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Abstract

Partly in response to the slowness of traditional Public-Key Cryptosystems, multivariate PKC'’s
were born. However, recent attention has mostly been focusétf omnd HFE variants, in which
the vector variables really represent an element in a much larger field. This phenomenon may be
related to an article by Goubin and Courtois attacking “Triangular-Plus-Minus” (TPM) schemes,
a class of multivariates with low expansion rates. They leave the perception that no fast “true”
(with really independent variables) multivariate PKC should even be attempted. This impression
is compounded by cryptanalysis of schemes with higher expansion rates (e.g. Oil-and-Vinegar).

We believe that TPM (and attacks thereupon) does not cover all pertinent true multivariate
PKC's. We will term “tame-like” the multivariate PKC’s whose central map has an easy inverse
and relatively few terms per equation. Tame-like PKC’s, a superset of TPM, have both fast private
maps and short set-up times. Unfortunately, the same traits may also open them up to attacks
relating to rank, what we will term “rank attacks”. Here we study in detail the two attacks in the
Goubin-Courtois paper — one may be called “high-rank” and one “low-rank”. The former seems
to have been first used by Coppersnathal, the latter in a variety of earlier literature.

The TTS (Tame Transformation Signatures) family of digital signature schemes lies at this cusp
of contention. Previous instances of TTS, (proposed at ICISC '03) claim good resistance to known
attacks. FXL, the best previously-considered attack, cryptanalyze2Talsd TTS/4 in> 230
equivalent AES blocks under a very minimal estimate.

Inattention to rank creates vulnerabilities, however. We show that the innate structure of current
TTS constructions (TTS/4 and TTX) exacerbates the security concern of rank, and show two
different cryptanalysis ir< 257 AES units. A few other constructs also share the same liability.

A suitable equilibrium between speed and security must be struck. We suggest a generic way
to craft tame-like PKC’s more resistant to rank attacks. As an example, we build TTS variant in
similar dimensions for which rank attack take<28° AES units, while remaining very fast and as
resistant to other attacks. The proposed TTS variants can be scaled for better security.

In short: we show that Rank attacks can be used on the wider class of tame-like PKC’s, some-
times even better than it was previously described. However, this is relativized by the realization
that we can build tame-like multivariate PKC's that are adequately resistant, so the general theme
still seem viable compared to more traditional alternatives.

1 Introduction

Of all public-key cryptosystems, RSA still “rules” all PKC some 30 years after public-key cryptog-
raphy was invented ([17]). It is somewhat unfortunate, as due to current advances in cryptography
like number field sieves ([7, 41]), secure applications of RSA requires ever-longer keys. This nega-
tively affects the execution speed and cost of deployment. This paper describes an episode of the usual
balancing act as a cryptologist veers between requirements in speed and security.



Multivariate PKC was introduced as an alternative to cryptosystems with large algebraic structures.
A typical multivariate PKC (following notations of [9]) has a public mip= ¢3o0¢o0¢1 : K™ +— K™,

Maps¢, : w — x = Miw + ¢; andgs : y — z = M3y + c3 are invertible and affine i'x™ and K™
respectively, wherds is the base fieldThe security of the scheme is then based on the NP-hardness
([21]) in solving a large system of quadratic equations and the decompositidhinfo components

o1, ¢2, and¢s. Preimages fop, : x — y are presumed available, but the speed of the private map
depends on how fast this inversion can be. The speed of the public map and the size of the keys depends
only onm andn, and key generation on how quickdy can be evaluated.

The two best-known multivariate PKC’s, SFLASH([38]) and QUARTZ ([37]) descend from
Matsumoto-Imai'sC* ([27]) and Patarin’s HFE ([36]) respectively. Both second-round NESSIE ([32])
digital signature scheme candidates were designed by the team of Patarin, Goubin, and Courtois. The
former was eventually recommended for low-cost smart cards. Alas, the security of these candidates is
under siege by newer developmehtnd their speed and key sizes can still use some improvement.

In view of the above, it seems natural to investigate alternative possible fast PKC’s. One broad class
of candidates is what we terifame-Like Multivariate Public-Key Cryptosystename-like PKC’s
involve a central map with relatively few terms in each equation and readily and quickly invertible,
usually through no more than serial substitution and solving linear syst@imsy are extremely fast
and suited for deployment in resource-poor PKI environmentsreittime-like PKC'’s secure enough?

Early tame-like multivariate PKC'’s had included Birational Permutation Schemes ([39]) and TTM
([28]). Coppersmitlet al put paid the former ([11, 12]). Goubin and Courtois announced cryptanalysis
of TTM in particular and of all “TPM” (triangular-plus-minus) PKC’s, a much broader genre of similar
systems, in general ([22]). They also conveyed the impression that the concept of a faster signature
systems tharC*-based ones is beyond redemption. The techniques they used were not new ([4, 11,
12, 42]), but they somewhat expanded the scope and simplified the procedures. Little attention has
been paid to tame-like PKC since then until Chen and Yang proposed the TTS (Tame Transformation
Signatures) family of digital signatures ([9]). As usual, the truth lies somewhere in between.

We will discuss why tame-like PKC's are desirable, and how the attacks of Goubin-Courtois (which
can be succintly summarized ‘@ank attacks”) function and how well they work in general. We point
out liabilities in current TTS instances, in particuldre non-obvious vulnerability of having central
equations with many linear combinations at the same raie show how to cryptanalyze them on
these vulnerabilities. Then we show how to construct tame-like PKC so as to account for such possible
weaknesses. In line with our suggestions, we exhibit patched TTS instances resistant to all known
attacks, still lightning fast in comparison and at least quite suitable for smart card implementation.

