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Abstract

Partly in response to the slowness of traditional Public-Key Cryptosystems, multivariate PKC’s
were born. However, recent attention has mostly been focused onC∗− and HFE variants, in which
the vector variables really represent an element in a much larger field. This phenomenon may be
related to an article by Goubin and Courtois attacking “Triangular-Plus-Minus” (TPM) schemes,
a class of multivariates with low expansion rates. They leave the perception that no fast “true”
(with really independent variables) multivariate PKC should even be attempted. This impression
is compounded by cryptanalysis of schemes with higher expansion rates (e.g. Oil-and-Vinegar).

We believe that TPM (and attacks thereupon) does not cover all pertinent true multivariate
PKC’s. We will term “tame-like” the multivariate PKC’s whose central map has an easy inverse
and relatively few terms per equation. Tame-like PKC’s, a superset of TPM, have both fast private
maps and short set-up times. Unfortunately, the same traits may also open them up to attacks
relating to rank, what we will term “rank attacks”. Here we study in detail the two attacks in the
Goubin-Courtois paper — one may be called “high-rank” and one “low-rank”. The former seems
to have been first used by Coppersmithet al, the latter in a variety of earlier literature.

The TTS (Tame Transformation Signatures) family of digital signature schemes lies at this cusp
of contention. Previous instances of TTS, (proposed at ICISC ’03) claim good resistance to known
attacks. FXL, the best previously-considered attack, cryptanalyzes TTS/2′ and TTS/4 in> 280

equivalent AES blocks under a very minimal estimate.
Inattention to rank creates vulnerabilities, however. We show that the innate structure of current

TTS constructions (TTS/4 and TTS/2′) exacerbates the security concern of rank, and show two
different cryptanalysis in≤ 257 AES units. A few other constructs also share the same liability.

A suitable equilibrium between speed and security must be struck. We suggest a generic way
to craft tame-like PKC’s more resistant to rank attacks. As an example, we build TTS variant in
similar dimensions for which rank attack takes> 280 AES units, while remaining very fast and as
resistant to other attacks. The proposed TTS variants can be scaled for better security.

In short: we show that Rank attacks can be used on the wider class of tame-like PKC’s, some-
times even better than it was previously described. However, this is relativized by the realization
that we can build tame-like multivariate PKC’s that are adequately resistant, so the general theme
still seem viable compared to more traditional alternatives.

1 Introduction

Of all public-key cryptosystems, RSA still “rules” all PKC some 30 years after public-key cryptog-
raphy was invented ([17]). It is somewhat unfortunate, as due to current advances in cryptography
like number field sieves ([7, 41]), secure applications of RSA requires ever-longer keys. This nega-
tively affects the execution speed and cost of deployment. This paper describes an episode of the usual
balancing act as a cryptologist veers between requirements in speed and security.



Multivariate PKC was introduced as an alternative to cryptosystems with large algebraic structures.
A typical multivariate PKC (following notations of [9]) has a public mapV = φ3◦φ2◦φ1 : Kn 7→ Km.
Mapsφ1 : w 7→ x = M1w + c1 andφ3 : y 7→ z = M3y + c3 are invertible and affine inKn andKm

respectively, whereK is the base field.The security of the scheme is then based on the NP-hardness
([21]) in solving a large system of quadratic equations and the decomposition ofV into components
φ1, φ2, andφ3. Preimages forφ2 : x 7→ y are presumed available, but the speed of the private map
depends on how fast this inversion can be. The speed of the public map and the size of the keys depends
only onm andn, and key generation on how quicklyφ2 can be evaluated.

The two best-known multivariate PKC’s, SFLASHv2 ([38]) and QUARTZ ([37]) descend from
Matsumoto-Imai’sC? ([27]) and Patarin’s HFE ([36]) respectively. Both second-round NESSIE ([32])
digital signature scheme candidates were designed by the team of Patarin, Goubin, and Courtois. The
former was eventually recommended for low-cost smart cards. Alas, the security of these candidates is
under siege by newer developments,1 and their speed and key sizes can still use some improvement.

In view of the above, it seems natural to investigate alternative possible fast PKC’s. One broad class
of candidates is what we termTame-Like Multivariate Public-Key Cryptosystems. Tame-like PKC’s
involve a central map with relatively few terms in each equation and readily and quickly invertible,
usually through no more than serial substitution and solving linear systems.They are extremely fast
and suited for deployment in resource-poor PKI environments, butare tame-like PKC’s secure enough?

Early tame-like multivariate PKC’s had included Birational Permutation Schemes ([39]) and TTM
([28]). Coppersmithet alput paid the former ([11, 12]). Goubin and Courtois announced cryptanalysis
of TTM in particular and of all “TPM” (triangular-plus-minus) PKC’s, a much broader genre of similar
systems, in general ([22]). They also conveyed the impression that the concept of a faster signature
systems thanC?-based ones is beyond redemption. The techniques they used were not new ([4, 11,
12, 42]), but they somewhat expanded the scope and simplified the procedures. Little attention has
been paid to tame-like PKC since then until Chen and Yang proposed the TTS (Tame Transformation
Signatures) family of digital signatures ([9]). As usual, the truth lies somewhere in between.

We will discuss why tame-like PKC’s are desirable, and how the attacks of Goubin-Courtois (which
can be succintly summarized as“rank attacks”) function and how well they work in general. We point
out liabilities in current TTS instances, in particular,the non-obvious vulnerability of having central
equations with many linear combinations at the same rank. We show how to cryptanalyze them on
these vulnerabilities. Then we show how to construct tame-like PKC so as to account for such possible
weaknesses. In line with our suggestions, we exhibit patched TTS instances resistant to all known
attacks, still lightning fast in comparison and at least quite suitable for smart card implementation.

The result of our suggested repair work seems promising, as seen by Table 1. Compared to RSA,
it has good security2 levels against known attacks, and it signs 3 orders of magnitude faster. We did
basic simulations to make sure that no estimate is out of line. It is hoped that our results can somewhat
spur some renewed interest of cryptographers on multivariate PKCs.

m n PubKey SecKey Rank Dual
Rank XL RSA bits ECC

bits

20 28 8680 B 1399 B 298 280 280 ≥ 1024 144
24 32 13440 B 1864 B 298 288 291 ≥ 1536 160
28 38 21812 B 2594 B 2130 2105 2103 ≥ 2560 192
32 44 33088 B 3444 B 2152 2121 2114 ≥ 4096 224
36 50 47700 B 4414 B 2184 2138 2130 ≥ 6144 256

Table 1: Minimal Security Estimates of Enhanced TTS instances,(m,n) = hash and signature sizes
1Patarinet al recently announced that SFLASHv2 is not secure enough ([16]). SFLASHv3, its intended replacement, is

supposedly still faster than RSA but has much bigger dimensions, signatures and keys. QUARTZ, slow to begin with, also
has its security called into question ([13, 19]).

