that node. This is done
bottom-up in the tree. To obtain this information at the leaf nodes,M makesO(n2) queries to eachLi.

Given this information for the children of a node, the information for that node itself can be obtained.
In the case of a (|)-node (denoted byQ = Q1|Q2) this is simple: for each strings ∈ S check ifs ∼ Q1 or
s ∼ Q2. If either case holds record thats ∼ Q. For (·)-nodeQ = Q1 · Q2 we do the following:

for each s ∈ S do
for i = 0 to |s| do

if si
1 ∼ Q1 AND s

|s|
i+1 ∼ Q2 then

record s ∼ Q

The checkssi
1 ∼ Q1 ands|s|i+1 ∼ Q2 are done by checking if those matchings have already been recorded.

The (∗)-nodes require a little more work. At a nodeQ = Q∗1 we do the following:

Let Q1
1 denote Q1

for k = 2 to n do
for each s ∈ S\{ε} do

for i = 0 to |s| do
if si

1 ∼ Qk−1
1 AND s

|s|
i+1 ∼ Q1 then

record s ∼ Qk
1

record ε ∼ Q
for each s ∈ S\{ε} do

if s ∼ Qk
1 for some k ∈ {1, . . . , n} then

record s ∼ Q

It is not hard to see that at each node the algorithm correctly records alls ∈ S which match the node.
Finally, it checks ifx ∼ ρ by checking if it is recorded at the root node. �

Proof: (of Theorem 14)By the above Lemma and Lemma 1, we can obfuscateFC , if and only if we
can obfuscateGC . We can viewG ∈ GC as J〈ρ〉, JL1, . . . , LnKK, where〈ρ〉 stands for the constant (and
hence trivially obfuscatable) function which outputsρ. Then by Lemma 4,GC is obfuscatable if and only if
{JL1, . . . , LnK : Li ∈ C} is obfuscatable. �

16



7 Obfuscating Neighborhoods in Tree Metrics

Point functions are identity checks- they check if the input is identical to a particular value. A natural
relaxation thereof is a neighborhood check. Consider some metric space from which the inputs are drawn.
We would like to have a program which checks if the input is “near” a hidden point.

We work in a restricted metric space- the space of “tree metrics,” where the the points are nodes in a
(rooted, undirected) tree, and the distance between two points is the length of the (unique) path between
them. (We can allow a metric space that can be decomposed as a collection of aconstantnumber of tree
metrics, but for simplicity we stick to a single tree-metric.)

LetM stand for the metric space as well as (by abuse of notation) the tree defining it. LetdM(·, ·) be
the distance function inM.

Definition 17 Define the functionTMα :M→M∪ {⊥} as follows:

TMα (x) =

{
α dM(α, x) ≤ δ
⊥ dM(α, x) > δ

Tk = {TMα : M a tree-metric, |M| = 2O(k), α ∈M} andT = ∪kTk.

Obfuscatingδ-neighborhoods in general metric spaces (beyond what can be achieved by exhaustively
searching the entireδ-neighborhood of a point) is a challenging problem. But we show that for tree metrics
this problem can be satisfactorily solved using a simple technique. To obfuscateTMα , traverse the treeM,
starting at the nodeα, towards the root of the tree, for a distanceδ, and pick the node at which we finish. (If
we reach the root beforeδ steps pick the root.) Call this nodeβ. We show that obfuscatingTMα is essentially
the same as obfuscating the point function onβ with outputα (which as we have shown, can be efficiently
obfuscated in the random oracle model).

Lemma 16 T � Q (whereQ is the point function with general output, as in Definition 10).

Proof: For TM ∈ T we pickQβ,α ∈ Q. Qβ,α is the function which outputsα on inputβ and⊥
everywhere else.

NTMα works as follows : On inputx ∈M queryTMα with x. If x were indeed equal toβ thenTMα would
respond withα. So if TMα gives⊥ return⊥. If it gives α, locateβ by traversingM, and check if thex is
indeedβ or not and answer accordingly.

MQβ,α works as follows : on inputx ∈ M, check the first2δ ancestors ofx for being identical toβ
(usingQβ,α). If Qβ,α returnsα on some query, checkdM(x, α) and answer appropriately. If it returns⊥ in
all 2δ queries, then it is easy to see that the distancedM(x, α) > δ. In this case, output⊥. �

By Lemma 1 and Theorem 7, we get:

Theorem 17 T is obfuscatable in the random oracle model.

8 Conclusions and Open Problems

We have given the first positive results and techniques for program obfuscation, but many important open
problems remain. We are hopeful our reduction and composition techniques will aid in resolving these

17



problems. The most pressing open problem is to extend our positive results beyond what we have. In
particular, can regular languages be obfuscated? Is thereany example of a keyed cryptographic primitive
(even a contrived one) other than password checking which can be obfuscated? Another important problem
to be resolved is to findany non-trivial obfuscation result without using the random oracle model. Our
approach, of reducing obfuscation of one family to obfuscating another, could then be used to produce more
obfuscations in the plain model. Also, such techniques are useful in a model where some basic functions
may be obfuscated in hardware; so one direction to pursue is to explore developing these techniques further.

Acknowledgments

We thank Dan Boneh for many useful discussions, and collaboration in early parts of this work. We also
thank the anonymous referees of Eurocrypt 2004 for detailed comments on the presentation.

References

[1] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke
Yang. On the (im)possibility of obfuscating programs. InProceedings of CRYPTO 2001.

[2] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilistic hash functions.
In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing 1998.

[3] Christian Collberg and Clark Thomborson. Watermarking, tamper-proofing, and obfuscation – tools for
software protection. Technical Report TR00-03, The Department of Computer Science, University of
Arizona, February 2000.

[4] S. Chow, H. Johnson, P. C. van Oorschot, and P. Eisen. A White-Box DES Implementation for DRM
Applications. InProceedings of ACM CCS-9 Workshop DRM 2002.

[5] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. Pre-
liminary versions appeared atCRYPTO 1989and STOC 1990. Journal of the ACM, 43(3):431–473,
1996.

[6] Matthias Jacob, Dan Boneh, and Edward Felten. Attacking an obfuscated cipher by injecting faults In
Proceedings of ACM CCS-9 Workshop DRM 2002.

[7] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware against Probing
Attacks. InProceedings of CRYPTO 2003.

18