The result of our suggested repair work seems promising, as seen by Table 1. Compared to RSA,
it has good securifyylevels against known attacks, and it signs 3 orders of magnitude faster. We did
basic simulations to make sure that no estimate is out of line. It is hoped that our results can somewhat
spur some renewed interest of cryptographers on multivariate PKCs.

m | n | PubKey| SecKey|| Rank| Lual | XL | RSA bits| E¢¢
20| 28| 8680B| 1399B| 2% | 280 | 280 | > 1024 | 144
24| 32 ] 13440B| 1864B| 29 | 28 | 291 | > 1536 | 160
28| 38| 21812 B| 2594 B| 2130 | 2105 | 9103 | > 9560 | 192
32| 44]33088B| 3444 B| 252 | 2121 | ol | > 4096 | 224
36| 50 | 47700 B| 4414 B| 28 | 2138 [ 2130 | > 6144 | 256

of Enhanced TTS instaneesr) = hash and signature sizes
!patarinet al recently announced that SFLASHis not secure enough ([16]). SFLASH its intended replacement, is
supposedly still faster than RSA but has much bigger dimensions, signatures and keys. QUARTZ, slow to begin with, also
has its security called into question ([13, 19]).
2Security Estimates for RSA and ECC taken from NESSIE ([33])



2 Tame-Like Multivariate PKC'’s

In C* (resp. HFE), the central magy is really taking one (resp. sum of a few) given high powers. As
a result, in HFE¢2‘1 is painfully slow;C* has a simpler and much fastﬁ;l, but vulnerabilities of
the C*~ family originate from its structure ([35]). In either family eaghwhen written as a quadratic
polynomial in thex; has hundreds of terms, we cannot invgrtwithout treating all ofy as an element
in a larger field. To avert the consequential time penalty, we should consider treating; &ag)) as
separate entities, rather than components of a big field elenmnt(bgl must remain doable quickly
for private map evaluation. The most obvious and minimal requirement is to be able to find each
component ok in somemostly sequential ordexhen giveny. This is an approach that has been tried
in some earlier attempts ([20, 39]).

We inch closer to TTS or at leastme-like PKC’s Lest we forgetjn the central mapp, of tame-
like PKC's, eachy; written as a quadratic polynomial in the has relatively few terms — as few terms
as security would permit, and an easy inverse available through fast, simple means.

Advantages of tame-like PKCs are speed, ease of implementation, and avoiding old attacks.

Fast Signing: In SFLASH’2, the signing action include multiplying and raising to tts-th
power in(GF(2))3” many times. Atame-likePKC makes this stage faster.

Fast Setup: In SFLASH’?, the set-up process is a complex and round-about affair, involving
evaluatingeg, (itself a complicated procedure) almost a thousand times. In a tame-like
PKC, with few terms per equations, we can do this by brute-force. This is no problem on a
modern PC, but setting up on-card for the SFLAZkhkes dongtime.

Avoidance of Previous Liabilities: There are many possible designs for tame-like maps, this
means we can sidestep weaknesses that SFLABIdst design around.

Drawbacks of tame-like PKCs are (mostly) possible new vulnerabilities on rank.

2.1 Tame Transformations, Tame(-Like) Maps, and TTS

One type of map stands out as a candidatesfor In algebraic geometry, one kind of map is called
a Tame Transformatigrwhich with base fieldK and dimensionsn > n is a polynomial map ¢ :
K™ — K™, takingx to y either affinely = Mx + ¢) or in de Jonquierdorm:

1 =15 Y5 = xi+qi(T1, 2,0, xj-1), F=2000m5 0y =g, 2,0, Ty), j=nAlom

If bijective it is also callech tame automorphisn®bviously we must then have = n.

A tame transformation can be inverted quickly, but its inverse has high degree and is hard to write
out explicitly. This is a venerable concept — in two variables, all polynomial automorphisms can
be decomposed into compositions of tame automorphisms ([31]). It is unknown, despite the efforts
of a lot of algebraic geometers, whether a map in three or more variables is a composition of tame
automorphisms, and if so how to decompose it.

Moh harnessed this basic idea in his public-key encryption scheme TTM ([28]). Chen and Yang
adapted the underlying concept of TTM for digital signatures ([8]), and slightly extended it ([9]) to
include the larger class of polynomial maps that we can easily find an inverse for using a sequence of
substitutions angolving for linear equationsbut without a low degree explicit inverse. As in [9], we
will hence term such magame For example, the map below

Yp = Tk + QpTpgTp-1 + bpTp_7Tp 2 + CkTp_6Th—3 + dp Tp_5Tp—g, 8 < k < 26;

Yor = Ty + Qo7 T19 Tae + bar 20 Tas + co7 X21 T24 + da7 To T27;

3Note that in a finite field just about any function can be represented as a polynomial.



is a tame map, because a preimage can be componentwise computed, straightforwardly and quickly,
after assigning any, ... , z7 andxg # —d;}. Tame maps are the centerpiece of TTS ([9]):

The TTS (Tame Transformation Signatures) family of digital signature schemes are defined
as “a multivariate scheme with a tame map as its central, non-linear portign

The middle mapp, was sometimes also called tkerne| but it is too confusing here, and we will
use the name theentral mapinstead. A TTS scheme clearly fits tkeme-likeconcept in Sec. 1, if
each equation in its central map giving.gwe call this one of itg€entral equationghas relatively few
terms involving ther;'s compared to the dimensionsandm.

2.2 Current Variants of TTS

The public (verification) map of TTS has the canonical decomposition (in the notation of [9]) of most

multivariate PKC's, namely : w € K" x5 y % 5 € K™. We will henceforth take the base

field K to be GF(28). Its current form of TTS ([9]) is “TTS/4", using20-byte hashes an28-byte

signatures. Its central map : x = (zo, z1,..., T27) — Y = (Y8, Y9, ... , Y27) IS!
Yo = Tk + Qg Tp-gTp1 + bp Tk 7Tk g + Ck Tk Tk—2 + dp Tp_5 T3, 8 < k < 23;
Y2a = T4 + Q24 T16 Ta3 + bog w17 Tog + Coq W18 oo + dog T4 T24;
Y25 = a5 + G5 T17 Tog + bos T1g To1 + Co5 T4 W3 + das Ts T2s;
Y26 = @26 + Q26 T18 Tas + bog T4 To2 + C26 T5 T24 + dog Te T26;
Y27 = @27 + a7 T4 Toe + boy x5 T23 + Co7 T T25 + dor X7 T27.

We see that thigs is alsotamebecause from any we quickly compute one possibleby randomly
assigning a value tay, ..., x7 (subject to the restrictions; # d2_01+¢ fori = 4---7) and solving
sequentially forrs, . . . , z97. An alternative form, called TT8/ uses ag); the map given in Sec. 2.1.
Both TTS instances operate ousr= GF(2%) as follows (see [9]):

To Setup Keys: Generate random full-rank square matrités(of dimensior28) andMg (of dimen-
sion 20) over K. Similarly, generate random non-zetQ b;, ¢;,d; € K fori = 8---27, and a
random vectoe; € K28, Find the compositiol = ¢3 o ¢ o ¢ and in the process compute
the uniquecs such thal’” has no constant part. Save %630 coefficient ofl” as the public key.
SaveM 1‘1, Mgl, c1, c3, and parameters;, b;, ¢;, d; as the private key (total 1312 bytes).