2Security Estimates for RSA and ECC taken from NESSIE ([33])
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2 Tame-Like Multivariate PKC’s

In C? (resp. HFE), the central mapφ2 is really taking one (resp. sum of a few) given high powers. As
a result, in HFE,φ−1

2 is painfully slow;C? has a simpler and much fasterφ−1
2 , but vulnerabilities of

theC?− family originate from its structure ([35]). In either family eachyi when written as a quadratic
polynomial in thexj has hundreds of terms, we cannot invertφ2 without treating all ofy as an element
in a larger field. To avert the consequential time penalty, we should consider treating eachxi or yj as
separate entities, rather than components of a big field element. But φ−1

2 must remain doable quickly
for private map evaluation. The most obvious and minimal requirement is to be able to find each
component ofx in somemostly sequential orderwhen giveny. This is an approach that has been tried
in some earlier attempts ([20, 39]).

We inch closer to TTS or at leasttame-like PKC’s. Lest we forget,in the central mapφ2 of tame-
like PKC’s, eachyi written as a quadratic polynomial in thexi has relatively few terms — as few terms
as security would permit, and an easy inverse available through fast, simple means.

Advantages of tame-like PKCs are speed, ease of implementation, and avoiding old attacks.

Fast Signing: In SFLASHv2, the signing action include multiplying and raising to the128-th
power in(GF(2))37 many times. Atame-likePKC makes this stage faster.

Fast Setup: In SFLASHv2, the set-up process is a complex and round-about affair, involving
evaluatingφ2 (itself a complicated procedure) almost a thousand times. In a tame-like
PKC, with few terms per equations, we can do this by brute-force. This is no problem on a
modern PC, but setting up on-card for the SFLASHv2 takes along time.

Avoidance of Previous Liabilities: There are many possible designs for tame-like maps, this
means we can sidestep weaknesses that SFLASHv2 must design around.

Drawbacks of tame-like PKCs are (mostly) possible new vulnerabilities on rank.

2.1 Tame Transformations, Tame(-Like) Maps, and TTS

One type of map stands out as a candidate forφ2. In algebraic geometry, one kind of map is called
a Tame Transformation, which with base fieldK and dimensionsm ≥ n is a polynomial map3 φ :
Kn → Km, takingx to y either affinely (y = Mx + c) or in de Jonquiereform:

y1 = x1; yj = xj+qj(x1, x2, . . . , xj−1), j = 2 · · ·n; yj = qj(x1, x2, . . . , xn), j = n+1 · · ·m.

If bijective it is also calleda tame automorphism.Obviously we must then havem = n.
A tame transformation can be inverted quickly, but its inverse has high degree and is hard to write

out explicitly. This is a venerable concept — in two variables, all polynomial automorphisms can
be decomposed into compositions of tame automorphisms ([31]). It is unknown, despite the efforts
of a lot of algebraic geometers, whether a map in three or more variables is a composition of tame
automorphisms, and if so how to decompose it.

Moh harnessed this basic idea in his public-key encryption scheme TTM ([28]). Chen and Yang
adapted the underlying concept of TTM for digital signatures ([8]), and slightly extended it ([9]) to
include the larger class of polynomial maps that we can easily find an inverse for using a sequence of
substitutions andsolving for linear equations, but without a low degree explicit inverse. As in [9], we
will hence term such mapstame. For example, the map below

yk = xk + ak xk−8 xk−1 + bk xk−7 xk−2 + ck xk−6 xk−3 + dk xk−5 xk−4, 8 ≤ k ≤ 26;
y27 = x27 + a27 x19 x26 + b27 x20 x25 + c27 x21 x24 + d27 x0 x27;

3Note that in a finite field just about any function can be represented as a polynomial.
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is a tame map, because a preimage can be componentwise computed, straightforwardly and quickly,
after assigning anyx1, . . . , x7 andx0 6= −d−1

27 . Tame maps are the centerpiece of TTS ([9]):

The TTS (Tame Transformation Signatures) family of digital signature schemes are defined
as “a multivariate scheme with a tame map as its central, non-linear portionφ2”.

The middle mapφ2 was sometimes also called thekernel, but it is too confusing here, and we will
use the name thecentral mapinstead. A TTS scheme clearly fits thetame-likeconcept in Sec. 1, if
each equation in its central map giving ayi (we call this one of itscentral equations) has relatively few
terms involving thexj ’s compared to the dimensionsn andm.

2.2 Current Variants of TTS

The public (verification) map of TTS has the canonical decomposition (in the notation of [9]) of most

multivariate PKC’s, namelyV : w ∈ Kn φ17→ x
φ27→ y

φ37→ z ∈ Km. We will henceforth take the base
field K to beGF(28). Its current4 form of TTS ([9]) is “TTS/4”, using20-byte hashes and28-byte
signatures. Its central mapφ2 : x = (x0, x1, . . . , x27) 7→ y = (y8, y9, . . . , y27) is:

yk = xk + ak xk−8 xk−1 + bk xk−7 xk−4 + ck xk−6 xk−2 + dk xk−5 xk−3, 8 ≤ k ≤ 23;
y24 = x24 + a24 x16 x23 + b24 x17 x20 + c24 x18 x22 + d24 x4 x24;
y25 = x25 + a25 x17 x24 + b25 x18 x21 + c25 x4 x23 + d25 x5 x25;
y26 = x26 + a26 x18 x25 + b26 x4 x22 + c26 x5 x24 + d26 x6 x26;
y27 = x27 + a27 x4 x26 + b27 x5 x23 + c27 x6 x25 + d27 x7 x27.

We see that thisφ2 is alsotamebecause from anyy we quickly compute one possiblex by randomly
assigning a value tox0, . . . , x7 (subject to the restrictionsxi 6= d−1

20+i for i = 4 · · · 7) and solving
sequentially forx8, . . . , x27. An alternative form, called TTS/2′ uses asφ2 the map given in Sec. 2.1.
Both TTS instances operate overK = GF(28) as follows (see [9]):

To Setup Keys: Generate random full-rank square matricesM1 (of dimension28) andM3 (of dimen-
sion20) overK. Similarly, generate random non-zeroai, bi, ci, di ∈ K for i = 8 · · · 27, and a
random vectorc1 ∈ K28. Find the compositionV = φ3 ◦ φ2 ◦ φ1 and in the process compute
the uniquec3 such thatV has no constant part. Save the8680 coefficient ofV as the public key.
SaveM−1

1 , M−1
3 , c1, c3, and parametersai, bi, ci, di as the private key (total 1312 bytes).

