Positive Results and Techniques for Obfuscation

Benjamin Lynri Manoj Prabhakaran Amit Sahat
Stanford University Princeton University Princeton University

February 27, 2004

Abstract

Informally, anobfuscatorO is an efficient, probabilistic “compiler” that transforms a program
into a new progran®(P) with the same functionality a®, but such thatD(P) protects any secrets
that may be built into and used . Program obfuscation, if possible, would have numerous important
cryptographic applications, including: (1) “Intellectual property” protection of secret algorithms and
keys in software, (2) Solving the long-standing open problem of homomorphic public-key encryption,
(3) Controlled delegation of authority and access, (4) Transforming Private-Key Encryption into Public-
Key Encryption, and (5) Access Control Systems. Unfortunately however, program obfuscators that
work on arbitrary programeannotexist [1]. No positive results for program obfuscation were known
prior to this work.

In this paper, we provide the firgplositiveresults in program obfuscation. We focus on the goal
of access control, and give several provable obfuscations for complex access control functionalities, in
the random oracle model. Our results are obtained through non-trivial compositions of obfuscations; we
note that general composition of obfuscations is impossible, and so developing techniques for composing
obfuscations is an important goal. Our work can also be seen as making initial progress toward the goal
of obfuscating finite automata or regular expressions, an important general class of machines which are
not ruled out by the impossibility results of [1]. We also note that our work provide§irdidormal
proof techniques for obfuscation, which we expect to be useful in future work in this area.

1 Introduction

Software Obfuscation is an important cryptographic concept with wide applications. However until recently
there was little theoretical investigation of obfuscation, despite the great success theoretical cryptography
had in tackling other challenging notions of security.

Roughly speaking, the goal of (program) obfuscation is to hide the secrets inside a program while pre-
serving its functionality. Ideally, an obfuscated program should be a “virtual black box,” in the sense that
anything one can compute from it could also be computed from the input-output behavior of the program.
To be clear (but still informal), anbfuscatorO is an efficient, probabilistic “compiler” that transforms a
programP into a new progran®(P) such that:

¢ (Functionality Preservation.) The input/output behavior @ (P) is the same a®.

e (Secrecy) “Anything that can be efficiently computed fro}(P) can be efficiently computed given
oracle access tf.”

*Email: blynn@theory.stanford.edu
TEmail: mp@cs.princeton.edu
tEmail: sahai@cs.princeton.edu

This second property seeks to formalize the notion that all aspedtswalfiich are not obvious from its
input/output behavior should be hidden 8} P). By considering the problem of obfuscation restricted

to specific classes of interesting programs, one can further specify exactly what needs to be hidden by the
obfuscation, and what doesn't need td.be

Program obfuscation, if possible, would have numerous important cryptographic applications, including:
(1) “Intellectual property” protection of secret algorithms and keys in software, (2) Solving the long-standing
open problem of homomorphic public-key encryption, (3) Controlled delegation of authority and access, and
(4) Transforming Private-Key Encryption into Public-Key Encryption. (See [1] for more discussion.) We
discuss another important application, access control, in more detail below.

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [1] initiated the formal cryptographic
study of obfuscation, and established several important impossibility results (which we discuss further be-
low). There have been many ad-hoc approaches to program obfuscatiang$8p; Many of these have
been broken (e.g. [4] broken by [6]), and none of these have proofs of their security properties. Proven
results are known only in models where the adversary has only partial access to the obfuscated program or
circuit [5, 7].

In this paper, we provide the firpbsitiveresults in program obfuscation. We focus on the goal of access
control, and give several provable obfuscations for complex access control functionalities, in the random
oracle model. Our results are obtained through non-trivial compositions of obfuscations; we note that gen-
eral composition of obfuscations is impossible, and so developing techniques for composing obfuscations
is an important goal. Our work can also be seen as making initial progress toward the goal of obfuscating
finite automata or regular expressions, an important general class of machines which are not ruled out by
the impossibility results of [1]. We also note that our work providesfittse formal proof techniques for
obfuscation, which we expect to be useful in future work in this area.

Context for our work. In order to understand the challenge of program obfuscation, we first recall the
impossibility results of [1]. Their central construction demonstrates the existence of a particular.family

of programs, for which no obfuscator can exist. More precisely, every functioA imas an associated
secret key such that: (1) no efficient algorithm can extract the secret key given the input/output functionality
of a random function fron¥#; (2) however, there exists an adversary which alvaysextract the secret

key givenany program which implements a function #. There are several important observations to be
made:

e The program family# consists of programs which have inputs and outputs of bounded length. Under
a widely believed complexity assumption (factoring Blum integers is ha#dgan implemented by
constant-depth polynomial-size threshold circtiits. (# c TCP). Furthermore,# can be embed-
ded into specific constructions of most cryptographic primitives, thus ruling out obfuscators that work
on, say, any signature scheme.

e If the obfuscated program runs in tini¢ the adversary which extracts the secret key runs in time
roughly onlyO(T?). Note also that the adversary’s probability of succesds is

e The impossibility result (with all the properties above) extends to the random oracle model.

The above properties highlight the difficulty of obtaining agneralmethods for obfuscation: Because the
adversary runs quickly and always succeeds in extracting the secret key (and the impossibility result holds

!In general, one can define a class of programs parametrized by the secrets which are meant to be protected by the obfuscation.
For instance, for a prograt which sorts the input and then signs it using a secret signaturgtk@ne can define a program class
F = {Ps : P using keysk}. An obfuscator forZ would then only be required to protect the secret key; it would not be required,
for example, to protect the exact nature of the sorting algorithm, since this is the same for all progédms in

in the random oracle model), there seems little hope to relax our security requirement. General purpose
obfuscation under any meaningful relaxed secrecy defifitimuld seem to find a counterexampledfn

This has consequences for the techniques we can hope to develop to build and prove obfuscations. One
of the most useful techniques we could hope for is composition. However, note that any single logic gate
is trivially obfuscatable; indeed even a depth 1 threshold cirdt}) is trivially obfuscatable since it is
learnable with oracle queries. Obviously, an arbitrary circuit can be built from a composition of logic gates;
and anyTCy circuit can be built from just @onstantnumber of compositions oT'C? circuits. Thus,
no general theorem showing how to compose even a constant number of obfuscations is possible (under
reasonable complexity assumptions).