To Sign: Take the messag¥, find its 160-bit hash digest vecter= H(M). Doy = M3 *(z — c3),
thenx € ¢, ' (y) as above, thew = M;*(x — ¢;). Releasd M, w).

To Verify: On receiving(M, w), compute hask = H (M) and match with/ (w).

TTS/4 and TTSY claim very fast execution times, short signatures, manageable key lengths, and
reasonable security. Previous analysis ([9]) seems to show known attacks to be ineffective. The best
attacks previously came from the XL family ([15]). TTS family schemes are well placed to resist XL-
type attacks because it can be structured to have high-dimensional solution spaces at infinity ([9, 29]).
Even giving the XL-wielding attacker all benefits of the doubt, TTS/4 and Z'TSill have a security
level of 280 AES blocks (aboug®® finite field multiplication operations). The other powerful general
attack, the method of @bner Bases, is hard to obtain a tight timing for. But the same properties that
guards against XL-methods also helps againgb@er Basis attacks.

We will show however that there are design misjudgment in these TTS instances that leads to fast
cryptanalysis and how to patch them effectively and generically.

“Boldface indices are irregularities in the pattern of indices made in TTS/4 for security improvements ([9]).
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3 Rank Attacks vs. TPM and Other Tame-Like PKC's

Of the many known rank attacks, the most ambitious was probably that of [22], wherein the authors
postulated a type of PKC called TPM (triangular plus-minus), and claimed that their general attack ren-
ders TPM (and strongly by implication, all tame-like or néti-descended, non-HFE-derived PKC’s)
totally uselessWhat they claimed was that the private keys can almost always be distilled from the
public key of a tame-like PKC by seeking linear combinations of certain matrices at given ranks.
TPM system is essentially just a simple multivariate PKC with a tame transformatipn aad with

some equations removed at the beginning (like with TTS). To evaluate how tame-like PKC’s stand up
to such attacks, we need to answer many questions:

e Does the TPM category really cover all the tame-like PKCs of interest?
No! In particular, TTS does not match what the authors of [22] describe as a TPM signature
scheme. T. Moh ([30]) also maintains that the description does not match TTM.

The biggest mismatches: A tame-like PKC may solve linear equations rather than search, and
need not have a sequence of increasing kernels in the central equations.

¢ If not, can the attack be extended to other tame-like systems?
Yes, while some objections of [30] seem valid, the ideas are meritorious and can be applied to
decompose public maps from many PKC'’s, including badly designed TTS or TTM instances.

e Does the attack always work as described? Can it be faster or slower, and when?
Yes, sort of. The attack should always conclude successfully if we can find kernels corresponding
to all central equations. If the central equations are tangled somehow and finding the kernel
to one central equation makes finding another one easier, we may cryptanalyze much faster.
Otherwise the search can go on for a lot longer.

e Can we construct systems of a requisite complexity under Rank and other attacks?
Yes, we can arrange for any desired complexity against rank attacks while retaining high practical
speed and resilience against other attacks; that is the subject matter of Sec. 4.

3.1 The Rank Attack: Vulnerability on the Low-Rank Side

Let the public map tak&™ to K™, i.e.m andn be the number of equations and variables respectively.
Also letq = | K|, andr be the smallest rank in linear combinations of central equations. It was claimed
([22]) that a tame-like PKC is broken in expected timeﬂ%hmf*). The steps are as outlined in [22]:

1. TakeP = ", \;H;, an undetermined linear combination of the symmetric matrices rep-
resenting the homogeneous quadratic portions of the public keys. Here is a peculiarity when
charK = 2 that [22] did not account for.When the quadratic portion of; is written as
wlQ;w, the matriceg); cannot be symmetric, and it can still be written in many waysw-
ever all is not lost, as there is still a unique symmetric matrix that can be said to represent
z;, namelyH; = Q; + QF. We borrow an illustration from [9], showing the rank gf =
8 + ag xor7 + by x1 g + 8 T2 T5 + dg w3 14, from TTSL' (Sec. 2.2):



No matter how we write this quadratic part @f as
- 1 (xTQx), (Q+QT) will be as shown to the right, and

0O 0 0 0 O O O oas \ _ .
00 0 0 0 0 bg 0 its kernel iszg = 2y = -+ = 27 = 0. Indeed, if a
0 00 0 0 ¢cg 0 O guadratic has the forfi,,xqxp +Crgxexg+- - - With
0 0 0 0 dg 0 0 O all the indicess, b, ¢, d, ... distinct from each other,
0 0 0 ds 0 0 0 00| fx:0=2=u=ac=uw4=-}wilbethe
0 0 cgs 0 0 0 0 O kernel of the corresponding symmetric matrix, hence
0 bs 0 0 0 0 0 O for TTSR or TTS/4{x: x)_g=---=x_1 =0}
as 0 0 0 0 0 0 O can be said to be the kernel gf in x-space. For
0 0 ease of reference we will use the shorthanandyy;, or

L . kery y; if there may be confusion.

We see that the rank of (the symmetric matiix corresponding to)s in x-space is 8. This rank
is unchanged inv-space, because if we write the quadratic pagt;afs bothx” Qx andw’ Qw,
then clearlyQ = (M;)7Q (My), and(Q + QT) = (M)T(Q + QT)(M,). Indeed, if the kernel
of ys in x-space isS then the kernel irw-space igM;)~1S.

We note here that fof cross-terms with distinct indices, the rank of the matrixds

2. Guess at a randoftuple (wy, ... , wy) of vectors inK", wherek = [*]. SetPw; = --- =
Pw; = 0 and attempt to solve fok; via Gaussian elimination. The equations will be almost
uniguely solvable whel® is the quadratic part af;, the first central equation.

3. Assume the matrix corresponding 4 has a rank ofr, then its kernel (the inverse image
H['(0)) has dimensiom — r, hence when we guess @ty,... , wy) randomly, they have
a probability of at leasg—*" to be all inHl‘l(O). This P is the quadratic portion af; and the
coefficients); the row ofMg‘1 (up to a factor).