To Sign: Take the messageM , find its 160-bit hash digest vectorz = H(M). Do y = M−1
3 (z− c3),

thenx ∈ φ−1
2 (y) as above, thenw = M−1

1 (x− c1). Release(M,w).

To Verify: On receiving(M,w), compute hashz = H(M) and match withV (w).

TTS/4 and TTS/2′ claim very fast execution times, short signatures, manageable key lengths, and
reasonable security. Previous analysis ([9]) seems to show known attacks to be ineffective. The best
attacks previously came from the XL family ([15]). TTS family schemes are well placed to resist XL-
type attacks because it can be structured to have high-dimensional solution spaces at infinity ([9, 29]).
Even giving the XL-wielding attacker all benefits of the doubt, TTS/4 and TTS/2′ still have a security
level of 280 AES blocks (about288 finite field multiplication operations). The other powerful general
attack, the method of Gröbner Bases, is hard to obtain a tight timing for. But the same properties that
guards against XL-methods also helps against Gröbner Basis attacks.

We will show however that there are design misjudgment in these TTS instances that leads to fast
cryptanalysis and how to patch them effectively and generically.

4Boldface indices are irregularities in the pattern of indices made in TTS/4 for security improvements ([9]).

4



3 Rank Attacks vs. TPM and Other Tame-Like PKC’s

Of the many known rank attacks, the most ambitious was probably that of [22], wherein the authors
postulated a type of PKC called TPM (triangular plus-minus), and claimed that their general attack ren-
ders TPM (and strongly by implication, all tame-like or non-C∗-descended, non-HFE-derived PKC’s)
totally useless.What they claimed was that the private keys can almost always be distilled from the
public key of a tame-like PKC by seeking linear combinations of certain matrices at given ranks.A
TPM system is essentially just a simple multivariate PKC with a tame transformation asφ2, and with
some equations removed at the beginning (like with TTS). To evaluate how tame-like PKC’s stand up
to such attacks, we need to answer many questions:

• Does the TPM category really cover all the tame-like PKCs of interest?
NO! In particular, TTS does not match what the authors of [22] describe as a TPM signature
scheme. T. Moh ([30]) also maintains that the description does not match TTM.

The biggest mismatches: A tame-like PKC may solve linear equations rather than search, and
need not have a sequence of increasing kernels in the central equations.

• If not, can the attack be extended to other tame-like systems?
Yes, while some objections of [30] seem valid, the ideas are meritorious and can be applied to
decompose public maps from many PKC’s, including badly designed TTS or TTM instances.

• Does the attack always work as described? Can it be faster or slower, and when?
Yes, sort of. The attack should always conclude successfully if we can find kernels corresponding
to all central equations. If the central equations are tangled somehow and finding the kernel
to one central equation makes finding another one easier, we may cryptanalyze much faster.
Otherwise the search can go on for a lot longer.

• Can we construct systems of a requisite complexity under Rank and other attacks?
Yes, we can arrange for any desired complexity against rank attacks while retaining high practical
speed and resilience against other attacks; that is the subject matter of Sec. 4.

3.1 The Rank Attack: Vulnerability on the Low-Rank Side

Let the public map takeKn toKm, i.e.m andn be the number of equations and variables respectively.
Also letq = |K|, andr be the smallest rank in linear combinations of central equations. It was claimed
([22]) that a tame-like PKC is broken in expected timeO(qd

m
n
erm3). The steps are as outlined in [22]:

1. TakeP =
∑m

i=1 λiHi, an undetermined linear combination of the symmetric matrices rep-
resenting the homogeneous quadratic portions of the public keys. Here is a peculiarity when
charK = 2 that [22] did not account for.When the quadratic portion ofzi is written as
wTQiw, the matricesQi cannot be symmetric, and it can still be written in many ways.How-
ever all is not lost, as there is still a unique symmetric matrix that can be said to represent
zi, namelyHi = Qi + QTi . We borrow an illustration from [9], showing the rank ofy8 =
x8 + a8 x0 x7 + b8 x1 x6 + c8 x2 x5 + d8 x3 x4, from TTS/2′ (Sec. 2.2):
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

0 0 0 0 0 0 0 a8

0

0 0 0 0 0 0 b8 0
0 0 0 0 0 c8 0 0
0 0 0 0 d8 0 0 0
0 0 0 d8 0 0 0 0
0 0 c8 0 0 0 0 0
0 b8 0 0 0 0 0 0
a8 0 0 0 0 0 0 0

0 0



No matter how we write this quadratic part ofy8 as
(xTQx), (Q+QT ) will be as shown to the right, and
its kernel isx0 = x1 = · · · = x7 = 0. Indeed, if a
quadratic has the formCabxaxb+Ccdxcxd+· · · with
all the indicesa, b, c, d, . . . distinct from each other,
{x : 0 = xa = xb = xc = xd = · · · } will be the
kernel of the corresponding symmetric matrix, hence
for TTS/2′ or TTS/4,{x : xk−8 = · · · = xk−1 = 0}
can be said to be the kernel ofyk in x-space. For
ease of reference we will use the shorthandker yi, or
kerx yi if there may be confusion.

We see that the rank of (the symmetric matrixH8 corresponding to)y8 in x-space is 8. This rank
is unchanged inw-space, because if we write the quadratic part ofyi as bothxT Q̂x andwTQw,
then clearlyQ = (M1)T Q̂ (M1), and(Q+QT ) = (M1)T (Q̂+ Q̂T )(M1). Indeed, if the kernel
of y8 in x-space isS then the kernel inw-space is(M1)−1S.

We note here that for̀ cross-terms with distinct indices, the rank of the matrix is2`.

2. Guess at a randomk-tuple(w1, . . . , wk) of vectors inKn, wherek = dmn e. SetPw1 = · · · =
Pwk = 0 and attempt to solve forλi via Gaussian elimination. The equations will be almost
uniquely solvable whenP is the quadratic part ofy1, the first central equation.

3. Assume the matrix corresponding toy1 has a rank ofr, then its kernel (the inverse image
H−1

1 (0)) has dimensionn − r, hence when we guess at(w1, . . . , wk) randomly, they have
a probability of at leastq−kr to be all inH−1

1 (0). ThisP is the quadratic portion ofy1 and the
coefficientsλi the row ofM−1

3 (up to a factor).

Proposition 1 (Time to Find a Vector in any Given Kernel) Suppose one unique linear combination
H =

∑m
i=1 αiHi has the minimum rankr, then the algorithm described above will find a vector in

kerH in expected time≈ qkr
(
m2(nk/2−m/6) +mn2k

)
, measured in field multiplications.