Our Results. We now describe our results in more detail. The starting point for our work is the simple
observation that a commonly used practice for hiding passwords can be viewed as a provably secure ob-
fuscation of a “point function” under the random oracle model. That is, consider the family of functions
{fa} Wheref,(z) = 1if z = o, andf,(x) = 0 otherwise. IfR is a random oracfe(with a large enough

range), then the program which stoges- R(«), and on input: outputs 1 iff R(x) = p is an obfuscation

of f, with high probability overR. Starting with this most basic of access control functionalities, we give a
number of novel reduction and composition techniques for obfuscation, and use these to build obfuscations
of much more complex access control functionalities.

We show how to obfuscate a functionality we callAatcess AutomatorConsider a large organization
(such as a government) that wishes to implement a complex hierarchical access control system for a large
collection of private information. In such a system, a single piece of information may need to accessible by
persons with a variety of different credentiagsd. the co-chair of one subcommittee and the secretary of an
unrelated working group may need access to the same piece of secret information). In our setting, we allow
for anexponentiahumber of sets of credentials to give access to a common piece of information. We model
this framework as an arbitrary directed graph, where each edge is labeled with a password/credential, and
each node is attached to a secret. At the start, the structure of the graph is completely unknown to a user, but
by supplying passwords/credentials, the user can explore and learn as much of the graph as she has access
to, given the set of passwords/credentials she has. We show how to provably obfuscate this functionality in
the random oracle model. We also show that our obfuscation can be dynamically updated, such that secrecy
is preserved even if the adversary observes the entire history of obfuscated programs.

A potential drawback of the above functionality concengsakpasswords. Suppose there is a document
which is accessible by giving a sequence of 5 passwords, but the adversary has partial information allowing
him to narrow each password to a (different) set@f possibilities. The adversary could efficiently “break”
each password one by one, and access the document, even though the document itsgf 6739l “bits”
of security. We show how to address this problem: Suppose we have a public regular expression over hidden
strings €.g.the expressiond; (z1|z4)*(z2|z3)xsx4)”, Wherez, xa, 3, 4 are unknown strings). Then we
show how to essentially obfuscate this expression in a way that preserves the natural security inherent in
the expression. In the example above, the adversary would not gain any partial information even if he knew

2There is one intriguing, if limited, possibility that we can imagine: There is nothing known to rule out a general purpose
obfuscator that takes circuits of sizeand outputs circuits of size, sa@(sk), such that no adversary running in tirfisk?)
could obtain meaningful information. i were large enough, this could conceivably provide enough of a slowdown to be useful in
some cases. No such transformation is known to exist.

3The work of [2] on “perfectly one-way hash functions” can be seen as a way to implement the random oracle within this
obfuscation in certain models. By considering an extension of such models, it is possible to apply the techniques of [2] to remove
the random oracles from all our constructions. However, these models are not satisfactory, because in general [2] cannot deal with
partial information being available to the adversary, which is an important part of the obfuscation model we consider. Extending [2]
to deal with partial information is an important open problem. Progress there would lead to progress toward removing the random
oracle in our constructions. However, since we seek to givditsiepositive results regarding obfuscation, we do not concern
ourselves with removing the random oracle in this work. We stress that it is indeed an important problem to address in the future.

that x3 was one of only two possibilities — without knowing andx,, he cannot resolve his uncertainty
aboutzs. The main difference between this case and the Access Automaton is that the overall structure of
the regular expression is not hidden by the obfuscation. We also give another obfuscation for public regular
expressions over “black boxes” — this does not have the security property above, but can be seen as providing
a nontrivial obfuscation of a composition of individually obfuscatable functions. We also show how to go
beyond just “equality checking” by giving an obfuscation fmoximity checkingn tree metrics.

We believe that the proof technigues we introduce are as important as the results we obtain. In particular,
we give a new notion of reduction between classes of functions which implies that if one is obfuscatable, then
so is the other. We also show that our proof techniques allow for important compositions of obfuscations. In
particular, by making use of our composition theorems, in the Access Automaton obfuscation, every edge
can be controlled by not just a single password, but a regular expression of the type mentioned above, or an
approximate tree metric proximity checker. We believe our techniques will be of further use in the nascent
field of program obfuscation.

2 Preliminaries

Following Barak et al. [1] we define obfuscation of a family of functigAsas follows.

Definition 1 A family of functions% is obfuscatablef there exists an algorithn® which takes a Turing
Machine (or circuit) that computeg’ € .# and outputs a Turing Machine (circuit, respectively) such that
the following conditions hold (the TM or circuit is also denoted)y

1. (Functionality) For allF' € .%# and all inputsz € {0, 1}* we haveO(F)(x) = F(z)

2. (Polynomial Slowdown) There exists a polynomiauch that for allF' € .# we have|O(F)| <
p(|F|) and (in the case of Turing Machines)Af takest time steps on an input € {0,1}*, O(F)
takes at mosp(t) time steps.

3. (Virtual Blackbox) For all PPTA, there exists a PPE and a negligible functiom such that for all
F € % we have
| Pr[A(O(F))) = 1] = Pr[s7 (1) = 1]| < w(|M]).

Here the probabilities are taken over the randomnesd ahdS (and © and F' if they are randomized).
O is called anobfuscatoffor .7, and O(F') an obfuscation of'. O is said to beefficientif it runs in
polynomial time, in which case we s& is efficiently obfuscatable

Now we extend this definition so that random oracles are taken into account.

We consider a parametérassociated with the family?; of functions being obfuscated. The size of
F € % is polynomial ink, and the random oracle that can be used in the obfuscation will be a random
member of%;, the set of all functions fronj0, 1}* to {0, 1}*(*) for some polynomial. We shall refer td:
as thefeasibility parameter

Definition 2 (Obfuscation in the Random Oracle Model)An oracle algorithm® which takes as input
a Turing Machine (or circuit) and produces an oracle Turing Machine (or oracle circuit) is said to be an
obfuscator of the familyz = U,.%}, if we have that

1’. (Approximate Functionality) There exists a negligible functiosuch that, for allk, for all F' € .7,
we havePr [3z € {0,1}* : OR(F)(x) # F(z)] < v(k).4

4A weaker requirement would be that for &l € .7, andz € {0,1}*, we havePr [O® (F)(z) # F(z)] < v(k).

4

2'. (Polynomial Slowdown) There exists a polynomiauch that for allk, for all F' € .%, we have
|O(F)| < p(k) and (in the case of Turing Machines)Aftakest time steps on an input € {0,1}*,
O(F) takes at mosp(t) time steps.

3’. (Virtual Blackbox) For all PPTA, there exists a PPE and a negligible functiow such that for all
k, forall I’ € %, we have

| Pr[AR(OR(F))) = 1] - Pr[s"(1%) = 1] < v(k)

Here the probabilities are taken ove® € %, as well as the randomness gf and S (and O if it is
randomized).