Proposition 1 (Time to Find a Vector in any Given Kernel) Suppose one unique linear combination
H = 3%"", o;H; has the minimum rank, then the algorithm described above will find a vector in
kerH in expected times ¢*" (m?(nk/2 — m/6) + mn?k), measured in field multiplications.

Proof. For eactk-tuple(wy,... , wy) and each paifi, j) we must evaluatél; w; (n* multiplications
each) and then do Gaussian eliminationrgnequations andn variables. The requisite number of
multiplications can be found in numerical analysis texts (e.qg. [3]). O

According to [22] the kernels corresponding to eagliorm an increasing chain by containment, so
once the largest kernel has been found, the scheme should unravel in its entirety. After that one could
find M3, and therM; by searching in each kernel space for the next smaller kernel. We note that square
terms in the central map are eliminated during symmetrizatioa does not affect a rank attack. One
expects a rank attack to do its worst against a signature scheme ksiacé. However, the TPM
schemes being attacked is not the actual scheiMesce, we need to evaluate how well they actually
apply to the point where we can make a real decomposition or forgery. We will try to compute the
actual effort in attacking a TTS instance on rank in Sec. 3.3.

3.2 Other Concerns in a Rank Attack

Clearly attacking on low rank is devastating when the conditions are met. But it is ho panacea and
needs some corrections and proper care in implementation. In particular, these can all go wrong:

1. In [22], the target scheme has= 2. It can be a lot higher. For example= 8 in TTS/4 and
TTSR'; furthermore, we can increase this parameter with relative ease. According to [28], the

®In a sense, square terms are fundamentally linear.



dimensions of a TTM instance can be such that [ | = 3. Suppose every central equation
has at least two cross-terms, thea: 4 and we are talking aboyt” = 2% already.

2. Normally, in a PKC everything except the secret key is known. But when trying to break a
multivariate PKC, the attacker may not know in advance what scheme a public key represents,
only the base field(, the dimension$n, m), and a set of public-map polynomials. E.g. a TTS
central map can spawn (in addition to parameters) adjustible indices or even optional terms.

3. In a TPM scheme of [22], the kernels of the central equations form a decreasing sequence:
kery; 11 C kery;. In a well-designed scheme, the kernels of the central equations may not form
such a sequence, and there may ba&lamino effectIf an attacker need to find evefy then a
lot more effort is necessary (see below). This is intimately connected to the next point.

4. While we assume thagt has the smallest rank othery; and even many linear combinations of
they; (hence theH;) with different kernels can also share the same minimum rank

This is a very double-edged sword. In T2S/for non-zeroa, the rank ofy; + ay;+1 and
Yi+ay;+o are bottB. Soisy;+ayit14Byit2 if a?ai1bip1divt = B(ciaiy1dipa+bidipraisa).

That s at least0, 000 total combinations. If we can not make use of the relationship between the
combinations, just keeping track of everything is a major chore; if we can, then the cryptanalysis
may become substantially easier. It is on this point that we will show how2I'884 TTS/4 can

be cryptanalyzed by rank attacks with a lower security than previously known.

3.3 The “Crawling” Rank Attack vs. TTS/4

Take any given rank 8 central equation, then whesa 28 andm = 20, according to Prop. 1, we should
need256® - 207 - (28/2 — 20/6) + 20 - 28%] ~ 27 field multiplications. NESSIE ([32]) requirements

are not counted in field multiplications however, but in AES blocks. Using data from the NESSIE
performance report ([34]), and comparing with actual operations, we obtain the exchange rate of one
AES block to~ 2% multiplications when using table lookups for multiplication. This goes down to

~ 27 (a factor of two) when using tables of logarithms and exponentials. All told, we can expect a time
complexity of~ 27! if we want to find a vector in any given rank-8 kernel. Howevkere are many
kernels to choose from, and any single one woaksfollows.

For simplicity in illustration, letug = ag = a1 = bg = - - - = djo = 1, then we have
kerys = {x:zp=x1=---=2x7=0}
keryg = {x:my=a9="--=x5=0};
keryigp = {x:mp=xz3=---=uz9=0}
ker(ys +ayg) = {x:z1=a3=a5=27=0,20:22: 74 :76: 08 =" :a’:a% a1}
ker(ys +ay1o) = {x:ao=a3=a=a7=0,m0: 24108 =a1:35 09 =0’:a:1}

If the three-term combination that has rank 8 exists (here it does not), its kernel would be wectors
with x4 = 25 = 0 andxg : z9 : xg : xg andxy : x3 : 7 : g in fixed ratios. These kernels show the
way to cryptanalysis. We proceed along these steps:

1. Run the algorithm of Sec. 3.1 to find a vecigrthe associated quadratic= ) _, \;z; of rank 8.
Then verifyU = ker z to be of codimension 8, and find a basis &or The expected number of
multiplications needed is roughf/® divided by the number of rank-8 forms, er26°.

We note that kernels of these 10,000+ rank-8 forms are largely distinct. Since there are only 20
rank-8 formsy;, but about:000 rank-8 formsy; + ay; 11 and almost as many forms + ay; 12,

so it is with good probability that the first vector yielding a codimension-8 kernel will come from

a mixed form rather than from one of thgs, and we need to isolatg’s thence.
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2. Repeat the same algorithm but we restrict test veetdislU, and only accept a tested vector if it
lies in more than one kernel, i.e., we solvg \; H;v = 0, finding a basi¢;);1... in quadratic
forms, and keew if the solution space is of dimension two or higher. Let this solution space be
expressed in quadratic forms ase ker(>,_, o) for s > 2. We expect the dimensionto
be 2 or 3. If we find two distinct sets of results &nd(y;)) in say 5000 tests, then we have just
found ay; for some9 < i < 25, and the results would match the forspsn (y;, yi+1).

If, as is normally the case, we find only one solution space fer then that must bepan(y;, y;+1)

or span(y;, yi+1, Yi+2) depending on its dimension. As an example, assume that we initially hit
a vector that lies in the kernél of 43 + a9 and no other quadratic form. With probability
arandom vectov € U will lie in kerys Nkeryg = {x: 29 =21 =--- = xg = 0}.

The same applies for any = y; + ay;+1. Similarly if z = y; + ay; 12, Or any three-term
combination that has rank 8, the odds of find a vestdn more than one kernel & 16, and
what we find is(ker y;) N (ker y;+1) N (ker y;y2).