Proof. For eachk-tuple(w1, . . . , wk) and each pair(i, j) we must evaluateHiwj (n2 multiplications
each) and then do Gaussian elimination onnk equations andm variables. The requisite number of
multiplications can be found in numerical analysis texts (e.g. [3]). �

According to [22] the kernels corresponding to eachyi form an increasing chain by containment, so
once the largest kernel has been found, the scheme should unravel in its entirety. After that one could
find M3, and thenM1 by searching in each kernel space for the next smaller kernel. We note that square
terms in the central map are eliminated during symmetrization5 and does not affect a rank attack. One
expects a rank attack to do its worst against a signature scheme, sincek = 1. However, the TPM
schemes being attacked is not the actual schemes.Hence, we need to evaluate how well they actually
apply to the point where we can make a real decomposition or forgery. We will try to compute the
actual effort in attacking a TTS instance on rank in Sec. 3.3.

3.2 Other Concerns in a Rank Attack

Clearly attacking on low rank is devastating when the conditions are met. But it is no panacea and
needs some corrections and proper care in implementation. In particular, these can all go wrong:

1. In [22], the target scheme hasr = 2. It can be a lot higher. For example,r = 8 in TTS/4 and
TTS/2′; furthermore, we can increase this parameter with relative ease. According to [28], the

5In a sense, square terms are fundamentally linear.
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dimensions of a TTM instance can be such thatk = d nme = 3. Suppose every central equation
has at least two cross-terms, thenr = 4 and we are talking aboutqkr = 296 already.

2. Normally, in a PKC everything except the secret key is known. But when trying to break a
multivariate PKC, the attacker may not know in advance what scheme a public key represents,
only the base fieldK, the dimensions(n,m), and a set of public-map polynomials. E.g. a TTS
central map can spawn (in addition to parameters) adjustible indices or even optional terms.

3. In a TPM scheme of [22], the kernels of the central equations form a decreasing sequence:
ker yi+1 ⊂ ker yi. In a well-designed scheme, the kernels of the central equations may not form
such a sequence, and there may be nodomino effect. If an attacker need to find everyyi then a
lot more effort is necessary (see below). This is intimately connected to the next point.

4. While we assume thaty1 has the smallest rankr; otheryi and even many linear combinations of
theyi (hence theHi) with different kernels can also share the same minimum rankr.

This is a very double-edged sword. In TTS/2′, for non-zeroα, the rank ofyi + αyi+1 and
yi+αyi+2 are both8. So isyi+αyi+1+βyi+2 if α2ai+1bi+1di+1 = β(ciai+1di+2+bidi+1ai+2).
That is at least10, 000 total combinations. If we can not make use of the relationship between the
combinations, just keeping track of everything is a major chore; if we can, then the cryptanalysis
may become substantially easier. It is on this point that we will show how TTS/2′ and TTS/4 can
be cryptanalyzed by rank attacks with a lower security than previously known.

3.3 The “Crawling” Rank Attack vs. TTS/4

Take any given rank 8 central equation, then whenn = 28 andm = 20, according to Prop. 1, we should
need2568 ·

[
202 · (28/2− 20/6) + 20 · 282

]
≈ 278 field multiplications. NESSIE ([32]) requirements

are not counted in field multiplications however, but in AES blocks. Using data from the NESSIE
performance report ([34]), and comparing with actual operations, we obtain the exchange rate of one
AES block to≈ 28 multiplications when using table lookups for multiplication. This goes down to
≈ 27 (a factor of two) when using tables of logarithms and exponentials. All told, we can expect a time
complexity of≈ 271 if we want to find a vector in any given rank-8 kernel. However,there are many
kernels to choose from, and any single one works, as follows.

For simplicity in illustration, leta8 = a9 = a10 = b8 = · · · = d10 = 1, then we have

ker y8 = {x : x0 = x1 = · · · = x7 = 0};
ker y9 = {x : x1 = x2 = · · · = x8 = 0};

ker y10 = {x : x2 = x3 = · · · = x9 = 0};
ker(y8 + αy9) = {x : x1 = x3 = x5 = x7 = 0, x0 : x2 : x4 : x6 : x8 = α4 : α3 : α2 : α : 1};

ker(y8 + αy10) = {x : x2 = x3 = x6 = x7 = 0, x0 : x4 : x8 = x1 : x5 : x9 = α2 : α : 1};

If the three-term combination that has rank 8 exists (here it does not), its kernel would be vectorsx
with x4 = x5 = 0 andx0 : x2 : x6 : x8 andx1 : x3 : x7 : x9 in fixed ratios. These kernels show the
way to cryptanalysis. We proceed along these steps:

1. Run the algorithm of Sec. 3.1 to find a vectoru, the associated quadraticz =
∑

i λizi of rank 8.
Then verifyU = ker z to be of codimension 8, and find a basis forU . The expected number of
multiplications needed is roughly278 divided by the number of rank-8 forms, or∼ 265.

We note that kernels of these 10,000+ rank-8 forms are largely distinct. Since there are only 20
rank-8 formsyi, but about5000 rank-8 formsyi +αyi+1 and almost as many formsyi +αyi+2,
so it is with good probability that the first vector yielding a codimension-8 kernel will come from
a mixed form rather than from one of theyi’s, and we need to isolateyi’s thence.
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2. Repeat the same algorithm but we restrict test vectorsw toU , and only accept a tested vector if it
lies in more than one kernel, i.e., we solve

∑
i λiHiv = 0, finding a basis(ŷi)i=1···s in quadratic

forms, and keepv if the solution space is of dimension two or higher. Let this solution space be
expressed in quadratic forms asv ∈ ker(

∑s
`=1 α`ŷ`) for s ≥ 2. We expect the dimensions to

be 2 or 3. If we find two distinct sets of results (v and(ŷi)) in say 5000 tests, then we have just
found ayi for some9 ≤ i ≤ 25, and the results would match the formsspan(yi, yi±1).

If, as is normally the case, we find only one solution space forλi’s, then that must bespan(yi, yi+1)
or span(yi, yi+1, yi+2) depending on its dimension. As an example, assume that we initially hit
a vector that lies in the kernelU of y8 + αy9 and no other quadratic form. With probability2−8

a random vectorv ∈ U will lie in ker y8 ∩ ker y9 = {x : x0 = x1 = · · · = x8 = 0}.
The same applies for anyz = yi + αyi+1. Similarly if z = yi + αyi+2, or any three-term
combination that has rank 8, the odds of find a vectorv in more than one kernel is2−16, and
what we find is(ker yi) ∩ (ker yi+1) ∩ (ker yi+2).