O is called anobfuscatoffor .#, and O(F’) an obfuscation of’. O is said to beefficientif it runs in
polynomial time, in which case we s& is efficiently obfuscatable

In the sequel, all our results will apply to the definition presented here (in the random oracle model). For
notational convenience we shall often abbreviate, A™ etc. to simply®, A etc.

3 Reductions and Composition

3.1 Reductions

Definition 3 A class of Turing Machines (or circuits¥ is said to bepolynomial-time black-box imple-
mentable relative t& (denoted# <« ¥) if there exist polynomial time TMs (circuitdy and N such that
for everyF € .7 there is aG € ¢, such thatM ¢ computes the same function Bsand N computes the
same function a&:.

So, if ¥ « ¢, for everyF' € %, ¢ contains a functiortz which is “equivalent” toF' in some extended
sense. Now we give the main tool which lets us reuse results on obfuscatability.

Lemmal If # < ¢ and¥ is obfuscatable (when eve€y € ¢ is given asN!" for an F € .%),% then so
is.Z. Further if ¢ is efficiently obfuscatable, the# is efficiently obfuscatable too.

Proof: GivenF € .7, letG € ¢ be such thal/¢ = F andG = N¥. Since¥ is obfuscatable, let)’
be an obfuscator fo7. We claim thatO(F) = M9 (%) (i.e., the code of\/ and the cod&)’(G)) is an
obfuscation off".
Clearly, conditiond’ and2’ of Definition 2 are satisfied. To prove conditiéf) consider any adversary

A which accepts the cod®(F) = M%), We need to demonstrate a PBTas required by conditiod'.
First, we build an adversary’ which accepts the cod®’(G), adds the code ol to it to getO(F),
passes it on to an internally simulated copy/fand outputs whatevet outputs. Now, sinc€’(G) is an
obfuscation of7, there exists a simulatd? such that

[Pr(SY(0(Q))) = 1] - Pr[A(0(G)) = 1]| < e (1)

for some negligible function(|O0’(G)|).
We useS’ to build S, as follows. Note thaf gets oracle access fo and receive$O(F)| as input.S¥
can implement an oracle equivalent@oas N ', using its oracle access fo. It runsS’ with oracle access

5If G € ¢ is obfuscatable only when represented in some other format, still this Lemma holds, but now the obfuscator for
takesF as M€ with G specified in that obfuscatable format.

to G implemented in this way, and inpl®’ (G)| calculated from{O(F)| (by subtracting the size d¥/). S
outputs whateve§’ outputs.
Clearly, by construction,

1] =Pr[A(O(G)) =1]
1] =Pr[s“(0'(G))) = 1]

Pr[A(O(F))
Pr[S"(|O(F)))

and so by Equation (1) Pr [ST(|O(F)|) = 1] — Pr[A(O(F)) = 1]| < e. Finally |O(F)| > |0'(G)|, so
thate is still negligible when considered a function@f F'), completing the proof.

Note that in building?(F) = M9'(©) the obfuscato® needs to obtaid’(G), given F. SinceG can
be specified a& " to @', if O’ is efficient so i0. O

3.2 Extending Lemma 1

We extend Definition 3, and Lemma 1 to allow reductions to probabilistic families of functions. We do
this for proving Theorem 10. In fact, somewhat more general extensions are possible. But for the sake
of simplicity we restrict ourselves more or less to the minimum extensions we will need. The reader may
skip this section, and return to it while reading Section 5. The other results in this paper do not need these
extensions.

Definition 4 Suppos@is a family of probabilistic Turing Machines (or circuits), acd a family of deter-
ministic TMs (circuits). We say <« ¢ if there exist probabilistic polynomial time TMs (circuitd) and
N such that for everyf’ € # there is aG € ¢, such that the distributions of outputs &f¢ and F are
computationally indistinguishable, and thoseMf and G are computationally indistinguishable.

Note that unlike Definition 3, the above definitionrist information theoretic. It involves the notion
of computational indistinguishability, and hence inherently all the results which use the following lemma
requires the adversaryl(andS) to be PPT machines or circuits.

Lemma 2 SupposeZ <«¢¥. Let¥ be the family of deterministic TMs (circuits) obtained by fixing in all
possible ways the random-tapes of the TMs (circuitsf iMThen, if4 is obfuscatable, so is.

Proof: The proof closely follows that of Lemma 1. First we propose an obfuscfor 7. For F' € .7,
let G, M and N be as guaranteed by the fact tbAt<« ¢: i.e.,G € 4 andM® ~ F andG ~ N¥. On
input F' the obfuscato© picks a random-tape faf, and constructs the deterministic progrém € 4.
Since¥ is obfuscatable, it has an obfuscator, €y Then©O outputsMO’(GT) (i.e., the code o/ and the
codeO'(G,)). We claim thatD is an obfuscator for# .

Again it is condition3’ of Definition 2 that we need to argue about. Consider any adveréampich
accepts the cod®(F) = M9'(Gr), We build an adversaryl’ which accepts the cod€’(G,), adds the
code of M to it to getO(F'), passes it on to an internally simulated copy4fand outputs whateved
outputs. Now, sinc€’ is an obfuscator fo#, there exists a simulatd’ such that, for all,

| Pr (S (|0/(G,))) = 1] - Pr[A(0/(Gy) = 1| < e)

for some negligible functioa(|O’(G,)|).
We useS’ to build a simulatoiS as follows. Note thalS gets oracle access 16 and receive$O(F)|
as input. Using this oracle acceS§ can implementV’ which is indistinguishable from the probabilistic

6

machineG = {G., },. Choosing a random-tapéfor N, fixes a random-tapefor G. S runsS’ with oracle
access taV’; (equivalent to oracle access@ for somer) and input0’(G,)| (calculated from{O(F)| by
subtracting the size o/ from |O(F)|; we assume that the size [@’(G,.)| is independent of the specific
random-tape’). S outputs whateve§’ outputs.

From the construction we have the following:

Pr[A(O(F)) = 1] = E,[Pr [A'(O'(G,)) = 1]
Pr[ST(O(F))) = 1] = Pr (SN (|0/(G,)]) = 1] = B, [Pr [S (|0'(G,)]) = 1]

and so by Equation (2)Pr [ST(|O(F)|) = 1] — Pr[A(O(F)) = 1]| < e. Finally |O(F)| > |0'(G)|, so
thate is still negligible when considered a function@f '), completing the proof. O

3.3 Composition of Obfuscations

An obfuscated program can be idealized as oracle access to the corresponding function. We ask if ob-
fuscations compose: can we put together different obfuscations and expect them to behave ideally as the
corresponding collection of oracles. Note that here we use thedemmposen the same way as one refers

to composition of cryptographic protocols- to ask whether having multiple instances in the system breaks
the security or not. It does not necessarily refer to compaosition of functions in the usual mathematical sense,
something which we will address later in this section. We make the following definition to define a simple
composition of obfuscations, where there is no interaction between the different instances.