The expected number of field multiplications needed for this step is very small, equivalent to
trying 2'¢ random vectorsv in Sec. 3.1, or about3° multiplications here.

3. Of all the linear combinations of quadratic forrfishat are not multiples of each other and we
find the kerneldJ; associated with them. There will be eitt&7 or 2562 + 256 + 1 = 65793
distinct linear combinations. Among the fornfs we should have either two or three of the
yi's. Repeat the search in eabhas above until we find the kernels that corresponds tgtke
Suppose we che@k? vectors from each of the 216 kernelsU; to see if any of them is @, that
would take no more tha2*2 multiplications.

4. Say we have found the form fgg, sinceyg = xg + agx128 + bgxox7 + Cox3w6 + doT 425, WE
should be able to identify one linear combination of theasxzg and eight others as, . . . , zs,
so in short, finding any; should yield in very short order all; andx; where; < ¢. Even if
we can’'t do the decomposition, the same incremental search going up and down the indices will
locate all the formgy; andz;, i.e. the matrice$/1; andMs, for us.

With the abovecrawl process aiding our attack, the chance of finding a kernel vector is essentially
multiplied by about!* as compared to the attack in [22]. The upshot is that a solution can be located
in betweer2%* to 265 multiplications (or2°¢ to 2°7 AES blocks).

We experimented with 2- and 3-term analogues to PTS¢hemes. We were unable to complete
the whole run with2*® field multiplications for a three-term(= 6, n = 22, m = 16) TTSE’
analogue, but the incremental search technique works, and on (Pentium and Athlon) PC’s what the
above description of the cryptanalysis predicted was in reasonable accord with what happened during
our testing. With 2-term TTS8/ type sample scheme & 4, n = 16, r = 12) identifying the initial
vector actually takes less time (232 multiplies) than the search for each new(~ 2%° multiplies).

3.4 The Dual Rank Attack: Vulnerability on the High-Rank Side

It seems natural that the converse of the Rank Attack — finding a large kernel shared by a small subset

of the space spanned by the matriégs— is to find a small kernel shared by a large subset of the linear

combinations of théZ;. In TTS/2 (the original TTS, [8]), the variable,; does not appear in any cross-

term, and therefore]?i8 kery z; = {xg = 1 = - - = x96 = 0}. In Birational Permutation Schemes,

the last central variables, shows in cross-terms of only one equation. This critical weakness ([12])

makes it easy to find linear combinations, «;z; whose kernels share a non-empty intersection.
Coppersmithet al ([11, 12]) showed an intricate way to find an ascending chain of kernels in the

matrix algebra over a ringising algebraic method and without needing to seaithat neatly broke



Birational Permutations. In [22] the same Dual Rank Atfaalas carried out by searching, while
erroneously comparing the CSV idea to those in Sec. 3.1. Of the equivalent formulations, we can
distill the essence of the simpler version of the Dual Rank Attack in [22] as follows:

Without loss of generality, let the last variahlg | appeart: times in the cross-terms of the central
equations, which is the fewest appearances of all variables. In TTS/4, this, iwhich only appears
in y27. SO0 whenevetyy; = 0, the subspact/ = {zg = -+ = x96 = 0} C ker ZZS ;@Q;. (Here
H; and@); are as in Sec. 3.1.) If we denote by;; the (i, j)-entry of M3, then almost every pair of
H; and H; will have a linear combination with a kernel that containing the same sthsetgeneral,
with almost any(u + 1)-subset picked from th&;, a unique linear combination of these matrices has
a kernel containing the common subspéte- {x: zg = -+ = x,_o = 0}. We try to findU.

1. Form an arbitrary linear combinatidii = ), a; H;. FindV = ker H by Gaussian elimination.

2. Because a matrix ik™*"™ can have at most different eigenvalues, less thar ¢ of the time
we would havelim V' = 1. Now set(3_; \;H;)V = {0} and check if the solution séf of the
(\i), also found via a Gaussian Elimination, form a subspace dimensien..

3. With probabilityg~" we havel” = U. The cost of one trial is bound by one elimination plus
possible testing, so total costﬁmn2 + %3 +2(m*/3 + mnz)} q“. We can cut down to a little

more than(un2 + %3) g* (in field multiplications) if we only consider linear combinations of
(u + 1) of the matriced?;, and don’t get too unlucky.

From this subspace, we can expand to find bigger kernels. In [12] this was through taking a sequence
of derivatives. It is easier for the case of TPM, as itis for TTS/4 and TTS/2’. The next bigger kernel
up the chain, which i§/' = {xg = x; = --- = 295 = 0}, can be found by looking at subspaced/of
which will get usU’ with probability1/q. So for TTS/4 and TTS/, the cryptanalysis is instant.

We can rephrase the above adok at a linear combination of the (duals af) that has low rank
when expressed as a linear mapping fromidheo z;, so the name “Dual Rank Attack” seems to fit.

3.5 Further Discussion about Rank Attacks

Cryptanalysis of TTS/4 proceeds identically as TX¥ Séxcept that there seems to be no three-term
combinations of rank 8. We can use ttrawl to fish out successivg, once one combination with a
rank-8 kernel has been found. The complexity should obviously be comparable to that 8f. TTS/
We can cryptanalyze improperly constructed instances of TTM very easily. Quite a few variants
of TTM had been proposed by T. Ma#t al. Some of them have central equations of the fotrm=
x; +Ajrpxe. Thatis an equation of rank 2. The presentation in [22] does not make it very clear, but the
attack does not necessarily have to work on the initial equations. If there is no other central equation
of rank 2 with eitherz;, or z, in a cross-term, the kernel attack will easily locate =, x, andx;
after an expected56" attempts at guessing some kernel vectors, whetre [2] is 2 or 3, that's
about2°® multiplications max. Suppose we have many equations of rank 2, whose sole cross-terms
arex;x;,, r;xj,, ... ,x;T;,. By the same arguments as in Sec. 3.3, we will locate a kernel vector of a
quadratic form that looks like; (a1, + aszj, + - -+ + asx;,) after2562—s+1 attempts. Even with
two cross-terms in each equation, if there asgjuations of which any linear combination will still be
rank 4, the cost is onlg3(*—s+1) attempts (each is some substitutions plus a Gaussian Elimination).
There is a moral we can distill from this episode. People noticed the impact of rank in multivariate
cryptography early on. For example, Theobald was impressed enough to issue a warnintyg4a])
ing ranks of quadratic formstomprising the non-linear portion of a multivariate PKC is dangerous.
However, with great trepidation we venture this humble opinion:

5Suggested by someone asked to review an earlier version. It seems more suitable than High or Max Rank Attack.