The expected number of field multiplications needed for this step is very small, equivalent to
trying 216 random vectorsw in Sec. 3.1, or about230 multiplications here.

3. Of all the linear combinations of quadratic formsfi that are not multiples of each other and we
find the kernelsUi associated with them. There will be either257 or 2562 + 256 + 1 = 65793
distinct linear combinations. Among the formsfi we should have either two or three of the
yi’s. Repeat the search in eachUi as above until we find the kernels that corresponds to theyi’s.
Suppose we check212 vectors from each of the∼ 216 kernelsUi to see if any of them is ayi, that
would take no more than242 multiplications.

4. Say we have found the form fory9, sincey9 = x9 + a9x1x8 + b9x2x7 + c9x3x6 + d9x4x5, we
should be able to identify one linear combination of thewi asx9 and eight others asx1, . . . , x8,
so in short, finding anyyi should yield in very short order allyj andxj wherej < i. Even if
we can’t do the decomposition, the same incremental search going up and down the indices will
locate all the formsyi andxi, i.e. the matricesM1 andM3, for us.

With the abovecrawl process aiding our attack, the chance of finding a kernel vector is essentially
multiplied by about214 as compared to the attack in [22]. The upshot is that a solution can be located
in between264 to 265 multiplications (or256 to 257 AES blocks).

We experimented with 2- and 3-term analogues to TTS/2′ schemes. We were unable to complete
the whole run with248 field multiplications for a three-term (r = 6, n = 22, m = 16) TTS/2′

analogue, but the incremental search technique works, and on (Pentium and Athlon) PC’s what the
above description of the cryptanalysis predicted was in reasonable accord with what happened during
our testing. With 2-term TTS/2′ type sample scheme (r = 4, n = 16, r = 12) identifying the initial
vector actually takes less time (∼ 232 multiplies) than the search for each newyi (∼ 240 multiplies).

3.4 The Dual Rank Attack: Vulnerability on the High-Rank Side

It seems natural that the converse of the Rank Attack — finding a large kernel shared by a small subset
of the space spanned by the matricesHi — is to find a small kernel shared by a large subset of the linear
combinations of theHi. In TTS/2 (the original TTS, [8]), the variablex27 does not appear in any cross-
term, and therefore,∩27

i=8 kerw zi = {x0 = x1 = · · · = x26 = 0}. In Birational Permutation Schemes,
the last central variablesxn shows in cross-terms of only one equation. This critical weakness ([12])
makes it easy to find linear combinations

∑
i αizi whose kernels share a non-empty intersection.

Coppersmithet al ([11, 12]) showed an intricate way to find an ascending chain of kernels in the
matrix algebra over a ring,using algebraic method and without needing to search. That neatly broke
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Birational Permutations. In [22] the same Dual Rank Attack6 was carried out by searching, while
erroneously comparing the CSV idea to those in Sec. 3.1. Of the equivalent formulations, we can
distill the essence of the simpler version of the Dual Rank Attack in [22] as follows:

Without loss of generality, let the last variablexn−1 appearu times in the cross-terms of the central
equations, which is the fewest appearances of all variables. In TTS/4, this isx27, which only appears
in y27. So wheneverα27 = 0, the subspaceU = {x0 = · · · = x26 = 0} ⊂ ker

∑27
i=8 αiQi. (Here

Hi andQi are as in Sec. 3.1.) If we denote bymij the (i, j)-entry of M3, then almost every pair of
Hi andHj will have a linear combination with a kernel that containing the same subsetU . In general,
with almost any(u+ 1)-subset picked from theHi, a unique linear combination of these matrices has
a kernel containing the common subspaceU = {x : x0 = · · · = xn−2 = 0}. We try to findU .

1. Form an arbitrary linear combinationH =
∑

i αiHi. FindV = kerH by Gaussian elimination.

2. Because a matrix inKn×n can have at mostn different eigenvalues, less thann/q of the time
we would havedimV = 1. Now set(

∑
j λjHj)V = {0} and check if the solution set̂V of the

(λi), also found via a Gaussian Elimination, form a subspace dimensionm− u.

3. With probabilityq−u we haveV = U . The cost of one trial is bound by one elimination plus

possible testing, so total cost is
[
mn2 + n3

6 + n
q (m3/3 +mn2)

]
qu. We can cut down to a little

more than
(
un2 + n3

6

)
qu (in field multiplications) if we only consider linear combinations of

(u+ 1) of the matricesHi, and don’t get too unlucky.

From this subspace, we can expand to find bigger kernels. In [12] this was through taking a sequence
of derivatives. It is easier for the case of TPM, as it is for TTS/4 and TTS/2’. The next bigger kernel
up the chain, which isU ′ = {x0 = x1 = · · · = x25 = 0}, can be found by looking at subspaces ofV ,
which will get usU ′ with probability1/q. So for TTS/4 and TTS/2′, the cryptanalysis is instant.

We can rephrase the above as tolook at a linear combination of the (duals of)wi that has low rank
when expressed as a linear mapping from thewj to zk, so the name “Dual Rank Attack” seems to fit.

3.5 Further Discussion about Rank Attacks

Cryptanalysis of TTS/4 proceeds identically as TTS/2′, except that there seems to be no three-term
combinations of rank 8. We can use thecrawl to fish out successiveyi once one combination with a
rank-8 kernel has been found. The complexity should obviously be comparable to that of TTS/2′.

We can cryptanalyze improperly constructed instances of TTM very easily. Quite a few variants
of TTM had been proposed by T. Mohet al. Some of them have central equations of the formyj =
xi+Ajxhx`. That is an equation of rank 2. The presentation in [22] does not make it very clear, but the
attack does not necessarily have to work on the initial equations. If there is no other central equation
of rank 2 with eitherxh or x` in a cross-term, the kernel attack will easily locateyj , xh, x` andxi
after an expected2562k attempts at guessing some kernel vectors, wherek = dmn e is 2 or 3, that’s
about258 multiplications max. Suppose we have many equations of rank 2, whose sole cross-terms
arexixj1 , xixj2 , . . . , xixjs . By the same arguments as in Sec. 3.3, we will locate a kernel vector of a
quadratic form that looks likexi(α1xj1 + α2xj2 + · · ·+ αsxjs) after2562k−s+1 attempts. Even with
two cross-terms in each equation, if there ares equations of which any linear combination will still be
rank 4, the cost is only28(4k−s+1) attempts (each is some substitutions plus a Gaussian Elimination).