Definition 5 Anarrayoft functionsfFy, .. ., F; is defined as follows:
[Fy,..., Fi](i,z) = Fi(x) ifie{l,... t};elsel

Let [O(F),O(G)], by abuse of notation stands for the code which consists of the €d@E$ and
O(G) as modules, and a small driving unit which directs the calls to one of the modules as appropriate.

Definition 6 (Simply Composing Obfuscations)An obfuscato© for a family.7 is said to producaimply
t-self-composing obfuscations O* ([F1, . .., Fi]) = [O(F1),...,O(F;)] is an obfuscation of the family
{[Fy,...,F]|Fi e #}.8

This can be extended to multiple families of obfuscatable functions to define essapbf composing
obfuscations

In fact, in the random oracle model we have the following claim (which we conjecture to extend to the plain
model too):

Claim 3 There exists a class of functiogs, and an obfuscato® for .# in the random oracle model, such
that obfuscations produced I§y are not simply 2-self-composing.

Proof: We consider the class of point functiod2 (defined later, in Section 4). By Lemma 6, this class

is obfuscatable in the random oracle model. Note that whesnd G are identical (randomly chosen)
functions, oracle access to the functipf, G] does not reveal the fact that they are identical, to a PPT
machine. On the other hand the obfuscation given in Lemma 6 does reveal this. (Of course, it is easy to
modify the obfuscation, in order to avoid this problem.) Thus no simulator can simulate the behaviour of an
adversary4 (which has access to these obfuscations) which output$'HfG and 0 otherwise. O

®We can have constant, or polynomial in the feasibility parameter

Conjecture 1 If there are non-trivial obfuscations in the plain model, Claim 3 holds in the plain model too.
Indeed, in that case, we conjecture that there exists an obfuscatable f@msych thateZ = {[F,G] :
F,G € #} is unobfuscatable

The difficulty in attempting to prove this conjecture is that it requires a non-trivial obfuscatable family
and we have virtually nothing known beyond what is being presented in this work (which is in the random
oracle model).

On the other hand, an obfuscatable function composes witlriaiglly obfuscatableunction (defined
below).

Definition 7 A family of functions? is learnable as polynomial time circuifghere exists an oracle circuit
P such that for allF € .%, P outputs a polynomial sized circuitr which computeg'.

If % islearnable it is obfuscatable: the obfuscaforakes a circuit fo' and runsP with oracle access
to that circuit; it outputs’r produced byP asO(F'). This is clearly an obfuscation, because for every
adversaryA4, a simulatorS simply runsP with the oracle forF’, obtainsCr and runs4 on it.

Definition 8 A family of learnable functions is called family of trivially obfuscatable functions The
obfuscation obtained via learning the function is calledtitival obfuscation of the function

Simple as the following lemma is, it is interesting that its intuitive extension trorally obfuscatable
family to anyobfuscatable family is an open problem.

Lemma 4 Let.# be a trivially obfuscatable family of functions. Théhjs obfuscatable, if and only if the
family of functionser = {[F,G] : F € .#,G € ¢} is obfuscatable.

Proof: First, we show tha¥ < /. Then it follows from Lemma 1 tha# is obfuscatable &7 is.

To see tha¥ < 7, for eachG € ¢ we choosed = [F, G] € </, whereF' € % is a fixed function for
all G. Then a machind/ which internally implementg’ can implementd with access to onlys. On the
other hand a machin®& which has access td can clearly implement;.

Now we show thate is obfuscatable if¢ is. Intuitively, an obfuscation af7 does not “hide” the#
component (which is easily learnable). So it is sufficient if we are able to obfuscaie paet. Formally,
we show that ford = [F, G] € <7, the following is a valid obfuscation®(A) = [O'(F), O'(GQ)], where
O'(F) is the trivial obfuscation of" and O’(G) is the obfuscation of¥ given by the assumption th&t
is obfuscatable. As earlier the notatip®’ (F'), O'(G)] refers to the code which h&¥ (F') andO'(G) as
internal modules, plus a small control module to activate the appropriate one depending on the input.

To show thatO(A) is a valid obfuscation, for every adversadywhich accepts)(A), we shall show
a simulatorS such that Pr [S4(|O(A)]) = 1] — Pr[A(O(A)) = 1]| is negligible. The structure of the
argument is similar to that in the proof of Lemma 1.

From A, we first build an adversaryl’ which takes as input)’(G), uses it to build the cod®(A)
=[O'(F),0'(G)], passes it on to an internally simulated copy.4f and outputs whateved’ outputs.
Using the fact tha®’(G) is an obfuscation of7, there exists a simulatd’ such that

| Pr[S(|0'(G)]) = 1] = Pr[A(0'(G)) = 1]| < e 3)

for some negligible function(|O0’(G)|).

We useS’ to build a simulatoS as follows. Note thaS gets oracle access i and receive$O(A)]
as input. Oracle access t in particular gives oracle access #o SinceF' is trivially obfuscatable, it
is possible to obtain the trivial obfuscatid (F') just using this oracle access ta SoS first computes

8

O'(F). Next, note that given oracle accessAporacle access t6@ can also be implemented. SorunsS’
with oracle access t@ implemented in this way, and inp{®’(G)| calculated fromO(A)| (by subtracting
the size ofO’(F")). S outputs whateve$’ outputs.

By construction,

1] =Pr[A(0(GQ)) =1]

Pr[A(O(4))
) =1 =Pr[s“(0'(G)]) = 1]

Pr[S4(|0(4)))

and so by Equation (3)Pr [ST(|O(F)|) = 1] — Pr[A(O(F)) = 1]| < e. Finally to complete the proof,
we note thatO(A)| > |O'(G)| and s is still negligible when considered a function©G{ A). O

Now we consider the question of more complex composition of obfuscations. We ask if obfuscations
of composed functions can be obtained by using obfuscations of the component functions. In particular we
look at function compositions (in the usual mathemaical sense, of one function invoking another).

Conjecture 2 Conjecture on Obfuscatability of Function Compositions: Given two clagsemd ¢ of
obfuscatable programs, the famity = {A(z) = F(G(z)) : F € .#,G € ¢} is obfuscatable.