The expert cryptographers were warning agauasying ranks however, the dangers that
they saw may really have beehains of kernels ordered by containmeantd in particular,
such a chain of kernels with some vulnerability at either end.

Note that we said either end. When you have a long chain of kernels, the smallest as well as the largest
can be the weakness, like we expanded on, as above.

4 Tame-Like Signatures Free from Rank Concerns

What kind of Tame-Like Signature Schemes can we build that are secure to Rank Attacks? Clearly,
being non-TPM is not sufficient, since no TTS instance discussed so far is a TPM. Neither is TTM.
The conclusion we can draw from Sec. 3 is: To be safe, the minimumrankhe matrices
representing the central equations and their linear combinations must be high; so must the minimum
non-reducible number of equationsvhere any given variables shows in cross-terms. What else?

4.1 Criteria for a Safe, Fast Multivariate Signature Scheme
Aside from Rank Attacks, the main concern for a tame-like multivariate PKC must surely come from
the powerful method of Gibner Bases and its distant cousin, the linearization or XL based methods.

Proposition 2 In a Tame-Like Digital Signature Scheme needing a complexity estimate of
1. Each central equation should contain as many cross-terms with no repeated indices as possible.
2. Almost all linear combinations of central equations should result in quadratic forms of higher

rank, a small number (comparable to, the number of equations) can have equal rank.
If & linear combinations of central equations have the same minimalraak/, then we need

q - (m2(n/2 —m/6) + mn2) k> C. (1)
3. If the minimum number of appearances ig central equations for any variable;, then
q“ (un2 + n3/6) > C. 2
These sum up what we were doing in the last section.

4. We want a sefl of i indices0 < i < n such that every cross-terms in the central map has at
least one index il. For now we prefeh, > n/2 ([23, 24]). We need < m and lowerh means
higher “dimension of solution at infinity” and higher XL/FXL complexity (see Appendix B).

Item 4 results from XL/FXL ([1, 13, 14, 15]) and Gbner-based attacks ([2, 18, 19]). One should
refer to [29] for some algebraic geometry on XL-type attacks, and to [5, 6, 26] obr@r Bases
theory. A brief synopsis of using @bner Bases against tame-like PKC conforming to item 4 above

is: you shouldn’t be able toAn equally brief synopsis of using XL/FXL methods against conformant
signature schemes is that one likely needs to guess=atm — h — 1 variables above, which leads

to a large factor off»~"~1 in the time cost. This is related to thiém H,, parameter of the central
equations. For now see Table 1 for estimated security levels for conformant tame-like schemes under
XL. An explanation of these estimates can be found in Appendix B.
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4.2 Tame-Like Digital Signature Schemes Built To Rank Specifications

NESSIE requires a complexity af® AES blocks, or abou2®® multiplications. Because of birthday
attacks, the hash length needs tolB@-bit, or m > 20. Obviouslyn > m in a signature scheme like
TTS. We need < 10, so there should be at least 5, probably 6 or 7 cross-terms in each equation. But
we don’t wantn too large, because (&) — m too large can lead to searching-like concerns (see [9]);
(b) makes securing them against XL attacks harder (see Appendix B); and (c) obviously means longer
keys and times (alk n?). In all, we want(n, m) no bigger thar(28, 20) or perhapg32, 24).

Is this possible? Yes, by adopting a segmented design. The ini8dl:, . .. , z7) are essentially
random (see below). The initial equations (starting wjth are solved as a linear system fog
and subsequent;’s, with six plus cross-terms each; then the some “tame” equations yield mere
through only serial substitution; then the last block of equations is solved as a linear system for the
final z;’s (at least nine, which is also the minimum number of cross-terms in this block). For ease of
programming, the two systems to solve should have the same number of equations.

What is the security assessment by Rank Attack? Each equation has2ranknore. Even if
linear combinations of two consecutive equations in the first segment all have the same,ramk
have a comfortable cushion sin2& 2 = 2% |f the last block ha$ equations, the Dual Rank Attack
takes256” - (9 - 282 + 283 /3) or around28® multiplications~ 2%° AES blocks.

Can we ensure a signature for any hash? ¥&shot user, until the final segment of equations.
Make up the first segment with non-zero constant multiples @i the main diagonal of the system
matrix, no other appearances far. Then set up the final segment so that it has constant multiples of
xo as the main diagonal of its system matrix and no other appearances @his will do.

We exhibit an illustrative TTS instance with central mag with two blocks of nine equations
each (and 7 and 10 terms per equation respectively) sandwiching two tame equations.

7 . .
Yi = T+ D i1 PijTiTey(i+j mod 9), I =8 16;
Y17 = X17 + P17,1T1%6 + P17,2T2%5 + P17,3T3%4
+P17,429%16 + P17,52102T15 + P17,6211T14 + P17,7T12213;
Y18 = x18 + P18,1T2%7 + P18,2T3T6 + P18,3T4T5
+D18,4210717 + P18,5T11%16 + P18,6712715 + P18,7T13%14;
i
Yi = Ti+PioTi-11Ti—9 + Zj:19 Di,j—18 T2(i—j5) Tj

27 .
+ 5 i1 Pij—18 Timj419 Tj, 1 =19+ 27

To seep, more clearly and that it meets our requirements, we tabulate it differently in Table 2.

y |8 9 10 11 12 13 14 15 1¢ y |19 20 21 22 23 24 25 26 2]7 cross
8|1 2 3 4 5 6 7 19/ 0 18 17 16 15 14 13 12 11 8,10
9 1 2 3 4 5 6 7 2002 0 18 17 16 15 14 13 12 9,11
10 1 2 3 4 5 6 7224 2 0 18 17 16 15 14 1310,12
11| 7 1 2 3 4 5 6|22,6 4 2 0 18 17 16 15 14 11,13
12|16 7 1 2 3 4 5)23/8 6 4 2 0 18 17 16 15 12,14
13|5 6 7 1 2 3 4|24/10 8 6 4 2 0 18 17 14 13,15
1414 5 6 7 1 2 325|112 10 8 6 4 2 0 18 17 14,16
153 4 5 6 7 1 2|26(14 12 10 8 6 4 2 0 18 15,17
6|2 3 4 5 6 7 127116 14 12 10 8 6 4 2 0 16,18

Table 2: Table Form of a Possible Central Map of an Enhanced TTS

This is how to inveris:

1. Assignzy, ..., x7 and try to solve the first nine equations fayto x¢.
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2. If we fail to solve the first system of equations, just redo everything from scratch. The probability
is around255/256 that this system can be solved. At the very least the determinant of the first
system (for any choice of; throughzg) is a degree-9 polynomial im; there can only be at
most9 choices ofr; to make the first system degenerate, so the odds to solve this system is at
least247/256 and we will eventually hit upon a solution.