There is a moral we can distill from this episode. People noticed the impact of rank in multivariate
cryptography early on. For example, Theobald was impressed enough to issue a warning ([43])“vary-
ing ranks of quadratic forms”comprising the non-linear portion of a multivariate PKC is dangerous.
However, with great trepidation we venture this humble opinion:

6Suggested by someone asked to review an earlier version. It seems more suitable than High or Max Rank Attack.
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The expert cryptographers were warning againstvarying ranks, however, the dangers that
they saw may really have beenchains of kernels ordered by containment, and in particular,
such a chain of kernels with some vulnerability at either end.

Note that we said either end. When you have a long chain of kernels, the smallest as well as the largest
can be the weakness, like we expanded on, as above.

4 Tame-Like Signatures Free from Rank Concerns

What kind of Tame-Like Signature Schemes can we build that are secure to Rank Attacks? Clearly,
being non-TPM is not sufficient, since no TTS instance discussed so far is a TPM. Neither is TTM.

The conclusion we can draw from Sec. 3 is: To be safe, the minimum rankr in the matrices
representing the central equations and their linear combinations must be high; so must the minimum
non-reducible number of equationsu where any given variables shows in cross-terms. What else?

4.1 Criteria for a Safe, Fast Multivariate Signature Scheme

Aside from Rank Attacks, the main concern for a tame-like multivariate PKC must surely come from
the powerful method of Gröbner Bases and its distant cousin, the linearization or XL based methods.

Proposition 2 In a Tame-Like Digital Signature Scheme needing a complexity estimate ofC:

1. Each central equation should contain as many cross-terms with no repeated indices as possible.

2. Almost all linear combinations of central equations should result in quadratic forms of higher
rank, a small number (comparable tom, the number of equations) can have equal rank.

If k linear combinations of central equations have the same minimal rankr = 2`, then we need

qr ·
(
m2(n/2−m/6) +mn2

)
/k ≥ C. (1)

3. If the minimum number of appearances isu in central equations for any variablexi, then

qu
(
un2 + n3/6

)
≥ C. (2)

These sum up what we were doing in the last section.

4. We want a setA of h indices0 ≤ i < n such that every cross-terms in the central map has at
least one index inA. For now we preferh > n/2 ([23, 24]). We needh < m and lowerhmeans
higher “dimension of solution at infinity” and higher XL/FXL complexity (see Appendix B).

Item 4 results from XL/FXL ([1, 13, 14, 15]) and Gröbner-based attacks ([2, 18, 19]). One should
refer to [29] for some algebraic geometry on XL-type attacks, and to [5, 6, 26] on Gröbner Bases
theory. A brief synopsis of using Gröbner Bases against tame-like PKC conforming to item 4 above
is: you shouldn’t be able to.An equally brief synopsis of using XL/FXL methods against conformant
signature schemes is that one likely needs to guess at~ = m − h − 1 variables above, which leads
to a large factor ofqm−h−1 in the time cost. This is related to thedimH∞ parameter of the central
equations. For now see Table 1 for estimated security levels for conformant tame-like schemes under
XL. An explanation of these estimates can be found in Appendix B.
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4.2 Tame-Like Digital Signature Schemes Built To Rank Specifications

NESSIE requires a complexity of280 AES blocks, or about286 multiplications. Because of birthday
attacks, the hash length needs to be160-bit, orm ≥ 20. Obviouslyn > m in a signature scheme like
TTS. We needr ≤ 10, so there should be at least 5, probably 6 or 7 cross-terms in each equation. But
we don’t wantn too large, because (a)n −m too large can lead to searching-like concerns (see [9]);
(b) makes securing them against XL attacks harder (see Appendix B); and (c) obviously means longer
keys and times (all∝ n3). In all, we want(n,m) no bigger than(28, 20) or perhaps(32, 24).

Is this possible? Yes, by adopting a segmented design. The initialxi’s (x0, . . . , x7) are essentially
random (see below). The initial equations (starting withy8) are solved as a linear system forx8

and subsequentxi’s, with six plus cross-terms each; then the some “tame” equations yield morexi’s
through only serial substitution; then the last block of equations is solved as a linear system for the
final xi’s (at least nine, which is also the minimum number of cross-terms in this block). For ease of
programming, the two systems to solve should have the same number of equations.

What is the security assessment by Rank Attack? Each equation has rank12 or more. Even if
linear combinations of two consecutive equations in the first segment all have the same rank12, we
have a comfortable cushion since28×12 = 296. If the last block has9 equations, the Dual Rank Attack
takes2569 · (9 · 282 + 283/3) or around286 multiplications≈ 280 AES blocks.

Can we ensure a signature for any hash? Yes!Do not usex0 until the final segment of equations.
Make up the first segment with non-zero constant multiples ofx1 on the main diagonal of the system
matrix, no other appearances forx1. Then set up the final segment so that it has constant multiples of
x0 as the main diagonal of its system matrix and no other appearances ofx0. This will do.

We exhibit an illustrative TTS instance with central mapφ2, with two blocks of nine equations
each (and 7 and 10 terms per equation respectively) sandwiching two tame equations.

yi = xi +
∑7

j=1 pijxjx8+(i+j mod 9), i = 8 · · · 16;
y17 = x17 + p17,1x1x6 + p17,2x2x5 + p17,3x3x4

+p17,4x9x16 + p17,5x10x15 + p17,6x11x14 + p17,7x12x13;
y18 = x18 + p18,1x2x7 + p18,2x3x6 + p18,3x4x5

+p18,4x10x17 + p18,5x11x16 + p18,6x12x15 + p18,7x13x14;
yi = xi + pi,0xi−11xi−9 +

∑i
j=19 pi,j−18 x2(i−j) xj

+
∑27

j=i+1 pi,j−18 xi−j+19 xj , i = 19 · · · 27.

To seeφ2 more clearly and that it meets our requirements, we tabulate it differently in Table 2.

y 8 9 10 11 12 13 14 15 16
8 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7
10 1 2 3 4 5 6 7
11 7 1 2 3 4 5 6
12 6 7 1 2 3 4 5
13 5 6 7 1 2 3 4
14 4 5 6 7 1 2 3
15 3 4 5 6 7 1 2
16 2 3 4 5 6 7 1

y 19 20 21 22 23 24 25 26 27 cross
19 0 18 17 16 15 14 13 12 11 8, 10
20 2 0 18 17 16 15 14 13 12 9, 11
21 4 2 0 18 17 16 15 14 13 10, 12
22 6 4 2 0 18 17 16 15 14 11, 13
23 8 6 4 2 0 18 17 16 15 12, 14
24 10 8 6 4 2 0 18 17 16 13, 15
25 12 10 8 6 4 2 0 18 17 14, 16
26 14 12 10 8 6 4 2 0 18 15, 17
27 16 14 12 10 8 6 4 2 0 16, 18

Table 2: Table Form of a Possible Central Map of an Enhanced TTS

This is how to invertφ2:

1. Assignx1, . . . , x7 and try to solve the first nine equations forx8 to x16.
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2. If we fail to solve the first system of equations, just redo everything from scratch. The probability
is around255/256 that this system can be solved. At the very least the determinant of the first
system (for any choice ofx1 throughx6) is a degree-9 polynomial inx1 there can only be at
most9 choices ofx1 to make the first system degenerate, so the odds to solve this system is at
least247/256 and we will eventually hit upon a solution.