Theorem 5 The Conjecture on Obfuscatability of Function Compositions is false, if factoring Blum integers
is hard or the DDH assumption is true.

Proof Sketch: The Conjecture on Obfuscatability of Function Compositions, if true, could be used any
constant number of times: in particulac# is obfuscatable,;{ A(x) = Fy(Fa(- - - (Fi(x))---))|F; € F}

is obfuscatable. However, it is known that if the assumptions of the theorem hold, then there exists a family
of functions.e ¢ TCO that is unobfuscatable. On the other hand it is not hard to seeZhat TC?,

the family of depth 1 threshold circuits, is trivially obfuscatable, because they can be easily learned from
input/output queries. Noting that' is obtained by a constant number of compositions of functions f#om
completes the contradiction, and the proof. O

4 Point Functions and Extensions

In this section we define a few basic functions which can be obfuscated under the random oracle model. The
proofs are easy and we include a couple of them.

Definition 9 (Class of Point Functions)A point functionP, : {0, 1}* — {0, 1} is defined byP, (z) = 1 if
r = a and 0 otherwise. Defing?, = {P, : a € {0,1}¥} and & = U, 2.

We observe that the following simple obfuscation heuristic is indeed an obfuscation in the random oracle
model (Definition 2).

Lemma 6 For random oraclesk : {0,1}* — {0,1}%*, let O®(P,) be a program which stores= R(«),
and on inputz € {0, 1}*, checks ifR(x) = r; if so it outputs 1, else 0.
Then,O is an obfuscator of” as defined in Definition 2.

Proof: Polynomial Slowdown is evident (by convention oracle queries are answered in one time step). The
Approximate Functionality condition is true since

Prz[3z € {0,1}*\{a} : R(z) = R(a)]

IN

S Pre[R() = R(@)] = (2" — 1)/2%
2€{0,1}*\{a}

which is negligible ink.

To show the Virtual Black-Box propert§s’), for any adversary, define the simulata$ (with oracle
access td?, which does the following. Pick a random string— {0, 1}2*, prepare a purported obfuscation
of P, with this » and hand it to an internally simulated copy .4f Recall that4 can make queries to a
random oracle, which in this case will be simulated$hyW.l.0.g we assumel’s queries to the oracle are
distinct, since oracle replies can be cached. WHemakes a query to the random oracle§ queries the
P, oracle withg. If P, answers 1, it answetd’s query withr. Else it picks a random string if0, 1}2*
and sends it tod. Finally S outputs whateverd outputs. It is easy to see that the view of this internally
simulatedA is identical to that of an.4 which receives the obfuscation and access to the random oracle.
Thus the Virtual Black-box requirement is satisfied (wittk) = 0). O

Though we defined the point function & : {0,1}* — {0,1} with « € {0, 1}*, it is easy to see that
it can be modified td>, : UE_,{0,1}* — {0, 1} with « € UF_,{0, 1}

4.1 Composable Obfuscations of Point Functions with General Output

Definition 10 (Class of Point Functions with General Output) A point function with general output
Quap) * 10,1} — {0,1}® is defined byQ, g(z) = Bif = « and L otherwise. Define2, =
{P, : ac{0,1}*}and 2 = U;.2;.

We omit the proof of the following theorem, as it is similar to the proof of Lemma 6.

Theorem 7 For random oraclesR : {0,1}* — {0,1}?#*+5(®) let OR(P,) be a program as follows:
LetR:(-) denote the firsRk bits of R(-), andRy(-) denote the remaining bits. Choogeat random from
{0,1}*. Leta = R (v, a) andb = R4 (¢,). The program store, a andc = S&b. Oninputr € {0, 1},
it computes)’ = Ry (¢, x) andb’ = Ray(¢, x); if ' = a it outputst’ & ¢; else it outputsL.

Then,O is an obfuscator of” as defined in Definition 2.

We further observe that the above obfuscation self-composes according to Definition 6. As long as
there only polynomially many (polynomial ih) obfuscations in the system, the probability that two of
the obfuscations will have the same valueyofs negligible. Conditioned on this (negligible probability)
event not happening, a simulator with black-box access to all the (polynomially rganyfunctions can
perfectly simulate the behavior of an adversary with access to the obfuscations. Note that here the obfuscator
is a randomized algorithm.

4.2 Multi-Point Functions with General Output
Finally, we define a multi-point functiowith general outpuas follows.

Definition 11 (Class of Multi-Point Functions with General Output)AmuItl point functior® ., 8,)....(ar,8:)

0,13 — ({0,1}*®)" is defined byQ(, s1)... e (@) = b € ({0,13*)) whereb, = g if if
z = oy and elseh; = L. Define2! = {Q, a; € {0,1}"/’} and 2! = U, 2.. Define
2% = Upolynomialste@t-

----- Qy(k))

10

Since from last section we have a self-composable obfuscation for the single point function with gen-
eral output, we simply put together thgprogramsO(Q,, 5,), ¢ = 1,...,t to obtain an obfuscation for

Q(al,ﬁl)w’(atugt)'

Lemma 8 The family of functions2* is efficiently obfuscatable in the random oracle model, in a self-
composable manner.

Proof Sketch: Itis easy to see tha?! < {[F\,..., Fi] : F; € 2}. Since the obfuscation in Theorem 7 is
self-composable}[Fi, ..., F] : F; € 2} is obfuscatable, and by Lemma 1, sa?$ (and hence2*). To
see that this composition is self-composable, note that the obfuscation of an array of function®*fiem
identical to the obfuscation of a (much larger) array of functions ft8m O

5 Obfuscating a Complex Access Control Mechanism

Consider the following (interactive) access control task. There are multiple access points to various functions
or secrets. There is an underlying directed multi-graph (possibly with multiple edges between nodes, and
self-loops), with each node representing an access point. The user starts at a predefined access point, or
“start node” and proceeds to establish her access privileges which allows her to move from one access point
to another, through the edges of the graph. The access control task is the following:

e The user can reach an access point only by presenting credentials that can take her from the start node
to that point.

e The user gains complete access to a function or secret available at an access point if and only if the
user has reached that access point.

e The user does not learn anything about the structure of the graph, except what is revealed by the
secrets at the access points she reached and the edges she traversed.

We specify this task as access to a black-box with which the user interacts, giving her credentials at
various points and receiving the secrets; the black-box internally maintains the current access point of the
user. But we would like to implement this task as a program which we then hand over to the user. To
maintain the security of the task, we need to obfuscate this program.