3. Solve serially forr;7 andz;g using the next two equationg;¢ andy;s).

4. Assign a random and try to solve the second system of nine equations:{fpthroughzoz.
Again, there will be at most ningey that makes the determinant of the second system zero. So,
if the first attempt to solve it fails, try othefy until a solution is found.

Otherwise this signature scheme is identical to that of TTS/4 and2l'T@k can call thisEnhanced
TTS The public key is stillR680 bytes, and the private key399 bytes (with167 variable non-zero
parameters] 184 parameters in the matrices, a#® bytes in the vectors). Here in this, we have

h = 15 as in Item 4 above (all cross-terms vanishjf= 2o = x4 =24 =0=z;, i = 8---18), and
the “dimension of solution set at infinityd{m H.,) parameter i = 4 after the attacker guesses at 8
variables. In case that our FXL estimate is somewhat off, we can up this=to24, n = 32, with the
same Rank Attack estimates, see Table 4.

4.3 Can Our Patched TTS Instances Measure Up and Scale Up?
The answers seems to be: yes and yes, in speed and scalability!

Speed: The central portior, as we described it does ab@&ab field multiplications (instead of 200
as in TTS/4).¢1 andg¢s does about00 and784 respectively. Taking into account that equation
solving is harder with lots of loops, the speed should be at least half of the superceded TTS/4 as
listed in [9]. Indeed, preliminary testing shows that this is in fact the case. So we have a signature
scheme that still signs 1000 times faster than RSA and two degrees of magnitude faster than any
other method. On a smart card, we can likely make do with lower-rated hardware and without
crypto co-processors, and still work faster than with RSA or ECC, and still have keys generated
on-card, unlike that of SFLASH.

Scalability: Let the requisite complexity b@ > 26% With rank attacks we want¢” andc; ¢* to be
> (', with both constants arourtd* or 2'° (in multiplicatons) o026 (in AES blocks. So a rough
requirementis, > 2k —1 andr > 2k, i.e. probablyk + 1 cross-terms. To maintain our XL/FXL
security (see Appendix B), we needs about 4k, so we can do like the very minimal format
we described above for Table 2, using two system of linear equation@kvithl variables, one
with 2k terms per equation, one with+ 1. There are two middle equations also wiht 1
terms. S 2> 5k + 2, maybe a multiple of marginally larger for ease in programming.

Some samplesy’s for TTS meeting our spec above are given in Appendix A.

We can estimat@, does~ 6k%(k + 2) multiplications. This almost equals the work done in
matricesM; andMs atm = 20, n = 28, and will overtake them whem increases. Bu€*-derived
schemes will take time cubic ik also, and the coefficient in tame-like schemes is much smaller.

5 Conclusion

We describe herein how to construct a tame-like signature scheme less susceptible to attack on rank.
The results look quite promising and we think that it bears another look by cryptographers, notwith-
standing the apparent slowdown in the research of multivariate PKC of recent.
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A Examples of Enhanced TTS, Scaled-Up

We were unable to fingo, with n = 28, m = 20 in two systems of 10 equations that can be easily
constructed with regular patterns in its indices, unless we accept repetitive cross-terms (there are no
repeats now). However, more irregular instances exist, and here is one example:
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y |7 6 5 4 3 2 1fcross| y |18 19 20 21 22 23 24 25 26 2 cross
88 9 10 11 12 1,218 0 4 5 15 14 13 12 11 10 9 7,8
9|19 10 11 12 130 2,319|10 0 3 4 16 15 14 13 12 11 8,9
10| 10 11 12 13 14 3,420(12 11 0 2 3 17 16 15 14 18 9,10
1111 12 13 14 15 45| 21|14 13 12 O 5 2 8 17 16 15%10,11
12| 12 13 14 15 16 5,6 22|16 15 14 13 O 4 S5 9 8 1711,12
13| 13 14 15 16 170 6,2 23| 9 8 17 16 15 0 3 4 11 1012,13
14|14 15 16 17 8 1,3 24111 10 9 8 17 16 0 2 3 1213,14
15115 16 17 8 9| 2,4 125}13 12 11 10 9 8 17 O 5 2 14,15
16 | 16 17 8 9 10/ 3,5 26| 2 14 13 12 11 10 9 8 0 4 15,16
17 | 17 8 9 10 11| 46| 27| 3 5 15 14 13 12 11 10 9 Q 16,17

Table 3: A Different Central Map for Enhanced TTS

Each row specifies a central equation, for the initial equation of the two blocks are:

Ys

Y18

xg + agxrag + bgxrerg + cgT5T10 + dgTaw11 + egx3xr12 + fyr1x2

x18 + 1871870 + b18xT19T4 + C18T20T5 + d18T21T15 + €18T22% 14 +

f18T23713 + g18T24%12 + h18T25211 + 118T26%10 + J18T27%9 + KisT7xs

We estimate this to have a security estimate of aB&tunder Rank and Dual Rank attacks, but
still the same XL complexity of arourf. It is our goal to show that the construction is adaptable.

7 , ,
= @i+ D 1PijTiT8 1 (i+j+1 mod 10); ¢ = 8- 1T;

Yi
Yi = T+ Pil%i—17Ti—14 T Pi2Ti—16Ti—15 + Pi3Ti—10Ti—1 + PidTi—9T;—2
+PisTi—8Ti—3 + Pi6Ti—7Ti—4 + PiTTi—6Ti—5, © = 18- - 21;
i
Yi = Zi+DPioTi—-10Ti—14 + ijzg Di,j—21 T2(i—j) Tj

31 :
+ D i1 Pij—21 Ti-jt21 Tj, @ = 22---3L.