3. Solve serially forx17 andx18 using the next two equations (y17 andy18).

4. Assign a randomx0 and try to solve the second system of nine equations forx19 throughx27.
Again, there will be at most ninex0 that makes the determinant of the second system zero. So,
if the first attempt to solve it fails, try otherx0 until a solution is found.

Otherwise this signature scheme is identical to that of TTS/4 and TTS/2′. We can call thisEnhanced
TTS. The public key is still8680 bytes, and the private key1399 bytes (with167 variable non-zero
parameters,1184 parameters in the matrices, and48 bytes in the vectors). Here in thisφ2 we have
h = 15 as in Item 4 above (all cross-terms vanish ifx0 = x2 = x4 = x6 = 0 = xi, i = 8 · · · 18), and
the “dimension of solution set at infinity” (dimH∞) parameter is~ = 4 after the attacker guesses at 8
variables. In case that our FXL estimate is somewhat off, we can up this tom = 24, n = 32, with the
same Rank Attack estimates, see Table 4.

4.3 Can Our Patched TTS Instances Measure Up and Scale Up?

The answers seems to be: yes and yes, in speed and scalability!

Speed: The central portionφ2 as we described it does about800 field multiplications (instead of< 200
as in TTS/4).φ1 andφ3 does about400 and784 respectively. Taking into account that equation
solving is harder with lots of loops, the speed should be at least half of the superceded TTS/4 as
listed in [9]. Indeed, preliminary testing shows that this is in fact the case. So we have a signature
scheme that still signs 1000 times faster than RSA and two degrees of magnitude faster than any
other method. On a smart card, we can likely make do with lower-rated hardware and without
crypto co-processors, and still work faster than with RSA or ECC, and still have keys generated
on-card, unlike that of SFLASHv3.

Scalability: Let the requisite complexity beC & 216k. With rank attacks we wantc0q
r andc1q

u to be
≥ C, with both constants around214 or 215 (in multiplicatons) or26 (in AES blocks. So a rough
requirement isu ≥ 2k−1 andr ≥ 2k, i.e. probablyk+1 cross-terms. To maintain our XL/FXL
security (see Appendix B), we needs aboutm = 4k, so we can do like the very minimal format
we described above for Table 2, using two system of linear equations with2k− 1 variables, one
with 2k terms per equation, one withk + 1. There are two middle equations also withk + 1
terms. Son & 5k + 2, maybe a multiple of4 marginally larger for ease in programming.

Some sampleφ2’s for TTS meeting our spec above are given in Appendix A.

We can estimateφ2 does≈ 6k2(k + 2) multiplications. This almost equals the work done in
matricesM1 andM3 atm = 20, n = 28, and will overtake them whenm increases. ButC∗-derived
schemes will take time cubic ink also, and the coefficient in tame-like schemes is much smaller.

5 Conclusion

We describe herein how to construct a tame-like signature scheme less susceptible to attack on rank.
The results look quite promising and we think that it bears another look by cryptographers, notwith-
standing the apparent slowdown in the research of multivariate PKC of recent.
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[18] J.-C. Fauǵere,A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero (F5),
Proceedings of ISSAC, ACM Press, 2002.
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A Examples of Enhanced TTS, Scaled-Up

We were unable to findφ2 with n = 28, m = 20 in two systems of 10 equations that can be easily
constructed with regular patterns in its indices, unless we accept repetitive cross-terms (there are no
repeats now). However, more irregular instances exist, and here is one example:
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y 7 6 5 4 3 2 1 cross
8 8 9 10 11 12 1, 2
9 9 10 11 12 13 2, 3
10 10 11 12 13 14 3, 4
11 11 12 13 14 15 4, 5
12 12 13 14 15 16 5, 6
13 13 14 15 16 17 6, 2
14 14 15 16 17 8 1, 3
15 15 16 17 8 9 2, 4
16 16 17 8 9 10 3, 5
17 17 8 9 10 11 4, 6

y 18 19 20 21 22 23 24 25 26 27 cross
18 0 4 5 15 14 13 12 11 10 9 7, 8
19 10 0 3 4 16 15 14 13 12 11 8, 9
20 12 11 0 2 3 17 16 15 14 13 9, 10
21 14 13 12 0 5 2 8 17 16 15 10, 11
22 16 15 14 13 0 4 5 9 8 17 11, 12
23 9 8 17 16 15 0 3 4 11 10 12, 13
24 11 10 9 8 17 16 0 2 3 12 13, 14
25 13 12 11 10 9 8 17 0 5 2 14, 15
26 2 14 13 12 11 10 9 8 0 4 15, 16
27 3 5 15 14 13 12 11 10 9 0 16, 17

Table 3: A Different Central Map for Enhanced TTS

Each row specifies a central equation, for the initial equation of the two blocks are:

y8 = x8 + a8x7x8 + b8x6x9 + c8x5x10 + d8x4x11 + e8x3x12 + f8x1x2

y18 = x18 + a18x18x0 + b18x19x4 + c18x20x5 + d18x21x15 + e18x22x14 +
f18x23x13 + g18x24x12 + h18x25x11 + i18x26x10 + j18x27x9 + k18x7x8

We estimate this to have a security estimate of about288 under Rank and Dual Rank attacks, but
still the same XL complexity of around280. It is our goal to show that the construction is adaptable.

yi = xi +
∑7

j=1 pijxjx8+(i+j+1 mod 10), i = 8 · · · 17;
yi = xi + pi1xi−17xi−14 + pi2xi−16xi−15 + pi3xi−10xi−1 + pi4xi−9xi−2

+pi5xi−8xi−3 + pi6xi−7xi−4 + pi7xi−6xi−5, i = 18 · · · 21;
yi = xi + pi,0xi−10xi−14 +

∑i
j=22 pi,j−21 x2(i−j) xj

+
∑31

j=i+1 pi,j−21 xi−j+21 xj , i = 22 · · · 31.