In this section we explore this obfuscation problem. We show that in the random oracle model this access
control mechanism can indeed be obfuscated. We model the interactive task as a non-interactive function
(formulated below) which takes the “history” of interaction and gives a response to the last query.

Definition 12 A graph-based access control problefg; with parameterg: andd is defined by the follow-
ing:

1. Directed multi-grapltz onk vertices. Each node € k has at most ordered neighbora&l) e ,,qu(ld).

)

Let £ = {(u,v,i) : v = uﬁ? for somei € [d] } be the set of all edges is used to differentiate be-
tween the multiple edges possible between the same pair of nodes).

2. A set of passwords on the eddes|e € E'}, and

3. Aset of secrets at the nodgs, |v € [k]}.

11

Then,

(Un,0v,) if Jvg,...,v,, € [k] @andeg,...,ep—1 € E
Xg((il,.rl), e (in, xn)) = such thatyy = 1, ej = (Uj,’l)j.;,.h ij), andxj = T,
€ otherwise.

We define the family of function®™ as the set of allX with parametergk, d) over all multi-graphs
G, sets of edge-passwords and sets of node-secrets.

Above, (i, z) is a query in which the user provides a purported passwdod thei-th edge going out of the
“current” node. For later notational convenience we shall assume that there is no secret available at node 1:
i.e.,01 = 1.

We are interested in cases where the inputX toare of size polynomial ik andd. We point out that
there may be exponentially marmglid inputs for whichX outputs a secret (though the number of distinct
secrets is only). So it is not possible to obfusca®é; directly using Lemma 8.

Instead we proceed as follows: each node is represented by the(tuplees, ..., eq, me,, ..., Te,)
wheree; € FE (if there are less thathoutgoing edges pick dummy values for the remaining edges). For each
nodel < u < k pick a random “key’s,, from {0, 1}*; let x; = 0° (recall that 1 is the start node). Define
the functioniV; as follows:

(v,00,ky) If 2=k, and
We(u, z,i,2) = Jv € [k] such thatr, , ; =
L otherwise.

The obfuscation consists of an obfuscatiorigf, (which is a multi-point function with at mosid input
points where the output is ndt, and hence can be obfuscated).

Intuitively, this is a good obfuscation because the adversary cannot find the randomly chosen key of a
nodex,, unless it was given out by the (obfuscated) funclifi. But the only way to obtain that is to give
m, for an edge leading to from a nodeu to which the adversary already has the key. Since, to start with,
the only key the adversary knowsss, it must indeed traverse a path from ludy providing the all the
edge-passwords in order to getuto

Formally, we first define a probabilistic prograit; which picks the random keys above to get a partic-
ular deterministic functio®V 5. Then we show that the familf?” <« W, where¥ is the family of allWg
as above.

Definition 13 Define the randomized algorithi¥; as follows: forv € [k], pick random keys:, —
{0,1}*. Oninput(u, z, i, z) return W& (u, 2,1, x).

We define the family of function& as the set of aIf/Iv/G (with parametersk, d)) over all multi-graphs
G, sets of edge-passwords and sets of node-secrets.

Lemma9 2 <« ¥ .

Proof: For Xg € 2 we pickWG € # and demonstraté/ and N as required by the definition of the
relation<.

12

M such that Mg/ = X¢ : Oninput(iy,z1),..., (in, zn) queryWG with (1,0%, 41, x1); if WG returns
(va, 04,), Query it with (va, 0, , 72, z2) @and so on, until it either returns or we reach the end of the input
and receivév,, 0,). In either case output this value.

N suchthatNX¢ ~ Wg : N internally maintains two tables: one table is for keysand one fopathsto
each node from node 1, with edge passwords for each edge appearing on the edge. Initially:it set¥
and all other keys a$, and does not have any paths recorded for any node. On (nputi,) N checks
if 2z =k, # L. If notitreturnsL. Else it will have recorded a pathv, = 1,va,i1,21),..., (v, V41 =
u, i, x¢) such thate; = g, .., i) It makes a queryir, z1), ..., (i, 21), (i, 2) to X¢. If X responds
with L, N outputsL. Else, it receivesv, o,,) from X¢. It checks if a key has been already assigned; to
if not it picks a random key and assigns thavtdrhen it returngv, o, k).

Itis not hard to see that for any PRT interacting withiWg; or N¥¢, the output distribution oNX¢ is
the same as that 6%, but both distributions conditioned on the event tRahever makes a query with a
valid key which it did not receive as answer to a previous query. But that event is of negligible probability,
and soN¥¢ ~ We.. O

Note that/ is a family of probabilistic machines, such that if we consider the family obtained by fixing
the random-tapes of machines’#i in all possible ways, we get a sub-family gf* (Definition 11). This
sub-family is obfuscatable (becaug¥ is obfuscatable, by Lemma 8). Then, from the above lemma and
Lemma 2, we conclude the following.

Theorem 10 The family.Z" is efficiently obfuscatable in the random oracle model.

6 Regular Expressions and Obfuscations

Let ¥ be an alphabet (of constant size). We consider regular expressions avéc’, ..., ¢}, where
¢ are formal symbols corresponding to langua@igsWe define whether or not a stringe ©* matches
such a regular expressigiiL,, .. ., L;) as follows:s matches a symba}”: if s € L;. The rest of the rules
are the usual ones: a single charaeater ¥ matches itselfs € ¥* matches; |p; if it matches eithep; or
p2; s matchesp, - po if s = s1 - s9 such thats; matches; ands, matches,; finally s matches™ if s is
the null-string, ors = s1 - s5 - - - s, Where eacly; matches. If s matches a regular expressipywe write
s~ p.BelowL,;, . 1, stands for the language defined as the set of all strings matphing. . ., L).

6.1 ObfuscatingZ,p,,,..r.,)

Qe t Qg

Consider the case when the languagesbove are the point functiori?,,. In this section we consider a
family of functions%, = U,%,, where for allk and allU," """ € %,, there is a single fixed regular
expressiorp. However, for eaclt, the point functions?,, belong to theZ?, the family of point functions
on Ufzo{(), 1}7. For brevity we denot&,p, .. p.,) bY Lo(ar,....ar)-

Definition 14 Define the functio/;" >~ as follows: on input: € {0,1}*, check ifx € L4, .- If SO
returnas, ..., a; else returnl. Let%,, = {U;"" : o € U§:0{0, 11}, and %, = Uy,

Unless a string in the languagg,,,, ... «,) IS given as inpuly;** reveals nothing beyond the fact
that the string is not in the language. We show that this function can be completely obfuscated.

Theorem 11 For any regular expressiop, the family%, is efficiently obfuscatable in the random oracle
model.