Just in case that our XL/FXL estimate is slightly off, we can scale up to the lgrgabove, with
(n,m) = (32, 24), which should have an FXL complexity abalf times higher (table form below).

y |8 9 10 11 12 13 14 15 16 1ff y |22 23 24 25 26 27 28 29 30 3i cross
8|1 2 3 4 5 6 7 221 0 21 20 19 18 17 16 15 14 18 8,12
9 1 2 3 4 5 6 7 23| 2 0O 21 20 19 18 17 16 15 14 9,13
10 1 2 3 4 5 6 7 24 | 4 2 0 21 20 19 18 17 16 1510,14
11 1 2 3 4 5 6 711 25| 6 4 2 0O 21 20 19 18 17 1611,15
12 | 7 1 2 3 4 5 6|l 26| 8 6 4 2 0O 21 20 19 18 17 12,16
13(6 7 1 2 3 4 527|110 8 6 4 2 0O 21 20 19 18 13,17
145 6 7 1 2 3 42812 10 8 6 4 2 0 21 20 19 14,18
15|14 5 6 7 1 2 3112914 12 10 8 6 4 2 0 21 2015,19
16|13 4 5 6 7 1 23016 14 12 10 8 6 4 2 0 2116,20
1712 3 4 5 6 7 113118 16 14 12 10 8 6 4 2 0 17,21
| y | terml term2| term3 term4 term5 term6 termf

18] 1,4 2,3 | 8,17 9,16 10,15 11,14 12,13
19| 2,5 3,4 | 9,18 10,17 11,16 12,15 13,14
20| 3,6 4,5 | 10,19 11,18 12,17 13,16 14,15
21| 4,7 5,6 | 11,20 12,19 13,18 14,17 15,16

Table 4: A More Conservative Central Map for Enhanced T#S=(32, m = 24)
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We will not tabulate other results, but simply give the central map at higher dimensions. In the
given simplegs below, we have (fo¥ > 6) the (m,n) = (4¢,6¢ — 4), with security parameters
(u,r,h) = (2¢ — 2,4¢ — 10,¢ — 1), whereh is equal tom — h — 1 as in Sec. 4.1, or the excess
dimension of solution at infinity (after guessingrat- m variables).

25 .
Yi = Ti+ D i1 PijTiTar—at(i+j+1 mod 20~2)s 1Or20—4 <i <4l —T;

{—4
Yi = Tt D PiTigj—(a0-6)Timj—(204+1)
20—5 .
+ e 3 DijTij-3e45Tite—a—j, TOr 40 —6 < i <4l —3;

Yi = Xy +pi0$z&2g+1)$i72(871) + Z§:4g,2 Pij—(40-3)T2(i—5)Tj
+ D imi1 Pij—(40—3)Tae—2+i—jj, for 4 — 2 < i < 6 —5.

Note that ifxg = 20 = --- = x9p_g = 0 andxz; = O0foralli = 2¢ — 4---4¢ — 3, then all cross-terms
vanish. That is a total df¢ variables, sth = 3¢/, andh=m —h -1 =¢ — 1.

B Security Concerns and Assessments of Multivariate PKC

There are two classes of attacks against multivariates cryptosystems: general and specific attacks.
Specific attacks cannot function if we design our schemes carefully. General schemes should always
function but can be slow. For example,dBner Bases can always be computed, but in the general case
has a woefully high time bound. We list what we know of attacks against multivariates, and aside from
Rank considerations, we refer the reader to the summaries given in [9].

General Attacks: of the following general types

Grobner Bases Methods:See [9] for summary. References at [2, 5, 6, 26]. Generally regarded
as not practical when the “dimension of solution set at infinity” (see [29]) is non-zero.

Searching vs. Signature SchemesSee [9]. In general not practical against tame-like systems.
Rank Attacks: As discussed in the text.
Linearization-like Methods: Traceable from [25] and developing to XL attacks. See below.

Specific Attacks: Bilinear Relations ([35], used again§t* and TTM) not functional against TTS;
Separation of Oil and Vinegar ([23, 24], probably not functional against TTS, but just in case,
we keeph relatively high in Sec. 4.1 — see [9]); Patarin’s IP Approach ([36]), not functional
against TTS (see [9]); Attacks on 2R schemes, nonfunctional against TTS; Subspace Attack
against SFLASH (see [9]), nonfunctional against TTS.

The discussion above should not be limited to TTS but is concordant with all tame-like systems con-
structed according to the rules given in Sec. 4.2.

B.1 Assessing Tame-Like Signatures for XL-Like Attacks

XL-like attacks refer to techniques in whithe original equations are multiplied by all monomials up
to some degree, then all these resultant equations is solved as a linear system of equation considering
every monomial to be a different independent varialflthere are enough independent equations, the
result is a solution of the system if possible, and a return value of “impossible” otherwise. To help the
method terminate earlier, it is a good idea to guess at some variables (FXL variant).

This approach was first proposed in [15] as a refinement of its precuesiogarization([25]).
Several variants were proposed since, and [14] summarized them as well as claimed general usefulness
of the method used in multivariate schemes of all kinds.
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We have however some reason and expert opinions to believe ([10, 40]), that the general approach
is slightly overhyped. There are two problems with XL-like attacks. One is the so-called “solution
set at infinity” issue. The parametér= dim H,, which is equal ton — h + 1 ina TTS set up
according to Sec. 4.2, needs to be eliminated, usually by guessing at variables. The other is that there
are more dependencies in the system of equations than what the author counted in [14] and earlier
papers. For example, suppose we wish to attack Enhanced TTS:wih28, m = 20 even after
guessing athirteenvariables, (i.en = 15, m = 20) and a maximum degree of 6 (resp. 5) there are
54264 (resp. 15504) monomials and only 52820 (resp. 13280) of them are independent out of 77520
equations found. One must get to a degree of 7, in which case using the formulas in [14] and using
some blocking optimizations, it takes 285 AES block equivalents to do the entire cryptanalysis.

According to our computations ([1, 10]), a rough guide is that XL methods should operate only if

[tP) {1 =™ (1™ = m_znfl(—nf (m o 1) (Drf j>

j=0 J

goes negative. Using the assumption thatariables must be guessed, the complexity for FXL to
operate is computed to increase roughly at the levé'8f6. If we assume that we don’'t have to
worry about thedim H, situation and consider all sorts of optimizations including sparse matrix
techniques, the best time bounds we can get are as listed in Table 1. Thus, the minimal XL-Like Attack
time bounds are roughly concordant with that of Dual Rank Attack time bounds.
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