Just in case that our XL/FXL estimate is slightly off, we can scale up to the largerφ2 above, with
(n,m) = (32, 24), which should have an FXL complexity about216 times higher (table form below).

y 8 9 10 11 12 13 14 15 16 17
8 1 2 3 4 5 6 7
9 1 2 3 4 5 6 7
10 1 2 3 4 5 6 7
11 1 2 3 4 5 6 7
12 7 1 2 3 4 5 6
13 6 7 1 2 3 4 5
14 5 6 7 1 2 3 4
15 4 5 6 7 1 2 3
16 3 4 5 6 7 1 2
17 2 3 4 5 6 7 1

y 22 23 24 25 26 27 28 29 30 31 cross
22 0 21 20 19 18 17 16 15 14 13 8, 12
23 2 0 21 20 19 18 17 16 15 14 9, 13
24 4 2 0 21 20 19 18 17 16 15 10, 14
25 6 4 2 0 21 20 19 18 17 16 11, 15
26 8 6 4 2 0 21 20 19 18 17 12, 16
27 10 8 6 4 2 0 21 20 19 18 13, 17
28 12 10 8 6 4 2 0 21 20 19 14, 18
29 14 12 10 8 6 4 2 0 21 20 15, 19
30 16 14 12 10 8 6 4 2 0 21 16, 20
31 18 16 14 12 10 8 6 4 2 0 17, 21

y term1 term2 term3 term4 term5 term6 term7
18 1, 4 2, 3 8, 17 9, 16 10, 15 11, 14 12, 13
19 2, 5 3, 4 9, 18 10, 17 11, 16 12, 15 13, 14
20 3, 6 4, 5 10, 19 11, 18 12, 17 13, 16 14, 15
21 4, 7 5, 6 11, 20 12, 19 13, 18 14, 17 15, 16

Table 4: A More Conservative Central Map for Enhanced TTS (n = 32, m = 24)
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We will not tabulate other results, but simply give the central map at higher dimensions. In the
given simpleφ2 below, we have (for̀ ≥ 6) the (m,n) = (4`, 6` − 4), with security parameters
(u, r, ~) = (2` − 2, 4` − 10, ` − 1), where~ is equal tom − h − 1 as in Sec. 4.1, or the excess
dimension of solution at infinity (after guessing atn−m variables).

yi = xi +
∑2`−5

j=1 pijxjx2`−4+(i+j+1 mod 2`−2), for 2`− 4 ≤ i ≤ 4`− 7;

yi = xi +
∑`−4

j=1 pijxi+j−(4`−6)xi−j−(2`+1)

+
∑2`−5

j=`−3 pijxi+j−3`+5xi+`−4−j , for 4`− 6 ≤ i ≤ 4`− 3;

yi = xi + pi0xi−2(`+1)xi−2(`−1) +
∑i

j=4`−2 pi,j−(4`−3)x2(i−j)xj
+
∑6`−5

j=i+1 pi,j−(4`−3)x4`−2+i−jxj , for 4`− 2 ≤ i ≤ 6`− 5.

Note that ifx0 = x2 = · · · = x2`−6 = 0 andxi = 0 for all i = 2`− 4 · · · 4`− 3, then all cross-terms
vanish. That is a total of3` variables, soh = 3`, and~ = m− h− 1 = `− 1.

B Security Concerns and Assessments of Multivariate PKC

There are two classes of attacks against multivariates cryptosystems: general and specific attacks.
Specific attacks cannot function if we design our schemes carefully. General schemes should always
function but can be slow. For example, Gröbner Bases can always be computed, but in the general case
has a woefully high time bound. We list what we know of attacks against multivariates, and aside from
Rank considerations, we refer the reader to the summaries given in [9].

General Attacks: of the following general types

Gröbner Bases Methods:See [9] for summary. References at [2, 5, 6, 26]. Generally regarded
as not practical when the “dimension of solution set at infinity” (see [29]) is non-zero.

Searching vs. Signature Schemes:See [9]. In general not practical against tame-like systems.

Rank Attacks: As discussed in the text.

Linearization-like Methods: Traceable from [25] and developing to XL attacks. See below.

Specific Attacks: Bilinear Relations ([35], used againstC∗ and TTM) not functional against TTS;
Separation of Oil and Vinegar ([23, 24], probably not functional against TTS, but just in case,
we keeph relatively high in Sec. 4.1 — see [9]); Patarin’s IP Approach ([36]), not functional
against TTS (see [9]); Attacks on 2R schemes, nonfunctional against TTS; Subspace Attack
against SFLASH (see [9]), nonfunctional against TTS.

The discussion above should not be limited to TTS but is concordant with all tame-like systems con-
structed according to the rules given in Sec. 4.2.

B.1 Assessing Tame-Like Signatures for XL-Like Attacks

XL-like attacks refer to techniques in whichthe original equations are multiplied by all monomials up
to some degree, then all these resultant equations is solved as a linear system of equation considering
every monomial to be a different independent variable.If there are enough independent equations, the
result is a solution of the system if possible, and a return value of “impossible” otherwise. To help the
method terminate earlier, it is a good idea to guess at some variables (FXL variant).

This approach was first proposed in [15] as a refinement of its precursor,relinearization([25]).
Several variants were proposed since, and [14] summarized them as well as claimed general usefulness
of the method used in multivariate schemes of all kinds.
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We have however some reason and expert opinions to believe ([10, 40]), that the general approach
is slightly overhyped. There are two problems with XL-like attacks. One is the so-called “solution
set at infinity” issue. The parameter~ = dimH∞, which is equal tom − h + 1 in a TTS set up
according to Sec. 4.2, needs to be eliminated, usually by guessing at variables. The other is that there
are more dependencies in the system of equations than what the author counted in [14] and earlier
papers. For example, suppose we wish to attack Enhanced TTS withn = 28, m = 20 even after
guessing atthirteenvariables, (i.e.n = 15, m = 20) and a maximum degree of 6 (resp. 5) there are
54264 (resp. 15504) monomials and only 52820 (resp. 13280) of them are independent out of 77520
equations found. One must get to a degree of 7, in which case using the formulas in [14] and using
some blocking optimizations, it takes> 285 AES block equivalents to do the entire cryptanalysis.

According to our computations ([1, 10]), a rough guide is that XL methods should operate only if

[tD]
{

(1− t)m−n−1 (1 + t)m
}

=
m−n−1∑
j=0

(−1)j
(
m− n− 1

j

)(
m

D − j

)
goes negative. Using the assumption that~ variables must be guessed, the complexity for FXL to
operate is computed to increase roughly at the level of24m+6. If we assume that we don’t have to
worry about thedimH∞ situation and consider all sorts of optimizations including sparse matrix
techniques, the best time bounds we can get are as listed in Table 1. Thus, the minimal XL-Like Attack
time bounds are roughly concordant with that of Dual Rank Attack time bounds.
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