13

To prove this, we introduce another family of functiofs and show tha#/, < 7#,. Then, we show
that 7, can be obfuscated (in the random oracle model).

Recall thatp is a regular expression over the symbals) {¢*!,...,(*}. We can convert this to a
deterministic finite-state automaton (DFA), with some of the edges labeled WitDefine a se£, C 2lt]
of subsets oft] as follows. If there is a path in the above DFA from the start state to some accept state, in
which the set of norks symbols appearing afg® : i € Z C [t|}, thenZ € Z,. In other wordsZ, is the
set of all subsets af;’s, such that knowingy;’s in any of these subsets will enable one to construct a string
in L,a,,....a0)- NOte thatZ,, can be constructed from independent ofv,, . . ., a.

Definition 15 Define the functio,"">~** as follows: on inpu{3, ..., 3), 3 € {0,1}*, check ifiZ €
Z, such thatvi € Z, §; = a;. If soreturna, ..., ay; else returnl. Let”,, = {vji®t s €
Ur_4{0,1}/}, and), = Up 7.

Lemma 12 %, < 7, for all regular expressiong.

Proof: Corresponding td/," " € %, we pick V""" € ¥,

,,,,,,

Constructing M such that MV ' =U, % As inputAV>" " receives a string € {0,1}*. 1t
needs to check it € L, . ,)- M chooses substrings ofr as guesses far, ..., ;. If |z| = n there
areO(n?" such choices. But by our convention, sinces fixed, t is a constant and?: is still polynomial
in n, the size of input taV/. For each such guesg,...,3;), M queriesV,;"'" " on (31,..., ;). If
v, returns.L for all choices,M also outputsL. If V" returns(aq, ..., a;) for any choice of
(f1,--.,Bt), thenM constructs the complete DFA (replacing the varialgt&swith «;) and checks if: is
accepted by the DFA. If sdy/ outputsay, .. ., ay; if not it outputs L.

If x € L,(a;,...a0)» then there is some path in the DFA fewhich accepts:. Let Z be the set of all
i such that{*? appears on this accepting path. By the wgywas constructed/ € Z,. Further all these
(% appear as part af. Thus, for some guess, ..., G, it will be the case that for all of € Z 3; = «;.
Thus ifx € L, 0, M will obtain all of ay,...,a; from V"%, and will be able to verify that
T € Lyay,...ar)- Onthe other hand it ¢ L, .) €itheras, ..., «; are not revealed td/, or they are
and M will discover thatr & L,,)- IN either casé// will output L, as required.

..... ag

......

Constructing N such that NU»" """ = v AsinputNUs """ receives strings(fi,. .., 3;). It
needs to check if there is aifyy € Z, such thatvi € Z o; = ;. Associated with eacl is a path from the
start state to an accept state in which the varigBleappear for exactly thosec Z. N chooses for eacl
such a path, and constructs a stringcorresponding to that path, substitutiigfor ¢%:. It then submits:
to U, (to which it has oracle access).Uf;"** responds withL for all z;, Z € Z, thenN outputs
L. If Uy responds withyy, . .., a4 for anyzz, thenN then checks iBZ € 2,Vi € Z o; = 3;, and

AAAAA

responds accordingly. It can be easily verified tNap T = |/ 0

To complete the proof of Theorem 11, we need to showthas obfuscatable. This is done by noticing
that7, < 2%, where2* is the class of multi-point functions with general output (Definition 11), which by
Lemma 8 is obfuscatable.

Lemma 13 7, < 2*

14

Proof: LetZ, = {Z,..., %}, and for eacl?; ¢ Z,, let the stringy; be (y}, ... ,75) where ifj € Z;,
v/ = a; and elsey’ = 0.

For everyV," % ¢ ¥, considerQ = Q(y, a).... (v,a) € 2" WhereA = (aq,..., o) (e, ifQis
given one of the stringsy, . . ., ¢, it outputsA. It is easy to verify that the following machindg and N
are as required by Definition 4.

M@, oninput(i, . .., 3;) does the following: for eacli; € Z, it constructs a string; = (3}, ..., d¢)
where ifj € Z;, 6/ = j3; and else¥/ = 0; then it queries) with &; if for any 7 it receivesA from Q it
outputs that and elsé.

NV oninputs = (61,...,6'), queriesV " with §. If it receives L as an answer, it also
outputsL. Else it receiveg\, and can then can comput¥¢), which it outputs.

]

We remark that the construction above can easily be extended to also produce an arbitrary secret output
if the input matches the regular expression.
6.2 Obfuscating a function related top(Ly, ..., L;)

In this section we allow to be part of the function (and therefore can have size polynomig).ikVe are
interested in matching a given string agaip&L, . . ., L;) without compromising the black-box nature of
[L1,..., L. The family of functions we are interested in%&: below.

Definition 16 DefineG5*** and F,*** as follows:

p if « = 1 (i.e., give the regular expression ovBiU {¢1, ..., ¢%})
Ghoott(a,e) =S Looa(x) ifae{2,...,t+1}

€ otherwise

1 if a = 0 andz matcheg(Ly, ..., L)
Floli(a,z) =<0 if « = 0 andz does not match(Ly, ..., L;)

Gﬁl"“’Lt(a,x) otherwise

Yo = {Gﬁl*""Lt : p aregular expression anfl; € C}
Fo = {Flev---’Lt : paregular expression anfl; € C}

In other words, botl5"** and F-*"* provide access to the languagesand to (the description of)
the regular expressign In addition,Fle""’Lt gives access to the language defined by the regular expression
p(L17 s 7Lt)'

Theorem 14 % is obfuscatable if and only [L1,..., L] : L; € C}is. Further this statement holds
restricted to efficient obfuscations too.

First we prove the following lemma, which is the heart of the proof. It shows how to evaluate the regular
expressions involvind.;’s just with access t&.

Lemma 15 % < 9 and¥, < Z¢, for all familiesC.

15

Proof: Itis easy to see th&f, < .Z¢: for everyG = Gﬁl"“’Lt € Y- we considerr’ = F,)Ll""’Lt € Z¢,

wherep is the null regular expression. ThéhandG are essentially equivalent, and simple oracle machines
M andN exist as required in Definition 3.

ForF = F,,Ll"“’Lt € e letG = Gﬁl’“"Lt € 9. We have to demonstrate the polynomial time oracle
machines\/ and N as in Definition 3.V is trivial: on input(a, x), a # 0 it calls ' with the same input and
returns the answer; if = 0 it returns_L. In the rest of the proof we describe and analyze the algorithm for
M.

M gets oracle access . and wants to evaluate on input(a, x). Fora # 0 M can directly uses
to evaluatel”. The non-trivial case is wheln= 0: M should match the input with the regular expression
p with only black-box access th;. We give a fairly efficient algorithm using dynamic programming to
achieve this.

First M obtains the regular expressipfrom G (by giving input(1, €). It constructs a tree corresponding
to p with leaf nodes corresponding to symbols frahu {¢%1, ..., ¢*~}. Each internal node corresponds to
one of the three operatofs and*; in the first two cases the node will have two children and in the last case
a single child. The root node corresponds to the whole regular expressitre algorithm will consider the
setS of all substrings of the input string = z1...2,;i.e.,5 = {z] : 1 <i<j <n}U{e}. Foreach
node it will try to find out all the strings i¥ which match the regular expression at that node. This is done
bottom-up in the tree. To obtain this information at the leaf nodésnakesO(n?) queries to eacl;.

Given this information for the children of a node, the information for that node itself can be obtained.
In the case of al}-node (denoted b® = Q;|95) this is simple: for each string € S check ifs ~ Q; or
s ~ Qs. If either case holds record that- 9. For ()-nodeQ = 9, - Q> we do the following:

for each s € S do
for i =0to |s| do
if si ~ Q1 AND sli‘l ~ Q, then
record s ~ Q

s

The checks| ~ Q; ands; |, ~ Qo are done by checking if those matchings have already been recorded.
The ()-nodes require a little more work. At a node= Q7 we do the following:

Let Q1 denote Q;
for k =2tondo
for each s € S\{e} do
for i =0to |s| do
if s ~ QF 1 AND 5%, ~ Q, then
record s ~ QF
record e ~ Q
for each s € S\{¢} do
if s ~ QF for some k € {1,...,n} then
record s ~ Q

It is not hard to see that at each node the algorithm correctly records=alf’ which match the node.
Finally, it checks ifx ~ p by checking if it is recorded at the root node. O

Proof. (of Theorem 14)By the above Lemma and Lemma 1, we can obfuscgte if and only if we

can obfuscat&/.. We can viewG € % as[(p),[L1,-..,Ly]], where(p) stands for the constant (and
hence trivially obfuscatable) function which outputsThen by Lemma 44; is obfuscatable if and only if
{[L1,...,Ly,] : L; € C}is obfuscatable. O

16

7 Obfuscating Neighborhoods in Tree Metrics

Point functions are identity checks- they check if the input is identical to a particular value. A natural
relaxation thereof is a neighborhood check. Consider some metric space from which the inputs are drawn.
We would like to have a program which checks if the input is “near” a hidden point.

We work in a restricted metric space- the space of “tree metrics,” where the the points are nodes in a
(rooted, undirected) tree, and the distance between two points is the length of the (unique) path between
them. (We can allow a metric space that can be decomposed as a collecticoraftantnumber of tree
metrics, but for simplicity we stick to a single tree-metric.)

Let M stand for the metric space as well as (by abuse of notation) the tree defining ity d(et-) be
the distance function inm.

Definition 17 Define the functio@ : M — MU {1} as follows:

TM(z) = {a dm(a,x) <6
1 dm(e,x) >4

T = {TM : M atree-metric |M| = 2°%) o € M} and T = U %.

Obfuscatings-neighborhoods in general metric spaces (beyond what can be achieved by exhaustively
searching the entir&neighborhood of a point) is a challenging problem. But we show that for tree metrics
this problem can be satisfactorily solved using a simple technique. To obfusthteraverse the tregA,
starting at the node, towards the root of the tree, for a distadc@nd pick the node at which we finish. (If
we reach the root beforesteps pick the root.) Call this noge We show that obfuscatirif*! is essentially
the same as obfuscating the point functiontwith outputa (which as we have shown, can be efficiently
obfuscated in the random oracle model).

Lemma 16 . < 2 (whereZ is the point function with general output, as in Definition 10).

Proof: ForTM € 7 we pick Qs € 2. Qg is the function which outputs: on input3 and L
everywhere else.

NT2" works as follows : On inputz € M queryT M with z. If 2 were indeed equal t8 thenT would
respond witho. So if TM gives L return L. If it gives a, locate3 by traversingM, and check if ther is
indeedg or not and answer accordingly.

M@s.« works as follows : on inputz € M, check the firsRé ancestors of: for being identical to3
(using@s.q)- If Q3. returnsa on some query, cheaky,(z, o) and answer appropriately. If it returdsin
all 26 queries, then it is easy to see that the distahggz, o) > 4. In this case, output.. O

By Lemma 1 and Theorem 7, we get:

Theorem 17 .7 is obfuscatable in the random oracle model.

8 Conclusions and Open Problems

We have given the first positive results and techniques for program obfuscation, but many important open
problems remain. We are hopeful our reduction and composition techniques will aid in resolving these

17

problems. The most pressing open problem is to extend our positive results beyond what we have. In
particular, can regular languages be obfuscated? Is #mrexample of a keyed cryptographic primitive

(even a contrived one) other than password checking which can be obfuscated? Another important problem
to be resolved is to finény non-trivial obfuscation result without using the random oracle model. Our
approach, of reducing obfuscation of one family to obfuscating another, could then be used to produce more
obfuscations in the plain model. Also, such techniques are useful in a model where some basic functions
may be obfuscated in hardware; so one direction to pursue is to explore developing these techniques further.

Acknowledgments

We thank Dan Boneh for many useful discussions, and collaboration in early parts of this work. We also
thank the anonymous referees of Eurocrypt 2004 for detailed comments on the presentation.

References

[1] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and Ke
Yang. On the (im)possibility of obfuscating programs Pioceedings of CRYPTO 2001

[2] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way probabilistic hash functions.
In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing 1998

[3] Christian Collberg and Clark Thomborson. Watermarking, tamper-proofing, and obfuscation — tools for
software protection. Technical Report TR00-03, The Department of Computer Science, University of
Arizona, February 2000.

[4] S. Chow, H. Johnson, P. C. van Oorschot, and P. Eisen. A White-Box DES Implementation for DRM
Applications. InProceedings of ACM CCS-9 Workshop DRM 2002

[5] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs. Pre-
liminary versions appeared &RYPTO 198%nd STOC 1990 Journal of the ACM43(3):431-473,
1996.

[6] Matthias Jacob, Dan Boneh, and Edward Felten. Attacking an obfuscated cipher by injecting faults In
Proceedings of ACM CCS-9 Workshop DRM 2002

[7] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware against Probing
Attacks. InProceedings of CRYPTO 2003

18

